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Abstract 
Aggregate stop-loss premium rates for group health insurance have 

usuall~" been based on collective risk theory methods. Unfortunately, 
these methods yield premium rates that are inadequate, because they 
ignore systematic and correlated risk. This extra risk, sometimes called 
parameter uncertainty, results from outside factors or errors. Here 
another method for calculating the rates, which takes into, account the 
cost for this extra risk, is presented. Some suggestions are made for 
implementing this calculation on electronic data processing equipment. 

I. Introduction 

Aggregate stop-loss is an insurance coverage whic~ is usually 
written on the health claims of an otherwise self insured employer. The 
coverage provides that the insurer will reimburse the employer for 100% 
of all health claims incurred exceeding a fixed attachment point set 
before the insurance period. The period is usually 1 year. The 
attachment point may be sel as a fixed number or, more commonly, as an 
amount per employee covered. Very often claims over a fixed limit on one 
person are not included in the aggregate stop loss coverage. This limit 
is either established to reduce the insurer's risk or because these 
ci3i~s are separately covered under a specific stop-loss coverage. All 
0; the fullo,dng ideas can also be applied to stop-loss reinsurance, 
since it is essentially the same coverage. 

II. Background 

LF~ Z be the random \ariable representing the total claims of the 
)t.roup during the insurance period. Its distribution function is F( z). 
If the attachment point is equal to sU (for a scaling unit or span U and 

integer s) then the aggregate stop-loss claims :(Z-sU,·, 
.'1, 

the net premium:"s E(Z-sU'·: I (z-sU)dF(z) and 
'X, sl' 

the \"ariance : V : I (z-sU-n) 2dF (z). Mereu [4] pointed out that 
s sU s 

these equations are easier to evaluate if expressed as : 

n 
s 

'1) : I (z-sU)dFCz': 
sU 

~ ro I zdF(z) - I sUdF(z) 
sU sU 

'" sU : 10 zdF(z) - 10 zdF(z) [I:sudF(Z) - I:~udF(Z) J 

Define: \"(Z) 222 : E[Z-E(Z)] : E(Z )-[E(Z)] and Fp(s) : 
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st: [ ) ns = E(Z) - J
O 

zdF(z) -sU 1-F(sU) 

\i s J'" 2 = (z-sU-n) dF(z) 
sU s 

(2.1) 

dF(z) 

Thus all that is needed to calculate fls and Vs are E(Z), V(Z), FO/s). 

F1 /s), and F2 /s). 

The risk theory section of [1] includes a method of calculating n 
s 

and Vs for one particularly appropriate family of random variables. Let 

l'i 
Z= X = LX. wi th N 

j=1 J 
a random variable that is equal to the number of 

claims incurred in the group 
-8 j 

and has the Poisson distribution: Pr(N=jl = 

~ • X. (j=I.2.3 .... ) is 
J . J 

the random variable equal to the amount of 

the j'th claim. The Xj are independent 

discrete random \"ar i ables wi th PrlXj=iUI 

and identically 

= and 

distributed 
m 
L h.= 

i=l ~ 
Again l' is the scaling unit. The distribution of X( =2) is called a 
compound Poisson distribution. 

Define: ~= £1\.)= l' ~ ih. and U
2=E(X._p)2=v 2 ~ i 2h. _ ~2. 

J i=1 1 J i=1 1 

m. 
1 

Panjer [6] has sho"·n P i = Pr{X=iVI = ~ LjhjPi - j and PO= e-
8 

where 

j=l 

mi=min{i.m}. The Pi can be calculated relatively quickly. Thus nsand Vs 

'" 
can be calculated according to /2.1) with: E(ZI = 2 iUPi = e~, VIZ) = 

s 

e(a
2+p2). and Fp/s) = L(iUIPPi • 

i=O 

III. The Extra Risk 

i=O 

There are other sources of variation in the claims on a group 
besides fluctuation in the size of the claims or the number of claims. 
These include an unexpected rate of change in the charges for medical 
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care, changes in the course of medical treatment of illnesses, inability 
to properly assess the expected claims for a group, contagious or new 
diseases, and errors in rating the group. All of the above sources of 
fluctuation may not affect the individuals in the group independently. 

A way of modeling this extra risk, is to let Z (the total amount of 
claims for the group in the year)=YX. X is the random variable that 
appears above, in section 2. Y is another random variable that is not 
compound Poisson, does not depend on number or size of claims, and is 
independent of X. For convenience let E(Y)=l. Thus, E(Z)=E(X)=B~. 

This method of modeling extra risk has been called parameter 
uncertainty. Meyer [5] discusses this and in fact gives a convenient 
method of calculating an approximation to the stop-loss premiums. 

IV. The Calculation Problem 

As mentioned above, aggregate stop-loss coverage on medical 
insurance usually is written with a limit on the total amount of claims 
from each individual in the group that will be included in the coverage. 
In the model of section III, if the limit were to be applied to the Xj , 

it would be simple to calculate the effect of the limit. To see this, 
let LU be the limit on each individual's claims. Then define the random 
variables: 

1 

h. 

XjL=min{Xj,LU). Then PrIXjL= iU) = hi,L = i.hk 
k=1 

o 

i<L 

i=L 

i>L 

N 
If X= EX' L and Z=YX then E(Z), VIZ), and Fr(s) (r=O,1,2) are easy to 

j=l J 

calculate as in section 2. 
Actually, the limit should apply to the size of each claim even 

N 
after it is adjusted by Y. That is Z= E minIYX.,LU}. Neither the method 

j="l J 
above nor that in [5] can be directly applied to this type of limit. 

V. The Calculation Method 

N 
Let ZjL = minIYXJ.,LU), Z = EZ'L with the X.and N defined as 

j=l J J 
above, and I(x) = the smallest integer ~ x. Then the conditional 
probability: 

I 
h. i L 1 Y 

m 
PrIZjL=iUyIY=y) = h. L h i = I(Ly ) (5.1) 1,y k~L k 

y 
0 i I(Ly ) 
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where Ly= L/y. 

This expression is approximate because the middle expression in the 
bracket should refer to ZjL=LU. If U is small the approximation will be 

better. Effectively, ZjL is allowed to get slightly greater than LU. 

When i = I(Ly)' ZjL=iUY ~ LyUY = LU. 

The recursive formula of [6] would still apply to the 
conditional probabilities in (5.1): 

m. 

Pi(L,y) Pr{X=iUIY=y) ·~r 
r=1 

Where m. = min{m,i, 
~,y 

N 
and X = 1: X. 

j=1 J 
Let Y~O, have density 

function g(y): 

s 

Fp(s) = ~ (iU)Ppr(Z=iU) ~ 
i=O 

<J) I(s/y) 

J g(y) ~ Pr{Z=iUyIY=y} (iUy)P dy 

o i=O 

This expression is approximate because I(s/y) ~ sly 
~o ... · we do a lot a rearranging to make this expression easier to 

calculate: 

l(s/y) " JLI (k-l ) 
Fp(S) ~ ~ g(y) \"' (iVv) pP. (L y) dy . L . 1 t. 

k=1 Lilt i=O 

Let the half open interval [~ , k=l ) be called Ik 

Now define hi,k= hi,y as in (5.1) for Y€I k This 

Y€I k implies that k ~ Ly k-l. 

is meaningful 

mi,k = min { m,i'I(L/k~} • Since Y€lk also implies that 

sk ~ !!. >s(k-l} -r. Y L' we have from (5.2): 

I(sk/L) 

(5.2 ) 

since 

(5.3) 

<J) JL/ (k-l) 
~ g(y) 

k=l L/k 

~ (iUy}PPi,k dy. This is also approximate 

i=O 

since I(sk/L) ~ l(s/y) ~ sly. 
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= 

= 
L/(k-l) J g(y)yPdy 

L/k 

m-l L/(k-l) 

= uP~ J g(y)yPdy 

k=1 L/k 

L/(k-l) . J g(y)yPdy 

L/k 

L/(k-l) 

J g(y)yPdy 

L/k 

+ 

+ 

+ 

L/(k-l) 

J g(y)yPdy 

L/k 

L/(k-l) J g(y)yPdy 

L/k 

(5.4) 

where k i = max{ I[ !L), m} If g ( y) does not take too long to 

integrate, the sums in (5.4) can be evaluated in a reasonable time on 
electronic data processing equipment. 

VI The Distribution of Y 

The premiums calculated by this method are very sensitive to the 
Var(Y) but not very sensitive to the shape of the density g. I have used 
both the normal and the gamma densities. The results did not differ 
substantially. The normal density is convenient because some software 
has built-in subroutines to evaluate it. Unfortunately, the normal 
density extends into the negative numbers. The gamma density has 
positive values and has a shape similar to the normal for higher values 
of the gamma's parameters. 

t a-1 -~y 
The gamma density is: g(y) = - y e ". y~O. If Y is Gamma then 

2 rIa) , 
E(Y)=a//I and V(Y)=a//I • If E(Y) is set to 1, as before, then a=/I and 
Var(Y)=I//I. Now note that if a=/I is an integer, repeated integration by 
parts gives the integral of g as a finite sum. This can be programmed 
with a relatively low execution time. The restriction to integers is not 
too big a problem. If the Var(Y)=I//I is in the neighborhood of 2%, the 
difference in Var(Y) between /1=50 and /1=51 is only 1/50-1/51 ~ 0.0004. 

VII. Parameter Estimation 

The parameter e can be estimated by determining a claim rate per 
covered indi vidual from a claim study. For a particular group, set e 
equal to this claim rate multiplied by the number of members in the 
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group. Of course, different claim rates by the age, sex, occupation, 
etc. of the members is a desirable refinement. Many insurers already 
have adjustments for these factors available. 

The hi's can be set equal to the empirical distribution of the size 

of claims (severi ty) of the insurer's entire group medical line of 
business. These need to be adjusted, for medical cost inflation trend, 
to the appropriate level for the time period of the proposed stop-loss 
insurance. Further refinements, such as di fferent severity tables for 
adul ts, children, or various areas may be desirable. These should be 
combined into a single table for the group which is to be rated. 

The empirical distribution will have a span of IC. In order to make 
the calculation possible in a reasonable length of time it is necessary 
to use a span of at least $1,000. Two methods are described by Gerber 
and Jones (3] to calculate the hi's for a larger span. They show that 

these methods put a lower or upper bound on the stop-loss premium. 
Var(Y) (or liP if the gamma density is being used) can be estimated 

as follows: Select a sample of groups that have been in force for a 
reasonable length of time such as 5 years, with very little change in 
coverage. In each year calculate their loss ratios by dividing their 
incurred claims by tabular premiums which adjust for changes in the 
membership of the groups, changes in benefits, trend in medical costs, 
etc. Calculate the normalized variance of these loss ratios over the 
period for each group. That is, if the loss ratio for the group in year 

1 n 2 - L (z. - z) 
1\ 

i i=1,2, .. n, then the normalized variance R = 
n i =l 1 

-2 z 

where z = 
1 n - L z .• 
ni=l 1 

R(XI=V(XI/[E(X)J 2 = 0
2

+ l 
e/J2 

Then 

1\ 

IV(Y) I 

sample groups. I have not evaluated 
one study the value was about 2%. 

set 
1\ 

V(Y) = 
1\ 

R -R(X) 
l+R(X) where: 

can then be averaged over all the 

the properties of this estimator. In 

1\ 

Another possibility 
group being rated, or 
average. Credi bi 1 i ty for 
for example, [2J. 

would be to use the value of V(Y) from the 
a value in between its own and the sample 
2nd moments of claims has been discussed in, 

VIII. Programming Notes and Results 
,.1,0. 

I wrote a program in FORTRAN to evaluate (5.4). Th~ method is to 

calculate each Pi,k using (5.3), accumulate to L iPPi,k' .ul,tiply by 

i«sk/L) 
L/(k-I) 

Ig(y)yPdy , and sum all of these products from k=l to m. This is the 

A 

first sum of (5.4). The second sum of (5.4) is similarly calculated, 
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I
B. 

this time determining iPp. for i>(sm/L). multiplying each by ~(y)yPdy 
~ 

o 
, and summing the products until they are negligible. When calculating 
Pi,k it is not necessary to save all of the prior values of Pi,k' Only 

Pi-m,k through P i - 1 ,k are needed to calculate Pi,k' 

The values of Pi,k' for small i and reasonably large e are smaller 

than the smallest number that can be handled by the floating point 
arithmetic of most machines. One solution to this problem is to save the 
logari thms of the numbers . Unfortunately, the repeated use of ,.ven the 
built-in log and antilo~ functions aakes the pro~ram's run time 
impracticably long. A better solution is to store the prior values as a 
ratio to the current. That is, save Pi-a',k/Pi-1,k throu,h Pi-2,k/Pi-1,k 
for calculating Pi,k' 

The program calculated premiums that appeared to be both reasonable 
as compared to the size of the risk and competitive. They varied 
appropriately with the limit L. As a test of the approximation in 
section 6 above, values were run assuming that Var(Y)=O. The 
approximation was found to introduce only extremely small errors. 

For a group of 100 members the execution time on a large mainframe 
computer was about 10 minutes. Unfortunately, the time tends to increase 
quickly as the size of group increases. Thus, it probably would be 
impractical to use this method for stop-loss reinsurance. If the span L 
were increased, the run times would be reduced. 

Execution time on a microcomputer, such as an IB~-AT or its clone, 
would be about 50 times as long. Some of the new mathematics 
coprocessors for PC's might reduce this time. 
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