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Asymptotic formulae are derived for some discrete compound distributions 

which have been found to be useful in insurance claims modelling. These formulae 

provide insight into the distributional form, and often complement recursive compu-

tational algorithms which are cumbersome in the right tail of the distribution. Simi-

lar formulae are derived for the tail and the stop-loss premium. Some practical 

aspects of the use of these formulae are discussed. 
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1. Introduction 

Recently, asymptotic formulae have been derived for compound distributions 

when the number of claims distribution is of a particular type. Sundt (1982), for 

example, considered the compound geometric distribution, thus generalizing 

Cramer's asymptotic ruin formula. These results were in turn generalized by Milidiu 

(1985) (see also Jewell and Milidiu, 1986) to the compound negative binomial, and 

by Embrechts, Maejima, and Teugels (1985) to a general family of compound distri-

butions in the case of a non-arithmetic claim size distribution. In this paper the 

claim size distribution will be assumed to be arithmetic. 

Relevant background information and notation is provided in section 2, and in 

section 3 asymptotic formulae are derived for the probability function. the tail, and 

the stop-los premium of the compound distribution. These results apply with several 

number of claims distributions which have been found to be of use in fitting 

insurance claim count data, and some of these examples are given in section 4. 

Finally, in section 5, some practical aspects of the use of these formulae are dis-

cussed, as well as some comments about their accuracy. 

2. Background and Notation 

The distribution of total claims with probability generating function (pgf) 

G(:) = £g.:. = P(F{:)) (1) 
.-11 

is of interest, where PC:) = £P.:" and F{:) = £1.:· are the number of claims and 
"~ "~ 

claim size pgf's respectively. Specifically, the limiting behaviour of g. as n - oc 

will be considered. The notation a{/I) - ben), n - 00, will be taken to mean 

i 

sa 

J 



lim a(n)/b(n) = 1. The claim size distribution if.; n = 0,1,2, ... } is assumed to be 

such that the greatest common divisor of the set of values of n with 1.>0 is l. If 

not, a new choice of monetary 'units will achieve this. 

The class of number of claims distributions considered is that for which 

p,.-Cn"8.11, "-00, (2) 

where C>O, -OC>(<><oo, and 0<8 <1. This class is quite large, and includes the 

extended truncated negative binomial (Willmot, 1988), the Poisson-negative bino-

mial convolution of Ruohonen (1988), the Poisson-inverse Gaussian (Willmot. 

1987), the generalized Poisson-Pascal (Kestemont and Paris, 1985), and Sichel's Pois-

son mixture by the generalized inverse Gaussian (Sichel, 1971), among others. See 

Teugels and Willmot (1987) for further examples. 

The important special case of the negative binomial is now stated. 

Lemma 1 (Milidiu. 1985) 

For the compound negative binomial distribution, (1) becomes 

G(z) = {l-P[F(z)-lJ}~ (3) 

with <»0, p>O. In this case 

g. - r(<>){pr F(T W ' n - 00, (4) 

where T >1 satisfies F(T) = l+rl. 

The special case with <> = 1 was found by Sundt (1982). 

Lemma 1 will be used later on, as well as the following results. It is assumed 

here that A(:) = fa.:-, B(z) = :Bb.z-, and C(:) = :B e_:- . 
.. -0 ,...0 • ..0 
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Lemma 2 (Bender. 1974) 

Suppose that b. - ¢b .. 1, n - 00, where ¢>O and C(:) has radius of convergence exceed-

ing ¢. Then if A(:) = B(:)C(:), irfollows that a. _ C(¢)b., n - 00. 

Lemma 3 (Meir and Moon. 1987) 

Suppose that c.-Cn;9-, n_oo,where C>O, ¢<-1, and 9>0. Then if B(:) has 

radius of convergence exceeding C(9) and A(:) - B{C(:)}, it follows that a. - CB'{C(9»)n"e-, 

n - 00. 

It is useful to note that the radius of convergence of B(:) is 0 in lemma 2. as 

follows easily from the ratio test. For a result related to lemma 3, see Embrechts 

and Hawkes (1982). 

3. A general asymptotic result 

The following shows that the compound distribution (g.) satisfies (2) quite gen-

erally if {p.} does. 

Theorem 

If (1) and (2) hold, and F(:) has radius of convergence exceeding T where T>1 satisfies 

(5) 

then 

n -00. (6) 

Proof: First assume that Q~O and consider the negative binomial pgf 

( ~. 1-9_1 
A :) = L.. a.: = (-1 •• ) . 

,,-0 -v .. 

Then from lemma 1 it follows that 
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and that 

(1-8 )<>+1 0" 

r(<>+1) nO 
n _ 00, 

b ~ J.t 1 ( 1-8 }o+l <> ..... 
• = f:IQ " - r(<>+1) OTF'(T) "T, n _ 00 . 

In (8). b. is the coefficient of :' in A (F(:)} and t:t the coefficient of :" in {F(:)}'. Then 

s. = ~• _ er(<>+l) I 
b. (1-8)<>+1 

l~aJ:'{~ _ err" ... 1) } I 
f-'I a. (1-8 )_1 

EaJ:' 
t_1 

By (2) and (7), there exists ~ such that [1>._ - er(<>+l) I<.!.. for any <>0 and k>~. Thus 
~ (1_8)<>+1 2 

(7) 

(8) 

But from (5). {F(T »)t = EI:'T' _ 04 <00, implying that I:'T' _ 0 as n - 00. Also. from (8) . 
• -<1 
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n° 1-9 
b,r'_ f(<>+1){9rF'(r)}_I=MnO, n-oo. Thus. there exists N such that for n>N one has 

since and 

k = 1,2,3 ..... ~. With this choice of N, it follows that for n>N one has 

to 
~{'M/4~} 

, i_I 
S. < 2" + ":"::;:""'M'-:-/2=--- = " 

and the theorem is proved when <>~O. 

for 

Now assume that rhe theorem holds for <>~"o. and we demonstrate that it holds for "~"o-l. 

and then rhe theorem follows by induction since ir holds for <>~O. If "'~"o-l, one has from (1) rhar 

{:G'(:)) = {H(:)}{:F'(:)P'(1)} (9) 

where 

H(o) = ~I o. = P'{F(:)} = ~ (n+1)pHI {F(')}' 
o ~ ',. P'(l) ~ P'(1) o. 

(10) 

(We remark that (2) implies that the radius of convergence of P (:) is 9 -I> 1, implying rhar 

P '(1)<00. While nor necessary. this definirion leads to H(:) being a pgf.) From (2). 

(n+1)pHl 
P'(1) 

Since "+l~,,o, it follows from the theorem that 

n - 00. 

hll
- P'(1){9TF'(T)}0'+2' n-oo. (11) 

Oear!y, :F'(:)P'(1) has radius of convergence greater rhan r. and from (9). (11). and lemma 2 

one has 

ng. - rF'(r)P'(1)h., n - 00. 

In other words, (4) holds for "~Qo-1. and the theorem is proved. 
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It is apparent from the proof of the theorem that it may be generalized in vari-

ous ways. but in the present form it covers most situations of practical interest. 

Furthermore, it follows directly from the theorem that the tail of the distribu-

tion {g.} satisfies 

(12) 

and the stop-loss premium satisfies 

(13) 

4. Some examples 

Several number of claims distributions of interest in insurance satisfy the results 

of the previous section. 

Example 1 • The exlended lruncaled negalive binomial 

A generalization of the negative binomial distribution is that with pgf 

(14) 

where 0:910<1, p>O, and a>-l, a'" 0 (d. Willmot, 1988). The modified geometric (Gossiaux 

and Lemaire. 1981) is another special case which has been found to be of use in claim count model· 

ling. As with the negative binomial. one has easily that 

a(l_po)no- l {3. 

P. - r(a+ 1){(l+8)Q-l} ( 1+8) , 
n _ co, (15) 

which is of the form (2). Hence. the compound distribution {g.} with pgf G(z) = P{F(z)} satisfies 
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o(1-Po){PTF'(Tlr-~ no-IT ..... 
g. - r(<>+ 1){1-(I+P)i ' 

n _ oc, (16) 

where r >1 satisfies F(T) = l+p- l , as follows from the theorem. 

Example 2 - Ruohonen's distribution 

Ruohonen (1988) has suggested the use of the convolution of a Poisson and a negative binomial. 

with pgf 

(17) 

Since the Poisson has infinite radius of convergence, it follows from lemmas 1 and 2 that 

(18) 

Hence. the compound distribution {g.} with pgf G(:) = P{F(:)} satisfies 

~).18n(;-lT ....... 

g. - r(o){$TF'(TW' 
n - oc. (19) 

where T>1 satisfies F(T) = I+P-I , as follows from the theorem. 

Example 3 - Poisson-Pascal extension 

The distribution with pgf 

(20) 

where 1'>0, P>O, and 0<r<1, has been found to provide an extremely good fit to claim count data 

by Kestemont and Paris (1985). Willmot (1987) discussed the many attractive properties of its special 

case r = 0.5, the Poisson-inverse Gaussian distribution. 

The pgf (20) may be re-expressed in compound Poisson form as PC:) = expp.[K(:)-I]} where 

>. = J.I{(1+$)' -I} and K(z) is given by (14) with Po = ° and 0 = -r. Thus. the coefficient k. of 

z' in K(;:) satisfies (15), again with Po = ° and 0 - -r. Since R(:) = exp{>.(:-l)} has infinite 

radius of convergence, it follows from lemma 3 that P. - R-·{[l-(l+P) ...... ]-I}k., n - oc. In other 

words. 
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rl'~'(1+8)' __ ie 8 ). 
P. - r(l-r) n 1+8' n - 00 

(21) 

and so the theorem yields , for the distribution {g.} with pgf G(:) = P{F(:)} , 

_ rl'<!"{.BrF'(r))' __ I -<0 

g. r(1-r) n r , (22) 

where T >1 satisfies F(T) = 1+8-1, 

Example 4 - Sichel's distribution 

Another generalization of the Poisson-inverse Gaussian distribution is the Poisson mixture by 

the generalized inverse Gaussian distribution. with pgf 

(23) 

where 1'>0. $>0. -OO<a<oo. and K.(x) is the modified Bessel function of the third kind with 

index a (ef. Jorgensen. 1982) . The Poisson-inverse Gaussian is the special case a = -1;2. One has 

n _ 00, (24) 

(cf. Teugels and Willrnot, 1987, with misprint), and so the theorem yields, for the distribution {g. } 

with pgf G(:) = P{F(:)}, 

(25) 

where T >1 satisfies F(T) = l+p-l 

Other examples may be found in Teugels and Willmot (1987) . 

S. Practical considerations 

The asymptotic results of section 3 give estimates for a large family of com-

pound distributions, their tail probabilities, and their stop-loss premiums. 
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From a numerical standpoint, the results are simple to apply, only requiring the 

value of T from (5). Normally, this value must be obtained numerically, and the 

inequality 

(26) 

'" where m, = 2:n'f.; i = 1,2, is of use in locating the root 1. In particular, a succes-
A-D 

sive bisection routine using (26) or a Newton.Raphson procedure using the right side 

of (26) as starting value (eg . Burden and Faires, 1985) is satisfactory. To derive 

(:6), note that from (5) 

In other words, m2(log 1)2 + 2m1(log r) - 2(1-8)/9<0. Since m2>O, the roots of this 

quadratic in log r bound the actual value , and exponentiating the positive root 

yields (26). 

In practice, the usefulness of an asymptotic formula depends on whether the 

probabilities are still significantly larger than zero when the asymptotics become 

accurate. One would expect that since the asymptotic result depends only on the 

asymptotic behaviour of (p.) and not its exact form, the accuracy should depend to 

a great extent on the choice of (p.). In particular, if (2) is not accurate , then one 

could hardly expect (4) to be accurate. The second important factor influencing the 

accuracy of (4) is the distributional form of if.) . If the distribution is multimodal, 



then this behaviour may be reproduced by {g.} (see Douglas, 1980, for further dis­

cussion) , and it may take longer for {g.} to settle down to its asymptotic form. 

As a result , it is difficult to assess the accuracy without evaluating the exact 

value of g., yet this is often primarily the reason why one would wish to use the 

asymptotic formula in the first place. This, fortunately, is not always the case. For 

example , the exact probabilities of the compound negative binomial may be com­

puted recursively using the algorithm of Panjer (1981), yet this formula becomes 

quite cumbersome computationally in the extreme right tail, since a large number of 

previously calculated values may appear in the computation . An obvious use of the 

asymptotic result in this case would be to compare the asymptotic value to the value 

from the recursion, and then to use only the former when it is sufficiently accurate . 

Several successive values should be checked to assess this, however, since the asymp­

totic value could be close to the recursive value and then the two could diverge 

again. A similar approach may be used with the extended Poisson-Pascal distribu­

tion of example 2. A combination of recursive and asymptotic approaches have 

been found to be quite useful in connection with the evaluation of some queue 

length distributions by Tijms (1986). 

The accuracy of the asymptotic results may be checked numerically for various 

choices of (p.) and if.}. Milidiu (1985) suggests that for the compound negative 

binomial the accuracy of (4) decreases as Q increases. Further numerical investiga­

tions tend to reinforce this conclusion, and also suggest that the accuracy increases 

as fJ increases . In particular, in the compound geometric case with Q = 1, (4) is 

normally extremely accurate for quite small values of n. even for fJ as small as 0.5. 
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As an example, consider the claim size distribution obtained by applying the com-

pound Poisson approximation to the individual risk model using Gerber's example 

(Gerber, 1979, pp. 48-55). Th.is yields the claim size distribution 

n f. 
1 .042857 
2 .250000 
3 .307143 
4 .257143 
5 .142857 

With f3 = 1, (4) is extremely accurate even for relatively small values of n, as 

may be seen from the following table. 

Compound Geometric 

n exact 8. asymptotic 8. 

5 .058276 .051118 
10 .017615 .018069 
15 .006356 .006387 
20 .002258 .002257 
25 .000798 .000798 
30 .000282 .000282 
35 .000100 .000100 
40 .000035 .000035 

Thus, (4) is of use in obtaining quick estimates of g., a fact which when combined 

with the recursive approach to the evaluation of the compound negative binomial 

yields a fast, accurate computational scheme. 

A similar approach may be used to study the accuracy of (6) for other choices 

of (p.} and if.}. For example, for the Poisson-Pascal extension of example 3, both 

(21) and (22) appear to be most accurate when r is very close to 0.5 (the Poisson-

inverse Gaussian distribution), particularly for large /3, and not very accurate else-
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where. For example, using Gerber's {f.} as above and the compound Poisson-

inverse Gaussian (r = 0.5) with p = 0.5 and JJ = 1, one obtains the following results. 

Compo'und Poisson-Inverse Gaussian 

n exact g. asymptotic g. 

5 .028659 .031664 
10 .001954 .002226 
15 .000228 .000241 
20 .000031 .000031 
25 .000004 .000004 

6. Conclusions 

The use of asymptotic formulae such as (6) appears to have much potential for 

many compound distributions of practical interest, both as approximations in their 

own right and in conjunction with other computational schemes such as recursive 

approaches. However, with any particular distributional assumptions, much numeri-

cal work is needed to assess the accuracy, as well as that of related formulae such as 

(12) and (13). 

7. References 

Bender, E. (1974). "Asymptotic Methods of Enumeration". SIAM Review, 16, 

485-515, Corrigendum (1976), 18, p. 292. 

Burden, R., and Faires, 1. (1985). Numerical Analysis, (3rd ed.). Prindle, Weber. 

and Schmidt, Boston. 

Douglas, 1. (1980). Analysis with Standard Contagious Distributions. International 

Co-operative Publishing House, Fairland, Maryland . 

'109 



Embrechts, P., and Hawkes, 1. (1982). "A Limit Theorem for the Tails of Discrete 

Infinitely Divisible Laws with Applications to Fluctuation Theory". Journal of 

the Australian Mathematics Society A, 32, 412·422. 

Embrechts, P., Maejima, M., and Teugels, 1. (1985). "Asymptotic Behaviour of 

Compound Distributions". Astin Bulletin, 15,45-48. 

Gerber, H. (1979). An Introduction to Mathematical Risk Theory. S.S. Huebner 

Foundation, University of Pennsylvania, Philadelphia. 

Gossiaux. A., and Lemaire. 1. (1981). "Methodes d'ajustement de distributions de 

Sinistres". Bulletin of the Association of Swiss Actuaries, 81, 87-95. 

1ewell, W., and Milidiu, R. (1986). "Strategies for Computation of Compound Dis-

tributions with Two-Sided Severities". Insurance: Mathematics and Economics. 5. 

119-127. 

1orgensen, B. (1982). Statistical Properties of the Generalized Inverse Gaussian Distri· 

bution, Lecture Notes in Statistics 9. Springer-Verlag, New York. 

Kestemont, R., and Paris, 1. (1985). "Sur l'ajustement du nombre de sinistres·'. 

Bulletin of the Association of Swiss Actuaries, 85, 157-164. 

Meir, A., and Moon, 1. (1987). "Some Asymptotic Results Useful in Enumeration 

Problems". Aequationes Mathematicae, 33, 260·268. 

Milidiu, R. (1985). "The Computation of Compound Distributions with Two-Sided 

Severities". Ph.D. Dissertation, Department of Industrial Engineering and 

Operations Research, University of California at Berkeley. 

i 

I 

'1 '1 0 j 



Panjer, H. (1981). "Recursive Evaluation of a Family of Compound Distributions". 

Astin Bulletin, 12, 22-26. 

Ruohonen, M. (1988). "A Model for the Claim Number Process". Astin Bulletin, 

18, 57-68. 

Sichel, H. (1971). "On a Family of Discrete Distributions Particularly Suited to 

Represent Long Tailed Frequency Data". Proceedings of the Third Symposium 

on Mathematical Statistics, N. Laubscher (ed.). Pretoria, CSIR. 

Sundt, B. (1982). "Asymptotic Behaviour of Compound Distributions and Stop-

Loss Premiums". Astin Bulletin, 13,89-98, Corrigendum (1985), 15, p. 44. 

Teugels, J., and Willmot, G. (1987). "Approximations for stop-loss premiums". 

Insurance: Mathematics and Economics, 6, 195-202. 

Tijms, H. (1986). Stochastic Modelling and Analysis: A Computational Approach. 

John Wiley, Chichester. 

Willmot, G. (1987). "The Poisson-Inverse Gaussian as an Alternative to the Nega-

tive Binomial". Scandinavian Actuarial Journal, 113-127. 

Willmot, G. (1988). "Sundt and Jewell's family of Discrete Distributions". ASlin 

Bulletin, 18, 17-29. 

I 

l "1 "1 "1 



"1"12 


