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Abstract

Can a single parameter development pattern describe most cases of
casualty loss development with reasonable accuracy? The answer is "YESI"

In this paper, the author Introduces a generalization of Bondy
development and demonstrates its descriptive powers. Generalized Bondy
development is defined in terms of a new concept: "the force of development.”
Generalized Bondy development facilitates estimation of development factors,
is easily computed, and affords excellent fits to observed development ratios.

The paper also investigates the characteristics of insurance operations
that explain the algorithm. Investigation of this question sheds light on the
actuarial ties between the diagnosis of insurance and risk financing

situations and the selection of corresponding actuarial models of development.

Introduction
Generalized Bondy development is based on an algorithm developed in the
1960s. The generalized algorithm {s easy to compute and affords excellent

descriptions of actual development patterns for many types of insurance. This

paper will:
1. Afford a logical framework for analysis of development problems.
2. Define theigeneralized Bondy approach.
3. Apply Bondy development to fractional periods.
4. Illustrate the shape of generalized Bondy development patterns.
5. Introduce an algorithm for estimating Bondy parameters.

6. Present examples of generalized Bondy development.



7. Analyze the sensitivity of the algorithm.
8. Review theoretical considerations pertaining to the use of
generalized Bondy development.

9. Summarize these results.

1. The Development Problen

Often the values of observations change as we learn more about the
subject that we are studying. Actuaries call such changes "development.” In
{nsurance and risk financing, actuaries are concerned with various measures of
development for premiums and losses, There are many reasons for this concern.
Perhaps the most common reason is the need to accurately assess the
profitabllity and financial performance of insurance operations.

Development problems can be described in terms of three component

phenomena:
A. Point processes
B. Mixing
C. Aggregation

A claim or loss occurs when an insurer or other risk financing
institution incurs a legal obligation. When a loss® occurs, it occurs at a
well-defined moment in time. As time passes and the loss matures, its
estimated ultimate value and the paid portion will change or develop.
Associated with the loss is a development pattern describing the evolution of
these values. This developnent pattern illustrates the concept of point

process.

1Depending on coverage (e.g., claims-made v. occurrence) and court
interpretation, losses involving cumulative trauma, gradual pollution, and other
cumulative damages over time may not strictly fit this characterization.



Insurance policies apply to a variety of insureds, types of loss, etc.
The development pattern for a book of business is a welghted average of the
development patterns for the individual losses. If the mix of business
changes, development patterns exhibit corresponding changes. For example, a
changing mix of stable development patterns will produce a shifting overall
development pattern. And, if different development patterns apply to the
constituent elements of the book of business, the resulting development
pattern may have mathematical properties distinct from those of the elements’
patterns.

In addition to mixing the constituent elements of a book of business,
observed development data {s aggregated over time. Aggregation can modify
development patterns for point processes in determining overall development
patterns. For example, if data is grouped on a yearly basls, then an
observation at twelve months maturity includes both a loss at zero maturity
incurred at the last moment of the period and a loss at twelve months maturity
incurred at the first moment of the period. And, to the extent exposures are
more heavily concentrated at one of these extremes, observed aggregate
development will more closely égtee with expected mixed development for the
corresponding moment.

These phenomena become more intricate as one moves from primary to
reinsurance operations. However, in some cases, aggregate reporting by
individual ceding carriers may be characterized as point processes at the

reinsurance level.

ene d 24
The name “Generalized Bondy Development" is taken from work by Martin

Bondy during the 1960s at predecessor organizations of the Insurance Services



Office (ISO). The fssue at that time was estimation of the tail factor (i.e.,
the development factor to adjust from an observation at an arbitrary maturity
to the ultimate value).

The following notation is used to define the generalized Bondy approach:

t - the duration from the moment a loss is incurred to the
observation of the associated variable subject to
development.

r(e) = the expected value of the observation at time ¢.

h - an arbitrary increment in time that defines the periods in
which development 1s measured.

d(e) = r(e+h) / r(c)
- the development factor to adjust an observed amount at time
t to its corresponding value at time t+h.
B - the Bondy parameter.

Generalized Bondy development is characterized by the following
egquation:
d(e+h) - d(e)® (1]
Because development ratios approach unity at more mature durations,
values of B are between 0 and 1. Also, equation [l1] defines a recursive
relationship among development factors, namely:
d(c+2h) = d(eth)® = (d(e)?)P = d(e)PxP (2]
Because the tall factor is the product of development factors for individual
periods, 1f d(t) 1s the last observed development factor, the tail factor for
subsequent periods can be computed by raising d(t) to the power B/(1-B), where
B/(1-8) is the sum of the geometric series:
B/(1-B) =B+ 82 +87 + 8%+ ... 13]
In particular, if 8 = .5, the tail factor is i{dentical to the observed

development factor for the most mature observed period.



The original 1SO studies determined that, in some situations, setting
the tail factor equal te the most mature development factor (i.e., setting the
Bondy parameter equal to 0.5) produced reasonable estimates of ultimate
values. This paper presents methods to determine "optimal” values of B that
afford a "best fit" to observed development ratios. In this sense it
generalizes the original Bondy approach to values other than 0.5,

The “force of development" is a useful concept for analyzing development
patterns and greatly facilitates the definition of generalized Bondy
development. 1Its definition parallels the definitions of the force of
interest and the force of mortality. The force of development at time t
represents the instantaneous change in the variable subject to development at
time t and 1s expressed as a rate spanning the same period as 1is used to
measure development. Thus, {f annual data on reported losses is being
studied, the force of development is the instantaneous rate of change in
reported losses expressed as an annual rate.

Using f(t) to denote the force of development,

f(t) =~ (dsdt r(c)) / r(t) (4]
- d/de log,(r(t)) (5]

Generalized Bondy development can now be defined as describing

development patterns for which:

£(y) = B(T-2)/R £(z) 161
where B is a single parameter with values between 0 and 1, and y and z are
arbitrary maturities. The characteristic Bondy relationships among
development factors are logical consequences of this definition. Thus, if y -
t+h and z = ¢, equation [6] can be rewritten as:

F(t+h) = B £(t) (7]



Equation {1] can be derived from equatfon (6] by integrating over
appropriate intervals - (A) from t to t+h and (B) from t+h to t+2h - and

comparing results.

A J Z*h f(x) dx - f:"' d/dx(log,(r(x)) dx
- log.(r(t+h)) - Iog.(r(t))
= loggy(r(t+h)/r(t))
- log,(d(t)) (8]
t+2h
(B) logg(d(t+h)) - It:h £(x) dx

- f:*” p(x+h)-X) /R £oxy ax

-8 f:"' £(x) dx

B log,(d(t)) 19?
Using both sides of equation (9] as exponents of e generates equation (1}.

d(t+h) = d(t)? (1]

3. Fractional Pexiods

Analysis of development for fractional periods {llustrates the power of
generalized Bondy development. Frequently an actuary must determine
development factors applicable to periods spanning intervals other than those
for which observations are available. Because development intervals can be
sanalyzed as combinations of fractional periods, observed periods, and tail
periods, the ability to determine logically consistent development factors for
fractional periods significantly enhances the power of any actuarial

development model.

2 gubstitution: u=x-h, du=dx, (x=t+h)=>(u=t), & (x=t+2h)=>(u=t+h).



If dp(t) is a development factor for a Bondy development pattern with
parameter B measured using interval h, then dp(t) can also be written as a
product of n development factors measured using interval h/n. Changing the
limits of integration in equations (8) and [9] to (A) from t to t+h/n and (B)
from t+h to t+h+h/n generates:

B =~ loge(r(t+h+h/n)/r(c+h)) / logg(r(t+h/n)/r(c)) [10]
Using 3 to denote the Bondy parameter for development measured at interval
h/n, equation {l0] can be rewritten as:
B - log (dppm(t+h)) / logy(dp (£)) = (B)™ (11}
The development factor dh/n(c) can be computed from:
logg(dp(t)) = 1ogy(dp () (1+B+...+B%"1) [12)
Development factors for other fractional periods can be derived by raising

A
dh/n(c) to appropriate powers of B.

4. The Shape of Bondy Development

Development patterns can be portrayed in terms of the force of
deQelopmenc, development ratios, or values of observations (e.g., reported
losses).

The force of development at arbitrary maturities may be computed using

the following equation.

log d(e) - j'z*h £(x) dx
t+h (x-t)/h
- ft B f(t) dx

o [ (Log(B))(x-E)/h £(r) ax

£(t) (h/log(B)) ji &Y du



= f£(t) (h/log(B)) (B-1) 13y
Thus, if B is known and d(:) is also known for some ;,

£(£) = log(B) log(d(t)) / (h(B-1)) {14)]

and £e) - B(E-0/h gy {15]

Chart I shows the force of development at three month intervals for B -
0.5, h =1, and d(€) = 2.

CHART 1

FORCE OF DEVELOPMENT
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Using equations {11} and [12] the Bondy parameter for quarterly intervals and
the development ratio from maturity 2.00 to maturity 2.25 car be calculated.
Equation [1] can then be applied to determine development factors for other
three month intervals. Groups of four successive quarterly factors can then
be multiplied to detet;ine annual development ratios. Chart Il presents the

annual development ratios at three month intervals.

3 substitution: u-(log(B))(x-t)/h, du=(log(B)/h)dx, (x=t)=>(u=0), &
(x=t+h)=>(u=1).



CHART II )

BONDY DEVELOPMENT RATIOS
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Assuming an observation of r(t) = 100,000 at t~1, it follows that the ultimate
value is 400,000. Combining this information with quarterly development
ratios leads to the following chart of emergence by calendar quarter.

CHART III

BONDY DEVELOPMENT PRATTERN
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In each of these charts, values have been extended back to a wmaturity of
zero. In applications, the central concern is estimating future development.
Analysis of the ability of generalized Bondy development to precisely model

immature losses is beyond the scope of this paper.

5. _ Parameter Estimation

Bondy development patterns can be quickly estimated from observed
development ratlos. The algorithm presented in this section can be used to
fit a generalized Bondy development pattern to as few as two observations of
development ratios. In order to present the algorithm, the following notation
is employed:

dy - the i*® observed development ratio, where n development

ratios have been observed and the development ratios are

arranged in order of maturity with d,, spanning the most
mature development period.

1, - log,(dy).

E - the estimate of the Bondy parameter.

& - the estigated developwent ratio for the earljest observed
period; d will be shown to be a function of B.

1 - log(d).

The algorithm determines parameter estimates affording a "best fit." A
least squares measure of fit i{s employed. To simplify the mathematics and
place greater emphasis on more mature observations, the measure of fit {s
defined In terms of natural logarithms.

The specific objective of the algorithm is to find values of B and d
that minimize:

n

CRITERION =~ £ (1, - 18i-1)2 (16
i=1



The criterion is written in terms of two parameters. For the criterion
to attain a minimum value, the value of its derivative with respect to each
parameter must be zero. The derivative with respect to 3 is:

n
a/ad (CRITERION) = T 2 (1; - 1 BL1) (-pt-1) /g (17}
i=1
Because, for relevant cases, development ratios are positive, 3 must be

positive. Setting the derlvative equal to zero and solving for 1 leads to:

>

a o n,

-t 1,8"1 ;5 p?-2 (18]
=1 1=1

Equation [l17] expresses 2 (and hence 2) as a function of 3. Thus, the problem

of fitting a Bondy development pattern has been reduced to the problem of

computing the single parameter 3.

Writing the criterion as a function c(a), the value of 3 for which c(s)
takes its minimum value can be determined using a Newton-Raphson iterative
approach to identify the zeroes of the derivative c'(s) of c{a). The formula
for 3:4; (L{.e., the estimated value of ; at the (x+1)sc iteration) 1is:

Byey = By - c'(By) / c"(By [19)

Because all derivatives are with respect to 3, more simple notation can
be used. For purposes of describing the algoritha for [19), ¢ denotes c(s),
¢’ denotes 3/3B(c(B)), and ¢ denotes 32/382(c(B)). Similarly, 1° = d/dB(l),
and i" - dz/dsz(i). Using this notation, 3x+1 can be evaluated using the
following formulas: »

c - T 181 )2 [16)

i=1

¢ = T -2) (1 - 1B 1B - 1YY
i=1



(-2)01,1°B"Y & (1-1)1,18%2 . 118872 . (1.1)12p8Y) £20)
1=]1

" = T (-2H1IBYY + 204-1)18 + (1-1)¢1-2)1,18*°
1=1

© (1 111mBN Y L 2(21-2)1, 183 . (1-1)(21-3)12B%7Y) [21)
1 -% 1, Bt T pu? (18]
i=1 A=}
1© - (T (-1 I Bn?
1=} 1=]1
ST 1Bt T (21-2)877%) /(T 3222 (22)
1=} =} i=3

~
T
]

" A ~ a -~ A
((E(1-1)(1-2)1,84° E B2 . T 1,00 £(21-2) (21-3)8%% ) (£8%-3)2
Herd te1 =1 i~t i=1
~ n A n ~ n A
(T (1-1)1,B'2 T B - T 1B £ (21-2)8%Y)
i=1 i=1 1=} i=1

”:’i 32”1%1 (21-2)8%7)) / 1‘5‘3“‘1;‘ (23]

Although equations [16] through {23] appear detailed and complex, values
are readily computed using generally available software for personal
computers. Sample calculations for medical malpractice are {llustrated in
Appendices I through 1II.

Appendix I presents the computation for annual paid loss development
factors for medical malpractice insurance based on data published by A. M.
Best & Company in Casualty Loss Reserve Development. Three year weighted
averages are used.

Appendix I1 summarizes the results of the generalized Bondy estimation
procedure. There are many ways to evaluate the fit of the estimates to the

data. Appendix II presents the percentage of total variation in the

- 12-



logarithms of the observed development ratios that is explained. Despite the
wizing of claims-made and occurrence policies, aggregation, and other
complications, the generalized Bordy approach explains 99.62% of the variation
in observed development ratios (i.e., the logarithms of these ratios). The
arrangement of the exhibit also facilitates dlrect comparison of pairs of
observed and estimated ratios. Finally, the factor to ultimate 1.6939 can be
compared to the corresponding value in Appendix I.

Appendix 11l presents one iteration in spreadsheet format. It should be
noted that columns (T) through (V) use the iterated value of B, not the value

at the start of the {teration.

6. _ Examples

A. M. Best & Co. publishes casualty loss development data annually for
both primary insurers and reinsurance companies. Primary lines {nclude
automobile liability, general liability, medical malpractice, multi-peril
coverages, and workers’ compensation. Computations analogous to the medical

malpractice example in the Appendices generate the following results:

Bondy Explained

Line Parameter Variation
Automobile Liabiliey .370 99 .48%
General Liability .629 99.53%
Medical Malpractice .627 99.62%
Multi-Peril .321 96.97%
Workers' Compensation .398 99.28%

In each case, the generalized Bondy development affords an excellent fit to
the observed development ratios.
In his paper "Extrapolating, Smoothing, and Interpolating Development

Factors” Richard Sherman f{llustrates the ability of inverse power curves to
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fi{t development patterns. Sherman discusses several forms of inverse power
curve. The most common form is:
d(¢) - 1.0+ acd (24}
where a and b are parameters to be estimated.
The following table compares generalized Bondy and inverse power fits
for data in Sherman’s paper and the author’s reply to discussion. Unlike the
preceding table, the percentage of variation explalned is in terms of actual

development ratios (not their logarithms).

Inverse
Power Bondy
Explained Bondy Explained
Iype of Business = Variation = Parametexr = Yaxiatiocp
1. Workers' Compensation Pald
Loss Development - 1969
Accident Year 99.73s .354 99.52%
2. Automobile Bodily Injury
Liability - 5 Carriers 99.29% .190 99.97%
3. General Liability - 5

Carriers 99.14% 488 98.83%

4. Workers' Compensation - 5
Carriers 99.87% 457 98.81%
5. RAA Automobile Liability 96.25% .403 99.67%
6. RAA General Liability 99.94% .582 99.21%
7. RAA Medical Malpractice 92.20% 474 98.91%
8. RAA Workers' Compensation 99.24% .633 95.93%

9. Automobile Bodily Injury

Claim Count 99.96% 091 99.96%

10. Other Bodily Injury Claim
Count 99.26% .279 99.58%

11. Medical Malpractice Claim
Count 99 41w .262 99.57%

Of eleven comparisons, each technique explained more variance in five cases
and there was one tie. These results might change somewhat with different
rounding conventions. The important point is that both approaches explain

significant portions of the variation in observed development ratios.
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These examples suggest that the Bondy parameter affords a quantitative
measure of the tail of a casualty line. Because generalized Bondy development
is determined by a single parameter, the parameter value affords a means of
classifying insurance and risk financing tails. Indeed, Bondy development
describes premium development as well as loss development. Bondy parameters
close to unity correspond to long-tailed lines. Bondy parameters close to

zero correspond to short-tailed lines.

In order to analyze the sensitivity of the algorithm, an underlying
Bondy development pattern with parameter 0.5 is used to generate samples of
from 4 to 10 development ratios. A 5% distortion is Iintroduced in one ratio
with an offsetting distortion in an adjacent development ratio. 1In other
words, a +5% movement in observed losses at one valuation Iincreases tha
development ratio for which it serves as the numerator and decreases the
development ratioc for which it serves as the denominator. Thus, a S% increase
in the first ratio in a sample is offset by an adjustment of 1/1.05 in the
second ratio, and a 5% increase in the last ratio is offset by an adjustment
of 1/1.05 in the preceding ratio, Results are summarized in the following
table. Other types of distortion are possible, but are beyond the scope of

the present analysis.

: Bondy Explained

Disturbance Sample Size Paraneter Varfation
+5.0% at lst Pt 4 .4759 99,45%
6 L4791 99.61%
10 L4795 99.71%
+5.0% at Lst Pt 4 L4937 97.79%
6 L4949 98.58%
10 .4992 98.95%
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In reviewing this table it should be noted that fit is measured against the
logarithms of the modified development ratios. The parameter values are
consistent with the direction of the distortion.

The table suggests that the development ratios for less mature periods
exert greater influence on generalized Bondy fits than ratios for more mature
periods. In a sense the algorithm assigns greater welghts to the ratios

generated by larger differences in observed values.

8 €0 i ons t

This paper began with a discussion of general components of development
- namely, point processes, mixing, and aggregation. Generalized Bondy
development has been presented as a point process. This interpretation is
consistent with mixing and aggregation considerations.

Mixed Bondy development patterns are not strictly Bondy, However, to
the extent insurance classification schemes identify exposures with like loss
characteristics, the corresponding Bondy parameters for the individual
patterns should be within a fixed range. Accordingly, a fitted generalized
Bondy pattern should afford reasonable estimates of actual development.

More direct results are available for aggregation. For instance,
Appendix IV demonstrates that, i{f the underlying distribution of losses {s
uniform across the aggregation period, then pointwise Bondy development
implies that the aggregate data will exhibit Bondy development with the same
parameter value.

There is one restriction to this result. At immature valuations (i.e.,
valuation dates at which not all data from the aggregation period are included

in the observed sample), observed development ratios are not Bondy. Fitting
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Bondy development to immature data can create misleading estimates of tail
development. Although the tail in generalized Bondy development always
extends to infinity, the generalized Bondy algorithm will underestimate tail
development if valuation dates truncate observation periods so that they are
not fully earned. Appendix IV affords a mathematical analysis of this
phenomenon.

For example, in the medical malpractice example of Appendices 1-11I, the
twelve month observed value of pald losses probably does not fully recognize
losses incurred during the twelfth month of the accident year. If the
procedure 1s applied to the two most mature observed ratios, the estimated
factor to ultimate 1s 2.186 - compared to 1.6939 in Appendix II and the
industry average of 2.173 in Appendix I.

The algorithm presented in this paper is not unique. There are other
ways to calculate Bondy parameters. For example, a least squares criterion
could be applied to the logarithms of the term in equation [16]. Insofar as
the logarithm of a logarithm is a further abstraction, this alternative
approach does not generally produce as good a fit to observed development
ratios. Also, because logarithms of negative numbers are not defined, the
alternative cannot always be computed. Nonetheless, it does describe
generalized Bondy development with an alternative measure of goodness of fit.

Two important theoretical questions are beyond the scope of this paper.
The first question concerns the determination of ultimate values and reserves.
A good fit to observed development ratios is not the same as an accurate
determination of adequate reserves. The concern in this paper is predicting
observed development ratios. This paper has not addressed the issue of

estimating ultimate values and corresponding reserves.



For example, when development factors are employed in the estimation of
ultimate values and corresponding reserves, they are generally applied to
observed values. However, it is possible that adjustments to observed values
could produce better estimates of reserves. Whether the observed values, to
which Bondy development ratios are applied, should be normalized to be
consistent with Bondy development is an issue in the estimation of ultimate
values, not the fitting of development ratios? The issues are intimately
related, but questions concerning estimates of ultimate values are beyond the
scope of this paper.

The second theoretical question beyond the scope of this paper is why
generallzed Bondy point processes should describe insurance and risk financing
operations. For example, 1if annuities are the subject, the point process is
described by the development factors of the form (n+1)/n. Likewigse, if claims
are reported In accordance with a waiting line model and an exponential
reporting pattern, the force of development at time t is 8e'6t/(1-e'6t). In
both of these examples, characteri{stics of the imnsurance operations can be
used to infer the mathematical form of the development ratio or force of
development, respectively. This paper has not identified characteristics of
insurance operations that imply description by generalized Bondy development.

Further research is appropriate.

9. Conclusion

Generalized Bondy development has been defined in terms of an unifying
underlying concept - the force of development. The interaction of various
theoretical considerations with procedures for estimating generalized Bondy
development has been discussed. The general definition agrees with historic

definitions of Bondy development. More importantly, generalized Bondy
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development can be characterized in terms of a single parameter and this
parameter can be used to compute development factors spanning arbitrary
intervals. Estimation of the parameter i{s simple and straightforward. And,
generalized Bondy development affords excellent fits to observed development

ratios for many cases of insurance development.
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Medical Malpractice
Development Factors based on

APPENDIX I

sses s ent es

I. Observations*

Accident Value** at Est. Ulc.
Year 12 mos 24 mos 316 mos 48 mos 60 mos Value*
1981 $35,173 $136,175 $308,436 $539,488 $799,488
1982 $74,296 $196,917 $391, 307 $680,142 $940,320 $2,085,013
1983 $93,189 $223,976 $504,246 $804,961 $1,101,762 $2,346,222
1984 $66,461 $296,442 $598,322 $952,219 $2,503,708
1985 §90,771 §290,598 $642,083 $2,957,598
1986 $95,891 $309,099 $3,207,604
1987 $89,408 $3,404,750

I1. Development Ratios

Accldent Span of Maturity
Year 24-12 36-24 48-36 60-48 Ule-60
1981 3.872 2.265 1.749 1.482
1982 2.650 1.987 1.738 1.383 2.217
1983 2.403 2.251 1.596 1.369 2.130
1984 4.460 2.018 1.591
1985 3.201 2.210
1986 3.223

3 Yr Avg 3.628 2.160 1.642 1.411 2.173

Cumulative 39.462 10.876 5.036 3.067 2.173

Percent Pd  2.53% 9.19% 19.86% 32.61% 46.01%

* Data from Best's Casualty Loss Reserve Development (1988 editiom)

**  (000’s omitted)
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APPENDIX I1

GENERALIZED BONDY DEVELOPMENT

— — SAMPLE ITERATION
Input Newton Raphson Results
Development Fitted Factor to Percent
Index Maturity Ratio Ratio Ultimate Developed
1 12 3.628 3.5814 30.4839 3.28%
2 24 2.160 2.2244 8.5118 11.75¢
3 36 1.642 1.6504 3.8266 26.13¢%
4 48 1.411 1.3688 2.3186 43.13%
5 .000 1.2174 1.6939 59.04%
1.3913 71.87%
Initial Iterated
Bondy Parameter = B ~ .627000 Bondy Parameter =~ B = .626668
Logarithm -1=- 1.275377 Logarithm -1=- 1.275748
Criterion -c ; .001976 Criterion -Cc - .001976
Explained variation = 99.62% Explained variation = 99.62%
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APPENDIX II1

Calculations for Appendix Il
(A) (B) (©) (D) (E) (F) (G)
Sample Obs Log Squared
Index  Count 1, Deviation 1,8'"? B2 (i-1)1,B'?
1 1 1.288682 .318018 1.288682 1.000000 .000000
2 1 .770108 .002057 .4B2858 .193129 .770108
3 1 495915 .052366 194959 .154550 .621877
4 1 .344299 144744 084867 .060758 406061
5 0 . 000000 .000000 . 000000 . 000000 .000000
Total 4 2.899003 .517185 2.051365 1.608438 1.798047
Average XX .724751 .129296 ) 1.275377 XX
(&) (H) (1) J) (K) (L) (M)
(L-1)(1-2) (21-2)(¢21-3) Squared
Index (21-2)B%'7° 11 B3 B 1, - 187! Error 1,1B%
1 .000000 .000000 .000000 .013304 .000177  -1.442390
2 1.254000 .000000 2.000000 -.029553 .000873 -.540451
3 .985968 .991830 4.717548 -.005473 .000030 -.218212
4 .581419 1.295252 4.636512 .029929 .000896 -.094989
5 .000000 .000000 .000000 .000000 .000000 .000000
Total 2.821386 2.287082 11.354060 .008207 .001976  -2.296042
1' = -1,119275 1" - -3,654361
(A) (N) (0) (P) Q) (R) (8)
2¢21-2)1°  (1-1)(21-3)
Index (1-1)1,1B*2  11'B#"2  (1.1)1%%'7? 1,1"pi7? 1 B33 123
1 .000000  -1.427498 .000000  -4.709308 .000000 .000000
2 .982179 -.561191 1.019870  -1.764537 -3.580166 1.626587
3 .793128 -.220620 .801881 -.712649 -2.814934 3.836751
4 .517881 -.086732 672864 -.310134  -1.659948 3.770846
5 .000000 .0000600 .000000 . 000000 .000000 .000000
Total 2.293188  -2.296042 2.294615  -7.496428  -B.055048 9.234184
¢’ - .002854 c" - 8.604556
(&) (T) ) V)
Index 1, il p#-?  sqrd. Error
1 1.288682 1.000000 .000167
2 . 482602 .392713 .000862
3 194752 156224 .000026
4 .084732 .060566 .000920
5 . 000000 . 000000 .000000
Total 2.050769 1.607503 .001976

iter. 1 = 1.275748
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APPENDIX IV

Aggregation for Uniform Distribution

A generalized Bondy development pattern (with parameter B) describes the point
process. Observations for accident dates x during an accident year from a
through b are observed at valuation date v. The density function p(x)
describes the relative exposures during the accident year. For purposes of
the example, the density function is uniform, f.e., p(x) = 1/(b-a). The
observed value for accident year losses R(v) can now be written as:

R(v) = j‘:m(bb'(':)z) r(v-x) dx

~ (l/(b-a)) Iln(b'v;(v-x) dx {Al]

To evaluate R(v) the point process r(v-x) is first rewritten in terms of r(l)
and £(l). Using equation [8] it follows that:

v-X
log,(r(v-x)/r(1)) = [£(1) BE-1 g [A2)
1
Evaluating the integral:
v-X log(b)(v-x-1)
FB8ldae = [ eY/log(d) du [A3)
1 0
- (BVX-l.1) s log(B) [a3]*
Thus,
£(v-x) = r(1) EXP(E(1)(BV X 1.1)/10g(B)) (A4}
and
1 Sb ¥) v-x-1
R(V) = (U(b-n))f‘g(? EXP(£(1) (B -1)/1og(8))dx  [AS]
Substituting:
u - £1) 8V%11) / 10g(B)
du - -£(1) BV X1 gy
(x-a) =>  (u~ £(1) (8V-21.1) / 1og(8)

(x=min(b,v))=>  (u- £¢1) BV 2In(V.D)-1) 1, ,150¢8)

¢ substitution: u=log(B) (t-1), du=log(B)dt, (t=1)=>(u=0), &
(t=v-x)}=>(u=log(B) (v=-x-1)).



generates:
£(1) Bv-mln(v,b)-l / log(B)
R(v) = (r(l)/(b-a)) [ &Y du
£c1) BV"2" 1.1 / log(s)

(-f(l)/log(B))(Bv"mln(v'b)'I-Bv'a'l)

~ (r(1)/(b-a)) e [A6)

From equation {A6], it follows that the development factor D(v) for aggregated
losses is:

(-£(1)/1og(8)) (Bv-mln(v.b)_Bv-min(v,b)-I)
D(v) = e [A7)

and
Iog(D(v)) - (-f(l)/Iog(B)) (Bv-mln(w-l.b).sv-in(v,b)-l) [AS]
Taking the ratio of the logarithms for D(v) and D(v+l) shows that:

log(D(v+1)) (-£(1)/1og(B)) (Bv-mln(v+2,b)+1_Bv-m1n(v+1,b))

log(D(v)) (-£(1)/log(B)) (Bv-mln(v+1,b)_Bv-mln(v,b)-l)
- B {a9]

Equation {1] follows immediately from equation [A9]. In other words,
aggregated generalized Bondy development over a uni{form distribution generates
Bondy development with the same parameter B at the aggregate level.

The example corresponds to accldent year development. Treaty years, policy
years, and other forms of aggregation would generate somewhat different sets
of equations.

It should be noted that the limits of integration include terms of the form
min(v,b) and that the derivation of [A9] from [AB] presumes that the minimum
is b for each occurrence of these term in equation [A9]). At immature
durations ({.e, situations in which a valuation date {s less than b) che
aggregated data will not follow the identified generalized Bondy development
pattern.

Lastly, the proof demonstrates that pointwise Bondy development can generate

aggregate Bondy development. It does not demonstrate that aggregate Bondy
development necessarily implies pointwise Bondy development.

- 2‘.
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