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ABSTRACT 

The adjustment coefficient R plays an important role in 
mathematical ruin theory, figuring in many elegant 
probabilistic theorenqs. Noticeably lacking has been attention 
to the statistical problems arising whch R is estimated from 
data. One must then be concerned with the variability of the 

estimator R and its implications, for example for estimates of 
ruin probability. This paper presents several different methods 

for estimating the variance of R. Examples are given in which 
the variance is so high that .the estimate of R must be 
considered essentially worthless, and other means sought for 
estimating ruin probabilities. 
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0. Introduction 

A standard, simple model in ruin theory assumes a portfolio producing 
claims of random positive sizes at random times, and with premium flowing in 
at a constant rate (presumably greater than the rate of aggregate claims). A 
common objective is to estimate the probability that  the maximum aggregate 
loss, over a finite or infinite period, will exceed a preassigned level. This 
estimation is facilitated by the use of the adjustment coefficient R. 

Under one particularly simple model, we assume that  the claims process 
is compound Poisson. Let Mx( r  ) be the moment-generating function of the 

distribution of single claim amount (assumed to exist for at least some positive 
values of r) and A the Poisson parameter of the number process. If the rate c of 
premium flow exceeds A. E[X], then the equation 

Mx(r  ) = 1 + cr/A (1) 

wil] have a unique nonzero solution R, which is positive; tills is the adjustment 
coefficient. The ruin probability as a function of initial surplus, or equivalently 
the distribution of the random variable L, maximum aggregate loss, can then be 
expressed in terms of R. Analogous results hold under broc der conditions, but 
this simple case will serve well to illustrate the issues raised ~Jere. 

1. The statistical estimator 

In practice we do not know the distribution of the claim amount X and 
the waiting time W between claims, but can only estimate. Suppose that  we 
have, for a particular portfolio, some records of amounts x i of claims and 

waiting times w i between claims, which seem consistent wit!~ the assumption 

that X and W are independent and that "4' is exponentially distributed. We 
can use the sample to estimate Mx(r  ) and A, and then es~:mate R by the 

nonzero solution R of the empirical equation 

Mx(r  ) = 1 + cr/A . (2) 

1 erX~ Reasonable choices would be Mx(r  ) = 6 f l  a and A = n / ( ~  ,,'i). Then we 

can rewrite equation (2) as 

(~r ;x i ,  wi)) = 0 

(3) 
where ~r ;x ,w)  = e TM - 1 - crw.  

E~luation (3) makes it clear that  R is an M-est imator  for R. 
M-estimators are consistent (asymptotically unbiased) and have other 
attractive properties, to which we will return later. 
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Table 1 gives a pseudo--random sample of 50 pairs (claim size, waiting 
time). The mean claim size is 0.9898, the mean waiting time 1.0700,. and the 
sample correlation coefficient 0.01456. These samples were produced by a 
computer simulations of two simple distributions, but for the moment let us 
proceed as if this were empirical data. 

For any c > 0.925, the positive solution of (3) can be found numerically; 
the values for some selected premium rates are given at the bottom of the table. 
Since these estimates are based not on definite knowledge of the joint 
distribution of X and W, but on a sample of data, we need to ask how good they 

are. One way of answering this question is to estimate Var(l~). 

2. The bootstrap method 

The bootstrap [Efron, 1979, 1982] provides an attractive method of 

estimating Var(R). Let (X*,W*) be resampled from the empirical distribution; 
that is, only the pairs appearing in Table 1 can occur, each with probability 
0.02. The bootstrap approximation R* is the (nonzero) solution of equation (3), 
with X~ and W* ~ in the place of X i and W i . The central idea of the bootstrap 

method is that the distribution of R* provides an approximation to the 

distribution of R. Although we know exactly the distribution of (X*,W*), it is 
not feasible to calculate the distribution of R*, so instead we approximate it 
using a Monte Carlo simulation. 

A few remarks are in order. By resampling from the pairs listed in 
Table 1, rather than independently from the listed claim amounts and waiting 
times, we appear to avoid the assumption that X and W are independent; but in 
fact if they axe dependent it is not clear that the solution of equation (3) has 
any meaning. In the present example, the pseudo-random variables were in 
fact generated independently, and their correlation is quite low. There would 
be little change in the results if we resampled independently for X* and W* 
The decision to sample pairs was made with an eye to later comparisons with 
cases when X and W might be dependent. 

Another matter has to do with the selection of c, the rate of premium 
flow. In each of the examples of this paper, c has been held constant. It may 
happen that the resampled data include so many pairs with larger claim sizes 
and/or smaller waiting times that the implied aggregate claims rate exceeds the 
premium. Clearly this happens more frequently when the "loading factor" 
8 = (c/expected claims) - 1 is relatively small. Just as in real life, we set the 
premium rate in advance of experience, but consider how to respond when this 
premium turns out to be inadequate. 
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Table 1. h pseudo-random sample 

~.844,0.233) (1.480,0.090) 
.416,2.911) (1.579,2.164) 
.571,0.086) (0.588,1.222) 
.929,0.330) (0.009,1.796) 

1.268,0.062) (1.824,0.602) 
1.714,2.179) /0.022,0.110) 
0.466,1.078) (1.288,0.315) 
0.877,3.877) (0.541,0.969) 
0.929,0.285) (0.370,1.108) 

of (claim 

0.441,0 
1.324,0 
1.915,1 
1.010,0 
0.569,2 

1.341,0 
1.148,6 
0.267,0 
1.932,2 
1.327,0 

amounL, 

.127) 

.597) 

.168) 

.259) 

.214) 

.441) 

.o15) 

.291) 

.405) 

.026) 

waiting time): 

.731,0.094) 

.006,1.106) 

.483,0.821) 

.454,0.107) 

0.116,0.784) 
1.590,0.291) 
1.482,1.082) 
0.251,0.899) 
0.340,0.007) 

o.221,3.124) 
1.141,0 121) 
0.586,1 996) 
0.964,0 071) 
0.095,0 204) 

0.462,4.328) 
o.2ol,o.o88) 
1.769,1.176) 
1.227,0.507) 
0.299,0.735) 

Premimn rate: 
Empirical R: 

1.110 
0.258 

1.388 

0.547 
1.850 
0.884 

2,775 
1.309 



Table 2. Estimates of R and of Vat(R), based on the sample of Table 1. 

t'~ 

c.D 

Premium rate c 1.110 1.388 1.850 2.775 

500 bootstrap runs: 
Average R" 
s.d.(R') 

under truncation: 

A m 

Asymptotic estimate of s.d.(R) 
based on data 
based on true distribution 

True v~ue of R 

0.25487 0.54720 
0.26224 0.24316 

0.28168 0.54949 
0.21410 0.23641 

0.88711 
0.22539 

0.88721 
0.22497 

1.31548 
0.20930 

n o  

change 

0.25729 0.24004 0.22358 0.20838 
0.23600 0.22052 0.20632 0.19367 

0.15261 0.45585 0.80737 1.24875 

500 Monte Carlo runs: 
A 

Average R 

s.d.(a) 
under truncation: 

0.13776 0.44498 

0.24173 0.22516 
0.18428 0.44759 
0.17449 0.21922 

0.80062 

0.20997 
n o  

change 

1.24655 

0.19654 
no  

change 

Asymptotic estimate of bias -.01315 -.00948 -.00576 -.00191 



If the premium is inadequate, the solutions of equation (3) are r = 0 and 
some negative number. One option is to say that  R* is not defined for these 
cases; however, simply ignoring them could seriously distort our sppreciahon of 
the situation. At a minimum we must keep tr~ck of the number of times this 
occurs. Another tactic is to set R* = 0 (the larger solution); this at least 
reflects faithfully the effect on ruin probability, which tends to 1 as the 
adjustment coefficient tends to 0 through positive values and equals 1 when 
premium is inadequate. However, such truncation results in a larger estimate of 
the mean of R*, and a smaller estimate of Var(R.),  than if we take R* to be the 
negative (nontrivial) solution. For the smaller values of c, the difference cat, be 

uite important.  In this paper R* will be taken to be the nonzero solution, of 
), but results under truncation will also be reported. 

Bootstrap estimates of Vat(R) for various premium rates are given in 

Table 2. It is clear that  there is considerable relative variation in R, unless the 
loading factor is rather large. If this is accurate, we must conclude that ti+e 

estimate of R has little value. Since the bootstrap may be a somewh;.t 
controversial method, it will be useful to consider some alternatives. 

3. Asymptotic methods 

As noted earlier, R belongs to the class of M--estimators. Such 
estimators have been treated extensively in the statistics literature; see, for 
example, [Settling 1980], chapter 7. In particular, under some mild regularity 
conditions, M-estimators are consistent (asymptotically unbiased) and 
asymptotically normal. For the present example, 

THEOREM: (1~ n - R) converges in distribution as n -~ ® to N(O,a2), where 

a ~ = V a r ( e  RX - - c a W  -1)  

E[Xe R X -  cW]  2 ' 

This is essentially Serfling's Theorem B, page 253. Its proof is based on a 
rst-order Taylor series expansion. Since we will present below a second-order 

expansion of the same sort, we omit the proof here.) 

Thus an asymptotic approximation to Var(l~) is 

1 v a r ( e  R x  - cRW - i) 

n E[Xe  RX - c W] ~ 
(4) 

Here R is the true value of the adjustment coefficient, and the variance and 
expectation are taken under the true joint distribution of (X,W). Not knowing 
these, we can only estimate, using the data  we have. The data of Table 1 lead 
us to estimates 2 given in Table 2. These are similar in size to the bootstrap 

estimates made earlier; thus, out" suspicion of the unreliability of l~ is reinforced. 
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There are several difficulties with asymptotic estimates like (4). One is 
that it is not clear how sensitive they may be to small errors in estimating 
characteristics of the true distribution. Second, asymptotic estimates are based 
on finite--order approximations to a Taylor series expansion~ which necessarily 
involve some truncation error. This can be very significant. Finally, the series 
expansions involve calculations that quickly become tedious, and the possibility 
of human error is considerable. By comparison, the bootstrap minimizes the 
chance of mistakes by substituting automatic, computer---assisted calculations 
for the difficult analysis. In the process it avoids truncation error. (See 
[Beran 1982] for examples in which the bootstrap is considerably better than 
competitors for essentially this reason.) Even when (as in this case) the 
first--order asymptotic formula gives rather good results, the bootstrap 
accomplishes the same thing more easily. 

4. The true distribution of R 

The advantage of dealing with synthetically simulated rather than actual 
data is that, having suggested several statistical estimators, we can compare 
their values to the true parameters. As the reader may well have guessed, the 
X values in Table 1 were generated to be u(0,2) and the W to be exponential 
with mean 1. The true values of R for these distributions and various premium 
rates are given in Table 2. Since our estimate of net premium, 0.925 based on 

the sample of Table 1, was 7.5°70 low, of course the empirical estimates R were 
high, for every premium level c. The considerable difference between the true 

values R and our estimates 1~ should not be surprising, considering the large 

estimates we have for Var(l~). Using the exact characteristics of the joint 
distribution of (X,W) in the asymptotic formula, we obtain an estimate of the 
variance that differs httle from the previously calculated values. 

Direct calculation of Var(l~) would still be very difficult; but again we 
can do a Monte Carlo simulation. We draw blocks of 50 pMrs (X,W), where X 
is u(0,2), W is exponential with mean 1, and X and W are independent. For 

each of many blocks we calculate a value of R, and then examine their 
distribution. Summary data for various values of c are included in Table 2. 

Two things are shown quite clearly by the Monte Carlo results. First, 

even though our original R was very far from the true value of R, our 

data-based estimates of Var(R) were rather good. Second, the estimator R is 
biased; the difference between the average Monte Carlo value and the true value 
is much greater than can be attributed to random fluctuation. 

251 



Figure 1 shows the empirical distribution function of B. for c = 1.110, 
based on 500 Monte Carlo runs, and for comparison the empirical distribution 
function of R* based on 500 bootstrap runs. Note that the two curves ate 
nearly parallel. This provides visual evidence that,  apart from a shift caused by 
the difference between the empirical and theoretical means, the distribution of 

A 

R* is a good approximation to that of R. 

5. Approrimating the ruin probability 

Consider, for example, setting c = 1.850, so that we originally estimate 

the loading factor at 2. Our original, empirical estimate R was 0.88383. For 
any particular initial surplus level u we might then estimate the ruin 

probability at ~ u )  ~ k e -Ru ,  using k = 1 or some more sophisticated estimate; 
more to the point, we might have a target figure for ~ u )  and choose u 
accordingly. 

Since we have estimated the standard deviation of R at approximately 

F t, there is a small but not insignificant chance that the true R is only about 

~ 1~. hen the true ruin probability would be the square root of our estimate. 

For example, if we chose u in an effort to have ~ u )  ~ .05, we would actually 
have a ruin probability of about 22%. We would need to double u in order to 
have the desired ruin probability. This is hardly a tolerable situation. 

The criticism may well be made that  this situation is a consequence of 
choosing a simple but unrealistic distribution function for X. Tables 3 and 4 
give the numerical results when the above analysis is repeated with X 
distributed as a truncated exponential, 

rx( ) = 

0 x < 0  

1 - e  - x  0 < x < 1 0  

1 I0 < x  

(Truncation is necessary in order that  the moment--generating function exist in 
all the places we need it for the asymptotic approximations.) The relative 

variation in 1~ is still unacceptably large. Note also that Var(R) increases with 
c, whereas in the uniform case it was roughly constant. It should be clear that 

the exercise of estimating Var(/t) is worthwhile whenever the adjustment 
coefficient is being used to estimate the ruin probability. 
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Table 3. A different pseudo---sample of clam sizes 

If°° 
2 421,0 490)  (0.780,1 0 3 3 )  .214,0.275) 

956,2 174) (0.086 0 329) 2 , .197,1.466) 
712,1 590)  (1.092,3 7 7 2 )  .428,0.131) 
291,1 395)  (1.057,1 7 0 2 )  .339,0.350) 

/i o o, 
294,0.507) .484,0 683) .016,1 212) 

and wNting times: 

0.894,0.586) 
0.048,1.145) 
0.079,0.136) 
1.203,0.863) 

~(o.o85,O.lO8) 

I 154, .400) 
964,0.244) 
866,2.415) 
611,0.066) 

0.408,0.988) 
1.127,~.666) 
0.972, 702) 
0.192, :699) 
0.631,~.513) 

i 932,0"831) 
~ .558,0 423) 

.515,2 182) 

.009,0 966) 

.183,0 313) 

Premium rate: 1.210 1.512 2.016 3.025 
0.164 0.332 0.508 0.708 Empirical R: 

800 bootstrap runs: 
Average R* 0.190 
s.d.(R*) 0.179 

Asymptotic estimate of sd(R) 
0.160 

0.348 
0.174 

0.158 

0.546 
0.197 

0.160 

0.791 
0.236 

0.166 



Table 4. Truncated exponential claim amounts: 

Premium rate c 1.210 1.512 2.016 3.025 
Value of R: 0.174 0.340 0.508 0.683 

Asymptotic estimate of sd(l~t): 
0.186 0.184 0.211 0.296 

Call 
800 Monte Carlo runs: 

A 

averafle R 0.199 0.385 0.587 0.822 

s.d.(R) 0.211 0.212 0.226 0.257 
truncated 0.215 0.386 no no 

0.187 0.210 change change 

Asymptotic estimate of bias: 
0.014 0.046 0.134 0.398 



6. Bias of the estimator 

On the subject of bias the bootstrap method is essentially worthless; its 
strength is in estimates of dispersion. The asymptotic expansion, on the other 
hand, can be developed to give us an estimate of bias, which agrees well with 
the Monte Carlo results. 

= 1  Define On(r) ~ £ (erXi - 1 - crWi) . Note that  ~Pn(B.) = 0 is the 

defining equation for R; that  E[~n(R)] = 0 for any n; and that 

Var(~n(r))  = ~ M x ( 2 r  ) - M x ( r ) '  + c ' r ' /A 2] 

for any n, and any r for which Mx(2r  ) exists. We now write 

0 = qJn(~t) = qJn(R) + (R-R) qln'(R ) + ½(I~-R) ~ q~n °(p)' 

where p is between R and R. Solving the quadratic for R - R and doing some 
algebraic rearranging, we get 

,(R) 
R - R -  " { I - /  ] - 2Y) 

¢. (p) 

~n(R) {1 ~ y  ½y2 5 s 
- ~ n , ~ - - ~ ) +  + + ~ Y  +.. .j  1 

where Y = n ,, .a . 
2 

~n'(R) 
~ =  { z ' - z '  ...} 1 1 l - Z +  + 
¢ n ' ( R )  E[q~n'(R)] 

~,'(~) 
where Z - 1; 

E[~n'(R)] 

r [ , "  (R)] 

Both Y and Z ~ e  Op(~). ~.stimate C4)is obtained by tr=cati .~ the s~es  
above at the first term; we can get better and better estimates by including 
more terms. 
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For the moment, let us obtain an asymptotic estimate of the bias, 

Eli{ - R]. The one---term truncation 
 n(R) R-R~ 

n' ( a)] 
is the basis for the statement that  R is consistent, since E[@n(R)] = 0. 

Extending the approximation to another term, 

El, n" ( R)] 
we obtain the estimate 

bias = E[R - R] =~ 1 E[~n(R ) • (~ Y - Z)] 
E[*n'(R)] 

~ _  1 {½ M x ' ( R ) [ M x ( 2 R  ) - M x ( R ) '  + c 'R ' /A 2] (5) 
: n E[@n'(R)] 3 

- ElY n'(R)][MX'(2R) - Mx'(R)Mx(R ) + c~R/A2]} 

(At the second " ~ ", additional terms of order 1/n 2 = are omitted.) Substituting 
into this formula the characteristics of the true distribution3 we obtain bias 
estimates given in Table 2. Note that they agree rather well with the difference 
between the actual value of R and the average of Monte Carlo values. 

Lest one assume that  the bias will always be negative, as it is in this first 
example, note that the bias in the truncated-exponential  case described in 
Tables 3 and 4 is positive, and that it increases as c increases. 
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NOTES 

1The fact that  c > ,~.E[X] does not necessarily imply c > ~f'ff for a 
particular sample {(xi,wi)}; however, for any fixed c the probability of this 

1 I~ (erXi-  1 vanishes at event tends to 1 as n -, ®. The function f(r) = ~ - crwi) 

0 and has a strictly positive second derivative; thus there is at most one other 

zero. If c > x / f f  then f ' ( 0 ) < 0  and f(r)-~® as r-,ffi, so there is a unique 

positive root (and no negative root). If c < i / ~ ,  then f ' (0)  > 0 and f(r)- ,® as 
r-,--=, so there is a unique negative root (and no positive root). T h e  case 

c = ~.¢~, which is technically of probability zero but given the necessity of 
rounmng may have a small positive probability, gives 0 as the only root. 

=In making these estimates, use was not made of possible simplifications 
based on the assumptions that  W is exponential and that X and W are 
independent; that is, the values 

eRXi - c R w . -  1 
! 

were calculated for each pair (xi,wi), using the empirical estimate R obtained 

earlier; and the sample variance was calculated directly. The difference 
between the value obtained in this way and the quantity 

c2R 2 sample var (eR'Xi) + sample var (wi) 

was smal! but nonzero. 

3One cannot obtain a meaningful estimate of bias from formula (5) 

without knowledge of the true distribution. If we substitute R for R in the 
asymptotic bias formula, and use empirical estimates for the 
moment-generating function and for ~, the number obtained is essentially 0. 
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