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ABSTRACT 

This paper introduces the symbolic valuation, a stochastic valuation which allows flexible interest 
rate and cash flow assumptions, and provides an illustration which values a simple SPDA product. 

Overview 
The fundamental problem of modem finance concerns how to analyze the relative worth o[ future 
obligations, with the most prominent measure of worth being the present value ~ of future cash 
flows. When the timing or amounts of the cash flows are uncertain, the value of future cash flows 
is measured as the expected present value with respect to a specific set of assumptions about 
future economic environments and the behavior of the cash flows with respect to these 
environments. In general, practitioners estimate this expected present value by averaging the 
present value over various scenarios. Unfortunately, this technique provides coarse estimates and 
implies rather unrealistic assumptions? An alternate approach which more fully realizes realistic 
economic assumptions is needed. This paper presents an alternate approach for valuing cash 
flows, the symbolic method. 

The symbolic method is intended to value cash flows whose amounts vary with interest rates. 
Interest-sensitive cash flows require a fundamentally different treatment than non-interest- 
sensitive flows. To illustrate, if the cash flows are fixed, as in the case of an annuity certain, the 
valuation follows almost immediately from the definition of present value. In this case, the 
valuation is often fine tuned by focusing on the exact timing of payments. (Se~ Kellison [4].) 
When the cash flows are random variables independent of the discounting rate, as in the example 
of traditional life or health insurance, the important element on which to focus is the timing and 
size of the cash flows (claims). In this case, only the separate expected values of each cash flow 
and discount factor are needed. (See Bowers, Et al. [1].) In both of these cases, the interest rate 
is assumed to be level at some "reasonable" rate. However, when the amounts of the cash flows 
depend on rates, as with a Single Premium Deferred Annuity (SPDA), the valuation must account 
for the variability of interest rates as well as the behavior of the cash flows with respect to those 
variations. This additional consideration requires that these cash flows be valued with methods 
different from classical actuarial methods. While many practitioners employ Monte Carlo style 
scenario testing, the paper presents the symbolic method as an alternate technique. 

Section 1 presents the general structure of a valuation, showing the calculations required to find 
the present value of a stream of cash flows through a specific scenario. In this case, all cash flows 
are fixed or known with certainty for the given scenario. Section 2 extends this general structure 
to encompass stochastic valuations in which the cash flows vary from scenario to scenario and the 
value is calculated as the expected present value over many scenarios. This section provides the 
theoretical framework from which we may value cash flows which vary according to the interest- 
rate scenario. Section 3 presents the symbolic method. The main elements are presented in 
sections 3.2 and 3.3, while section 3.4 presents a sample valuation. This example is deliberately 
simple in order to demonstrate the technique. Then, section 3.5 describes how the sample could 

' Value, price, reserve, and book value are used throughout this paper as different names 
for a present value, each expressing a different use of the present value. 

2 For example, the binomial lattice assumes rate changes from one period to the next to 
be a binomial random variable. 
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be modified to accommodate varying assumptions and discusses concerns to be considered when 
employing the symbolic method. Section 3.5 also describes the benefits of the symbolic approach, 
which include: ease of changing assumptions, estimating duration, convexity and other economic 
statistics, and performing sensitivity analysis. Throughout the paper, the presentation focuses on 
the valuation of the SPDA, presenting all notation with the SPDA in mind. 

1 General  Structure of  a Valuation 
This section outlines a general structure in which financial instruments may be valued. The 
instrument to be valued has an underlying base value. For an SPDA this would be the account 
value. For a bond, it would be the outstanding par. For a mortgage, it would be the outstanding 
principle. This amount varies over time as the base accrues interest and cash payments retire a 
portion of the base) The following assumptions apply to most valuations: 

Cash flows occur at the end of each year'. 
Cash flows occur for a fixed number of years, say N. 
The last cash flow is 100% of the outstanding base value. 
The value is the present value of future cash flows. 

These assumptions can be varied. Cash flows could occur in the middle of the year, or be 
distributed in some manner. The valuation rate could be fixed or could vary over time. In most 
cases, the general procedure is the same: calculate future base values and cash flows, then 
discount the flows to the present. The following notation is used: 

A := Base (Account) Value After Cashflow at time n, 
C := Cashflow at time n, 
V := Value at time n of all cashflows after time n, (1) 
j ,  := Credited Rate at time n, 
~r := Market Rate at time n, 
L := Percent Decrement of Base Value at time n. 

From these definitions and the above assumptions, the relationships of equation (2) follow. 

C =L A . , ( I + j ' )  
A = A ,  ( 1 * a ' )  - C  (2) 

v_ ,= (v  . c ) ( 1  .,,,r)-' 

[P, a deterministic model, these values are found itcratively. First, aH account value and cash flow 
values are calculated progressing forward through time, first period to last. Then the markel 
values are calculated backward through time. last period to rust. 

3 A bullet bond which always pays only its interest coupon in cash until maturity is a 
special instrument whose outstanding base (par) remains constant over time. 

• In this paper, we employ annual periods for valuation. In general, any time frame may 
be selected, i.e. quarterly, monthly, etc. 
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The forward pass is depicted in Diagram 1. 

A o 0 * , ¢  o) A , 0 -  J , )  ,42(1", ,¢~) 

a" o C, d, C 2 =r~ C~ 

A o A, A 2 A 3 

Diag ram 1 

In Diagram 1, the diagonal arrows indicate multiplication by ( l + J , )  and the vertical arrows 
indicate decreasing the account value (after interest) by the cash flow, C.. The process could be 
extended to perform a valuation with a longer time period. Here, the credited rates are indexed 
to allow them to vary over time. 

To calculate the present value of this block, the cash flows are discounted back to time zero, as 
depicted in Diagram 2. It is most efficient to perform this evaluation by discounting back period 
by period, starting with the last cash flow and proceeding to the first, at each step adding the next 
(earlier) cash flow to the market value. 

v,.c, v~.c, v,.,c~ 
. 1 ~ t . I 

,. ro C, ,. r, C 2 ,~ r 2 C 3 

.. 1 .. 1 .. I 

Vo v, v, v, 
Diag ram 2 

In the Diagram 2, the vertical arrows indicate incrementing the discounted value by the current 
cash flow, C., and the diagonal arrows indicate discounting the market rate, =to. At this point, it is 
clear why 100% lapses are a convenient assumption for the last period. If there were an 
outstanding account value in the last time period, it would be necessary to estimate the future 
value, V N, at time N of cash flows past time N. The 100% lapse assumption at time N ensures 
A~=V~=0. 

Combining the previous diagrams yields the following. 

2 Stochastic Valuations 
In a deterministic analysis, future variables such as market rates and lapse rates are assumed to be 
known with certainty for ease of computation. However, the future values of these variables are 
generally not known with certainty and can only be quantified probabilistically. The stochastic 
approach has traditionally been performed by repeating the deterministic approach many times for 
different scenarios and then combining the results, often by averaging the V0's which arose from 

1 1 7  



I/o, A o 

," ." fJ. ," .' f l  -" i f l  

,,,to, ,,to c, ,,.r, ,,r, C. ,,.'., ,.,'. C~ 

,, • t i  ,- z 11 ,-., I1 

V,, A, V,, A, V,, A~ 

Diagram 3 

each scenario. The following general definition of value applies: The Present Value, or Price of 
the future cash flows arising from a set of probabilistic assumptions is defined to be the expected 
value of the present value. 

Any estimate of this expected value is a stochastic valuation. In contrast, the "discounted values 
[from deterministic valuations] are realizations of the random variable whose expected value is the 
... price." s ~ For example, the present value of several different deterministic scenarios could be 
averaged together with equal weights to estimate the value of the stream of future cash flows. 
This is a stochastic valuation. This particular example is not satisfying because the weights are 
chosen rather  arbitrarily. 

When performing a stochastic valuation by averaging together several deterministic ones, the 
weights used for the scenarios greatly affect the Final result. There is considerable debate about 
the proper weights to use, and different weights may be appropriate at different times. Indeed, a 
practitioner may perform different valuations under different assumptions to answer different 
questions, for example pricing versus establishing a reserve, It is not the purpose of this paper to 
define which assumptions should be used. Rather, our goal is to present a general frame work for 
performing a stochastic valuation given any assumptions. 

In a fashion similar to the deterministic method, assume cash flows occur at distinct points in 
time, say annually] Let the cash flow at time n be C. and the applicable one-period market rate 
from t/me n to n + l  be =r.. s In the most general formulation, each market rate and cash flow 
has a conditional probability distribution contingent on all previous rates, and each cash flow has a 
distribution dependent on all previous and present interest rates. Most models display 
/nterdependence between rates from one year to the next. However. rarely are cash flows 
modeled with distributions conditional on rates; instead, cash flows are expreased as a function of 
previous and current rates. That is to say, if all rates before and during the cash flow are known, 
then the cash flow is assumed known with certainty as a function of this interest rate information. 

s Jacob,  Lord and "rilley [3], 

e Or, a deterministic valuation is the exact valuation arising from degenerate distributions, 
i.e. point distr ibutions with one value having 100% certainty of occurrence. 

' The assumpt ion of annual time periods is not necessary for the valuat ion. It is simply 
convenient  for our discussion. 

t Rates varying by maturity are discussed in Section 3.5. See the discussion of Term 
Structures and Time Series there. 
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Thus, Co is a function of the rates until that time, C°(=ro, =rx, . . . ,  ,,r.), and =r. has a conditional 
distribution ~(=r. I =r0, . . . . .  r..,). The definition of actuarial present value gives 

Value =E( ~.., [ C  "l-I..o ~ 1  ) ) (3) 

where N is the maximum value of n for which C, is not identically zero, and the expectation is 
taken over all possible combinations of market rates from time 1 to N. 

Equation (3) is quite general and can be used in a variety of circumstances. Value has different 
interpretations according to the assumptions of the model employed. If the rate distribution is a 
market prediction then the value estimates a market price. If the rates are a fixed (deterministic) 
valuation rate and the cash flows are benefits and expense amounts, then the value is a reserve or 
a book value. I~ the flows are statutory profits, then the value is an estimate of the present value 
of future profits. 

There are two methods for performing stochastic valuations: scenario testing and exact valuation. 
With scenario testing, individual cases are considered. In each case, the level of interest rates is 
decided at each point in the future and this entire movement is called the path of interest rates. 
Each scenario or path is valued deterministically and then the present values from all paths are 
weighted together? The selection of paths and weights can be made in one of two ways: either 
the paths are selected by some method with the weights determined by the interest rate model, or 
the paths are selected by the interest rate generator '° with the weights all equal. In either case, 
the practitioner attempts to find an unbiased estimator of the present value that would occur if all 
paths were sampled. 

Unlike scenario testing, an exact valuation finds the value as if all paths were considered. Instead 
of estimating the value, we calculate it. Usually, testing all scenarios is impossible, so an approach 
equivalent to testing all scenarios must be employed. For example, we could integrate or sum the 
cash flow variables weighted by their relative possibilities. Exact valuations are obviously 
preferable if they are relatively easy to perform. The symbolic method presented in the next 
section is an exact valuation. 

3 The Symbolic Method 
3.1 Overview of  the Symbolic Method 

In section 2 we presented the definition of actuarial present value as the expected present value 
of future cash flows. When the cash flows are fixed (as in the case of an annuity certain) or 
random but independent of interest rates (as in the case of life insurance), the definition can be 
used directly by discounting the fixed flows or the expected value of the random flows by the 
appropriate expected discount factor. We find, however, that when the flows depend on interest 
rates the problem can be prohibitively complex. Until now, the standard technique to attack this 
problem was to employ Monte Carlo style scenario testing to approJdmate the true expected " 

"Such performing of deterministic valuation is called Monte Carlo Sampling. 

,0 The word generator is used in preference to the word model in this context to 
emphasize the rate model's role in selecting the rate path. 
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value. In this section, we present a method for computing the actuarial value which conforms to 
the above definition and is equivalent to testing all possible seenar/os. 

The dit~culty of  the  interest-sensitive cash flows as discussed in section 2 arises from calculating 
each flow numerically. To circumvent this difficulty, we avoid this calculation. Instead, we leave 
each cash flow as functions of  the most recent market credited rates, account values and lapse 
rates. Since the cash flows are only defined by current variables (i.e. C= is a function o f  variables 
with subscripts K or  K- l ) ,  we perform the valuation in a s tep by step manner, starting at the last 
flow and proceeding to the In'st flow. To illustrate the technique, we describe it using the general 
valuation described in section 1. 

The new method performs one pass through Diagram 3 of  section 1 from right to left. All 
variables at each point  in time are calculated before proceeding to the next earlier time period. 
We do not calculate the  numerical values of any variables. Instead, we express each algebraically 
in terms of other  basic variables. For this reason, the new method is called the symbolic method. 

The general method for  performing a one-pass valuation for the deterministic model is as follows. 
At each time period n, the variables A,, V,, L~ and j~.1 are written in terms of =r~l. We proceed 
by reverse induction on n. So, from the variables at time n we proceed to the variables at time 
n-l ,  starting at the last time period in our horizon and iterating until deducing the expressions at 
time zero. 

The rate variables =r._z and d=~z are introduced as they are needed to express new cash flow, 
account value, and market  variables. At each time n-l ,  once all variables are expressed as 
functions of =r.v d ~ ,  =r,-2 and ,r,. 2, the dependence upon =r~ and Jr,_~ is eliminated to finish the 
progress from time n to n-1. This last step requires writing =r,2 as a function of  r~. 1 and ,r~2 as a 
function of d~3. The  former is derived from our belief o f  how interest rates move while the latter 
is derived from our crediting strategy. 

We now describe the financial quantities which we will track throughout our sample. See 
Diagram 3. 

A = Account Value at Time n 

V = discounted value at time n o1 all cash flows past time n 

C = Cash flow at time n 

Lo = Decrement rate at time n 

~r = Credited Rate for time period between n and n *1 

, . r  = Market rate for time period between n and n.1 

L~ = Backward rate of Increment(describedbelow) 

(4) 
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In the deterministic case, we assume that the lapses are known for each time n. Thus equation 
(5) follows. Here, the first two equations above calculate A, and C. from L, and quantities 
associated with time n-1. Since the symbolic method proceed backwards in time, it is more 
convenient to have quantities at time n-I expressed in terms of those at time n. To facilitate such 
expression, we introduce L, = I.~,/(1-I~). Thus, (5) becomes 

C =A [.,, 
1 

A . ,  ~- 1 ,-,,ro.,(A° + C ) (6) 

1 v . , .  ( v . c ) .  
1 ÷,.r,.~ 

Lo is called the backward increment rate because it is the rate used to increment the account 
value while proceeding backwards through a valuation. It is equivalent to the decrement that 
would occur if the valuations were proceeding forward. Notice that C, is now calculated from P~, 
not A.~, as in equation (5). A complication arises if L, is 100%, since ~ is then undefined. The 
only time when 100% lapses are possible is at the end of our valuation. When all account values 
are assumed to cash out. Thus, to the above equations we add the conditions Vs=0, A~=0, and 
C s = l .  This avoids any problem associated with 100% lapses. 

Proceeding backwards from time N to time 0, the quantities V., A,, and Co are calculated for each 
n. After performing this calculation, the account value Ao probably varies from the actual account 
value at time zero. So, all time zero variables must be scaled by an appropriate factor to have A0 
equal the actual initial account value. More directly, a practitioner may disregard the nominal 
amounts of Vo and A0 but only consider the ratio of the market value to the account value, V0/A0. 

We now turn to our stochastic valuation with the symbolic method. Here, we assume the lapses 
are a function of the current environment, that is to say, the prevailing market rate. We assume 
the lapses at time n are a function of the rates at time n-1 to reflect that the decision to lapse 
occurs between time n-I and n. Thus, ~=L.(®r,.~ - er~.~). Next, we adjust equation (6) to reflect 
that the quantities V°, A,, and Co are expected values given the rates of the previous time period. 
The result is equation (7). 
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(7, - A  . [ .  
A , .  E ( ~ ( ~  A° • c ) I ,,r.,,.r,,_, ) 

V,,., . E ( 1 . - - . ~ S  V • C ) I , i  . . . .  r ,., ). 

(7) 

Here, E( ) is the expectation over  all time n variables conditional with respect  to all t ime n-1 
variables. Thus, A+_ t and V..~ are functions of  =r~. 1 and d.-v As before,  after  the above 
calculations are performed, all account  values, market values and cash flows are scaled to ensure 
A+ is the  actual initial account value. 

That  (7) yields the correct market  value can be sccn by considering the contr ibut ion to V 0 of a 
single cash flow C.. The cash flow is properly discounted by the product  of  the one-year discount 
factors. Its amount  arise, as the  product  of the n = year's lapse rate I.~ with the previous rates of 
nondecrement ,  1 -~  for j=  l,...,n-1. 

All that  remains is to model the movement  of market rates and credited rates to permit the 
calculation of expected values. In general, the market rates assumptions are the most difficult. 
For market  rates, we specify the distribution of  each interest rate ,,r, and ensure that these rates 
vary from time period to time per iod with the desired interdependence.  A method for modeling 
market  rates is presented in the next two sections. 

3.2 Distribution of Market Rates 
In this section, we present a possible model of market rates. To ease our notation, for the 
rema/nder  o f  the paper, we represent  the n ~ period market rate, d°,  by i.. 

Assume the  distribution of  interest  rates to be continuous with a minimum value of  0% and a 
maximum value o[ i~o~x. Fur thermore ,  assume the probability density function of i, f(i), to be 
piece-wise linear with f(0)=f(i~L~t)=0. Let f have p + l  linear components  with I= for k=l, . . . ,p 
part i t ioning [0,iwa,] into the l inear components  of f. Let ak=f(Ik) for k=l, . . . ,p.  Thus, for p=19,  
the graph of f appears on the next page. 

Since f is a density function, it must  satisfy the equations in (8). 

0 < I, < 12 <-- '<  /p < i,,~, 
a, ;~ 0 for all k-l , . . . ,p, 

, , ,~ (e) 
f f(Odi = 1. 
o 
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Piecewise Linear Distribution of Market Rates 
(Sample wi th a Par t i t ion  o f  19 Points)  
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M a r k e t  Ra tes  

Diagram 3.1 

Notice that the above integral requirement is equivalent to equation (9), since the distribution is 
piece-wise linear. 

l l ,a ,  + I , a ,  . 1 3 a  3 • - .  . l _ , a  . ,  . 2 / a  =1 ,  (9) 

As illustrated above, the conditions prescn'bed for the distribution function give rise to polynomial 
expressions of the at's. In general, when all conditions of a distribution function may be depicted 
as polynomial equations, the distn'bution is easy to work with from a computational view point. It 
is interesting to note that if the distribution function is a cubic spline, not merely piece-wise 
linear, the above integral equations are still polynomials in the a~'s and Ik's. (See section 3.5) 

While performing the valuation, we let the parameters vary to adapt the model as necessary. For 
example, if we wish the distribution to have mean I~ and variance o 2, we solve for the a~'s and It's 
such that 
In general, it is necessary to add additional conditions such as the above to arrive at a unique 
distribution. In this manner, the practitioner may include more desired assumptions in to the 
model of interest rates. The important point is that, because of the piece-wise linear dism'bution, 
all integral requirements such as those in equation (10) are polynomials in I~ and ak similar to 
equation (9). 

The problem is simplified if we fix some of the parameters of f. To start, we fix the maximum 
possible rate, i~tAx. While the decision may be arbitrary, the alternative of allowing no maximum 
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; F f ( i )d i  = ~ + p2 
o 

(lO) 

rate is equally arbitrary. Next, we either fix all of the l='s or all of the ak'g. This greatly reduces 
the complexity of equations such as (10). Fixing the at's reduces (10) to a system of polynomial 
equations in the I='s. However, fuSng the I='s in lieu of the at's reduces (10) to a system of linear 
equations in the a(s. Clearly the latter is more desirable. This also has the added advantage of 
reducing the requirements to ensure f is a distribution function. We need only ensure that the 
a='s are nonnegative." 

Sample distribution for section 3.4: 
To illustrate, we choose p=3, i~,x=20%, I1=7.5%, I:=9.0% and I~=10.5%. We will specify the 
expected value p and variance a z of interest rates and thus (10) is a nondegenerate linear system 
in a,, ab and a3 with a unique solution. We assume Gz=.0014924, the historical variance o[ the 
one-year rate in the 1980's. What we assume for p is the subject of the next section. 

3.3 Expected Intertst Rates and Mean Reversion 
Continuing with the model of interest rates of the previous section, we focus on our requirements 
of p. C'rivcn o z, there are values of p which lead to negative solutions of (10). ]t follows that only 
a restricted set of  values of  p produce valid distributions f(i). For example, in our sample with p 
between 0 and 20%, a t is negative when p is less than about 7.3% and a 3 is negative when p is 
greater than about 11.2%. Thus, we require p to stay between these two bounds to ensure that 
f(i) is always positive. This is sufficient to ensure f(i) is a distribution since a z is also positive on 
this range. To simplify some of our calculations, we restrict p further to match the splines It and 
I~. Thus, we assume 7.5% < p <10.5%. This additional restriction is not n ~ a ~  in general but 
is convenient for our calculations later. 

In general, it is necessary to restrict the parameters of the rate's distribution to ensure that the 
derived function actually is a distribution. In our sample, we fix o 2 and restrict p to ensure that a=, 
az, and aj are all positive. The requirement that p be restricted to a subinterval of all the 
adagssibl¢ values for the market rate will Ix: a requirement for any model employing a distribution 
of market rates. To so¢ why this is true, consider the effects when p =0. This requires that the 
mean of the distribution take on one of the boundary values of the market rates, and this is 
impossible. In our sample, the zero mean requirement leads to one of the values of a~, az, or a 3 
truing negative. In other words, the mean of  market rates must take on a value strictly between 

" Assuming the a~'s to be fixed would require us to ensure that 0<l,<l~<...<lp<iv,,x which 
is often harder. 
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the boundary values of  market rates. This is true of  any distribution of  interest rates. The 
general picture for this is as follows. 

( ( ) ) ~  

Of course, any parameter  of  a function may have a limited range of  values over which the 
function is a distribution. We focus on the limiting o f  the mean value because it directly affects 
our sample and because the limiting of the mean is a requirement of  most models. This 
requirement is commonly referred to as mean reversion. 

Before discussing mean reversion, let us see how this limiting of  the mean's range fits into our 
analysis. We model future interest rates from period to period with i, the rate at time t. u We 
require that the mean of  it, ~,~ vary with i~. 1, and that low rates at time t-1 tend to be followed by 
low rates at time t. While it would be satisfying to let I~, equal i,.1, this would invalidate our t- 
period distribution function for some values of i,.~, since it. I is itself a random variable with the 
same sample space as i,. We must limit i~.~'s impact on ~., 

In our sample, i,, and i, range between 0 and 20%. However,  the admissible values for ~, are 
between 7.5% and 10.5%. We therefore define, 

~.:-.15 i,., . .OTS. 0 2 )  

Thus, all feasible values of  i,.~ produce admissible values of  I~,- 

This is an example of  a more general financial modeling concept known as mean reversion. Mean 
reversion arises in an effort  to maintain a model's integrity, in our case to ensure that our 
distribution assumes only nonnegative values. Usually mean reversion is used to force the 
expected value of  interest  rates to revert back to an overall mean. When rates exh~it  such a 
propensity, they and their model are said to have a central tendency. As illustrated here, the 
mean reversion arises from a technical necessity of  the model. 

We note that the  central tendency of our model is quite harsh, to the extent o f  being probably 
undesirable for modeling. Consider the case where the interest rate at time 2 is 1%. Our mean 
reversion given above would imply an expected rate at time 3 of 7.65%. It is unrealistic to expect 
rates to jump that much. They could move considerably from one period to the next but we 
would not expect this. Similarly, a rate of 18% at time 2 would produce the expected rate of 
10.2% for time 3. For actual modeling, ~., should be much closer to i,.1. For example i f  i had a 
range of 0 to 20%, a desirable range for p. might be 1% to 19%, rather than 7.5% and 10.5%. In 
section 3.5, we note that this can be done by adding more  partition points to the distribution 

,z The reader should distinguish between In and i~. Ik partitions the sample space of an 
arbitrary interest rate random variable for the purpose of defining the distribution function, i, is 
the specific interest rate random variable at time t. In this paper, we do not vary the partition 
with time, so no ambiguity can arise. 
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function of rates. For example, the partition points could be L = I % ,  Iz=2% .... 11,=19%. This 
would expand the range of p to at least 1% to 19% and allows the mild reversion p,=.gi,.l+.01. 

This brings us to the question of bow to judge mean reversions. A linear mean reversion, 
Pt = a i~.~ + b, has the property that 0 < a < l .  Here, a is the coefficient o f  the mean reversion. 
The closer a is to 1, the milder the reversion since the expectation of the next period's rate varies 
only mildly from the current rate. The farther a gets from 1, the harsher the reversion. In our 
sample, squeezing a sample space which is .2 wide into an admissible band for the mean which is 
only .03 wide produced the very harsh coefficient of mean reversion of .15 (=.03/.2). The 
coefficient of reversion should be a concern of all practitioners. When mean reversion is 
motivated by technical concerns rather than philosophical ones, milder reversions are preferable. 

One final note on mean reversion. The central rate towards which all rates revert is often 
defined to be that rate which implies an expected future rate equal to itselL That is to say, the 
rate i,.t for which la, = i,.1. In our sample, the central rate is about 8.82%. Some practitioners 
believe the central rate should equal the Mstorical average. Others believe it should equal the 
initial time zero rate, i,  The importance or lack thereof of this rate is uncertain, t~ 

We continue our valuation sample without reducing the harshness of our sample distribution's 
mean reversion, since the strong central tendency of this example's mean reversion does not 
detract from this illustration and making the reversion less harsh by increasing the partition of the 
distribution function would only cloud the presentation. However, in practice, a reversion much 
milder than our sample should be employed. 

3.4 Sample Valuation 
In this section, a sample valuation illustrates the concepts of the symbolic approach. 

The previous two sections present our sample market rate assumptions. Two more assumptions 
are necessary, a crediting strategy and a lapse or cash flow function. A fixed credited rate of 8% 
is assumed for ease of presentation. 

For a lapse function, let the rate of backward increment, I~, have a minimum of 1% and a 
maximum of 40% and he linear between these two values for differences in credited rate and 
market rate between 0% and 2%. For the reader' convenience, a graph of the sample lapse 
function is provided on the next page. 

The functional form of the lapse function is given in equation (13). 

.01 i ~ or (1 3) 
( (  i ,or )= 19.5( i - r  ) + .01 or ~ i ~ or..02 

.4  i > or * .0"2. 

The piece-wise linearity of the above lapse function is not necessary for the method, merely easy 

,3 In the spirit of arbitrage-free pricing, the author believes there is no intrinsic answer to 
the question of the meaning of the reversion. The current feelings in the market place should 
be monitored, and pricing model should receive such feelings as inputs. 

126 



A 

~ 50o/0 
Sample Lapse Function 

(a) 
E 
o 
o 
~ 4 0 %  

co 

° soo/0 
m 
v 

(D (D 
O. 
tX~ .~  2O% 

(D 

¢0 
rr" 10% 

Q.) 
Q_ 
x 0% 
LU -1% 

k I J 

0% I ~ 2% 

Market Rate minus Credited Rate 
3% 

for thesample. In practice, cubic spline functions would work well." Recall that I~ = l_,J(1-l_~) 
where L, is the rate of backward decrement. The probability density function for market rates for 
the sample is given in section 3.2. Diagram 3.1 displays the density function. For the sample, 
L=7.5%, I2=9%, I3=10.5%, I~t,,x=20%, and the density function is given in equations (14) and 
(15). 

'" The practit ioner could use spl ines of higher degree than three. Cubic spl ines are 
recommended since they are best for estimating functions and commonly employed in 
practice, 
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P.O) - 

40 
- -  a i  0 < i ~; .075  
3 

6 a  - 5 b  *--.~---~3 ( b - a ) i  .075 < i ~;.09 

2OO 
7 b - 6 c + - - ~ - (  c - b ) i . 0 9 , : i  ~ .105 

4 0 c  - 2 0 0  c i 
.105  ~; i ~: .2, 

19 

(14) 

1 4 5 0 5 9  - 2 3 5 0 0 0 0  p + 1(3" p~ a = 
1575  

- 3 9 0 7 7 1 4  + 8 7 1 0 0 0 0 0 0  p - 46.107 IJ~ 
b =  

13125  
165177  - 4 0 5 0 0 0 0  I.i + 3"107 P'= 

C = 
6875  

(15)  

Here, p is the desired mean, which must be between 7.5% and 10.5% as discussed earlier. We 
assume that the variance of this distribution is 02=.0014934, the historical average of the one-year 
rate for the 1980's. Notice that P(0)=P(.2)=0, p(.O'75)--a,  P(.09)=b, P(.105)=c and P is linear 
between these points. For the reader's convenience, The following table is provided to illustrate 
the density function for various desired means. 

p a I b c 

7.5% 15.9 2.8 4.4 

8.0% 13.4 8.9 4.8 

8.5% 11.2 13.2 5.5 

9.0% 9.2 15.6 6.4 

9.5% 7.7 16.4 7.5 

10.0% 6.4 15.4 8.8 

10.5 5.4 12.7 10.3 
i - | 

Table of Sample Distributions for Various Assumed Means 
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Recall from section 3.3 that the sample assumes market rates from one period to the next follow 
the mean reversion 1~,=.15 i,.1 +.075. 

The time under consideration for the sample is 3 years, N=3. The valuation procee~ from the 
last time period to the first, and the diagram in section 1 is modified to produce the 
representation of our calculations in Diagram 4. 

A , + C , . V , . C ,  A=÷Cz. V z . C  , A= .C~ ,V3+C 3 

• " ! ~" t g 1 

, I C, ~ ! C 2 ~ ! C~ 

Ao, V~ &, v, A,, V, A,=V ,=O 
Diagram 4 

In Diagram 4, the diagonal arrows represent discounting by the market or credited rates and the 
vertical arrows represent incrementing by the current cash flow. 

The valuation follows from equation (7) and the assumption that 8"=8%. We assume C~=1. 

At Timc 2: 
E( A, I i2 ) = E( V, I i, ) = 0. Therefore, 

1 

Az " 1%r (17) 
1 v,- 

1 . / ,  

At Timc 1: 
From equation (7), 

A, = 1 (1  . f z  ( i , % r ) )  
(1 + ° r) = 

- .857339 ( 1 +£ ,  (i, ~ r) ) 
1 V, = "i-~. IS (V=  J i, ) + /', ( i ,  --,r) . E( A= I i , ) ]  

[ 

1 1 1.i~, [ElV,  l i , ) , , -£, (i, ~ r ) -  . ~ %  r ] 

(18) 

Now, 
f 1 E( V= l i, ) = o .i--~ P=,( i= ) di=. (19) 
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Substituting equation (14) and equation (15) and the mean reversion into equation (19) yields, 

E( V~ l i, ) = .931405 - .130021 i, + .0172431 i, 2. (20) 

Combining equations (18) and (20) yields, 

A, = .857339  (1  . / ~ = ( i  - o r ) )  

V, = ~ 1  ( .925926 [ , ( i ,  - ~ r )  - . 1 6 4 5 0 7  ( 1 + i ,  ) . 1.078670 
1 + i ,  

+ .017243 ( 1 * i  1)2 ) 

(2~) 

The expressions are made in terms of 1+i, rather than in terms of i~, in order to facilitate 
calculations later. That is to say, since there exists a (1 +il) Z factor, expressing functions as powers 
of 1+il reduces the complexity of later integrals. Specifically, terms like (1 +ix)" are easy to 
integrate while terms like (1 +i~)*i] are troublesome, ts 

At Time 0: 
From equation (7), 

Ao = I.--~- E( A, I i o ) ( 1  + £,( io - o r ) ) 
1 * o r  

Vo = 1 [E (V ,  l i o ) + [ _ , ( i o _ o r ) £ ( A ,  l i o )  ] 
1 + i  o 

(22)  

Now, using equation (18), it follows that, 

.2 l 

E(A,  I i o ) = f ( l " ~  
f o r ) '  

(1  * [ . , ( i , - c r ) ) P  ( i , )  di,. {23) 

As before, substituting the mean reversion into the above, integrating and then substituting the 
result into equation (22) produces, 

.~ - 2 2 . 5 4 8 1 3 5  .~ ). (24)  A o = (1 + / ' , ( i  o -=  r) ) ( .864546 . .260366  i o . 7.972261 t o t o 

Similarly, it can be shown that, 

~s Note to the reader who may use the software Mathematica from Wolfram Inc: 
Mathematica 1.0 does  not integrate the latter term directly. It is necessary to specif ically 
rewrite the funct ions in terms of (1 +i,). 
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E( V, I io ) = .931599 ÷ .133443 i o * 8.483157 Po - 24.126775 I~, (25) 

and thus, 

1 (.931599 + .133443 i o +8 .483157  ~ -  24.126775 
v°=~  . io 

,~ -24.351985 Po) ) + / ' , (  i o - = r ) ( . 9 3 3 7 1 o  + . 2 8 1 1 9 5  i o + 8 . 6 1 0 0 4 2  t 2 

(~)  

The values of V0 and Ao in equations (24) and (26) may be scaled up and down by the same 
factor to ensure Ao equals the actual account value. 

On the next page, the graph of VJAo illustrates how the market value at time zero varies with the 
current market rate, i~ Notice that having an explicit form for VdA0 facilitates graphing the 
effects of interest rate shifts or calculating the duration and convexity. (In the sample, the 
duration for initial rates between 8 and 10% is in the range 1.02 to 1.11. Outside of this range, 
,~,- ,I,,,'atinn varies more but is generally above 2.1 for initial rates close to 8 and 10%.) 

Sample Market Value versus Market Rate 

~ .  $1.1 
(1) 

$0.9 

~ $0.8 

~ $o.z 

o% 
] I I 

5% 10% 15% 20% 

I n i t i a l  M a r k e t  R a t e  
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In this sample graph, the curve has a noticeably different slope when the initial interest rate is in 
the range 7.5% to 10.5% than when it is outside of this range. This is due to our interest rate 
model which treats this range differently from the remaining space of possible interest rates. 
Using more partition points in our rate distribution would produce a smoother graph and this 
would be desirable in practice. However, this graph dramatical/y illustrates the effects of the 
interest rate assumption on a valuation and emphasizes the need to he able to incorporate 
realistic interest rate assumptions. 

3.5 Points of Interest 
This section highlights some advantages and concerns to be considered if the symbolic method is 
to be developed and used in practice. Some of these ideas indicate methods to improve the 
assumptions of the valuations. Others expand the possible analysis. All of these points are areas 
for future research and are only presented summarily here. 

Improved distribution of market rates 
The modeling of interest rates with a piece-wise linear density function with a partition of three 
points, as done in our sample valuation, is not suitable for practice. Great improvements occur by 
simply increasing the number of partition points, and reducing the space between partition points. 
A piece-wise linear distn'bution may still be employed, or a practitioner may move to a cubic 
spline function. Either way, increasing the number of partition points will improve the interest- 
rate assumptions and permit milder mean reversions. In addition, rates could be made more or 
less volatile in different rate environments by specifying that the variance of rates at time t is a 
function of the rate at time t-1. No matter what assumptions are used, the method requires 
integrable functions at each step and thus the distribution function should be fairly simple; a 
practitioner should stay with piece-wise polynomial functions. 

Duration and Convexity 
As shown at the end of the last section, the model produces the ratio of the market value to 
account value in functional form, from which the duration and convexity follow as direct 
calculations. It is also possible to calculate statistics needing high order derivatives. One may also 
calculate derivatives with respect to interest rates other than those at time zero. (See Reitano [5] 
and [6].) 

Term stractnrcs and Time Series 
The model presented above assumes only one market rate. In reality, there are many different 
rates at any given time and the collection of rates of varying maturities (for a particular market 
sector) is called the term structure. Some instruments demand that a term structure be employed. 
For example, any instrument whose cash flow amounts vary with more than one maturity rate 
would require a rate model which provides a rate for the corresponding maturities. Also, 
modeling a term structure is a necessary prerequisite for ensuring that a model is arbitrage-free. 
It is easy to add more rate parameters at each time in the model. In this case, the iterative step 
in the valuation would consist of integrating with respect to each rate parameter. 

One may also employ a time series model of interest rates. This expresses each rate as a function 
of previous rates, usually more than just the immediately preceding rate. The symbolic model is 
flexible enough to permit such modeling. To do so, at each time n introduce any rates for earlier 
periods which are necessary to complete the time series model. The integration would take place 
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over the "error" term in the time series model. 1~ 

Regardless of which interest rate model used, it is easiest to perform the integration in the model 
if each function is a product of powers of (1 +rate) rather than linear combinations of rates. For 
example, if the one-period rate at time t, r,, was a linear combination of two previous rates, 
Ar,.l+Br,_, then discounting with r, produce~ terms like (1 + At,.1 + Br,.z) I which must be 
integrated over r,.i and r,.r While such integration is possible, it becomes complicated. It is easier 
if the model can be expressed multiplicatively like 

(1  . r , ) = ( 1  *r ._ , )  ~ (1 *r ,_,)  B (27) 

Terms such as the above can be integrated easily because the variable of integration are separated 
into different factors. Notice that in this case, discounting by r, leads to terms which are still of 
the same form. 

Arbitrage-Free Criterion 
Once a model for the term structure of rates is selected, a practitioner can attack the problem of 
implementing the arbitrage-free criterion. In general, one must ensure that the rates at each time 
in the model are consistent with the expected price of the corresponding instrument. For 
example, the 4-year rate at time 3 must price a fixed 4-year obligation at time 3 exactly as the 
model does by back-valuing from time 7 to time 3. The exact method for ensuring this 
consistency is highly dependent on the rate model employed and is an area for future research. 

Yields 
A yield can b¢ calculated by discounting the market values, v,, vnth an arbitrary parameter, y, 
rather than the market rate. The final market-to-account value ratio so produced is a function of 
y, a polynomial in (l+y)' to be precise. The roots of this function are a type of yield for the 
underlying instrument. The practitioner should be careful, however, since this is not the average 
yield over all scenarios; rather, it is the yield for one scenario in which the expected cash flow 
occurs at each time) ~ 

'* Particular care must be taken with the error term and its relationships to the finite 
interest rate boundaries and mean reversions. For example, with a finite boundary, a normal 
error term could not be assumed. Note that the error term should have a piece-wise 
polynomial distribution for easy integration. 

,7 The ranking of instruments by yields is done in practice but enjoys liffie theoretical 
foundation. To this author's knowledge, which type of "average yield" is best to use is 
unknown. 
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Crediting strategy 
The example in the last section assumed a fixed credited rate, but this is not a requirement of the 
model. The symbolic model can incorporate crediting strategies in algebraic form. For example, 
if rates were always a constant spread below market and reset each period, the decrement 
function could be altered to account for this. Indeed, any polynomial of market rates could be 
employed as a reset strategy. Alternately, rates could vary less often than the valuation time 
period. This would require indexing the market rate at the reset period for all subsequent periods 
until the next reset. For example, if rates were reset every 4 = period, then the 4 = period market 
rate would be used to calculate the credited rate in the 4 =, 5 =, 6 =, and 7= periods. Since the 
model proceeds symbolically backwards, there is no difficulty with introducing the 4 = period rate 
at time 7 and carrying it over to the 4th period. Similarly, averages of previous market rates 
(perhaps to simulate portfolio rates) or of the current market rate and previous credited rate can 
be used as a crediting strategy. As mentioned above, calculations proceed more expediently when 
relationships are expressed as functions of (1 +rate) rather than of just the rate. 

Problems can arise with crediting strategies not expressible in algebraic form. For example, the 
"sticky down" strategy which always resets rates at the lower of the current market or previous 
credited rates can cause difficulty. This strategy calls for a comparison of two rates which are 
kept in the model symbolically, without numeric values. Presently, the model only handles 
crediting strategies which do not require such comparisons. 

Sensitivity analysis 
The symbolic approach facilitates sensitivity analysis. For instance, consider the SPDA example of 
the previous section and suppose that the practitioner wished to know the sensitivity of the 
valuation to the lapse assumption. The valuation could be run with a free sensitivity parameter, 
S, as a factor of the lapse function. That is to say, S I~ is used rather than L,. The sensitivity 
parameter is carried throughout the valuation to yield the ratio of market-to-account value as a 
function of S. Evaluating this function at S = 1 provides the valuation with normal lapses. 
Evaluating this function at S=2 provides the valuation if the lapses were more or less double. '8 
Thus, the practitioner could observe the sensitivity. Similarly, the sensitivity of the instrument's 
duration to the lapse rate could be tested. One could also perform analysis to measure the 
sensitivity to the market volatility assumption. In practice, only one sensitivity analysis can be 
performed at a time, since the time and memory required for the calculation rises quickly with the 
number of free variables. 

Monthly, Quarterly, and Other Time Periods 
The symbolic method may employ an}, time period, not just annual ones. Suppose quarterly 
periods were employed. The lapse function would change and the discount factor would have an 
exponent of -1/4 but neither of these complicates the process significantly. Similarly, any time 
frame can be chosen. 

Modeling other instruments 
The example of the previous section models an SPDA, but it is possible to model other 
instruments. For example, a pass-through mortgage-backed security could be modeled similarly by 
replacing the lapse function with a prepayment function. Similarly, callable bonds can be modeled 
by using a discontinuous lapse (Call) function of 0% up to a certain call threshold and then 100% 

'~ The "more or less" arises from [ not being the lapse function L but rather the function of 
backward increment L/(1-L). 
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thereafter. Options could be valued similarly by introducing an exercise function. 

The symbolic method needs further research before it can be employed to value certain 
instruments. Specifically, instruments whose cash flows depend heavily on the level of the 
underlying base value (par, account value, etc.) may not be valued as easily as the SPDA because 
the "account value" and market value may not be scaled up and down arbitrarily. The most 
important examples would be collateralized mortgage obligations and banded rate annuities. The 
cash flows for these instruments are amount dependent in the sense that they vary with the 
amount of the underlying base value: the CMO tranche's cash flow varies with the outstanding 
principle of the entire pool and the banded annuity's rate varies with the outstanding account 
value. 

4 Conclusion 
This paper presents the symbolic method, a general technique for valuing interest-sensitive 
instruments as the expected present value of all future cash flows. The method requires that the 
distribution of future one-period rates be specified with integrable functions and that the cash 
flows be expressed as function of these interest rates. The paper gives an example of piece-wise 
linear distributions to value an SPDA product with a simple lapse function. The method could 
easily be expanded to incorporate close approximations (say cubic spline functions) of other 
desired lapse and interest-rate distribution functions. In this way, the method may incorporate 
almost any interest rate assumption. 

The main advantage of this approach is that it does not require sampling of specific paths. In 
essence, all possible future paths are sampled simultaneously. This approach also simplities 
duration calculations and sensitivity analysis. 

The symbolic method still requires future research to be refined. The main area for future 
research are: 1) the handling of amount-dependent cash flows (see Modeling Other Instruments 
in the previous section), 2) determination of a desired model of interest rates which can be 
sufficiently approximated with cubic spline functions, and 3) ensuring the arbitrage-free criteria for 
this model of interest rates. 

References 

1 Bowers, N. L., Gerber, H. U., Hickman, J. C., Jones, D. A., and Nesbitt, C. J. Actuarial 
Mathematics. Itasca, Illinois: Society of Actuaries, 1986. 

2 Ho, T. S. Y. and Lee, S. B. "Term Structure Movements and Pricing Interest Rate Contingent 
Claims." Journal of Finance, Vol. XLI, No. 5, Dec 1986. 

3 Jacob, D.P., Lord, G. and Tilley, J. A., "A Generalized Framework for Pricing Contingent Cash 
Flows." Financial Management, Autumn 1987. 

4 Kellison, S. G. .The Theory 0g" Interest. Homewood, lllinois: Richard D. Irwin, Inc., 1970. 

5 Reitano, R. R. "A Multivariate Approach to Duration Analysis." ARCH 2, 1989. 

6 Reitano, R. R. "Non-Parallel Yield Curve Shifts and Durational Leverage." JH R Long Term 
Care, Sept 1990. 

135 




