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I. INTRODUCTION 

The negative binomial distribution has frequently been suggested as a reasonable model for the 

number of insurance claims in a fixed time period. The suggestion has been motivated by several 

lines of reasoning: (a) With its two parameters, the negative binomial provides greater flexibility 

than the traditional Poisson. Co) The claims generating process may have contagion. (c) The c~alrns 

generating process may be a gamma mixture of Poisson distributions because of imperfect classifica- 

tion of ~isks. 

In any case, there is a large actuarial literature on the applications of the negative binomial 

distribution in insurance. See, for example, Ammeter (1948), Carlson (1962), Hewitt (1960), and 

Simon (1960). 

The purpose of this paper is to perform conjugate Bayesian analysis on the negative binomial 

distribution with the goal of providing a standard by which approximate credibility formulas and 

approximate predictive distribution may be judged. The paper follows the outline of Daboni (1974). 

2~ THE LIKELIHOOD FUNCTION 

The symbol N i denotes the number of claims m period (year) i. We will assume that, given 

the parameters "r and p, the random variables N i (i= 1,2,...) are independem and identically 

distributed in accordance with the negative binomial distribution. That is 

Ptq~ v,v(ni ) =r(ni÷T)P':(l -P)n~/r('y)ni ! ; "r > O, 0 < p < I 

n~ =0,1,2 ..... (2. I) 
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Because it is often of in t~cs t  to make inferences about the mean, X, let us reparame~erize (2.1) to 

show X in our l~elib.ood function. 

Let h=-r(l-p)/p , 0<h<~ 

and .y--~¢ O< ' r<  o~. (2.2) 

With this reparameterization, the probability mass funcuon (2. D becomes 

pNd,.x(ni)=r(ni+~)~An~(7*k)'~a~'V)/niW(~) ; 7,k>O, ni=0,L2 ..... (2.3) 

We have 

E(NI I'Y,X) - X 

V~fN~ I ~,X) = X(I +)d~) 

a3(n~l-~,x) ,, (-y *2x)/ffvx(v -x)  (2.4) 

a4(Nil-r,X) = 3 -(I/X) *(5/-/) *X/-ff.r  +X) 

Esi I v,X(e t% ) = { I -CA./V)(e t _ I )} "v. 

We observe that as T-*0, the negative binomial approaches the Poisson distribution. 

3. THE PRIOR DISTRIBUTION 

We will develop a proper prior distribution through conjugate analysis. In this analysis the 

parameters X and 3, are not independent a priori. A conjugate prior disuibution for (2.3) will be 

constructed in a three ste.$ process_ 

The three steps will be denoted by (i), (ii) and (iii). If the parameter -¢ is known, the defini- 

tion of the conjugate prior, and thereby the posterior dis=ibution, can start with step (ii). This much 

simpler development is done by Morgan (1983). The prior and posterior distributions of p are 
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members of the Beta family of distributions and the predictive distribution, that is, the unconditional 

dis~ibutinn of N i, is a membe~ of the Beta-Binomial family of  dism~utions. 

(i) Let 7 be distributed such that: 

~(~)~p,o(T)  I p¢o('r6o-mo) ; ~,~o>0 (3.1) 

where 

p.(~) = "f('y+ t). . .( 'y+n-]),  

a polynomial of degree a in % n o and m o are non-negative integers and #'o = no+2, no+3 .. . . .  

Notice that ~'-~(7) is a proper prior as a r~ul t  of the res~iction on ¢~o. 

The parameter ¢o may be interpreted as the number of past (hypothetical) dalrn~ on which the 

prior is based. The parameter 6 o may be interpreted as the number of  past (hypothetical) obs~rvanon 

periods on which the prior is based. The parameter n o can be set to any non-negative integer. Zero 

would be the simplest choice. The difference in degrees of  the two polynomials, %-no, determines 

the behavior of  the prior in the right-hand tail. The parameter m o helps determine the behavior of the 

prior near zero. If one believes the negative binomial model is correct (the claims generating process 

has a mean less than the variance), then m o win be a positive integer. 

The determination of the normalizing constant, denoted by C "t, of  the probability mass 

function (3.1) is a prototype for the evaluation of many integrals that occur in the sequel. 

Since p~0(,r) is a polynomial in ~/of degree n o and p¢o(V6o+mo) is a polynomial in -y degree ~o, 

then p.o(,~)/p,o(-rSo.mo ) is of the form of a quotient of two polynomials m "r, the numerator is of 

degree n o and the denominator is of degree ¢~o. Since ~o_>no+2, we have a proper fraction of  two 

polynomials, i.e., a rational function that can be expressed in terms of partial fractions. Notice that if  

/~o is such that we get some cancellations, the following technique is still applicable, the effect will be 

on the number and the value of the partial fraction constants. We will assume the general case. This 

is 60 will not cause any cancellatioas, and proceed as follows: 
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P~o(V)/P~o('V6o+mo) 

can be written on the form 

~o 

a~/(v#o*mo-l+i), 

i=l 

where ai's are the solution of 

no ~o ~o 

• " (7÷s-1) =' ~ ai x 

s=l  i=l i ~ r = l  

This implies that 

and 

a i = 

('y8 o+m o- 1 +r). 

nc ~o 

(1 ÷SSo-~o-mo-i)/6~ 

s=l  i ; e r= l  

~b o 

a i = 0 .  

i=1 

(r -i); i=1,2 .... ,4'o 

Using this partial fractions decomposition we can find the anti-defiv~ve term by term to obtain the 

normalizing constant in (3.1) as follows: 

(3.2) 
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~o 

- ~ (a~/~0 In('~6o÷mo-1÷i)l ~', 
i=I 

~o ~o 

since ~ ai=0, therefore lr ('y6o+mo÷i-l).~1, 

i=l i=l 

~o 

as ~.-,oo, which implies that 

(al/6o) In(-rSo÷mo.i-l)-..0 ' as -r-.,.~. This will enable us to 

i=l  

~o 

write C = - ~"~. (ai/8 o) In(mo+i-I ). 

i=I 

To evaluau~ Ev{Tk r(V~o÷mo_k) / r(V~o.mo)} ' which will be needed in the next develop- 

ment to find E~,(.)A'), we re~-n to (3.1). The numerator of the function to be integrated is 

no 

T k ~ ('y-1+s), a polynomial in 7 of degree no+k. The denominator is 

s=l 

~o+k 

T 

no 

.yk T 

S--1 

(.y6o÷mo-k-l÷r), a polynomial in 7 of degree ~o+k. The mtegrand 

~o-,k 

(7-I +s)/ x (78o+mo-k-1 ÷r) is a quotient of two polynomials in 7, the denominator's 

I'=1 

degree exceeds the numerator's degree by at least two, and the denominator is greater than zero for 

7_>0, as long as k~m o. To evaluate the integral of this quotient we can use the fact that it is a 
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rational function which can be expressed in terms of partial fractions and find the anti-derivative term 

by term. 

The r-a¢ional function 

n o ~o+k 

7 k x (7-1*s) / x (7~o+m-k-l*r) 

s= l  r = l  

can be written, using the partial fractions deoomposition, as 

~o÷k 

bi(k) / (V6o*mo-k-l*i) 

i=l 

where the bi('k)'s satisfy 

no 

~r  (-v-l*s) = 

S=I 

This yields 

and 

~o÷k ~o+k 

bi(k) 7r ('y6o÷mo-k- 1 ÷r). 

i=l i ~ r = l  

no ~0 ÷k 

bi0c) = (k÷l-mo-i) k r {l*k+s$o-~o-mo-i)l~ n°+k ~r (r-i) 
0 

s=l i # r = l  

~o+k 

hi(k) = O. 

i = l  

We can prove the following relationships linking the partial fraction decomposition of the last 

two rational functions: 

bk.t_moOc) = 0 ; k = l , 2  . . . . . . . .  
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bi.l(1) = (1-mo-i)a  i / (-i)/~ o ; i=1,2 ..... 4)o 

~o 

bl(1 ) = ~ (1-mo-i)ailiao 

i= l  

bi.2(2 ) = (1-mo-i)2ai / i(i+l)6~O ; i=1,2 ..... ~o 

% 

bl(2)+b2(2) = ~ (1-mo-i)2ai / i(i+l)/~ o. 

i=l  

(3 3) 

These relationships will enable us to write 

F-~{vkr(~ao*mo-k) / r(v~o-~o)} 

= c -~ J [ o~k{r(~o.=o-k)m(~6o.=o)} {p~(~) / p,o(-r~o*=o)} d~. 

= ~ bi(k) in(mo-k-l*i)  / a i ln(mo-l÷i) 

i=1 ~i=1 

(3.4) 

(ii) Let Cxl7 ) be distributed such that {~,/(3,+X)} is Beta with parameters {a0(7),1~o(7) }. If 

ao('Y) = ~'5o+mo, Bo(~) = ~o a ~  C 1 = F(~o) / ~,~o"% p~o(.~6o+mo L then 

~xr-,('/) = (C]) -I { x'~°-* I (.y+),)(sao-%-,~O} 

"Y,X,5o>0, ¢o = no+2, no+3 . . . .  ' too=l,2 .... 

This implies that the conditional moments of (XI'y) can be written in the form 

(3.5) 
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o o  

~xlxCAk) = (Cl)-I / xk+~°-1 / (~*)')(~a°'~°'m°)dX 
0 

= vk r(~o.k)r(76o+mo_k) / r(¢o)r(3"6o+mo). (3.6) 

Notice that for the small values of 3' or $o,E(k k I T) exists only if k < mo. 

Now using (3.3) and (3.5), we can determine the marginal moments of X, Ex(k~, as follows: 

ExCAI~ = E~ EXI~CAi~ 

= E,{xkr(¢o*k)r(~ao-mo-k) / r(¢~r(~ao*~} 

That is: 

= {r(~o.kYr(¢o) } f ~ ; k  b~(k) In(mo-k-1 .i) 

i~l 

(1) Toe mean, k =  1, is 

(3.7) 

and using ('3.3) we have 

F ~  

ExCA ) = (¢0//50) [ ;  ai{(i*mo-1)/i} ln{(i+mo-1)/(mo-1) } 
/ 
L i -  ] 

The special case m 0 = 1 yields 

EXCA) = ~o ! ~o. 

[,o / 
/ ~ ai ln(i*mo-1) . 

i=l  

( 3  8) 
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(2) The second moment, k=2, is 

EX(X 2) = ~o(~o*1) b i (2 ) in (~-3÷i  ) 1 

[ i=l 

This means that if ~ =  l,  

E),(~2), and the variance, will not exist. 

.° 1 
: ~  a}u(mo- 1 +i) . 

i = l  

(iii) Items (i) and (ii) imply that the joint prior distribution of-}' and k, the product of (3.1) 

and 0.5),  is 

~v.x('I,x) = P.o(v) v v~°'"~ ),*°-~(v+x)-<v~°'~°'~/cr(~o); (3.9) 

%)~,6o > o, no=0,1,2 ..... roof 1,2 ..... C#o=no+2,no÷3 ..... 

Notice that if we put no=0 and too= l in this model we can get Daboni's (1974) model and 

results. If m o ~ 2 the mean formula will not be as simple as in Daboni's paper, but we can 

determine higher moments if the parameter m o is sufficiently large. 

A POSTERIOR DISTRIBUTIONS: 

We collect t obse~'valions n, = (n2, ~ .....  n~ whose probability distributions is given by (2.3), 

which depend on the values of the two parameters (%k). The posterior distribution of the parameters 

(~,,),) is proportional to the product of r.he likelihood (2.3) and the prior (3.7). We have 

N.y.~.I~(7,X ) ~ ~r P~,(7) 7vSt.mox~.-1(7.,.~.)-(vSt ,t.mo) (4.1) 

where [ i f  I ] 

t 
~: = 8 0 + t and Ct = ~o + n = ~o ÷ ~ ni. 

] 
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Notice that ~,7 lJ~t) belongs to the same family of distributions as the prior. This was 

expected, because we selec'.ed our prior from the n2n~ral conjugate of the likelihood. Then we can 

assert that the posterior distributions and the posterior moments will be of the same form as the prior 

distr/butious and moments, we only need to use the modified updated parameters 6~ and ~t. We 

follow the outline of Section 3. 

(i) The parameter -y, posterior to the data 2, will be distributed such that 

! 

~.~,i~(v) = I- p~(.~) / p~,(%+m o) 

i=l 

= 0,I ..... ~= 1,2 ..... do=no+2,~+3 .... 

'line normaJizing comtamt, C/'I, will take the form 

q~t 
: 

C / = -~ (ai/Sy) In(too÷i-I) 

i - l  

where 

and 

l 
a. = ~" ~- (I-*-s6~-6t-13%-i)/~ 1 ~- (r-i); n /=n+no, i=1,2 ..... ~t (4.2) 
I 

j=O s--I i ~ r ~ l  

i = 0 .  

i=l  

Also we can show that if k < too, 
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E~I a{vkr(v~=+mo-k):r(v~=+ mo)} 

= / ~E~ hi(k) In(mo-k-l÷i)  / a i ln(mo-I+i) 

t i = l  / i = l  

where 

and 

t nj Ct+k 

bit(k) = (k+l-mo-i)  k r x (l+k+s6t-6,-mo-i)/~at / lr (r-i), 

j=O s=l i # r = l  

~ t ÷ k  
/ 

~[~ b.  =0 .  
1 

i=l 

(4.3) 

/ ! 
The relationships linking a. and b. will take the same form as those relationships linking a~ 

1 1 

and  b i. 

For net premltma determln~rion purposes , t' is a nuisance parameter. It is useful for model 

verification purposes. 

(ii) The parameter X posterior to the date ~ is dislributed such that, 

/ 1 

w h e r e  

"¢,X,5o> O,(~o=no+2,no+ 3 ..... [no= 1,2,.... 

! 

c 1 = r (6  O / {1'~"mp~(-r~t*mO}. 
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The posterior moments are of the form 

I ~t÷k / 

ExI~(Xt') ffi {I'(~t"k)/r(~t)} / ~ b i 0 c) In(m°-k-l"i] 

[ i - 1  

I:;' ] / a i ln(mo-l"i) ; 

[ i - I  

In particular 

/ / 
V~xl~(7) ,, (~ t /~ ) [1÷ l ( l -~O~  (aili) I n ( i - l ) / ~  a i In(i-l) 

[ i=l i=l 

k < m  o (4.4) 

t ~t ~t ]2 : I ln(i÷l) ]. - Vt )'~.(ai/i) l n ( i* l ) /~  a i 

i--t i=l 

(4.5) 

(iii) The joint posterior distribution of 3, and ), is 

i* / ~.~.xl.(-r,x) = ~r p.~(.y~'Y~'"~*'-~(.y÷x) -(~''~''~0 /{C ~r(,  O} 

[i--I j 

(4.6) 

7,X,8o> O, no--O, 1 ..... mo =l,2,...,#o=no *2,no~-3 .... 

5. THE PREDICTIVE DISTRIBUTION 

One of the important advantages of adopting a Bayesian approach in insurance is that we can 

obtain a predictive distribution of claim-~ of the next year given past experience. The predictive 

distribution will enable us to set the next year net premium, the first moment, the securiD" loading 

which usually depend on the second moment, and to make decisions about general risk management 

policies which may depend on probability statements about the claim~ process. 
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After adopting (2.3) as the probability distribution of the number of claims, and developing the 

form (4.5) for the distribution of the parameters "r and k posterior to the data nt, we can get the joint 

distribution for Nt+ 1 and ~,,;k I~. Then integration over the parameter space will produce the 

predictive distribution. We have 

t+l 

= J ;' J ;' t .  
i = 0  

nt.t! C / r(¢t)]dX d7. 

(5.1) 

Once again we integrate using partial fraction to obtain 

PNt. lIb(at÷l) = {r(¢tq)/r(¢,t)nt.l! } {at/at. l} 

{ ~t*l I /  ~t I 

a i l n ( m o - l + i ) / ~  a i in(mo-l+i) 

i=l i=l 

/ // 
In (5.2) the constants a. are given by (4.2) and the constants a. 

1 1 
will satisfy the system 

t+l ckt.l Ot*l 
II 

~" Pni(~' ) m ~ a i ~r 

i=O i=l i # r = l  

(76t.1 +too- I +r). 

The solution is 

(5.2) 

II 
a. 

! 

t+l nj ~t+l ~bt÷l 

lr ~r (1-mo-i- /~t . l+@.1)/6t+" 1'' a" (r-i), ~ ai 1! 

j=0 s=l i;~r=l i=l 

=0 .  
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The predictive mean is the same as the posterior mean, given&, and is displayed in (4.4). 

The predictive variance, of interest in determining secuxity Ioadings, can be determined as follows: 

Var(Nt.l Ig~) = Var-t.xL~ {E(Nt.11"r,g)} ÷ E-K,XI~ ' {Var(Nt.t h',X)} 

= v%xln, (x  ) ,  _ • E~,xl ~ {(X ÷ (x:/-r)} 

= VarxL. (X) * Exl~ fX) - E~,xL~fX2/-r), 

The $.rst two components, Var(XIjElt) and EChlllt), are given by (4.5) and (4.4). The last 

E.r,Xl~(-},2/3,) can be determined as follows: 

substitute from (3.6) and 

E~,xl~ (x2/~) = {r(~,+2)Ir(¢2)} ~ , a ,  {~r(~,+mo-2);c(v6~÷~9} 

which can be shown to be 

¢t..-2 
/ 

{b i (2)/(3-mo-i)} in(too÷i-3). Ct(~t*l) ~E] 
i= l  

6. APPROXIMATING THE PREDICTIVE DISTRIBUTION 

One of the major reasons for going dxrough the somewhat tedious mathematics of Section 5 is 

to have available the exact predictive distribution so that various approximations can be evaluated. 

There has recently been a great deal of interest in approximating predictive distributions. Dunsmore 

(1976), Lejeune and Falkeaberry (1982) and Tieraay and Kadane (1984) discuss this issue. The 

method of Tieraay and Kadane is coneeptua/ly rather simple and has an error term of order O(n2), 

where n is the number of observations. However, the method requires that the posterior mode be 
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calculated and the Hessian m a t ~  of the log likelihood plus the log prior divided by n, evaluated at 

the posterior mode, be available. We have not completed an evalumion of their approximation in this 

case. 

A predictive distribution is an expected value of the likelihood for Nt+ t with respect to the 

posterior distribution after ~ has been observed. Therefore, one is led to ask if the predictive 

distribution can be approximated by a member of the negative binomial family. A series of 

manipulations with (5.2) lead us to suggest, for large t the following approximation 

PNt.11~(I1t.I) = {r((~t÷l)/nt.l!r((#0 } {(~t/(~t.l}~t{1/&t÷l}nt'i; llt+ 1 = 0,1,2 .... (6.1) 

This approximation can be se(m ~ substituting ~)t/6t for X and 0t for 7 in (2.3). 

Them we can approximate the predictive (or credible) mean by 

E(Nt+I {~t) =-" @t/fit = ((#o+n)/((5o÷t), (6.2) 

which is exact if too= 1, was we showed previously, (3.8). The prediction (or credible) variance can 

be approximated by 

(6.3) 

The credible mean, in this o.,ase, takes the credibility linear form, 

EfN~.~ l ~  "; z~" + ( l -z )  E(N~) (6.4) 

where the credibility factor, z=t/( t+ko) , with k=8o, and ]q=n/t. 

Two comparisons of the exact prMictive distribution (5.2) and the approximate predictive 

distribution (6.1) are found in Table I. 
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TABLE 1 

The exact and the approximate predictive distributions: 

(1) If n=2,  0=3 ,  ~=25 and mo=l  , 

Pr(N --- n) Pr(N--n) I~(N =n) Pr(N =n) 
n Exact Approximate Difference n Exact Approximate Difference 

0 .892897 .888996 .003901 9 .000013 .000000 .000013 

1 .095565 .102577 -.007012 I0 .000009 .000000 .000(D9 

2 .005126 .007891 -.002765 11 .000007 .000000 .000007 

3 .000351 .000506 -.000155 12 .000007 .000000 .000007 

4 .000055 .000029 .000025 13 .000005 .000000 .000005 

5 .000027 .000002 -.000026 IS. .000004 .000000 .000004 

6 .000018 .000000 .000018 15 .000004 .000000 .000004 

7 .000016 .O00000 .000016 

8 .000013 .000000 .000013 

(2) If n=2,  ¢=3 ,  6=164 andmo=l  , 

Pt0q =n)  Pr(N=n) 
n Exact Approximate Difference 

0 .977654 .981928 -.004274 

1 .017414 .017853 -.000439 

2 .000165 .000216 -.008051 

3 .008098 .000002 .000096 

4 .000000 .000000 .000000 

5 .000000 .000000 .000000 
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