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Abstract 

The two-parameter Vdeibull model and two-parameter Gompertz 

model are commonly used as survival time distributions in actuarial 

studies. The estimation of the parameters of these models is numer- 

ically involved. We consider the estimation problem in a Bayesian 

framework and give the Bayesian estimators of parameters in terms 

of single numerical integrations. We propose an adaptive Bayesian 

estimation procedure by putting a prior only on one parameter and 

finding the other parameter by minimizing the distance between em- 

pirical and parametric cumulative distribution functions. This easily 

computable adaptive Bayesian procedure is compatible with the ex- 

act Bayesian procedure. In particular for large samples numerical 

integration for computing the exact Bayesian procedure is difficult. 

In both cases, noninformative generalized Bayes estimators and rele- 

vant adaptive noninformative Bayes estimators are also given. Some 

examples will be provided. 
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1. I N T R O D U C T I O N  A N D  S U M M A R Y  

The two-parameter Weibull distribution and the two-parameter Gom- 

pertz distribution are widely used distributions in a~tuarial science and 

life-testing. We consider the problem of estimating parameters of the two 

parameter  Weibull distribution and two parameter Gompertz  distribution. 

Suppose X is the life-time random variable, then the force of mortality #~ 

for the two-parameter Weibull distribution is 

/~ = kx'~, x > 0 (1) 

with the probability density fx (z ) ,  

/x(~) = k~'~xp{~- - -~x-+ ' } ,~  > o (2) 

Here both k and m are unknown parameters and m > 0 and k > 0. For the 

Gompertz distribution, force of mortality t~,  

~,~ = ~c~,x > o (3) 

with the density ]x(x), 

fx(z) = beZexP{ln'-~(1 - cX)} ,z > 0 (4) 

where both b and c are unknown parameters and b > 0 and c > 1. Based 

on a random complete sample x l ,  x2 , - ' - ,  x .  we would like to estimate these 

parameters. There are lot of estimation methods available in the literature 

for these parameters. For instance, maximum likelihood estimators, per- 

centile estimators (estimators based on two selected percentiles; for details 
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see London (1988)), minimum chi-squaxed estimators, minimum modified 

chi-squared estimators, least square estimators, (for details see Johnson and 

Johnson (1980) or London (1988)) etc. But none of these estimators has 

closed forms and estimation of these parameters involve numerical compu- 

tations. For example, maximum likelihood estimators of weibull parameters 

can be found by direct maximization of the likelihood function 

L ---- k a ( H  x ~ ) e x p { - -  x ~ + l ) }  

~:1 71~. T .L i : l  

or alternatively finding the solution for the following two nonlinear equations 

n(m + 1) -- k(~"~ x~ +') = 0 

en ~, + ~ - (~(m + 1)~7') = 0 
i=1 (m "°" ~ " i= I  

and percentile estimators for gompertz model can be evaluated by solving 

nonlinear equations 

b ( 1 - c  ~p~) = l n c l n ( 1 - p l )  

b(1-c"~)  = h~cln(1-p2) 

where xp~ is the pth percentile and z ~  is the pth percentile. 

We consider the problem from the Bayesian point of view using two 

independent priors; a gamma prior on one parameter and any other prior 

on the other parameter. The Bayesian estimators for these parameters are 

given as a ratio of one-dimensional integrals. For small samples, one can 

evaluate these integrals numerically. But for large samples, evaluating these 

integrals or getting an approximation to these integrals are difficult. 

We propose adaptive bayesian estimators for the above problem by putting 

a prior only on one parameter and finding the other unknown parameter by 
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minimizing the distance between empirical and parametric cumulative distri- 

bution functions. This procedure for the Gompertz distribution is originally 

proposed by Ananda, Dalpatadu and Singh (1992). The proposed procedure 

works well for large n as well as for small n. Furthermore, we derive the 

estimators corresponding to noninformative priors. Couple of examples are 

given. 

2. E S T I M A T I O N  OF W E I B U L L  P A R A M E T E R S  

Consider the gamma prior distribution (with parameters a > 0 and 

/3 > 0) on the parameter k and any other prior g(m) on the parameter m. 

Assuming that the parameters k and m are independent, the joint prior 

distribution of k and m is 

e-kl/3k~-I 
~(k,m)= r(~)~ g(m) (5) 

and one can show that the posterior distribution of k and m given the data 

~(k,m/data) is proportional to 

. (k , , . /data )  = k"+=- l ( I I=7)e~p - k [  + ~--~(~ 
/=1 

Easy calculation shows that the Bayesian estimators k and ~n (assuming 

the quadratic loss) of the parameters k and m are 

(n + a) 7(rlx~)g(m)[~ + ,---~r~+,,.. x.~m] - ~ + ° + ' ~ ,  ,~ dm 
= 0 ( 7 )  

f ( I I=? ' )9(m) + -~-~ z.,=, j j dm 
o 

and 

7m(n =;~)g(m) [~ + ~--~(m xm+')]-*"+~ am 
rh_-- ° (s) 
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If one use the noninformative prior 

a'(k,m) = kC ' - ldkdrn ;k  > O,m > O, (9) 

the generalized Bayes estimators of these parameters are 

(. + ,~) ~'(rl xr)g(m) [(E x;'*')/(m + 1)]-~"+°+'~ dm 
k =  o 

and 

~(11 xr)g(m)[(E x;"*')/(m + 1)]-*"*°1 dm 
0 

(10) 

~°m(]"[ x~)g(m) [(Z x~+') / (m + 1)]-(n+°) dm 
rh = o . (11) 

7(n =;~)g(m) [(E =;-+')/(m + 1)]-("+°~ dm 
o 

These integrals must be evaluated numerically. For small n, this can be 

accomplished by using any integration program such as QDAGS in IMSL. 

For large n, calculating and getting accurate answers for these integrals are 

difficult. We look at the problem in a slightly different approach, which is 

proposed by Ananda, Dalpatadu and Singh (1992) for the Gompertz distri- 

bution. 

First let us assume that the value of the parameter  m is known. Also we 

assume that the prior information about the parameter  m can be expressed 

using the gamma prior with parameters a and/~, 

.(k) = e-~/~k"-I/{r(a)ff'}. (12) 

Easy calculation shows that the posterior distribution of k given the data, 

~r(k/data) is proportional to 

r(k/data) oc k"+°-'exp { -k i l l /9  + (~"~ z'~+')l(m + 1)]} (13) 

and the Bayesian estimator of k, k is 

(" + ~) (14) 
= [1/ /~ + (E xi"+~)/(,.~ + 1)]' 
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Now we find the opt imum m value by minimizing the "distance" between 

empirical cdf (F,.,m,(x)) and the parametric cdf F(x). Here 

f ~ ( ~ )  = ( # o f  obs. < x ) /n  

and 

F(x) = 1 - e x p { - ~ + l x ' n + l } .  

We use following distance criteria (used in Ananda,  Dalpatadu and Singh 

(1992)) in our analysis. 

(a). Area (A1) between F~(x) and iv(x): 

A, = f f  I Fm~(~)  - P (~ )  I dx  

Anderson & Darling (1954) A s Statistic: 

n 

AS = fo ¢¢ (1 - F~))F(z)[r,~p(X) - F(x)]2f(x)dx 

(b). 

(15) 

This is the expected squared deviation of F,~(x) and F(x), with the devi- 

ations are weighted by the inverse variance of F~p(x). By replacing F(x) 

and f (x )  by their estimated values ib(x) and f (x ) ,  one  gets the A 2 statistic 

a s  

n 

AS = f0 °° (1 - F(x))_~(z)[F~p(Z) - ~'(x)]2f(x)dx 

which can be written as (see, London (1988)) 

1 " 
A 2 = - n  - - ~'-~(2i - 1){ln[~(xj) • (1 - F(x,-i+l))]}.  (16) 

12 / = 1  

Studies by Stephens (1974) show that, in many important  situations A 2 

statistic provide a better measure for the departure between/~'(x) and F~m~(x ) 

than the Kolmogorove-Smirnov D Statistic which is defined as 

D = sup I Fmp(x) - F(z) I. 
z 

If no prior information is available about the parameter  k one can use the 

noninformative generalized prior which has the density 

,~(k) = k ° - '  o < b < ~ .  (17) 
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The posterior density of k with respect to the prior given in (17) is 

~(k/d~t~) ~ k"+~-~( l -I~  ~ )exp ~--~.~ ) 
i = 1  

and the Generalized Bayes estimator of k is 

~: = (n + a)(m + 1) 

(E~? +1) 

Again one can find rn by minimizing the area At given in (15) or Anderson 

& Darling A 2 statistic given in (16). 

3. E S T I M A T I O N  O F  G O M P E R T Z  P A R A M E T E R S  

Consider the gamma prior distribution (with parameters a > 0 and B > 

0) on the parameter b and any other prior #(c) on the parameter c. Assuming 

that the parameters b and c are independent, the joint prior distribution of 

b and c is 
e-bilbo,-1 

~(b,~) = r(o)~o g(~) (is) 

and one can show that the posterior distribution of b and c given the data 

~r(b, c/data) is proportional to 

• -(b, c/data) ~ b"+"-'~"S(c)exp{b(n - s ¢ - ) / h  ¢ - b/a}.  

Easy calculation shows that the Bayesian estimators b and ~3 (assuming the 

quadratic loss) of the parameters b and c are 

and 

~= 

c o  

(n q- ct) f c~='g(c){1//~ "1- (~c ~' - n)/( ln c) }-(n+°'+l)dc 
1 

y ~=,g(c){l/# + (s~, - .)(in c)}-C"+o)dc 
1 

i c~='+'uCc){l/~ + (r~e,- n ) / ( l ,  c)}-c-+o)ac 
° 

f c~z 'g(c){ l /~  Jr (Ec ~' - n)(ln c)}-(n+c'+X)dc 
1 
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If one use the noninformative prior 

r(b,c) = b~-Zdbdc;b > O,c > 1, (19) 

the generalized Bayes estimator for these parameters are 

and 

(. + ~) ~,gC~){(r .e ,  - .)IClnc)}-¢=+"+')dc 
l 

OO 

f c~.,g(c){(r.e, - n)/(inc)}-C'+~)dc 
1 

o o  

1 ~,+,g(c){(r~e, - ,~)/(lnc)}-c-+o)d¢ 
~o 
f cE"g(c){(Ec x' - -  n)/(lnc)}-(-+~,+,)d c" 
1 

These integrals must be evaluated numerically. For small n, this can be 

done quite easily using any integration program. For large n, calculating 

these integrals are difficult. 

As in section 2, one can find the adaptive Bayes estimators as follows. 

First assume that the value of the parameter c is known and the prior in- 

formation about the parameter b can be expressed using the gamma prior 

with parameters a and/3, 

r(b) = e-~/%'~-l / {r(a)ff~}. (20) 

Easy calculation shows that the posterior distribution of b given the data, 

r (b /data)  is proportional to 

r(b/data) oc b "+'~-' exp{-b//~ + b(n - Zc=')/In c} 

and the Bayesian estimator of b, b is 

= ( "  + ' ~ )  

{1/~ + ( ~ ,  - . ) / in c}" 
Now one can find the optimum c value by minimizing the "distance" between 

empirical cdf (F, mp(X)) and the parametric cdf F(x) given in (15) or in (16). 

Here 
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F(x) = 1-exp{b(1 - c=)/In c}. 

If no prior information is av~able about the parameter b one can use 

the noninformative generalized prior which has the density 

7r(b) = b ° - '  0 < b < co. (21) 

When c is known, the Jetfreys noninformative prior corresponds to the case 

a = 0. The posterior density of b with respect to the prior given in (21) is 

~ ( b / d a t a )  ~ h n + ° - ~ e x p { - b ( r ~ c  ~' - n ) / I n  c} 

and the Generalized Bayes estimator of b is 

= (n + a) In c 

(r,c~, - n ) "  

Again one can find c by minimizing the area AI given in (15) or Anderson 

& Darling A 2 statistic given in (16). Notice that, when c is known, the 

generalized Bayes estimator of b with respect to the Jeffreys noninformative 

prior is the ML estimator of b. 

For more details and performances of these procedures for the Gompertz 

distribution, see Ananda, Dalpatadu and Singh (1992). In the next section, 

couple of examples taken from the above paper are given to compare the per- 

formances of this proposed adaptive procedures with the other procedures. 

4. CASE EXAMPLES 

E x a m p l e  1. The following data from Hod (1972) represents time (in 

days) at death of 39 irradiated mice. These llfe times in days are as follows: 

40, 42, 51, 62, 163, 179, 206, 222, 228, 249, 252, 282, 324, 333, 341,366, 

385, 407,420, 431,441,461,462, 482,517, 517, 524,564,567, 586, 619, 620, 

621,622, 647, 651,686, 761,763. 
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Johnson and Johnson (1980) showed that this data follows a two parameter 

Gompertz distribution. Since we do not have any prior information, we 

can't calculate the exact Bayesian procedure. We calculate the adaptive 

generalized Bayes estimators (with respect to the noninformative prior in 

(5) with a -- 0 and 13 = oo) by minimizing 1. area and 2. Anderson and 

Darling Statistic. Chi-squared goodness of fit test was used to compare 

these methods with the other methods. Results of the analysis are given in 

the Table I. The p-value with the maximum likelihood procedure is 0.307. 

The p-values with the adaptive generalized Bayes procedures are 0.791 (by 

minimizing the area) and 0.729 (by minimizing the Anderson and Darling 

Statistic). Here, performances of the adaptive nonlnformative procedures 

are much better than all the other procedures. 

Example  2. For the second example, we use data from page 136, John- 

son and Johnson (1980) (original data given by Kimball (1960)). These 

are mortality data for 208 mice, which were exposed to gamma radiation. 

Maximum likelihood, Minimum chi-square, Minimum modified chi-square 

estimators of parameters b and c are given in Johnson and Johnson (1980). 

Since we do not have any prior information, we analyze this data set using 

the noninformative prior. Results of these analysis (estimated parameter 

values and chi-square comparison) are given in the Table II. As minimum 

chi-square estimators and minimum modified chi-square estimators are read- 

ily available from Johnson and Johnson, those methods also used in the 

chi-square comparison. While the p-value for the ML procedure is 0.178, 

p-values for the adaptive procedures are 0.188 (by minimizing area) and 

0.200 (by minimizing A ~ D statistics). Here too, adaptive noninformative 

procedures are doing slightly better than all the other procedures. 
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Time interval 

0-100 
100-200 
200-300 
300-400 
400-500 
500-600 
600-700 
700-800 

df-- 
X 2 = 

p-value= 

Table h Results from example 1 
Observed number Expected number 

M, M2 
of deaths 

M~ M4 

6.901 4.444 2.592 2.723 
6.763 5.306 3.729 3.845 
6.330 6.002 5.104 5.165 
5.603 6.306 6.458 6.422 
4.635 5.986 7.232 7.090 
3.532 4.946 6.700 6.527 
2.436 3.381 4.632 4.557 
1.490 1.785 2.048 2.096 

3 3 3 3 
10.29 3.601 1.044 1.299 
0.016 0.307 0.791 0.729 

MI: Percentile Estimators ( based on 25th and 75th percentiles) 

= 1.00195 b = 0.00176393 

M2: Maximum likelihood Estimators 

= 1.00321 b = 0.00102648 

M3: Adaptive Generalized Bayes (By minimizing the area, ~ = 0 and 
= oo) 
= 1.00453 b = 0.00054404 

M4: Adaptive Generalized Bayes (By minimizing A & D Stat., c~ = 0 and 
~= ~) 

= 1.00438 b = 0.00057717 
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Time 
interval 

0 -  50 
50-  60 
60-  70 
70-  80 
80-  90 
90- I00 

100- 110 
110- 120 
120- 130 
130- 140 
140- 150 
150- 160 
160- 170 
170- 180 

dr= 
X2= 

p-value= 

Table lh Results from example 2 
Observed 
number 

3 
3 
6 
6 
16 
14 
25 
2O 
32 
25 
27 
13 
11 
7 

Expected number of deaths 

27.341 6.446 6.664 7.031 6.595 5.717 
5.024 3.497 3.580 3.721 3.542 3.188 
4.888 5.054 5.I52 5.316 5.095 4.667 
4.752 7.229 7.335 7 .515  7.256 6.766 
4.621 10.183 10.286 10.461 10.176 9.667 
4.494 14.02 14.10 14 .23  13.95 13.51 
4.371 18.68 18.70 18 .74  18.53 18.29 
4.249 23.71 23.63 23.51 23.45 23.60 
4.132 28.01 27.81 27 .50  27.68 28.33 
4.019 29.79 29.50 29 .05  29.48 30.59 
3.908 27.15 26.89 26 .46  27.04 28.22 
3.799 19.76 19.66 19 .47  19.96 20.65 
3.694 10.390 I0.459 I0.536 10.77 i0.76 
3.593 3.417 3.522 3 .676 3.705 3.427 

9 9 9 9 9 9 
668.7 12.66 1 2 . 4 6  12.25 12.60 13.82 

0. 0.178 0.188 0.200 0.181 0.129 

M,: Percentile Estimators (based on 10 th and 90 th percentiles) 

= 1.00003 b = 0.00281676 

M2: Maximum likelihood Estimators 

= 1.03975 b = 0.00020389 

M3: Adaptive Generalized Bayes Est. (By minimizing the area, a = 0 and 
-- ~ )  

= 1.03935 b = 0.00021348 

M4: Adaptive Generalized Bay¢~ Est. (By minimizing A & D Stat., a = 0 
and  ~ = co) 

= 1.03871 b = 0.000230039 

Ms: Minimum chi-square Estimators 

= 1.03931 b = 0.0002115 (from Johnson and Johnson (1980)) 

M6: Minimum Modified chi-square Estimators 

= 1.04090 ~, = O.0OO174 (from Johnson and Johnson (1980)) 
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