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A bstraet 

The fundamental objects of communication theory (sources and receivers, channels, the rate of 
transmission of information) are shown to have natural analogues within economic systems and 
models. Kelly's interpretation of the information rate [Bell System Technical Journal, 1956] is 
generalized: his "gambler with a private wire" is replaced by an investor with a predictor model, 
operating in an arbitrage-free economic system. The potential usefulness of the theory is established 
by the demonstration of an important predictor model producing strongly positive information rates 
over extended time periods. 

Introduction 

Kelly's "A New Interpretation o f  Information Rate" 

Most of the present paper is concerned with properties of a concept known as the "rate of 
transmission of information" or, more simply, as the "information rate." The importance of the 
concept derives from Shannon's Second Theorem [6] which asserts that, with suitable encoding, 
binary digits can be transmitted at this rate over a noisy communication channel, with arbitrarily 
small probability of error. The result is central in the theory of communication as well as in 
engineering applications; it is often referred to as the "Fundamental Theorem for Noisy Channels." 

Soon after the publication of Shannon's theorem, workers in a wide range of academic and applied 
disciplines began making informal use of the information rate concept; that is, in ways unrelated to 
coding schemes. Indeed, the information rate is a simple and appealing measure of the association 
between two random variables. In 1956, J.L. Kelly [1] described a situation where coding is 
irrelevant yet the information rate has theoretical significance. Kelly summarizes his result as 
follows (our italics): 

If  the input symbols  to a coaununication channel represent the outcomes of  a 
chance event on which bets are available at odds consistent with their 
probabilities ( i .e. , ' fair" odds), a gambler can use the kanowledge given him by 
the received symbols to cause his money to grow exponentially. The maximum 
erponential rate of growth of the gambler's capital is equal to the rate of 
transmission of information over the channel. 

Although literally thousands of papers have been written on information theory and its applications 
since 1956, it appears that the characterization of the information rate as the maximum exponential 
rate of growth of a gambler's capital remains the only theoretically justified application of the 
concept outside communication theory. In his fascinating 1991 survey [5] of the many ramifications 
of self-similarity, Manfred Schroeder (a longtime colleague of Kelly's at Bell Labs) writes (again, 
italics are ours): "[Kelly's result] was the fast instance, and is still the only one, as f a r  as, I know, in 
which a benefit can be reaped [from information theory] without the elaborate coding that is 
necessary to realize the error-free transmission promised by Shannon's theory." 

A New  - and Improved - Interpretation oflnformation Rate 

Kelly's result is unsatisfactory in several respects. Although the problem he constructs and solves, to 
give significance to the information rate, is simple and intuitively compelling, it is also artificial: 
few (honest) gamblers are so fortunate as to possess a "private wire" continually providing inside 
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information on infinitely repeated trials of the same experiment. Second, the rather narrow 
gambling context itself limits the relevance of the result. But most importantly, Kelly's hypothetical 
conditions are unnecessarily restrictive: the central conclusion can be reached in a much more 
general and interesting setting - that of an arbitrage-free economic system. This is the basic result of 
the present paper. 

Organization of this paper 

The remainder of the paper is organized as follows. 

Section 1, "Entropy, information, and financial models", gives the definitions, terminology, and 
results we will need. (There are many excellent texts and treatises for the reader who is interested in 
pursuing the subject; please refer to the bibliography for some suggestions). We then show that the 
fundamental objects of the theory (sources and receivers, channels, the information rate) have 
natural analogues in the context of financial markets and predictive models. 

Section 2, "Information and market dynamics" contains the main result of the paper. Here we 
establish the equivalence of arbitrage-free economic systems and a generalized betting model in 
such a way that the interpretation of the information rate, as the maximum rate of increase of an 
investor's capital, is preserved. As a corollary to this result we show that the difference in the 
information rate between models represents the achievable incremental return associated with the 
superior predictor model. 

The theoretical material of Section 2 is of little practical significance unless we can point to at least 
one important economic system with a strongly positive information rate. This is the main result in 
Section 3, "Application to financial models." The section also contains, partly to illustrate the 
calculations and partly to show the versatility of information-theoretic techniques, an example in 
which the information rate is used as a means of comparing several predictors of the future volatility 
of the S&P 500 index. 

1. Entropy, information, and financial models 

The entropy, H(X), of a random variable X which takes the values x 1 ..... x m with respective 

probabilities Pl ..... Pro, is defined as 

H(X) = - Z Ps log Ps ( l . ] )  
s 

where S = 1 ,..., m 

The base to which logarithms are taken determines the units in which entropy is expressed; if base 2 
is used, the unit is the binary digit, or bit. H(X) is a measure of the average uncertainty associated 
with the outcome of a single trial of an experiment with probabilities p 1 ..... Pro. Knowledge of the 

outcome eliminates the uncertainty and thereby conveys an equal amount of information. Thus 
H(X) may be taken to represent the average amount of information given by knowledge of the 
outcome of a single such trial. 
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We can extend the definition of entropy to joint and conditional probability distributions. Let X and 
Y be discrete random variables with joint probability function f(x,y) and marginal probability 
functions 

h(x) = Z f(x,y) (1.2) 

Y 

g(y) = Z f(x,y) (1.3) 
x 

Let h(x/y) be the conditional probability of X when the value of Y is known and let g(y/x) be the 
conditional probability of Y given X. The entropies of X,Y, the pair (X,Y), and the conditional 
variables (X/Y) and (Y/X) are given respectively by 

H(X) = - Z h(x) log h(x) (i.4) 
x 

H(Y)  = - Z g(y)  log g(y) (1.5) 
y 

H(X,Y) = -  Z Z fix,y)log fix,y) (!.6) 
x y  

H(X/Y) = - Y. Z g(y) h(x/y) log h(x/y) (1.7) 
y x  

H(Y/X) = - Z Z h(x) g(y/x) log g(y/x) (1.8) 
x y  

and the following relationships hold 

H(X,Y) = H(X) + H(Y/X) = H(Y) + H(X/Y) (1.9) 

The entropy H(Y/X) measures the average uncertainty associated with the value of Y when the value 
of X is known, and is thus an inverse measure of the degree of dependence of Y upon X. ff Y is 
independent of X, then H(Y/X) = H(Y) and H(X,Y) = H(X) + H(Y); if Y is strictly determined by 
X, then H(Y/X) = 0 and H(X,Y) = H(X). In general, 0 < H(Y/X) < H(Y), and similarly for H(X/Y). 

Many aspects of financial modelling may be viewed usefully in terms of entropy or information. 
For example, the question of whether the value of adding a new factor to a single or multi-factor 
interest rate model justifies the increase in the complexity of the model may be approached by 
calculating (or estimating) the contribution of the added factor to the overall entropy of the model. 
In what follows, however, we are concerned primarily with predictive financial models, a category 
in which we include any models which purport to predict or forecast some aspect of market 
behavior. 
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In the present context, we are not interested in the nuts and bolts of such models; the approach we 
take will be seen to be very general, applying equally well to rough estimates of future market 
volatility and to the output of sophisticated quantitative models used in active portfolio management. 
The central idea is to treat a predictive model as a communication channel between the market and 
the model-user. Input to the channel consists of the actual values of some specified market variable 
while the corresponding predicted values represent the output. In this formulation, failures of 
prediction are treated as errors of communication. 

More formally, suppose that a particular aspect of market behavior can be classified into a number 
of distinct categories and that we have a model which forecasts the category. As an example, an 
active management model might translate its input data into categories given by "buy", "do nothing" 
or "sell." In retrospect, the appropriate course of action can also be expressed as one of these 
categories, and a comparison of the actual and predicted categories can be made. 

Let f~ represent the state of the financial markets at the time a forecast is made. ~ is taken to 
include the totality of market data, investor intentions, government policy, etc., much of which 
cannot be known. We can describe the action of the market as an unknown random function X 
which maps t2 to the categories we have defined (say A, B and C in the example above). Similarly 
we can treat the forecast as a function Y which maps [2 to the same categoiies. (Obviously any 
practical model will use only a small part of f~). 

The situation may be represented schematically as follows. 

[ ]  ~ X(f~) ,,.t..t.t..o,y /.1 

[ ]  ~ y(f~) predlcted©ategory 

Alternatively, treating the model Y as a communication channel, we have the following 
representation. 

= [] ~ X(,f4) ~ i Ch,nn,,, (y) I ~ Y(n) 

Thus the predictive model Y is treated as the system 
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This representation leads naturally to the idea of measuring the effectiveness of the model Y in 
terms of the efficiency with which the channel C(y) transmits information from the market to the 
model-user. Specifically, we express the effectiveness of Y as the rate R(y) of transmission of 
information over the channel C(y). 

For any communication channel, with input and output given respectively by the values of random 
variables X and Y, the rate R of transmission of information (also referred to as the mutual 
information and denoted I(X,Y)) is given by 

R = H(X) - H(X/Y) (1.10) 

which in view of (1.9) can be written as 

R = H(X) + H(Y) - H(X,Y) (1.11) 

(1.10) states that the rate of transmission of information over a channel is equal to the entropy of the 
source X reduced by the conditional entropy of X when the output value of Y is known. For a 
noiseless channel, knowledge of the value of Y tells us the value of X with certainty so 
that H(X/Y) = 0, and R = H(X). When X and Y are independent (i.e., knowledge of the value of Y 
conveys no information about the value of X), H(X/Y) = H(X) and R = 0. 

In section 3 we measure R(y) for a particular active portfolio management model over different time 
periods and discuss the results. The next section is devoted to placing R(y) in an economic context. 

2. Information and market dynamics 

In this section we will attempt to provide an intuitive feel for the idea of the information rate of a 
financial model by relating it to more familiar economic concepts. We consider the effect of 
proprietary information on an arbitrage-free economy, first in qualitative terms, and then by 
applying Kelly's result to show how, under specific conditions, the information rate is related to the 
long-term rate of return achievable in such an economy. 

A betting game 

We begin by considering a hypothetical game in which a finite number of participants bet upon 
an experiment with m mutually exclusive outcomes according to the following rules: 

(i) Each participant has a fixed, f~m ~tial capital. Initial capital may vary by 
participant. 

(ii) Each participant must bet all of his capital, but need not bet it all on a single 
outcome. 

(iii) The odds offered on the various outcomes are the same for all participants. 

(iv) Whatever the outcome of the experiment, all capital is paid out in winnings. 
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The game is a wealth redistribution mechanism which differs from standard betting systems in that, 
in view of rules (iii) and (iv), the odds can only be calculated after all bets have been placed. This 
contrasts with the more familiar parimutuel arrangement where odds are posted beforehand and 
different bettors bet at different odds. In addition, we allow an iterative procedure whereby after 
initial bets have been placed and the associated odds have been calculated, the participants have an 
opportunity to adjust their positions, leading to new odds, and so on. Under mild regularity 
assumptions such a system will settle into a stable equilibrium in which all participants are satisfied 
with their bets at odds which conform to rules (iii) and (iv). 

Let s = 1 .. . . .  m denote the outcome of  the experiment, and let the aggregate capital bet on outcome s 
be w(s). In order to satisfy rules (iii) and (iv), the odds,  ix s, associated with outcome s are given by 

w(s) a s = w (2.1) 

for each value of s, where 

w = Z w(s) (2.2) 
s 

That is, 
o~ s = . ~ _  s = 1 ..... m (2.3) 

w(s) 

and we note that 

E __.L. = 1 (2.4) 

s a s 

It is important to observe that rule (ii), which requires each participant to bet his entire capital, is not 
as restrictive as it may appear: at given odds a participant may hold back any part of his capital by 
offsetting bets. For example, if the experiment has two outcomes, A and B, at odds of 3 and 3/2 
respectively, a participant with $400 capital who wishes to place $250 on A and to hold back the 
remaining $150 may do so by betting $300 on A and $100 on B. 

An alternative interpretation of the betting game 

A bettor who has placed b(s) on outcome s at odds (~s (s=l  . . . . .  m) may be regarded as the holder of 

a portfolio in an economic system governed by the variable s. Before the experiment has been 
performed, the value of  the portfolio is equal to the bettor's initial capital, Z b(s). When the 
outcome s of the experiment is known, the value of  the portfolio is equal to b(s) a s. 
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Denoting the state of the economic system before the experiment is performed by 0, the state after 
the outcome has been determined by s, and the value of the portfolio in state x by P(x), we have 

P(O) = X b(s) (2.5) 
s 

and 

P(s) = b(s) a s (2.6) 

so that 

P(0)  = g Pts) (2.7) 

~s 

Writing 

0 s = _1_ s =  1 ..... m (2.8) 

ot S 

we see that for any such portfolio, the initial value 
is related to the potential subsequent values by 

P(q) = ZP(s)  0 s (2.9) 

s 

where the values {0s} are the same for all portfolios, and 

£ 0  s = 1 (2.10) 

s 
from (2.4). 

It follows that each experiment in the betting game is equivalent to a single transition in an 
arbitrage-free economic system governed by the state-variable s, where the equilibrium parameters 
{0s} of  the economic system are the reciprocals of the odds {Cts} of  the betting game. 

While real economic systems do not satisfy rules (iii) and (iv) of the betting game in a strict sense, 
the process by which the ultimate odds are arrived at provides an instructive model for the response 
of prices to trading pressure in financial markets. The final odds (which reflect an equilibrium 
allocation of bets) balance the participants' individual assessments of  the probability distribution of 
the outcome of the experiment and their tolerances for risk. Similarly, in an arbitrage-free economic 
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system, the parameters 0 s reflect investors' collective risk tolerance and probability assessment. In a 

betting game, depending upon the nature of the experiment, there may be a consensus among the 
bettors with respect to the probability distribution of the outcome, in which case the final odds are 
readily separated into probability and aggregate utility components. In economic systems, however, 
a consensus regarding the relative likelihood of potential future states is rare, and the values 0 s are 

more appropriately seen simply as the values which balance the subjective probability assessments 
and individual utilities of the various market participants. 

The discussion in the remainder of this section is phrased for the most part in terms of the betting 
game, with the presumption that economic systems, though more complex, behave in an analogous 
manner. From time to time, however, we will shift the perspective from that of a betting game to 
that of an arbitrage-free economic system. 

The effect of proprietary information 

Suppose that the betting game has reached an equilibrium, with aggregate capital w(s) placed on 
outcome s. A bettor whose bets are given by b(s) gains access to a model or some other source of 
information which predicts the outcome of the experiment, and adjusts hi, bets as a result. At the 
current odds, the game will remain in equilibrium only if the other bettors adjust their bets to restore 
the initial aggregate allocation of bets. If they make no changes, the odds will simply adjust to 
reflect the revised allocation. In general, though, the changed odds which follow the actions of the 
informed bettor will set off a series of adjustments to bets and odds which will terminate eventually 
at a new equilibrium. We can best illustrate some of the possibilities with an example. 

Example 

The experiment has two possible outcomes, A and B, and the initial aggregate equilibrium bets are 

w(A)=100 

w(B) = 200 

so that the initial odds are 

ot A = 3  

ot B : 3/2 

Included in the aggregate bets is the bet of an individual who has capital of 10, and has effectively 
bet 6 on A and held back 4 by betting 71/3 on A and 22/3 on B. 

That is, 

b(A) = 71/3 

b(B) = 22/3 
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Suppose that the individual's source of information predicts outcome A and that he has sufficient 
confidence in its accuracy to add the 4 he has held back to his bet on A. 

If the other bettors change their bets to restore the initial allocation (perhaps an unlikely possibility), 
the initial odds will remain unchanged. In that case, the individual's prospects have shifted, in 
portfolio terms, from 

(A) 

to 

3o (A) 

oOBI 

where the equilibrium parameters are given by 

0 A = 1/3 

0 B = 2/3 

On the other hand, if the individual's changed bet prompts no response from the other bettors, the 
odds themselves must change. In that case, aggregate bets following the individual's shifted bet are 

w'(A) = 1022/3 

w'(B) = 1971/3 
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and the new odds are therefore 

Ix' A = 300 = 2.922 

102213 

and 

oC B = 300 = 1.520 

1971; 3 

In this equilibrium, the individual's portfolio may be represented as 

29.22 

and the new equilibrium parameters are 

0' A = 0.342 

0' B = 0.658 

If the other bettors have no access to the information source and are not influenced by the 
individual's actions to shift their own bets towards A, they will have a slight incentive to shift their 
bets towards B, since the odds on A have shortened and those on B have lengthened. We might 
expect, therefore, that the final equilibrium will lie somewhere between the two cases illustrated 
above. 

It is clear that the greater the proportion of total capital controlled by bettors with access to, and 
confidence in, the information source, the greater the influence of the information on the final odds, 
and the smaller the advantage which can be gained from access to it. In the example above, where 
access to the information is restricted, the informed bettor is able to shift bets without perturbing the 
system unduly, thereby obtaining odds close to the initial odds. 

Interpreting the information rate o f  a financial model: Kelly's result 

Kelly considers the case of a bettor who is allowed to bet repeatedly at fixed odds on the outcome of 
an experiment with a fixed and known probability distribution. The bettor is assumed to have access 
to a source which predicts the outcome, but which does not affect the odds. By allocating his.capital 
in proportion to the conditional probability of each outcome given the predicted outcome, the bettor 
can add an increment to his maximum long-term rate of return equal to the information rate of the 
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source. In a discrete, arbitrage-free economic system, where the information source is regarded as a 
predictive model of  some kind, Kelly's result may be translated to the following terms. 

Let s = 1 ..... m denote  the possible future states at the end of a transition. Let p(s,r) be the joint  
probability of an actual future state s and a model prediction of state r, and let q(r) be the marginal 
probability of a prediction of state r. The betting strategy which maximizes the long-term rate of 
return is equivalent to an investment strategy whereby at each transition, given a prediction of state 
r, the portfolio is constructed so that its value in state s, P(s,r), is given by 

P(s,r) : P(~) n{s.rl (2.11) 

0 s q(r) 

Note that portfolios which satisfy (2.11) satisfy 

P(¢) = :E P(s,r) 0 s (2.12) 

s 

In real economic systems, of course, the "odds" and probabilities are not stationary over time, 
(although many economic  models assume that they are), and as pointed out earlier, the true 
probability distribution of future states may not be known. Nor, for that matter, is the investment 
strategy described by (2. I 1) necessarily optimal in any sense other than that of maximizing long- 
term return with respect  to the variable s. Nevertheless, Kelly's result provides, under static "ideal" 
conditions, a concrete  interpretation of the information rate of a predictive financial model. 

In terms of the dynamic  betting game model discussed above, Kelly's conditions correspond to a 
situation in which the capital controlled by bettors with access to the information source is small 
enough in relation to total capital to have a negligible effect on the equilibrium odds. 

As a practical matter ,  a large part of the information conveyed by any model, however proprietary, 
is available to other  investors through their own models (which can include intuition and judgement  
as well as more objectively developed components). As indicated above, such information will 
already be incorporated into market prices. Thus it is the difference in information rate between 
models which is significant in terms of achievable incremental return. 

3. Application to financial models 

The examples chosen  in this section demonstrate the versadlity of information-theoretic constructs. 
Essentially similar calculations are applied to distinct problems, each of which regularly confronts the 
financial or actuarial  practitioner: 

• developing efficient estimators for the parameters of a given 
f inancial  model; 

• measur ing the absolute performance of  a given model; 

• selecting the most efficient model from a field of candidates. 
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Before mining to the examples proper, a few comments are in order. 

Although the valldity of conclusions drawn on the basis of historical data depends upon future realizations 
of various economic time series resembling past experience, we make absolutely no assumption with 
respect to the underlying distributions. 

In our framework the analyst is a~mpting to unravel a message aniving through an unreliable channel -the 
financial model. Whether he or she makes successful use, or even sense,of the message, is outside the scope 
of information theory. But it is certainly important to determine whether the analyst has a fighting chance: 
unless there is some minimal amount of information in the model output it is highly unlikely that this output 
will be of any genuine use in decision making. 

In engineering applications, the various information measures are meaningful in absolute terms. For 
example, they will indicate the amount of redundancy needed to assure, at a high probability level, relis/ble 
transmission of a source message. Kelly's result, as we have noted, appears to be the only instance outside 
the communications engineering context where the information rote has absolute significance. 

By contrast, in the examples to follow, the objective is not to produce absolute measures so much as to 
allow comparison of alternative estimators and models. It is important to note, however, that the 
information measures we calculate are consistently scaled. That is, if the indices calculated for models A 
and B are, respectively, 1.05 and .35, then it can be concluded that model A is 3 times as efficient as model 
B. The validity of this assertion follows from the origin of these measures as (absolute) rates of 
transmission of information. 

Predicdng fmure S&P 500 wlofllily Jrom historical data 

This is a frequently.encountered problem. For example, the Black-Scholes option-pricing model assumes 
that changes in the price of the underlying stock are lognormally dis~buted; determination of the standard 
deviation o of the associated normal distribution is critical to successful application of the model. 

Perhaps the most straightforward approach to predicting the volatility which will prevail in the near future 
is to use a value based upon the closing averages of a recent experience period. In the sequel we will refer 
to this predictor as the "simple extrapolation" model. It will provide a benchmark against which to compare 
other forecasting models. 

With 92 months of  historical data, we can apply the framework of section I to evaluate the simple 
extrapolation predictor. The calculations are summarized in Exhibit la; see also Appendix 1, which gives 
details of the exploratory and preliminary data analysis. Of course, the performance of any predictor can 
also be evaluated by more familiar statistical techniques. What we offer here is a fundamentally different 
perspective. 

The mutual information l(X.in, X.oul), where X.in is the actual volatility observed in month n, and X.out is 
the predicted volatility, is about .2553 for the simple extrapolation model, Note that "mutual information" 
is synonymous here with "information rate." The alternative terminology captures the usefulness of the 
common concept as a measure of association. Since the source entropy, H(X.in) = 2.3216 (which is 
approximately equal to -5 x II 5 log (I/5) with logarithms taken to base 2), we see that the model transmits 
about l I% of the total information generated at the source. 
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Before turning to alternative models, it is interesting to sze how much information is lost by introducing a 
one month reporting lag. The calculations are summarized in Exhibit lb. Here l(X,in, X.out) = .2061. The 
reporting delay has the effect of reducing the information content of the model by about 20%. 

We consider two alternatives to the simple cxuapolation model, both of which axe based on mean reversion, 
a property which is suggested by inspection of the time series of monthly o values. The lust mode] 
(Exhibit 1c) assumes symmetric mean reversion; the second (Exhibit Id) assumes that months of high 
volatility tend to be followed by months of lower volatility but that months of low volatility are not under a 
mean reverting influence. The asymmetric mode] appears slightly more effective than the symmetric 
model; neilher is superior to the simple extrapolation mode], however. Nor is eilher significantly inferior, 
which is interesting in view of the fact that each of these alternatives is based on a reduced alphabet, 

Predicting changes in the 5&P 500 index 

our  objective here is to evaluate the performance of a model which forecasts daily fluctuations in the S&P 
500 index. The model is actually one component of a well known tactical asset allocation model which 
recommends transfers between an equity fund designed to replicate the S&F' 500 index, a corporate bond 
fund, and Treasury billS. 

Daily changes in the S&P 500 index forecast by the model arc sorted into three categories and compared 
with actual changes in the index. The method is very similar to that used in the previous example; see 
Appendix I1 for details. 

From scanning the raw data, it appeared that the model was quite adept at anticipating significant increases 
in the S&P 500 index. The mutual information calculation given in Exhibit I1 provides objective support 
for this hypothesis. During the period January l, 1989 9u'ough June 30, 1989, the model transmitted 23% 
of the information gencratod at the source [i(X.in,X.out) = .3651; H(X.in) ,= i.5841]. 

This observation is not inconsist~tu with the assumption that consecutive index changes are independenL It 
does suggest, however, that imporumt elements of the process which deermincs Me changes between days 
n and n+l are executed on or before day n, and that analysts had measurable success discerning and 
incrp¢fing some of these early indicators. 

The mutual information l(X.in, X.out) fell markedly between the lust  and second six-month observation 
periods, and then appears to have stabilized at a rate equal to about 13% of the entropy in the source. 

in contrast to the previous example, where we had alternative models to compare, here we are limited to 
comparing the performance of the same model over different time periods. We encourage the reader to 
apply the calculations in Exhibit II to his or her own price change forecasting model. 

We close the discussion with a couple of suggestions for future consideration and possible research. 

It appears to us that there is more meaning in individual information-theoretic measures than we are 
currently able to exploit, in fact, it seems that these indices should have more significance in an absolute 
sense than do competing measures of the strength of association of two random variables derived using 
more conventional statistical techniques. 

Thus, when we see a financial model transmitting a significant portion (23% in the example above) of the 
information generated by a complex economic system, we feel that we are observing a significant, perhaps 
even noteworthy, event. Unfortunately, there are no benchmarks against which to set the 23% figure. 
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Contrast this with situations in other fields. An epidemiologist, for example, is faroLliar with the strength of 
association between various epidemiological variables (e.g., reduction in longevity vs. number of cigarettes 
smoked dally) and can thus, when confronted with the results of a new experiment, say "that's a surprising 
finding" or turn the page. Economists, sociogists, and educators an have similar benchmark experiments 
for their discipline. 

What is doubly frustrating about this situation is that information-theoretic indices provide a fundamental 
measure of the association between random variables. These measures are invariant under any 
transformation of the underlying variables. To see the significance of this observation, consider the 
following: if a researcher is unable to transform the variables entering a linear regression model 
successfully, conventional analysis may conclude that there is little association between the variables, when 
there is actually a dixect functional connection. Barring distortions introduced by discretizing continuous 
variables, an information-theoretic framework wil l  yield the same measure of association for al l (one-to- 
one) transformations of the original data. We thus close the paper by asking the reader to take its main 
result with the proverbial grain of salt! Provided a few key information-theoretic elements are present, as 
described herein, the practitioner should not permit the lack of more formal theoretical justification of 
information rate to discourage its use. 
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Appendix 1. Forecasting S&P $00 volatility 

Initial processing of S&P data 

Our data consisted of a compilation of S&P daily closing averages from September 1986 through August 
1991. We began by grouping the data into 92 consecutive 20 business-day blocks. The sample standard 
deviation of each block was then calculated. 

Di$cretizadon 

information theory is easiest to apply when both the input and oulput signals belong to Ymite alphabets of 
symbols. Inspection of the sample standard deviations suggested that a 5 lener alphabet captured lhe 
essential uncertainty oftbe time series. To maximize the enuopy in the discretized sample, we assigned the 
letters a,b,c,d, and • to continuous data based on quinfile breaks. Thus, a sample standard deviation with 
magnitude in the bottom 20% of the 92 observations became an "a', etc. 

Mutual iqformation 

The analysis d~cribed below was performed for each of the predictors we examined; it will suffice to 
consider one of these - the "asymmetric mean reversion" predictor. 

A preliminary examination of the graphical representation of the lime series of sample standard deviations 
suggested an ambient noise level disturbed periodically by positiv© "pulses." This observation in turn 
suggests that we might have success predicting future voiat~tlty by replacing the estimate based on the most 
recent month by an estimate which reflects this "pulse" phenomenon. Thus a currenl month observation in 
category e is taken to indicate that the next month's volatility will fall in category d. A current observation 
in category d leads to a prediction of category c, while current observations of a, b and c each lead to a 
prediction of an unchanged volatility ca~gory for the upcoming month. 

We have 91 observations of the joint distribution of (X.in, X.out), where X.in is the actual volatility 
observed in month n and X.out is the volatility predicted by the asymmeuic mean reversion model. 
Calculation of mutual information is now sualghfforwasd: refer to Exhlbi~ Id. 
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Appendix 2. Predicting changes In the ~,:11 s g00 

The raw data 

For each trading day between January 1, 1989 and June 30, 1990. we had the following data, 

(i) The expected daily return (predicted by the model) on $1 invested in the S&P 500. 

(ii) The number of units and the unit values in a portfolio managed to replicate the S&P 500. 

(iii) A record of all trades in and out of the portfolio. 

By combining (ii) and (iii) we calculated actual daily remms. 

Data reduction and discretization 

Our concern is with the ability of the model to forecast changes in the S&P 500 index. Following an 
approach similar to that used with the volatility analysis, we grouped the day to day changes into categories 
(here three rather than five) with equal frequency representation. Thus a model output of "a" is a predictor 
that the S&P index wltl fall materially, a "b" represents insignificant change, and a "e" represents a material 
increase. 

Mutual information 

The calculations are summered  in Exhibit !]. Note that symbols d and e are not used (we simply 
borrowed the spreadsheet created for the volatility analysis). The analysis is given separately for the three 
six-month time periods beginning January 1, 1989, As noted in the text, we observed a substantial 
deterioration in model performance after the first six months. 
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• .:h~bDt Ira. 8&P VoSa~OKy - eD0~[~ FJz~raF~s~:n 

Observa t ions  

X.ln 

X.out 
a b c d 

a 7 4 4 
b 3 6 5 
c 2 3 6 
d 4 3 2 
e 2 2 2 

Io la l  1 8 1 8 1 9 

a to ta l  
2 1 18 
4 0 18 
6 2 19 
2 7 18 
3 9 18 

17 19 91 

Jo in t  and maralnal probabi l i t ies 

X.llrl 

X.out 
a b c d e p(x.ln) 

a 0.0769 0.0440 0.0440 0.0220 0.0110 0.1978 
b 0,0330 0.0659 0.0549 0.0440 0.0000 0.1978 
c 0.0220 0.0330 0.0659 0.0659 0.0220 0.2088 
d 0.0440 0.0330 0.0220 0.0220 0.0769 0.1978 
a 0.0220 0.0220 0.0220 0.0330 0.0989 0.1978 

p(x.out) 0.1978 0.1978 0.2068 0.1868 0.2088 1.0000 

Total  Entronv: HfX.ln. X.outl 

X.out 
a b c d e 

a 0.2846 0.1981 0.1981 0.1211 0.0715 0.8735 
b 0.1623 0.2586 0.2300 0.1961 0.0000 0.8491 

X.In c 0.1211 0,1623 0.2586 0.2586 0.1211 0.9217 
d 0.1981 0.1623 0.1211 0.1211 0.2848 0.8872 
e 0.1211 0.1211 0.1211 0.1623 0.3301 0.8556 

Input Entronv: H(X.ln~ 

x . ln  p(x. ln) p lnp 
a 0.1978 0.4624 
b 0.1878 0.4624 
c 0.2088 0.4718 
d 0,1978 0.4624 
e 0.1978 0.4624 

Output EntrDnv: H(X.outl 

x.oue p(x.out)  plnp 
a 0.1978 0.4624 
b 0.1978 0.4624 
c 0.2088 0.4718 
d 0.1868 0.4521 
e 0.2088 0.4718 

IMutual information I(X.tn;X.out).= H(X.in) + H{X.out) - H(X.in,X.out) = 0.2553 I 
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E~hObl~ ib, 8&P  I I ~  Voga~OO~y --On® ~onQ~ r e ~ a n |  Is a 

Qbservat ions 

X.ln 

X.out 
a b c d e t o ta l  

a 2 5 4 4 3 18 
b 5 5 5 2 1 18 
c 6 1 5 4 3 19 
d 4 1 3 4 6 18 
e 0 6 2 3 6 17 

t o ta l  17 18 1 9 17 1 9 90 

Joint and msrc~lnal orobebl l l t les 

X.out 
a b c d e p(x.ln) 

a 0.0222 0.0556 0.0444 0.0444 0.0333 0.2000 
b 0.0556 0.0556 0.0556 0.0222 0.0111 0.2000 

X.In c 0.0667 0.0111 0.0556 0.0444 0.0333 0.2111 
d 0.0444 0.0111 0.0333 0.0444 0.0667 0.2000 
e 0.0000 0.0667 0.0222 0.0333 0.0667 0.1889 

p(x.out) 0.1889 0,2000 0.2111 0,1889 0.2111 1.0000 

T~)tal EntroDv: H(X.ln. X.out~ 

X.ln 

X.out 
a b c d e 

a 0.1220 0.2317 0.1996 0.1996 0.1636 0.9165 
b 0.2317 0.2317 0.2317 0.1220 0.0721 0.8892 
c 0.2605 0.0721 0.2317 0.1996 0.1636 0.9275 
d 0.1996 0.0721 0.1636 0.1996 0.2605 0.8954 
e 0.0000 0.2605 0.1220 0.1636 0.2605 0.8065 

I 4.43511 

II)pUt EntroDv: HfX.ln) 

x.ln p(x . ln )  plnp 
a 0.2000 0.4644 
b 0.2000 0.4644 
c 0.2111 0.4737 
d 0.2000 0.4644 
e 0.1889 0.4542 

Output Entroov: HfX.out) 

x.ou!  p(x.out)  p lnp 
a 0.1889 0.4542 
b 0.2000 0.4644 
c 0.2111 0.4737 
d 0.1889 0.4542 
e 0.2111 0.4737 

IMutual information I(X.in;X.out) = H(X.in) + H(X.out) - H(X.iniX.oul ) - 0.2061 I 
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Observa t ions  

X.ln 

X.out 
a b c d • to ta l  

a 0 7 10 1 0 18 
b 0 3 15 0 0 18 
c 0 2 15 2 0 19 
d 0 4 7 7 0 18 
e 0 2 7 9 0 18 

t o ta l  0 18 54 19 0 91 

Jqlrl l and mara lna l  nrobabl l l f les 

X.out 
a b c d e p(x.in) 

a 0.0000 0.0769 0.1099 0.0110 0.0000 0.1978 
b 0.0000 0.0330 0.1648 0.0000 0.0000 0.1978 

X.In c 0.0000 0.0220 0.1648 0.0220 0.0000 0.2088 
d 0.0000 0.0440 0.0769 0.0789 0.0000 0.1978 
e 0.0000 0.0220 0.0789 0.0989 0.0000 0.1978 

p(x.out) 0.0000 0.1978 0.5934 0.2088 0.0000 1.0000 

Total Entroov:  H(X.fn. X.out| 

X.ln 

X.OI~ 
a b c d e 

a 0.0000 0.2846 0.3501 0.0715 0.0000 0.7063 
b 0.0000 0.1623 0.4287 0.0000 0.0000 0.5010 
c 0.0000 0.1211 0.4287 0.1211 0.0000 0.6708 
d 0.0000 0.1981 0.2846 0.2846 0.0000 0.7674 
e 0.0000 0.1211 0.2846 0.3301 0.0000 0.7358 

Vrr  

Inout Entropy:  H(X.ln~ 

x.ln p (x . ln )  p lnp 
a 0.1978 0.4624 
b 0.1978 0.4624 
c 0.2088 0.4718 
d 0.1978 0.4624 
e 0.1978 0.4624 

I 2.32161 

Outnut Entr�pv." H(X.ot~) 

x.out  p(x.out)  plnp 
a 0.0000 0.0000 
b 0.1678 0.4624 
c 0.5934 0.4468 
d 0.2088 0.4718 
e 0.0000 0.0000 

IMulual informalion I(X.in;X.out) ,, H(X.in) + H(X.oui) - H(X.inpX.out) ,, 0.2313 I 
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(F.~O~ kO. 8&P S00 VoOe~OgOgy - K ~ 0 ~  0Beat ~ 9 e ~ n  M ~ n  

Observat ions  

X.ln 

X.out 
a b c d e to ta l  

a 7 4 6 1 0 18 
b 3 6 9 O 0 18 
c 2 3 12 2 0 19 
d 4 3 4 7 0 18 
e 2 2 5 9 0 18 

to ta l  18 18 36 19 0 91 

Joint  and maralnal nrobabl l l t lea 

X.ln 

X.out 
a b c d • p(x.in) 

a 0.0769 0.0440 0.0659 0.0110 0.0000 0.1978 
b 0,0330 0.0659 0,0989 0.0000 0.0000 0.1978 
c 0.0220 0.0330 0.1319 0.0220 0.0000 0.2088 
d 0.0440 0.0330 0,0440 0.0769 0.0000 0.1978 
• 0.0220 0.0220 0.0549 0.0989 0.0000 0.1978 

p(x.out) 0.1978 0.1978 0.3956 0.2088 0.0000 1.0000 

Total Entroov: H(X.ln. X.outl 

X.ln 

X.out 
a b c d • 

a 0.2846 0.1981 0.2586 0.0715 0.0000 0.8130 
b 0.1623 0.2586 0.3301 0.0000 0.0000 O.7511 
C 0.1211 0.1623 0.3654 0.1211 0.0000 0.7898 
d 0.1981 0.1623 0.1981 0,2846 0.0000 0.8432 
• 0.1211 0.1211 0.2300 0.3301 0.0000 0.8022 

Inout Entronv: HfX.lnl 

x . ln  p(x. ln) p lnp 
a 0.1978 0.4624 
b 0.1978 0.4624 
c 0.2088 0.4718 
d 0.1978 0.4624 
e 0.1978 0.4624 

1 2 . 3 2 1 8 1  

Outout EntropY: H(X,out) 

x.out p(x .out )  p lnp 
a 0.1978 0.4624 
b 0.1978 0.4624 
c 0.3956 0.5293 
d 0.2088 0.4718 
e 0.0000 0.0000 

JMutual information I(X.iniX.out) = H(X.in) + H(X.out) - H(X.inTX.out ) = 0.2483 J 
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Observat ions  

X.ln 

X.OUt 
a b c d e to ta l  

a 28 8 6 0 0 40 
b 1 0 26 7 0 0 43 
c 2 11 27 0 0 40 
d 0 0 0 0 0 0 
e 0 0 0 0 0 0 

l o l a l  40  43 40 0 0 123 

Joint and maralnal o robab l l l t lea  

X.ln 

X.out 
a b c d e p(x.ln) 

a 0.2276 0.0488 0.0488 0.0000 0.0000 0,3252 
b 0.0813 0.2114 0.0569 0.0000 0.0000 0.3496 
c 0.0163 0.0894 0.2195 0.0000 0.0000 0.3252 
d 0.0000 0,0000 0.0000 0,0000 0.0000 0.0000 
e 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

p(x.out) 0.3252 0.3496 0.3252 0.0000 0.0000 1.0000 

T91¢1 Entronv: H(X.ln. X.out) 

X.ln 

X.out 
a b o d e 

a 0.4861 0.2126 0.2126 0.0000 0.0000 0.9112 
b 0.2944 0.4739 0.2353 0.0000 0.0000 1.0036 
c 0.0966 0.3115 0.4802 0.0000 0,0000 0.8883 
d 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
• 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Input Entronv: H(X.lnl Outout Entroov: H(X.outl 

x . ln p(x. ln)  p l np  
a 0.3252 0.5270 
b 0.3496 0.5301 
c 0.3252 0.5270 
d 00000  0.0000 
e 0.0000 0.0000 

x.out  p(x.out)  p lnp 
a 0.3252 0.5270 
b 0.3496 0.5301 
c 0.3252 0.5270 
d 0.0000 0.0000 
e 0.0000 0.0000 

~M.u.lual information I(X.in~X.oul) ,, H(X.in) + H(X.out) - H(X.in,X.oul) ,, 0,365! I 
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Nb. I ~ P  COm6~ee - e ~ m d  =d= m~m~s ~g~  

Observat ions 

X.ln 

X.ouI 
a b c d e tota l  

a 23 14 3 0 0 40 
b 13 19 11 0 0 43 
c 4 10 26 0 0 40 
d 0 0 0 0 0 0 
• 0 0 0 0 0 0 

to ta l  40 43 40 0 0 123 

Joint and maralnal orobabllltlaa 

X.ln 

X.o~ 
a b c d e p(x.in) 

a 0.1870 0,1138 0.0244 0.0000 0.0000 0.3252 
b 0.1057 0.1545 0.0894 0.0000 0.0000 0.3496 
c 0.0325 0.0813 0.2114 0.0000 0.0000 0.3252 
d 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
e 0.0000 0.0000 0,0000 0.0000 0.0000 0.0000 

p(x.out) 0.3252 0,3496 0.3252 0.0000 0.0000 1.0000 

Total Entroov: H(X.ln. X.qgt) 

X.ln 

X.out 
a b c d e 

a 0.4523 0.3568 0.1307 0.0000 0.0000 0.9398 
b 0.3427 0.4162 0.3115 0.0000 0.0000 1.0704 
c 0.1607 0.2944 0.4739 0.0000 0.0000 0.9290 
d 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
e 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Inout Entroov: H(X.ln~ 

x. ln p(x. ln) plnp 
a 0.3252 0.5270 
b 0.3496 0.5301 
c 0.3252 0.5270 
d 0.0000 0.0000 
• 0.0000 0.0000 

Output EntroDv: H(X.out~ 

x.out p(x.out) plnp 
a 0.3252 0.5270 
b 0.3496 0.5301 
c 0.3252 0.5270 
d 0.0000 0.0000 
• 0.0000 0.0000 

JMutual information I(X.iniX.oul) = H(X.in) + H(X.out) - H(X.infX.oul) = 0.229 J 
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00¢. ~ P  B ~  ~ a n p =  -~UreQ e ~  me~U~e t lD~  

Observa t ions  

X.in 

X.out 
a b c d • to ta l  

a 21 15 4 0 0 40  
b 16 17 10 0 0 43 
c 4 10 26 0 0 40  
d 0 0 0 0 0 0 
e 0 0 0 0 0 0 

to ta l  41 42 40 0 0 123 

Joint and marolnsl  probabi l i t ies 

X.ln 

X.out 
a b c d e p(x.in) 

a 0.1707 0.1220 0.0325 0.0000 0.0000 0.32S2 
b 0.1301 0.1382 0.0813 0.0000 0.0000 0.3496 
c 0.0325 0.0813 0.2114 0.0000 0.0000 0.3252 
d 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
a 0.0000 0.0000 0.0000 0,0000 0.0000 0.0000 

p(x.out) 0,3333 0.3415 0.3252 0.0000 0.0000 1.0000 

Total EntropY: HfX.In. X.oufl 

X.ln 

X.out 
a b c d • 

a 0,4354 0.3702 0.1607 0.0000 0.0000 0.9663 
b 0.3828 0.3946 0.2944 0.0000 0.0000 1.0717 
c 0,1607 0.2944 0.4739 0.0000 0.0000 0.9290 
¢ 0.0000 0.0000 0.0000 0.0000 0,0000 0.0000 
e 0.0000 0 .0000 0.0000 0.0000 0.0000 0.0000 

I 2.0~711 

InDurl EntroDv: H(X.ln) 

x. ln p(x . ln)  plnp 
a 0.3252 0,5270 
b 0.3496 0,5301 
c 0.3252 0.5270 
d 0.0000 0,0000 
e 0.0000 0.0000 

Outnut EntroPy: H(X.oufl 

L o u t  p(x.out)  plnp 
a 0.3333 0.5283 
b 0.3415 0.5293 
c 0,3252 0.5270 
d 0.0000 0.0000 
e 0.0000 0.0000 

JMutua! information I(X.in;X.oul I ,. H(X.in) + H(X.oui) o H(X.in,X.out) = 0.2017 

2 2 9  




