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Abstract 

This paper develops a parametric model for health care insurance claims using 

currently available software to fit parametric models to the data. Model selection is based on 

the ChJ-squared goodness-of-fit test and a comparison of the empirical limited expected value 

function to parametric limited expected value functions. We make use of a copula function to 

model the bivariate portion of the data. 
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1. I N T R O D U C T I O N  

Health care insurance consists of many different types of coverage under one umbrella. Some examples of the 

types of events covered are drugs, denial, ambulance, chiropractor, and the list goes on. Until now the data has 

been analyzed without the use of parametric models. The purpose of this paper will be In attempt to fit a 

parametric model to such data. We were attempting to find a practical model, unfortunately for the model we 

present here it may not always be possible to find the moments of the distribution. A simplifying assumption of 

independence is suggested which would allow, if  they exist, the calculation of the moments. 

We were also interested in testing some of the tools available to fit parametric models. In particular we 

used Klugman's [5] FIT software for these purposes. Appendix I contains the distributions which were available to 

choose from in the soRwarc. The software will graph the data, graph the fitted distributions, perform a Chi- 

squared goodness-of-fit test, calculate the empirical limited expected value tLEV) function, and calculate the 

model LEV function. A quasi-Newton-Raphson method is employed to calculate the parameter estimates and an 

alternative method, called the simplex method, can be used when the quasi-Newton-Raphson method fails. 

Typically one would try the qua.si-Newton-Raphson method after using the alternative method if  the estimates have 

oonverged. 

Finally once we have the parmneh"/c model, we try to use it to learn some more about the dependence 

structure of the data. 

During the development of this paper it became obvious that we could manipulate the grouping of the data 

to get a good Chi-squared p-value. Some attention is given to this problem but no solution is presented as it is 

beyond the scope of this paper. 
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2. DATA CHARACTERISTICS 

The data was supplied by an anonymous donor on two diskettes, one for males and one for females. The 

data were for 1991 health care claims for small employers of 5 to 35 people with claims recorded for the insured 

only. We assumed only one claim per year per category could occur. Each data record included the date of birth 

of the insured, province of residence, and the claims made on the policy categorized by claim type. There were 23 

different types of claims that could be made, including a miscellaneous medical supplies category. The claim 

amounts recorded were those covered by the insured's policy before any deductibles and co-insurance. This paper 

will concentrate on the female's claim data. 

Inspection of the data revealed that the Drugs category was by far the most common claim type, 

accounting for more claims than the other categories combined. The remaining categories were very sparse, and so 

it was decided to combine these categories in any further analysis. Lastly, we did not consider age to be a factor, as 

a plot of age versus claim amount did not reveal any discernible pattern. Adding age as a variable would also 

create other problems, such as deciding on the grouping and it would also make the model less parsimonious. We 

decided to group by province, since each province has a different benefit system. Differing levels of tax and cost of 

services by province would also be a factor. Note that we eliminated Saskatchewan and the Atlantic provinces as 

the data was very sparse for these areas. We are left with female data for 1991, grouped by province, with claims 

categorized by Drugs and Other. 

2.1 Number of Claims 

A check of the independence of a claim in Drugs versus a claim in Other revealed that the two categories 

were indeed dependent 

Contingency tables for Claim versus No Claim for Drugs by Other are given in Tables I to 5 for each 

province. 
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TABLE 1 

Claim Contingency Table for British Columbia 

Drug~ Other 

No Claim Claim Total 

No Claim 3 85 88 
Claim 721 224 945 

Total 724 309 1033 

TABLE 2 

Claim Contingency Table for Alberta 

Drugs Other 

No Claim Claim Total 

No Claim 3 12 15 
Claim 671 56 727 

Total 674 68 742 

TABLE 3 

Claim Contingency Table for Manitoba 

Drags Other 

No Claim Claim Total 

No Claim 1 82 83 

Claim 524 124 648 

Total 525 206 731 

TABLE 4 

Claim Contingency Table for Ontario 

Drugs Other 

No Claim Claim Total 

No Claim 8 140 148 

Cla/m 2969 373 3342 

Total 2977 5 ! 3 3490 
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TABLE 5 

Claim Contingency Table for Quebec 

Drugs .Other 

No Claim Claim Total 

No Claim 8 209 217 

Claim 1469 550 759 

Total 1477 759 2236 

In all cases a Chi-square test of independence of the lows and columns of the contingency table failed with a p- 

value of 0. All calculations were done using BMDP [l] Program 4F. Thus the occurrence/nonoccurrence of a 

claim m Drugs is not independent of the occurrence/nonoecurrence of a claim in Other. This implies that we have 

four probabilities to consider: 

1. No claim occurs in either category. 

2. A claim occurs in Drugs but not in Other. 

3. A claim occurs in Other but not in Drugs. 

4. A claim occurs in both categories, Drags and Other. 

We can now see that there will be four components to the probability density function of this data; a mass at (0,0), 

a marginal distribution for Drugs conditional on no claim occurring in Other, a marginal distribution for Other 

conditional on no claim occerdng in Drugs, and a bivariate distribution for which both Drugs and Other are 

strictly positive. 

2.2 Claim Severity 

Number (4) above is the bivariate component of the distribution. We performed a nonpaxametric test of 

independence of the claim severity, by taking all those insureds for which a claim occurred in both the Drugs 

category and the Other calegory. The Spearman Rank Correlation Coefficients are calculated for each province in 

Table 6. 
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TABLE 6 

Spearman's p by Province 

Province /~ p-value 

British Coh~nbin 0.1302 0.0510 

Alberta 0.2523 0.0583 

Manitoba 0.0511 0.5716 

Ontario -0.0799 0.1230 

Quebec O. 1494 0.0004 

The calculations were done using BMDP [1] Program 3D. The p-value is under the following hypothesis: 

H0: The severity of Drugs is independent of the severity of Other. 
vs. 

HA: The severity of Drugs is not independent of the severity of Other. 

We can see that only Manitoba has a marginally high p-value, the remaining provinces have evidence to reject the 

hypothesis. Thus we conclude thai the distribution of the claim severity of Drugs and Other, conditional on both 

being positive, is dependent. 
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3. MODEL 

3.1 Likelihood Equation and Copula Function 

In section 2 it was found that there would be four components for each province making up the 

distribution of this data. 

1. Let PO0 = Probability of no claims in either category, and let NO0 ~ the number of such claims. 

2. Let POI = Probability of no claim in Drugs and a claim in Other, and let NOI = the number of such 

claims. 

3. Let PIO = Probability of a claim in Drugs and no claim in Other, and let N 10 ffi the number of such 

cl~ms. 

4. Let PII = PrubabilJty of a claim in Dntgs and a claim in Other, and let N i l  = the number of such 

claims. 

Note that )-~ L/~/j =1 and let ~-" L Njj =N.  

Further let X = Drugs and Y = Other, and denote the marginal probability density function ~ of X as 

f X  (x) and the marginal cumulative distribution function (cdf) ofXas F X (x). Similarly let the marginal pdf and 

marginal ~ of Y be denoted as fy  (y) and Fy (y) respectively. Let the joint p ~  and cdt 'ofX and Y be denoted as 

f~.y (x,y) and F~T (x,y)  respc~vely. The asterix indicates that these two functions are conditional on both X 

and Fbeing strictly positive. 

The complete information likelihood equation is given by: 

L= P ~  { p.U,. i ~  fx (x ' .0, )} { Po?" ~'Ifr(Y,. O,)}{ P.f" 1~/~r (x , .y, .O~, )} 

Using the fact that the P/j's sum to one, and working with the log-likelihoed we find that the maximum likelihood 

estimate of P/j is 

N.. 
~..= 'J (1) 
l) N 
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We chose to group the observations, since there was a lot of clustering present in the data, In section 3.5 we will 

discuss the grouping in more detail. Since we grouped the data we arc actually working with the grouped 

likelihood which is given by the product of the following three equations. 

L( O.)= OlFx(c,,O.)- F.(c, ,,O.)l/' (2) 

L( O,)= ~IF, (c , ,O, ) -  F,(c,_,,O,)I" (3) 

L(O., ) = ~ I F ,  (c,, d,, O~, ) - F~., (c,_, ,d , , ,  0,, )14 (4) 

Note that we have rex, my, and mxy groupings each with~, gj, and h k observations. We can easily use Klugnmn's 

[51 FIT software to find the parameter estimates for each of equations (2) and (3) above, but equation (4) presents a 

more difficult problem. One problem is the choice of distribution, and the other problem is finding the parameter 

estimates for the chosen bivariate distribution. Unlike the univariate case where it is easy to fit many distributions, 

it is computationally expensive to do rids in the bivariate case. To avoid these problems we decided to use a 

Copula function to model the dependence structure. Avoiding the theoretical details, we find that the Copula 

function C(u,v) can be used to model the dependence s t m c ~ e  o f a  Bivariate distribution by making use of the 

marginal cumulative distribution functions of the two variables. If H(x,y) is the bivariate cdf of a continuous 

distribution with continuous marginals F(x)=H(x,oo) and Gfy) = H(oo, y) then there exists a unique distribution 

function C(u,v) such that H(x,y) = C(F(x),G(y)). 

Since no test exists for testing one-parameter families of copulas we used an ad ho¢ method using the 

relationships between Spearman's p and Kendalrs x, derived in Carriere [2], for given one-parameter families of 

copulas For the Morgenstem family we find that r = g(p)  with 

g(P)= ~ p 

For the mixed Frcchet copula, we find that r = g(p)  with 

g(.p) (2p+p 513) 

3 

For the normal copula, we find that r = gLo) with 
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g(p) = 2  arcsin{2 sin{p~'/6}} 
ff 

Using ~ we calculated the functions g(j3) for each of the copulas and compared them to ~" in Table 7. 

TABLE 7 

Ad-hoc Copula Test 

Province ~ ~" 2~ 2P+~5133 2 arcsin{2 sin{p~/6}} n" 

BC 0.1302 0.0876 0.0868 0.0979 0.0870 

AB 0.2523 0.1723 0.1682 0.2018 0.1697 

MB 0.0511 0.0328 0.0341 0.0364 0.0341 

ON -0.0799 -0.0503 -0.0533 -0.0582 -0.0533 

PQ 0.1494 0.1013 0.0996 0.1136 0.0999 

We can see that both the Morgenstem copula and the normal copula closely match the function ~-= g(/3). Both 

and ~" were calculated using BMDP [1] Program 3S. Note that the values for ~ in Table 7 are the same as those 

given earlier in Table 6 of section 2.2. We will work with the Morgeastem copula, as it has a closed form for the 

distribution function. Mardia [6] gives the distribution function of the one parameter Morgenstem copula as 

n(x,y)=F(x)G(y)[l+a{l-F(x)}{I-G(y)}] [a[~l (5) 

For continuous random variables, the density is given by 

h(x,y)=f(x)g(y)[l+ a{2F(x)- I}{2G(y)-  1}] la~<l (6) 

Following Carriere [2], we will re-parametrize with a=3p, so that we require [/~AI/3. Note that in Table 7 

[ / ~  1 / 3 for every province. 

Note that there are many theoretical questions left unanswered regarding the use of the copula function in 

place of the maximum likelihood estimator. We may want to know about the efficiency and consistency of the 

eshmator. These questions will not be addressed in this paper. Note also that we grouped the data, and so we used 

estimates from the grouped likelihood rather than the complete information likelihood. 

The pdf of our model is given by 
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h(x,y) = ~ P*,fr(Y) 

IP. ~C(F~,(x),F;(y)) 
t" -~ 

x = 0 , y = 0  

x > 0 , y = 0  

x = 0 , y > 0  

x > 0 , y > 0  

(7) 

where the last partial derivative is given by (6) with F(x) and G(y) replaced by F~ (x) and FT" (y) respectively. 

We are now ready to give es~mates of/,,,f,,f;,and/;. 

3.2 Estimates for the Number of Claims. 

Using equation (1) given in section 3.1, and the contingency tables given in section 2.1, we can find the 

maximum likelihood estimates ofPo0, PIO, POI, and PII. The estimates for each province are summarized in 

Table 8. 
TABLE 8 

Maximum Likelihood Estimates for the Number of Claims 

Province PO0 P 10 PO I P I 1 

British Columbia 0.00290 0.69797 0.08228 0.21684 
Alberla 0.00404 0.90431 0.01617 0.07547 
Manitoba 0.00137 0,71683 0.11218 0.16963 
Ontario 0.00229 0.85072 0.0401 ! O. 10688 

Quebec 0.00358 0.65698 0.09347 0.24597 

We can see that in all five provinces PO0 the estimated probability of no claims in either Drugs or Other, is very 

small. I! is also apparent that a claim in Drugs and no claim in Other is the dominant form of a claim. 

3.3 The Marginal Distributions. 

When we solve the 2 systems of grouped likelihood equations defined by (2) and (3) in 3.1, we are finding 

the marginal distributions f~ and f r  for Drugs and Other respectively. The fitting was done using Klugnmn's [5] 

FIT software. The software is able to accept ungrouped data of up to 3,000 observations or grouped data. 

Following Hogg and Klugntan 13], we will use the Limited Expected Value (LEV) function Io compare the best 

models. 
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The distribution, estimated parameter values, and corresponding p-values for British Columbia (BC} - 

Drugs are given in Table 9. 

TABLE 9 

Marginal Models for British Columbia - Drugs 

Distribution Parameter Values ~2 p-value 

Ganuna ~= I. 139 ,~ = 102.5 0.8990 

Weibull ~'= 1.073 ,~ = 1 i 9.7 0.8444 

Burr ~t = 9.666 2 = 823.0 ~ = I. 142 0.8560 

Inverse Burr ~'= 0.3221 2 = 182, 0 ~ = 2,706 0.5972 

Generalized Pareto ~=21.79 i = 2 , 0 2 8  ~'= 1.204 0.8548 

Transformed Ganuna &= !.454 ,~=72.75 ~-=0.8732 0.8516 

Transformed Beta ~ = 9.938 ,~ = 846. 9 ~" = !. i 35 0.7217 

~-= I, OO8 

We can eliminate the Inverse Burr and Transformed Beta distributions from further consideration, as their p-values 

are relatively low compared to the other distributions in Table 3. The Transformed Gamma model can also be 

eliminated from further discussion, since it does not provide a better fit than the two parameter Gamma model. 

The Limited Expected Value (LEV) function for each or the four remaining models, as well as the empirical LEV 

function, ate given in Table 10. 

TABLE 10 

Empirical and Model LEV Fun~ons for BC - Drugs 

Upper Limil Empirical LEV Gamma Weibull Burr Generalized 
Parcto 

48 40.58 40.48 40.29 40.59 40.66 
95 67.54 67.09 66.88 67.18 67.22 
142 85.12 84.60 84.47 84.54 84.58 
189 96,56 96,02 95.96 95,81 95.86 

236 104.0 103.4 103.4 I03.1 103.2 

283 108.9 108.2 108.2 107.9 108.0 
330 112.1 111.3 111.2 111.1 l l l . l  
O0 121.0 116.7 116.4 117.7 117.5 
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It is clear that all 4 models are equally good, with the Burr and the Generalized Pateto having the best fit in the tail 

of the LEV function. We select the Gamma model, s/nee it has the best p-value and also provided a good fit to the 

LEV function. 

TABLE 11 

Marginal Models for Alberta - Drugs 

Distribution Parameter Values Z 2 p-value 

Gamma ~ = 1.050 X = 111.1 0.9785 

Weibull ~-= 1.031 ,~: 118.9 0.9766 

Transformed Ganuna ~= 1.005 ,~= ! 17.7 ~'= 1.027 0.9529 

The distributions and their parameter values for Alberta (A.B) - Drugs, ate given in Table 11. We were only able to 

find three models that would fit the data, so all three are compared via their LEV functions in Table 12. 

TABLE 12 

Empirical and Model LEV Functions for AB.  Drugs 

Upper Limit Empirical LEV Gamma Weibull Transformed 
Gamma 

32 28.35 28.25 28.26 28.22 

57 45.71 45.61 45.68 45.58 
82 59~64 59.61 59.77 59.60 

108 71.39 71,28 71.56 71.29 
133 80.57 80.27 80.64 80.29 
158 87.93 87,49 87.96 87.52 

184 93.99 93.49 94.04 93.53 
209 98.62 98.09 98.72 98.13 

234 102.3 101.8 102.5 101.8 

O0 117.6 116.7 117.4 116.4 
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It is apparent in Table 12 that all three distributions fit the empirical LEV function quite well, The Weibull 

distribution has the best fi! of all three but the Gamma is also veor good. We select either the Gamma or Weibull 

distributions as the best models, eliminating the Tnmsforraed Gamma on the basis of parsimony. 

In Table 13, the distributions and parameter estimates, and p-values ate given for Manitoba (MB) - Drugs. 

TABLE 13 

Marginal Models for Manitoba - Drugs 

Distribution Parameter Values X 2 p-value 

Gamma ~= 1.266 2= 94.13 0.6698 

Weibull ]'= I. 151 .~. = l 19.3 0.8446 

lnverseBurr ~'=0.3120 ~= 180.9 ~,--- 2.967 0.9654 

Transformed Gamma ~=0.5630 ,~=184.6 ~'= 1.727 0.9930 

The LEV functions of the four distributions are compared in Table 14. 

TABLE 14 

Empirical and Model LEV Functions for MB - Drugs 

Upper Limit Empirical LEV Gamma Weibull Inverse Burr Transformed 
Gamma 

25 23.01 23.21 23.18 22,92 22.97 
48 40,81 41.00 41.00 40.72 40.75 
73 56.84 56.75 56.84 56.77 56.75 
95 68.35 67.97 68.15 68.29 68,25 

130 82.48 81.71 81.95 82,28 82.28 

160 91.16 90.35 90.56 90.85 90.89 
CO 110.5 115.4 113.5 118.9 109.3 

The Transformed Gamnm model pravides the best fit in the tail of the LEV function, the next best fit is the 

Weibull model. It appears that the best two parameter choice is the Weibull model and the best three parameter 

choice, and the overall best choice is the Transformed Gamma model. 

The parameter estimates and p-values for Ontario (ON) - Drugs are given in Table 15. 
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TABLE 15 

Marginal Models for Ontario - Drugs 

Distribution Parameter Values ~2 p-value 

Gamma 5=  1.143 ,~= 126.0 0.9486 

Weibull ~'= !. 082 ,~ = 147.6 0.8567 

Buff 5=13.18 ,~= 1,412 ?,= 1.121 0.8741 

Generalized Pareto ~ = 48.06 ,~ = 5,848 ~'= 1.164 0.8900 

Transformed Gamma ~ = I. 257 ,~ = i 11.1 ~'= 0. 9449 0.8951 

Transformed Beta ~t ='/28.3 ,~ = 116,400 ), = 0.9485 0.7381 

~=x.251 

We can eliminate the Transformed Gamma as it does not provide a better fit than the simpler two parameter 

Ganuna model. We can also eliminate the Transformed Beta distribution, citing parsimony and the relatively low 

p-value The remaining distributions are compared via their LEV functions m Table 16, 

TABLE 16 

Empirical and Model LEV Functions for ON - Drugs 

Upper Limit Empirical LEV Gamma Weibull Burr Generalized 
Pareto 

50 43.39 43.40 43.26 43.41 43.45 
100 74.69 74.45 74.31 74.45 74.48 
145 94.65 94.33 94.27 94.29 94.32 
190 109.1 108.6 108.6 108.5 108.6 

235 1 ! 9.4 118.9 118.9 118.8 118.8 

280 126.8 126.2 126.2 126.1 126.1 

OO 145.9 144.0 143.2 145.2 144.7 

All four distribulions provide a very good fit to the empirical LEV function. The Burr model provides the be, st fit 

in the tail by a marginal amount. We select the Gamma model since it had the highest p-value and very closely 

matches the empirical LEV function, 

The parameter estimates and p-values for Quebec (PQ) - Drugs are gwen in Table 17 
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TABLE 17 

Marginal Models for Quebec - Dnlgs 

Distribution Parameter Values g2 p-value 

Log-logistic ~,=2.177 ~=89.48 0.9822 

Inverse Gamma ~ = 2.455 ,~ = 19 I. 4 0.9788 

Burr ~ = 1.175 2 = 99.43 ~'= I. 990 0.9930 

Inverse Bttrr ~'=0.7103 ,~= 110.8 ~'= 2.292 0.9933 

Generalized Pareto ~=2.662 ,~=18.92 ~'=11.39 0.9853 

Inverse Transformed Gamma ~ = 3.538 ,~ = 392.9 ~, = 0.7890 0.9822 

Transformod Beta ~=0.9914 )~=111.3 ~,= 2.310 0.9706 

~-=0.6981 

We can eliminate the Transformed Beta for the sake of parsimony, and we can also eliminate the Inverse 

Transformed Gamma since it does not provide a better fit than the Inverse Gamma. The five remaining 

distributions are compared in Table 18. 

TABLE 18 

Empirical and Model LEV Functions for PQ - Drugs 

Upper Limit Empirical LEV Log-logistic Inverse Burr Inverse Burr Generalized 
Gamma Pareto 

95 69.66 73,93 76.75 73. I0 72.26 75.62 

210 104.4 103.7 106.2 103.2 I02.5 105.5 

325 115.5 113.9 116.4 113.4 112.7 115.7 

435 120.2 118.5 121.0 118.0 117.2 120.3 

545 122.9 121.2 123.7 120.5 119.7 122.9 

650 124.5 122.8 125.3 122. I 121.3 124.4 

760 125.6 124.1 126.5 123.2 122.4 125.5 

O0 128.8 130.2 131.5 128.0 127.4 129.6 

We select the Log-logislic as the best model, sipce it is the best two parameter model and fits the empirical LEV as 

well as the Burr model, which has the highest p-value and best fits the empirical LEV function. 

The distribution, estimated parameter values, and corresponding p-values for British Columbia (BC) - Other are 

given in Table 19, 
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TABLE 19 

Marginal Models for British Columbia - Other 

Distribution Parameter Values g2 p-value 

Lognonnal  ,~= 3.879 ~r= 1.417 0.8720 

Inverse Gaussian ~ = 121.2 ~ = 37.59 0.7939 

Pareto ~ = 1.638 ,~ = 94.08 0.8406 

Ganuna ~e = 0.4625 ,~ = 233.4 0.8669 

Weibull ~'=0.6491 ~=81.79 0.9780 

Burr ~'= 7.075 ~ = 1,107 ~' = 0 .7209 0.9679 

Inverse Burr  ~'=0.2612 ,~= 196.3 ~'= 1.802 0.9859 

Generalized Pareto ~ = 2. 970 ~ = 389.7 ~'= O. 6019 0.9747 

Transformed Gamma ~ = 1.787 ,~ = 21.42 ~'= 0.4851 0.9619 

Transformed Beta ~ = 0 . 7 1 6 7  ~=  175.6 j '=  2.251 0.9615 

~'=0.1967 

We can eliminate the Lognormal, Inverse Gaussian, Pareto, Gamma, Inverse Burr  and the Transformed Beta 

models since they all have a very poor fit in the tail of  the LEV function. The remaining models are compared in 

Table 20. 

TABLE 20 

Empirical and Model LEV Functions for BC - Other  

Upper Limit Empirical LEV Weibull Burr Generalized Transformed 
Pareto Gamma 

50 37.14 32.77 33.30 32.98 33.43 

100 57.36 52.42 52.88 52.60 52,99 

150 70.87 65.91 66. i 5 65.89 66.27 
195 79.54 74.82 74.86 74.61 75.03 

245 86.90 82.33 82.21 81.94 82.42 

295 92.48 88.05 87.86 87.56 88.10 

345 96.85 92.49 92.30 91.98 92.55 

450 103.6 99.01 98.98 98.65 99.22 

CO !15.3 111.9 116.9 119.1 114.8 
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We select the Weiball model as the best two parameter model, and the Transformed Gamma model as the best 

three parameter model and overall best model. The Transformed Gamma model has the best fit to the LEV of all 

the models and a very high p-value. 

The parameter estimates and the model p-values for Alberta (AB) - Other are given in Table 21. 

TABLE 21 

Marginal Models for Alberta - Other 

Distribution Parameter Values X 2 p-value 

Lognormal ~t = 4, 887 &= ] 128 0.8889 

lnverse Gaussian ~=246.0 i=129.1 0.8190 

Pareto 4=16.30 ~,=3,175 0.8795 

Log-logisUc ~,= 1 . 4 3 7  i=132.8 0.8521 

Gamma &=0.9870 ,~-- 204.$ 0.8690 

Weibull ~'= 0.9872 ,~= 201.6 0.8704 

Burr ~=2.335 .~.= 336.8 ),=I.171 0.6765 

Inverse Burr ~--0.5946 i=214.4 ~'=1.735 0.6507 

C, eneralizod Pareto ~ = 3.281 ,~ = 417.0 ]'= 1.274 0.6831 

Transformed Gununa & = 4.938 1 = 3.122 ~'= 0.4053 0.6991 

The Lognormal, Inverse Gaussian, and Log-logistic all have a very poor fit in the tail of the LEV function. The 

Burr, Inverse Burr, Generalized Pareto and Tran~ormed Gamma all have relatively low p-values and can also be 

eliminated. The remaining three models are compared in Table 22, 

TABLE 22 

Empirical and Mode] LEV Functions for AB - Other 

Upper Limit Empir/cal LEV Pareto Gamma Weibali 

75 63.42 62.33 62.48 62.41 
145 104.1 102.7 103.1 103.0 
220 134.4 133.0 133.6 133.5 

295 155.9 154.2 154.7 154.6 

oO 190.6 207.5 202. l 202.7 
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All three models over estimate the LEV function in the tail. The Pareto seems a little further out than the Weibull 

and the Gamma, so we suggest taking either the Gamma or the Weibull as the model of choice. 

The parameter estimates and p-values for Manitoba (MB) - Other are given in Table 23. 

TABLE 23 

Marginal Models for Manitoba - Other 

Distribution Parameter Values X2 p-value 

Gamma &=1.275 ,~=86.70 0.9055 

Weibull ~'= 1.161 ,~= 115.4 0.8519 

Inverse Burr ~'=0,5129 ~ = 132,7 ~,= 2,198 0.6005 

Generalized Pareto ~r= 1.543 ,~= 1,209 ~'= 1.344 0.8121 

Transformed Gamma ~ = 1.851 i = 4 8 . 0 7  ~-=0.7961 0.8327 

The Inverse Burr has a relatively low p-value, and the Transformed Gamma does not give a much better fit than 

the two parameter Gamma model, so it is not considered further. The remaining models are compared via their 

LEV fimcfions in Table 24. 

TABLE 24 

Empirical and Model LEV Functions for MB - Other 

Upper Limit Empirical LEV Gamma Weiball Generalized 
Pareto 

20 18.88 18.92 18.84 18.97 

40 35.15 35.20 35.07 35.27 
60 48.64 4890 48.78 48.91 

85 62.35 62.79 62.76 62.71 

110 73.34 73.70 73.77 73.51 

190 95.86 94.76 94.93 94.50 

<30 112.0 110.5 109.5 112.6 

The Generalized Pareto has the best fl| in [he tail of the LEV function, but by a marginal aroount. We suggest 

either the Gamma model or the Weibuil model, as both fit the empirical LEV function quite well and have high p- 

values. 

36 



The parameter estimates and p-values for Ontario (ON) - Other are given in Table 25 below. 

TABLE 25 

Marginal Models for Ontario - Other 

Distribution Parameter Values g2 p-value 

Gamma ~ = 1.246 ~= 200,6 0.6862 

Weibull ~ = 1.146 ,~ = 26L 1 0.7635 

Burr ~=39.14 ,~=6,056 ~,=1.161 0.6108 

Inverse Burr ~'=0.3275 ,~=383,9 ~,= 2.905 0.9778 

Transformed Gamma ~=0.9599 ,~= 272.6 ~'=1.175 0.6072 

We can eliminate the Burr and Transformed Gamma as they have relatively low p-values. The remaining 

distributions are compared via their LEV functions in Table 26. 

TABLE 26 

Empirical and Model LEV Functions for ON - Other 

Upper Limit  Empirical LEV Gamma Weibull Inverse Burr 

55 50.66 51.10 50.92 50.56 

180 136.5 135.1 135.2 135.8 
290 183.4 180.3 180.9 181.8 

380 207.0 204.0 204.9 205.2 

480 223.8 221.1 222.0 221.7 
620 237.8 235.1 235.6 235.1 

OO 259.6 250.0 248.7 260.0 

The Inverse Burr model has the best fit to the LEV function and the highest p-value. Although the Inverse Burr 

model has the highest p-value and provides the best fit to the empirical LEV function, the first two moments do 

not exist, making it a rather useless model. We suggest the Weibull model as the best choice. 

The parameter estimates and p-values for Quebec (PQ) - Other are given in Table 27. 
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TABLE 27 

Marginal Models for Quebec - Other 

Distribution Parameter Values X 2 p-value 

Lognormal /3 = 4.979 b=  0.9728 0.75 i 5 

Generalizod Pareto ~=3.322 ~.=286.3 ~-= 1.878 0.7613 

Transformed Gamma ~=17.65 .~ =0.001222 ~'=0.2436 0.8530 

The LEV functions of all three distributions are compared in Table 28. 

TABLE 28 

Empirical and Model LEV Functions for PQ - Other 

Upper Limit Empirical LEV Lognormal Generalized Transformed 
Pareto Gamma 

58 52.84 54.43 53.79 53.99 

116 94.07 95.25 94.80 94.88 
175 124.3 124.9 125.0 125.0 
233 145.9 146.1 146.6 146.7 

290 161.9 161.7 162.4 162.6 
360 176.8 176.0 176.7 177.2 

600 206.6 203.4 203.2 203.7 

<30 226.3 233. i 231.5 225.5 

We select the Transformed Gamma as the best model since it has the highest p-value and the best fit to the LEV 

function. The best two parameter choice is the Lognormal mode[. 

3.4 The Conditional Marginal Distributions. 

Recall that we need the conditional marginal distribution functions F~(x) and F;(y) for the copula 

function We will use Klugman's [5] FIT software to find the oondition~l marginal densities. We again chose to 

group the data. In section 3.5 we will discuss the grouping of the data in more detail. Following Hogg and 

Kiugman [3], we will also use the Limiled Expected Value (LEV) fanction to compare the best models. 

The distribution, estimatod parameter values, and corresponding p-values for British Columbia (BC) - 

Drugs are given in Table 29. 
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TABLE 29 

Conditional Marginal Models for British Columbia - Drugs 

Distribution Parameter Values 7, 2 p-value 

Pareto b = 339.2 ,~ = 48, 520 0.9144 

Gamma ~ =  1.004 ~,= 142.7 0.9150 

Weibuli ~-= 1.001 ,~ = 143.4 0.9149 

Burr ~t = 29.56 ,~= 3,905 ~'= LOIS 0.8281 

Inverse Burr ~'=0.3369 ,~= 222.3 ~'= 2.423 0.7898 

Generalized Par¢to ~=40.31  ), = 5,531 ~-= !.024 0.8282 

Transformed Gamma ~ = 1,095 ,~ = 127.8 ]'= 0.9488 0.8285 

TTansformed Beta ~ = 10.76 ,~ = 1,292 ~" = !. 135 0.6835 

i '=0.8672 

We can eliminate the Burr, Inverse Burr, and Transformed Beta distributions form further consideration, as their 

p-values are relatively low compared to the other distributions. The Transformed Gamma model and the 

Generalized Pareto model can also be eliminated from further discussion, since they do not provide a better fit than 

the two parameter mode~s. The Limited Expected Value (LEV) function for each or the three remaining models 

as well as the empirical LEV function are given in Table 30. 

TABLE 30 

Empirical and Model LEV Functions for BC - Drugs 

Upper Limit Empirical LEV Pareto Gamma Weibull 

45 38.97 38.61 38.65 38.64 
90 67.40 66.80 66, 89 66. 87 
135 88.09 87.40 87.52 87.49 
180 103.4 102.4 102.6 102.5 
220 113.5 112.4 112.5 112.5 

265 121.8 120.7 120.8 120.8 
310 127.7 126.8 126.9 126.9 

O0 145.7 143.4 143.3 143.3 
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It is clear that all 3 models are equally good. We reconunend either the Gamma or the Weibull model, and because 

the Gamma model was selected for the unconditional marginal distribution, we will choose it as the model of 

choice. 

TABLE 31 

Conditional Marginal Models for Alberta - Drugs 

Distribution Parameter Values Z2 p-value 

Lognormal /~ = 4 840 ~'= I. 089 0.9793 

Log-logistic ~,= 1.497 ~ = 126.9 0.9720 

Ccamma ~ = I, 073 ,~ = 175.9 0.9463 

Weibull ~= 1.036 ~= 191.2 0.9403 

Burr ~= 1,732 ,~ = 223.6 )'= 1.297 0.9373 

Inverse Burr ~-=0.6722 ,~= 182.1 ~,= 1.731 0.9311 

Generalized Pareto ~ = 2.944 ~ = 290. 4 ~'= 1.481 0.9403 

Transformed Gamma ~=8.370 A=0.1976 ~=0.3216 0.9435 

The distributions and their parameter values for Alberla (AB) - Drugs, are given in Table 31. The Log-logistic, 

Burr, Inverse Burr, and Generalized Parelo can all be eliminated, as they have a very poor fit in the tail of the LEV 

function. The Transformed Gamma distribution can also be eliminated as it does not provide a better fit than the 

two parameter Gamma model. The three remaining distributions are compared in Table 32. 

TABLE 32 

Empirical and Model LEV Functions for AB - Drugs 

Upper Limit Empirical LEV Lognormal Gamma Weibull 

60 52.50 53.90 52.14 51.96 

I I0 85.09 86.17 84.79 84.52 

160 109.6 110.1 109.8 109.5 

210 128.4 128.3 128.8 128.6 

295 151.2 150.8 151.4 151.2 

O0 182.8 228.7 188.8 188.5 
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All 3 distributions over estimate the empirical LEV function in the tail and we eliminate the Lognormai since it is 

the worst. We select either the Gamma or Weibull distributions as the best model. In Table 33, the distributions 

and parameter estimates, and p-values are given for Manitoba (MB) - Drugs. 

TABLE 33 

Conditional Marginal Models for Manitoba - Drugs 

Distribution Parameter Values ~2 p-value 

Gamma ~=1.360 i=71,34 0.6871 

Weibull ~'= 1,241 2 = 102.2 0.8025 

Inverse Burr ~'=0.2176 ,~= 169.9 ~,=4.252 0,8811 

Transformed Gamma ~=0.4011 i=178.4 ~'= 2.405 0.8789 

The LEV functions of the four distributions ale compared in Table 34. 

TABLE 34 

Empirical and Model LEV Functions for MB - Drugs 

Upper Limit Empirical LEV Gamma Weibull Inverse Burr Transformed 
Gamma 

15 14.27 14.42 14.40 14.17 14.21 

27 24.53 24.83 24.83 24.44 24.50 

42 35.90 36.31 36.40 36.01 36.05 
59 47.15 47.37 47.62 47.49 47.46 
80 59.00 58.50 58.94 59.35 59.21 
96 66.48 65.37 65.93 66.76 66.54 

I 17 74.36 72.64 73.28 74.51 74.26 

136 79.72 77.81 78.45 79.83 79.60 
168 85.79 84.23 84.73 85.90 85.73 
O0 97.98 97.00 95.38 95.45 92.39 

The Gamma model provides the best fil in the tail of the LEV function, but has the lowest p-value. We 

recommend the Weibull as the best two parameter model and the Transformed Gamma as the best 3 parameter 

model, to be consistent with the models selected in the case of the unconditional matginals 

The parameter estimates and p-values for Ontario (ON) - Drugs are given in Table 35. 
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TABLE 35 

Conditional Marginal Models for Ontario - Drugs 

Distribution Parameter Values Z 2 p-value 

Gamma ~= 1.271 1=121.7 0.9726 

Weibull 2= 1.171 1=161.1 0.9663 

Burr ~=13.25 1=!,337 ~= 1.200 0.9459 

lnverse Burr ~=0.4713 1=197.5 ~=2.306 0.8905 

Transformed Gamma ~= 1.274 1=121.4 2=0.9985 0.9515 

We can eliminate the Transformed Gamma as it does not provide a better fit than the simpler two parameter 

Gamma model. We can also eliminate the Inverse Burr distribution since it has a very poor fit in the tail of the 

LEV function. The remaining distributions are compared via their LEV functions in Table 36. 

TABLE 36 

Empirical and Model LEV F~mctions for ON - Drugs 

Upper Limit Empirical LEV Gamma Weibull Burr 

16 15.53 15.56 15.52 15.54 

28 26.47 26.48 26.41 26.44 

39 35.83 35.88 35.79 35.84 
50 44.53 44.69 44.60 44.66 
65 55.49 55.79 55,73 55.77 

80 65.54 65.88 65.86 65.89 

99 77.13 77.30 77.36 77.35 

i l4  85.35 85,34 85.47 85.41 
130 93.12 93.05 93,24 93.14 

152 102.4 102.3 102.6 102.4 

174 110.4 il0.3 110.6 110.4 

203 119.2 !19.0 119.3 119.1 

235 126.9 126.7 127.0 126.8 
<30 151.8 154.7 152.5 155.1 
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All three distributions provide a very good fit to the empi~cal LEV function. The Weibull model provides the best 

fit in the tail by a marginal amount. We select either the Gamma or the Weiball models since both have similar p- 

value and very closely match the empirical LEV function. 

The parameter estimales and p-values for Quebec (PQ) - Drugs are given in Table 37. 

TABLE 37 

Conditional Marginal Models for Quebec - Drags 

Distribution Parameter Values X 2 p-value 

Gamma ~ = 1.042 ,~ = 127.4 0.9320 

Weibull ]- = 1.024 ~ = 134.0 0.9293 

Burr ~=15.15 ~= 1,680 ~'= 1.058 0.9005 

Inverse Burr ]'=0.3476 ~,= 200.2 ~,= 2.475 0.8937 

Generalizod Pareto ~=2.836 ~=3,412 ]'=1.072 0.8983 

Transformed Gamma ~ = 1.145 2 = 112.8 "~ = 0.9443 0.8955 

We can eliminate the Transformed Gamma, since it does not provide a better fit than the simpler model. The 

remaining models are compared in Table 38. 

TABLE 38 

Empirical and Model LEV Functions for PQ - Drags 

Upper Limit Empirical LEV Gamma We~.bull Burr Inverse Burr Generalized 
Pareto 

28 25.48 25.42 25.39 25.47 25.23 25.47 
37 32.59 32.55 32.51 32.61 32.36 32.61 
50 42,07 42.04 41.99 42.11 41.89 42, ! I 

61 49.40 49.38 49.33 49.45 49.29 49.44 

76 58.45 58.46 58.40 58.51 58.47 58.49 

92 67.14 67.07 67.02 67.09 67.18 67.07 
108 74.86 74.69 74.65 74.68 74.87 74.65 
126 82.45 82.22 82.19 82.16 82.43 82.14 

149 90.73 90.46 90.44 90.34 90.61 90.32 

172 97.61 97.36 97.35 97.18 97.39 97.17 
206 105.7 105,6 105,6 105,3 105.4 105.3 
245 112.7 112.7 !12.7 112.4 112.3 l l2A 

328 122.3 122.3 122.3 122.1 121.8 122.1 
136.4 132.8 132.7 134.0 143.1 133.7 
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All five models provide a good fit to the empirical LEV function. For the sake of parsimony we select either the 

Gamma or the Weiball models. 

The distribution, estimated parameter values, and corresponding p-values for British Columbia (BC) - Other are 

given in Table 39. 

TABLE 39 

Conditional Marginal Models for British Columbia - Other 

Distribution Parameter Values g2 p-value 

Ganuna ~ =  1.066 ,~ = 134.0 0.6610 

Weibull ~'= t. 031 ~ = 144.5 0.6364 

Burr ~'=4.348 ,~=463,7 ~'=1.131 0.6070 

Inverse Burr ~'=0.5366 ,~= 161.4 ~,= i.932 0.4197 

Generalized Pareto ~=6.313 ,~= 665.7 ~-= 1.190 0.6290 

Transformed Gamma ~t= 2.065 i=42 .16  ]'=0.6645 0.6648 

We can eliminate the Inverse Burr due to the relatively low p-value. The Transformed Gamma is not much better 

than the two parameter Gamma so it can also be eliminated. The tetnaining models ate compared in Table 40 

TABLE 40 

Empirical and Model LEV Functions for BC - Other 

Upper Limit Empirical LEV Gamma Weibull Burr Generalized 
Par¢to 

10 9.754 9.712 9.693 9.740 9.754 
30 27.52 27.35 27.26 27.44 27.48 
50 42.83 42.75 42.60 42.81 42.85 

70 55.78 56.16 55.96 56.09 56.11 

95 69.51 70.47 70.24 70.14 70.14 

125 83.30 84.61 84.37 83.93 83.89 
160 96.51 97.69 97.47 96.63 96.58 

200 108.5 109. I I08,9 107.8 107.7 

255 119.9 120.3 120.1 11g.9 ! 18.8 

310 127.5 127.7 127.7 126.6 126.6 

O0 145.5 142.8 142.7 150.0 149.2 
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We selec! either the Weiball model or the Gamma model, as they both fit the empirical LEV function quile well. 

The parameter estimates and the model p-valueS for Alberta (AB) - Other are given in Table 41. 

TABLE 41 

Conditional Marginal Models for Alberta - Other 

Distribution Parameter Values Z 2 p-value 

Parelo ~'= 6. 349 ,~ = l, 165 0,9500 

Gamma ~=0.8765 ,~= 236.8 0.9801 

Weibull ~= 0.9188 ),= 201. 3 0.9774 

Inverse Buff ~-=0.3348 ~ = 328. i ~'= 2. 246 0.8665 

Transformed Cfdmma ~=0.7760 i = 2 7 0 . 0  ~'= 1.086 0.9142 

The Pateto and Inverse Burr both have a relatively poor fit in the tail of the LEV function, and the Transformed 

Gamma is eliminated on the basis of patsimony. The remaining two models are compared in Table 42. 

TABLE 42 

Empirical and Model LEV Functions for AB - Other 

Upper Limit Empirical LEV Gamma W¢ibull 

30 27.59 27.36 27.43 
80 64.64 64.38 64.47 
140 9893 98.41 98.4 ! 
260 146. I 143.6 143.4 

360 169.3 166.4 166.2 

oO 201.4 207.5 209.5 

Both models over estimate the LEV function in the tail, We suggest taking either the Gamma or the Weiball as the 

model of choice. 

The parameter estimates and p-values for Manitoba (MB) - Other ate given in Table 43. 
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TABLE 43 

Conditional Marginal Models for Manitoba - Other 

Distribution Parameter Values Z2 p-value 

Lognormal /~ = 4.238 ~'= I. 265 0.7723 

Pareto ~= 3,550 ,~= 347.5 0.9595 

Log-logistic ?=1.331 ~=71.00 0.7972 

Gamma ~=0.8553 ~= 145.7 0.7028 

Weibull ]-= 0.8906 ~= | 18.9 0.7892 

Burr ~= 2.226 ,~ = 186.0 ?=  1.096 0.9426 

Inverse Burr ~=0.5554 ,~= 127.7 ?=1.701 0.9555 

Generalized Pareto ~ = 2.753 ,~ = 219.9 ~'= I. 128 0.9387 

Transformed Gamma ~ = 3.798 A = 3.875 t'= 0.4216 0.9086 

Transformed Beta ~=0.9127 ,~= 123.9 ?=1.799 0.8819 

~'=0.5179 

The Log-logistic, Burr, Inverse Burr, and Transformed Beta can be eliminated as they have relatively poor fits in 

the tail of the LEV function. We can also eliminate the Gamma model as it has a relatively low p-value, and we 

can eliminate the Generalize Pareto as it does not give a better fit than the two parameter model. The remaining 

models are compared via their LEV functions in Table 44. 

TABLE 44 

Empirical and Model LEV Functions for MB - Other 

Upper Limit  Empirical LEV Pareto Weibull Burr Transformed 
Gamma 

15 14.03 13.92 13.81 14.06 14.11 
30 26.19 25.94 25.78 26.23 26.25 

55 43.13 42.59 42.57 42.99 42.91 

80 56.63 55.93 56.27 56.30 56.18 

120 73.08 72.32 73.32 7246 72.45 
145 80.85 80.28 81.64 80.25 80.36 
330 115.2 I I 1.5 112.9 111.0 111.6 

O0 131.I 136.3 125.8 143.9 133.0 
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The Transformed Gamma has the best overall fit, but the Parelo and Weibull are also good. The Burr has the 

worst fit in the tail. We suggest the Parelo model as it has the highest p-value, but the Transformed Gamma is also 

a good model. 

The parameter estimates and p-values for Ontario (Olq) - Other are given in Table 45 below. 

TABLE 45 

Conditional Marginal Models for Ontario - Other 

Distribution Parameter Values ~2 p-value 

Gamma ~= !.463 ~= 172.9 0.8667 

Weibull ~ = 1.234 ,~ = 268.3 0.6879 

Burr ~t=4.456 ,~= 709.7 ),= 1.393 0.6638 

Generalized Pareto ~ = 14,82 ~ = 2,178 "~= 1.628 0.7090 

Transformed Cramma ~=2.469 ,~=71,62 ~'=0.7555 0.7312 

The Gamma model has a much higher p-value than the other distributions, and also has as good a fit to the LEV 

function as any of the other models. We select the Gamma model, and in Table 46 ,  the empirical LEV and the 

model LEV are compared. 

TABLE 46 

Empirical and Model LEV Functions for ON - 
Ll~/ler 

Upper Limit Empirical LEV Gamma 

135 111.8 113.5 
262 176.9 177.6 

393 214.1 214.1 

520 233.7 232.9 
oo 261.6 253,0 

The Gamma model under estimates the LEV function in the tail, but overall provides a good fit. 

The parameter estimates and p-values for Quebec (PQ) - Other axe given in Table 47. 
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TABLE 47 

Conditional Marginal Models for Quebec - Other 

Distribution Parameter Values Z2 p-value 

Pareto ~t= 166.6 ,t= 35,810 0.7070 

Gamma ~ = 1.043 ,~ = 206.3 0.7656 

Weibull ~'= 1.022 1 = 217.1 0.7453 

Burr ~t = 5. 968 ,~ = 992.1 ), = 1.102 0.8039 

Inverse Buff ~'= 0.4404 A=277.1 ~,= 2.170 0.8894 

Generalized Pareto a = 10.26 ~ = 1,820 ]'= I. 119 0.7782 

Transformed C, ramma a = 1.324 t = 147.5 ~'= 0.8606 03292 

Transformed Beta ~=  1.235 ,~= 304.9 ~'= 1.952 0.8231 

~'=0.4973 

We can eliminate the Pareto as the p-value is relativety low. We can also eliminate the Inverse Bun and the 

Transformed Beta, as they both have poor fits in the tail of the LEV function. The Transformed Gamma is also 

el iminated,  since it does not provide a better fit than the two parameter model. The LEV functions of the 

remaining distributions are compared in Table 48. 

TABLE 48 

Empirical and Model LEV Functions for PQ - Other 

Upper Limit Empirical LEV Gamma Weibull Burr Generalized 
Pareto 

20 19.16 19.19 19.16 19.26 19.25 

45 40.98 40.90 40.82 41.08 41.05 
$0 67.96 67.43 67.30 67.64 67.57 

105 84.69 83.92 83.76 84.05 83.96 

135 102.1 101.3 101.2 101.3 101.2 

175 121.3 121.1 120.9 120.7 120.6 

220 138.7 139.2 139.1 138.5 135.4 
285 158.2 159,5 159,4 158.3 158,3 

375 177.8 179.0 178,9 177.5 177.6 

520 197.3 197.2 197,1 196,0 196. I 

OO 221.4 215.3 215.2 221.5 219.9 
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All four models follow the LEV function quite closely, with the Bun" being the best in the tall, followed by the 

Generalized Pareto. We select the Burr as the best model, and either the Gamma or the Weibull as the best two 

parameter model. 

3.5 The Grouping 

In sections 3.3 and 3.4, the Chi-square p-value of each model was given. In some cases it was surprising 

how many distributions we were able to fit Io the grouped data. We were also able to manipulate the grouping to 

get a high p-value. Since the data has been discretisized it is subject to clustering, and one of the pml~ses of 

grouping data is 1o overcome clustering. The question is: how far can we go? Briefly consulting some of the 

research done in the area, it was found that the problem has not really been solved. Most of the literature we 

consulted usually deals with equlprobable classes, and specific families of alternatives. Here we are dealing with 

no specific alternative. We tried grouping the data into equiprobable intervals, with success in only 2 instances. 

Kallenberg el al [4] sugge, st lhat for alternatives w/th heavy ~ls ,  par~lioas with some smaller classes in the tails 

may lead to an increase in power. In general they recommend trying 5 partitions with probab/lity .05, .3, .3, .3,.05 

or 6 partitions with probability .05, .15, .3, .3, .15, .05. We tried this type of grouping with British Cohunbia, 

Alberta, Manitoba, and Ontario for the conditional models and only in British Columbia were we able to 

successfully fit any model. 
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4.  C O N C L U S I O N S  

The distributions that were f i t  to  the data in sections 3.3 and 3.4 are summarized in Tables 49 - 52 below. 

The summa~ of marginal models fired to the data for Drugs by province is listed in Table 49. 

TABLE 49 

Summary of Marginal Models for Drugs 

Province Distribution Parameter Values 

British Columbia Gamma ~ = 1.139 ,~= 102.5 

Alberta Gamma ~=!.050 ] = i l L 1  

Weibull ~'= 1.031 ,~ = | 18.9 

Manitoba Transformed Gamma ~ = 0. 5630 ~ = 184.6 

Ontario Gamma & = I. 143 L= 126.0 

Quebec Log-logistic ~,=2.177 ,~=89.48 

]'= I. 727 

It appears that the Gamma model is the most common model. 

The summary of marginal models fired to the Other category by province is given in Table 50. 

TABLE 50 

Summary of Marginal Models for Other 

Province Distribution Parameter Values 

British Columbia Tra_,~ormcd Gamma ~=1.787 ,~= 2 1 . 4 2  ~'=0.4851 

Alberta Gamma ~=0.9870 A=204.8 

Weibull ~'=0.9872 ~=201.6 

Manitoba Gamma ~ = 1.275 ~ = S6.70 

Weibull ~-= 1.161 ~=115.4 

Onta~o Weibui[ ~'= I. 146 ~ = 261. ] 

Quebec Transformed Gamma a= 17.65 ~=0.001222 ~-=0.2436 

The Gamma is again a popular model. 
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The summary of conditional marginal models fitted to the data for Drags by province is lisled in Table 51. 

TABLE 51 

Sumnm~ of Condilional Marginal Models for Drugs 

Province Distribution Parameter Values 

British Columbia Gamma ~ = 1.004 ,~ = 142.7 

Weibull ~-= L001 ,~ = 143.4 

Alberta Gamma ~=  1,073 i =  175.9 

Weibull ~-= 1.036 ~= 191.2 

Manitoba Transformed Gamma ~=0.4011 ,~= 178.4 

Onlario Gamma ~=1.271 i=121.7 

Weibull ~-= 1.171 ,~= 161.1 

Quebec Gamma ~ = 1.042 .~ = 127.4 

Weibull ]" = 1.024 .~ = 134.0 

~" = 2.405 

It appears that the Gamma and Weibull models are the most common models. 

The summary of condit/onal marginal models fitted to the Other category by province is given in Table 

52. 

TABLE 52 

Summary of Condilional Marginal Models for Other 

Province Distribution Parameter Values 

British Columbia Gamma ~= 1,066 ~,= 134.0 

Weibull ~= 1.031 i= 144.5 

Alberta Gamma ~=0.8765 i=236.8 

Weibull ~-=0.9188 ,~=201.3 

Manitoba Pat'cto ~=  3.550 ,~= 347.5 

Ontario Gamma ~. = 1,463 ,~ = 172.9 

Quebec Burr ~'= 0.4404 ,~ = 277. I ~=2.17o 
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The Gamma is again a popular model. 

Table 53 shows the maximum likelihood estimates for the number of claims in each province. 

TABLE 53 

Maximum Likelihood Estimates for the Number of Claims 

Province P o0 P l O P O1 P l l 

British Columbia 0.00290 0.69797 0.08228 0.21684 
Alberta 0.00404 0.90431 0.01617 0.07547 

Manitoba 0.00137 0.71683 0.11218 0.16963 

Ontario 0.00229 0.85072 0.04011 0.10688 

Quebec 0.00358 0.65698 0.09347 0.24597 

We note that the probability of no clatms for either category is very small, and that a claim in Drugs with no claim 

m Other is the dominant form of a claim. A claim in both categories is the next most popular form of a claim. 

We were able to fit parametric models to the marginal and conditional marginal, distributions of this data. 

Some questions about the chi-squared tesl were asked but not answered. Due 1o the severe chislerin 8 of the data it 

was sometimes necessary to reduce the number of groups to as few as 5 or 6. The question still rem:~ing, did we 

"over group" the data, and hide the true underlying distribution, or worse yet, lead ourselves to believe that there 

was indeed any such underlying distribution at all7 Although Klugman's [5] FIT software has the capability to 

group the data, we feel that there is certainly a market for a more sophisticated package that could greatly reduce 

the amount of work required to group large data sets. Klugman's [5] FIT software was very fast, but as the author 

states, it provides very little error checking. 

We did not address the theoretical implications of our model with regards to the copula function. As 

mentioned previously there are many unanswered questions about the efficiency and consistency of the model. 

Referring back to equation (6) in section 3. I we can see that, in general, it will not be easy to find the 

moments of the distribution An assumption of independence would facilitate, in most cases, the calculation of the 

moments. Note that in either case it would not be difficult to calculate the cumulative distribution function. 
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In sections 3.3 and 3.4 we follow the lead of Hogg and Klugnmn [3] and use the limited ¢xpcctcd value 

function !o compare the best models we found, in mosl cases the LEV function did not supply a lot of new 

information, rather we found it useful in eliminating many of the models which were not listed in the tables. 

Making a quick comparison between the models for the conditional marginals and the models for the 

maxginals reveals that the Gamma and the Wcibull arc both very good models for this data. In most c.ascs the 

Gamma model provides the best fit to the data. In all but a few cases, ff the Gamma model fit well then the 

Weibull model would also fil well. 
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Appendix I 

The densities for seven of the fifteen distribution models used in Klugman's FIT [5] software arc given in Table 54. 

TABLE 54 

Distributions 

Distribution Probability Density Function 

Transformed Beta 
F ( a +  r)y2Yax yr-I 

f(x) F(a)r(r)(2y +xr)a+ r 

Generalized Paxeto 
F ( a +  r)2ax r-I 

f(x) F(a)F(r)(2+x)a+r 

Pareto 

a Z  a 

f(x) = ( 2 +  x) a+l  

Inverse Pareto 
tax r-I 

f(x)= ( 2 +  x) r+l 

Burr 
ay~Yax y-I 

f(x) (:~r +xr)a+ l 

Inverse Burr 
rgff xr t-l 

f(x) = (2y + xy ) r+l 

Log-logistic 
y2f x T-1 

/(~) (,~r+2), 

All o f  the densities in Table 1 are special cases of the Transformed Beta distribution. All parameters must take 

positive values and the support is always positive as well. All unnsed parameters in the less general cnses axe set 

equal to I. 
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The remaining eight distributions used in Klugnum's [5} FIT software are listed in Table 55. 

TABLE 55 

Distributions 

Distribution Probability Density Funclion 

Transformed Gamma 
Ix a r - l e - (  x / 2)  r 

Inverse TransformedGamma 
r2are-(Mx) r 

f (x)=.  

Gamma f ( x )  
xct-le-(Xl 2.) 

f f t r ( a )  

Inverse Gamma 
2ae-(2/x)  

f ( x ) =  xa+lF(a) 

Weibull 
txr-le-(X l 2) r 

f ( x )  = 2r 

Inverse Weibull 
f ( x ) =  r2"e-(Z/ x) r 

xf+l 

Lognormal f ( x ) = x - ~ 2 ~ e x p {  (Inx-/~)2202 } 

Inverse Gaussian 
( ,t 31/2 f a(~_~)2' I 

The first two distributions, the Transformed Gamma and the Inverse Transformed Gamma, axe the general case of 

the 4 distribulious which follow them. All parameters must take positive values, with the exception of the 

Lognormal distribution, where tt can be negative. Once again all support is positive. 
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