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Abstract

This paper develops a parametric model for health care insurance claims using
currently available software to fit parametric models to the data. Model selection is based on
the Chi-squared goodness-of-fit test and a comparison of the empirical limited expected value
function to parametric limited expected value functions. We make use of a copula function to

model the bivariate portion of the data.
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1 INTRODUCTION

Health care insurance consists of many different types of coverage under one umbrella Some examples of the
types of events covered are drugs, dental, ambulance, chiropractor, and the list goes on. Until now the data has
been analyzed without the use of parametric models. The purpose of this paper will be to attempt to fit a
parametric model to such data. We were attempting to find a practical model, unfortunately for the model we
present here it may not always be possible 10 find the moments of the distribution. A simplifying assumption of
independence is suggested which would allow, if they exist, the calculation of the moments.

We were also interested in testing some of the tools available to fit parametric models. In particular we
used Klugman's [5] FIT software for these purposes. Appendix I contains the distributions which were available to
choose from in the softwarc. The software will graph the data, graph the fitted distributions, perform a Chi-
squared goodness-of-fit test, calculate the empirical limited expected value (LEV) function , and calculate the
modei LEV function. A quasi-Newton-Raphson method is employed to calculate the parameter estimates and an
alternative method, called the simplex method, can be used when the quasi-Newton-Raphson method fails.
Typically one would try the quasi-Newton-Raphson method after using the alternative method if the estimates have
converged.

Finally once we have the parametric moded, we try to use it to learn some more about the dependence
structure of the data.

During the development of this paper it became obvious that we could manipulate the grouping of the data
{0 get a good Chi-squared p-value. Some atteniion is given to this problem but no solution is presented as it is

beyond the scope of this paper.
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2. DATA CHARACTERISTICS

The data was supplied by an anonymous donor on two diskettes, one for males and one for females. The
data were for 1991 health care claims for small employers of 5 to 35 people with claims recorded for the insured
only. We assumed only one claim per year per category could occur. Each data record included the date of birth
of the insured, province of residence, and the claims made on the policy categorized by claim type. There were 23
different types of claims that could be made, including a miscellaneous medical supplies category. The claim
amounts recorded were those covered by the insured's policy before any deductibles and co-insurance. This paper
will concentrate on the female's claim data.

Inspection of the data revealed that the Drugs category was by far the most common claim type,
accounting for more claims than the other categories combined. The remaining categories were very sparse, and so
it was decided to combine these categories in any further analysis. Lastly, we did not consider age to be a factor, as
a plot of age versus claim amount did not reveal any discernible pattern. Adding age as a variable would also
create other problems, such as deciding on the grouping and it would also make the model less parsimonious. We
decided to group by province, since each province has a different benefit system. Differing levels of tax and cost of
services by province would also be a factor. Note that we eliminated Saskatchewan and the Atlantic provinces as
the data was very sparse for these arcas. We are Ieft with female data for 1991, gronped by province, with claims

categorized by Drugs and Other.

2.1 Number of Claims

A check of the independence of a claim in Drugs versus a claim in Other revealed that the two categories
were indeed dependent.

Contingency tables for Claim versus No Claim for Drugs by Other are given in Tables I to 5 for each

province.
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TABLE 1
Claim Contingency Table for British Columbia

Drugs Other
No Claim Claim Total
No Claim 3 85 88
Claim 721 224 945
Total 724 309 1033
TABLE 2
Claim Contingency Table for Alberta
Drugs Other
No Claim Claim Total
No Claim 3 12 15
Claim 671 56 727
Total 674 68 742
TABLE 3
Claim Contingency Table for Manitoba
Drugs Other
No Claim Claim Total
No Claim 1 82 83
Claim 524 124 648
Total 525 206 731
TABLE 4
Claim Contingency Table for Ontario
Drugs Other
No Claim Claim Total
No Claim 8 140 148
Claim 2969 373 3342
Total 2977 513 3490
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TABLE 5
Claim Contingency Table for Quebec

Drugs Other
No Claim Claim Total
No Claim 8 209 217
Claim 1469 550 759
Total 1477 759 2236
In all cases a Chi-square test of independence of the rows and columns of the contingency table failed with a p-

value of 0. Al calculations were done using BMDP (1] Program 4F. Thus the occurrence/nonoccurrence of a
claim in Drugs is not independent of the occurrence/nonoccurrence of a claim in Other. This implies that we have
four probabilities to consider:

1. No claim occurs in either category.

2. A claim occurs in Drugs but not in Other.

3. A claim occurs in Other but not in Drugs.

4. A claim occurs in both categories, Drugs and Other.
We can now see that there will be four components to the probability density function of this data; a mass at (0,0),
a marginal distribution for Drugs conditional on no ¢laim occurring in Other, a marginal distribution for Other
conditional on no claim occurring in Drugs, and a bivariate distribution for which both Drugs and Other are

strictly positive.

2.2 Claim Severity

Number (4) above is the bivariate component of the distribution. We performed a nonparametric test of
independence of the claim severity, by taking all those insureds for which a claim occurred in both the Drugs
category and the Other category. The Spearman Rank Corelation Coefficients are calculated for cach province in

Table 6.
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TABLE 6

Spearman’s O by Province
Province D p-value
British Columbia 0.1302 0.0510
Alberta 0.2523 0.0583
Manitoba 0.0511 0.5716
Ontario -0.0799 0.1230
Quebec 0.1494 0.0004

The calculations were done using BMDP [1) Program 3D. The p-value is under the following hypothesis:

Hg: The severity of Drugs is independent of the severity of Other.
vs.
Hp: The severity of Drugs is not independent of the scverity of Other.

We can see that only Manitoba has a marginally high p-value, the remaining provinces have evidence to reject the
hypothesis. Thus we conclude that the distribution of the claim severity of Drugs and Other, conditional on both

being positive, is dependent.
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3. MODEL

31 Likelihood Equation and Copula Fuaction

In section 2 it was found that there would be four components for each province making up the

distribution of this data.

1.

2.

Let Pg = Probability of no claims in either category, and let Npp = the number of such claims.
Let Py, = Probability of no claim in Drugs and a ¢laim in Other, and let Ng; = the number of such

claims.

. Let P;o = Probability of a claim in Drugs and no claim in Other, and let N; = the number of such

claims,

. Let Py, = Probability of a claim in Drugs and a claim in Other, and let ¥;; = the number of such

claims.

Note that 7 3 7. =1 and let X N=N.

Further let X' = Drugs and ¥ = Other, and denote the marginal probability density function (pdf) of X as
f ¥ (x) and the marginal cumulative distribution function (cdf) of Y as F v (x). Similarly let the marginal pdf and

marginal cdf of ¥ be denoted as fY(y) and Fy () respectively. Let the joint pdf and cdf of X and ¥ be denoted as

f ;’Y (x,») and F;{}' {x,y) respectively. The asterix indicates that these two functions are conditional on both X

and Y being strictly positive.

The complete information likelihood equation is given by:

1AS U | WACKCRHTAL | FACCRITE ) ) PR ENN- B
ity fefy,

ey,

Using the fact that the P,j's sum to one, and working with the log-likelihood we find that the maximum likelihood

estimate of P,j is

M

= 'cz
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We chose to group the observations, since there was a lot of clustering present in the data. In section 3.5 we will
discuss the grouping in more detail. Since we grouped the data we are actually working with the grouped

likelihood which is given by the product of the following three equations.

L(8)=[ (F.(c.0)~F,(c,.. 81" @

16)=TUF (68,0~ (e, 6,1 @)
-t

£00,)=[T1Fu (€0.,.8,)~ Furcrn 8,1 @)

Note that we have 1y, my, and Mxy groupings each with f;, g and hy observations. We can easily use Klugman's

[5] FIT software to find the parameter estimates for each of equations (2) and (3) above, but equation (4) presents a

more difficuit problem. One problem is the choice of distribution, and the other problem is finding the par
estimates for the chosen bivariate distribution. Unlike the univariate case where it is easy to fit many distributions,
it is computationally expensive to do this in the bivariate case. To avoid these problems we decided to use a
Copula function to model the dependence structure. Avoiding the theoretical details, we find that the Copula
function C(u,v) can be used to model the dependence structure of a Bivariate distribution by making use of the
marginal cumulative distribution functions of the two variables. If H(x,y) is the bivariate cdf of a continuous
distribution with continuous marginals F(x)=H(x,c) and G(y)=H(w,y) then there exists a unique distribution
function C(u,v) such that H(x,y) = C(F(x),G(»)).

Since no test exists for testing one-parameter families of copulas we used an ad hoc method using the
relationships between Spearman's p and Kendall's T, derived in Carriere [2], for given one-parameter families of

copulas. For the Morgenstern family we find that 7=g(p ) with
2
gp)= 37

For the mixed Frechet copula, we find that == g(p) with

5/3
gy =22 7)

3

For the normal copula, we find that r=g(p ) with
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g(p)=—2-arcsin{2 sin{p7/6}}
n

Using 2 we calculated the functions g(p) for each of the copulas and compared them to 7 in Table 7.

TABLE 7
Ad-hoc Copula Test
&
s +5/3
Province p T % y, 2p_+§25__ 2 arcsin{2 sin{pr/6}}
.4
BC 0.1302 0.0876 0.0868 0.0979 0.0870
AB 0.2523 0.1723 0.1682 0.2018 0.1697
MB 0.0511 0.0328 0.0341 0.0364 0.0341
ON -0.0799 -0.0503 -0.0533 -0.0582 -0.0533
PQ 0.1494 0.1013 0.0996 0.1136 0.0999

We can see that both the Morgenstern copula and the normal copula closely match the function 7=g(5). Both p
and T were calculated using BMDP [1) Program 3S. Note that the values for p in Table 7 are the same as those
given earlier in Table 6 of section 2.2. We will work with the Morgenstern copula, as it has a closed form for the
distribution function. Mardia [6) gives the distribution function of the one parameter Morgenstern copula as
H(x,»)=F()G1+a{l-FHI-GO}  |als1 O
For continuous random variables, the density is given by
h(x,y)= f()g(W+a{2F(x)~1H{2G(y)-1}] laj<1 (6)
Following Carriere [2], we will re-parametrize with ar=3p, so that we require [4<1/3. Note that in Table 7
|A=173 for every province.

Note that there are many theoretical questions left unanswered regarding the use of the copula function in
place of the maximum likelihood estimator. We may want to know about the efficiency and consistency of the
estimator. These questions will not be addressed in this paper. Note also that we grouped the data, and so we used
estimates from the grouped likelihood rather than the complete information likelihood.

The pdf of our model is given by
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Py, x=0,y=0

Bofx(x) x>0,y=0
h(x,y) =1 Fufe () x=0,y>0 o
p ECEDEGD o000
&y

where the last partial derivative is given by (6) with F(x) and G(y) replaced by F, (x) and F, (y) respectively.

We are now ready 1o give estimates of f,, f,,/,.and f, .

3.2 Estimates for the Number of Claims.
Using equation (1) given in section 3.1, and the contingency tables given in section 2.1, we can find the

maximum likelihood estimates of Pyg, P;g, Py, and Py;. The estimates for each province are summanized in

Table 8.
TABLE 8
Maximum Likelihood Estimates for the Number of Claims
Province Pog Pip Poy Py
British Columbia 0.002%0 0.69797 0.08228 0.21684
Alberta 0.00404 0.90431 0.01617 0.07547
Manitoba 0.00137 0.71683 0.11218 0.16963
Ontario 0.00229 0.85072 0.04011 0.10688
Quebec 0.00358 0.65698 0.09347 0.24597

We can see thai in all five provinces Py, the estimated probability of no claims in either Drugs or Other, is very

small. Itis also apparent that a claim in Drugs and no claim in Other is the dominant form of a claim.

3.3 The Marginal Distributions,

When we solve the 2 systems of grouped likelihood equations defined by (2) and (3) in 3.1, we are finding
the marginal distributions /, and f, for Drugs and Other respectively. The fitting was done using Klugman's {5]
FIT software. The software is able lo accept ungrouped data of up to 3,000 observations or grouped data
Following Hogg and Klugman [3), we will use the Limited Expected Value (LEV) function to compare the best

models.

28



The distribution, estimated parameter values, and corresponding p-values for British Columbia (BC) -

Drugs are given in Table 9.
TABLE 9
Marginal Models for British Columbia - Drugs
Distribution Parameter Values ¥2 p-value
Gamrma a=113 i=1025 0.8950
Weibull +=1.073 1=119.7 0.8444
Burr &=9.666 1=823.0 y=1142 0.8560
Inverse Burr $=0.3221 1=182.0 #=2.706 0.5972
Generalized Pareto &=21.19 1=2,028 +=1.204 0.8548
Transformed Gamma a=1454 i=72.75 $=0.8732 0.8516
Transformed Beta &=9.938 1=846.9 y=1135 0.7217
t=1.008

We can eliminate the Inverse Burr and Transformed Beta distributions from further consideration, as their p-values
are relatively low compared to the other distributions in Table 3. The Transformed Gamma model can also be
eliminated from further discussion, since it does not provide a better fit than the two parameter Gamma model.
The Limited Expected Value (LEV) function for each or the four remaining models, as well as the empirical LEV

function, are given in Table 10.

TABLE 10
Empirical and Model LEV Functions for BC - Drugs
Upper Limit  Empirical LEV Gamma Weibull Burr Generalized

Pareto

48 40.58 40.48 40.29 40.59 40.66

95 67.54 67.09 66.88 67.18 61.22

142 85.12 84.60 84.47 84.54 84.58

189 96.56 96.02 95.96 95.81 95.86

236 104.0 103.4 1034 103.1 103.2

283 108.9 108.2 108.2 107.9 108.0

330 1121 113 1112 1111 Il

[e's] 1210 116.7 tie.4 117.7 117.5
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It is clear that all 4 models are equally good, with the Burr and the Generalized Pareto having the best fit in the tail

of the LEV function. We select the Gamma model, since it has the best p-value and also provided a good fit to the

LEV function.
TABLE 11
Marginal Models for Alberta - Drugs
Distribution Parameter Values xz p-value
Gamma &=1050 i=11L1 0.9785
Weibull $=1.031 1=1189 0.9766
Transformed Gamma &=1.005 1=117.7 T=1.027 0.9529

The distributions and their parameter values for Alberta (AB) - Drugs, are given in Table 11. We were only able to

find three models that would fit the data, so all three are compared via their LEV functions in Table 12.

TABLE 12
Empirical and Model LEV Functions for AB - Drugs
Upper Limit  Empirical LEV Gamma Weibull Transformed
Gamma
32 28.35 28.25 28.26 28.22
57 4571 45.61 45.68 45.58
82 59.64 59.61 59.77 59.60
108 7139 71.28 71.56 71.29
133 80.57 80.27 80.64 80.29
158 87.93 87.49 87.96 87.52
184 93.99 93.49 94.04 93.53
209 98.62 98.09 98.72 98.13
234 1023 101.8 102.5 101.8
o0 1176 116.7 1174 116.4
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It is apparent in Table 12 that all three distributions fit the empirical LEV function quite well. The Weibull
distribution has the best fit of all three but the Gamma is also very good. We select either the Gamma or Weibull
distributions as the best models, ¢liminating the Transformed Gamma on the basis of parsimony.

In Table 13, the distributions and parameter estimates, and p-values are given for Manitoba (MB) - Drugs.

TABLE 13
Marginal Models for Manitoba - Drugs
Distribution Parameter Values ' 2 p-value
Gamma &=1.266 1=94.13 0.6698
Weibull t=1151 2=119.3 0.8446
Inverse Burr 7=0.3120 2=180.9 5=2.967 0.9654
Transformed Gamma &=0.5630 1-1846 $=1.727 0.9930

The LEV functions of the four distributions are compared in Table 14.

TABLE 14
Empirical and Model LEV Functions for MB - Drugs
Upper Limit  Empirical LEV Gamma Weibull Inverse Burr  Transformed
Gamma
25 23.01 23.21 23.18 2292 22,97
438 4081 41.00 41.00 40.72 40.75
73 56.84 56.75 56.84 56.77 56.75
95 68.35 67.97 68.15 68.29 68.25
130 82.48 81.71 81.95 82.28 82.28
160 91.16 90.35 90.56 90.85 90.89
o0 110.5 1154 113.5 118.9 109.3

The Transformed Gamma model pravides the best fit in the tail of the LEV function, the next best fit is the
Weibull model. It appears that the best two parameter choice is the Weibull model and the best three parameter
choice, and the overall best choice is the Transformed Gamma mode!.

The parameter estimates and p-values for Ontario (ON) - Drugs are given in Table 15.
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TABLE 15
Marginal Models for Ontario - Drugs

Distribution Parameter Values 12 p-value
Gamma &=1.143 2=126.0 0.9486
Weibull =1.082 1=1476 0.8567
Burr &=13.18 1=1,412 F=1121 0.8741
Generalized Pareto &=48.06 1=53848 T=1.164 0.8900
Transformed Gamma &=1257 i=1111 7=0.9449 0.8951
Transformed Beta a=7283 2=116,400 ¥=10.9485 0.7381
t=1.251

We can eliminate the Transformed Gamma as it does not provide a better fit than the simpler two parameter

Gamma model. We can also eliminate the Transformed Beta distribution, citing parsimony and the relatively low

p-value. The remaining distributions are compared via their LEV functions in Table 16.

TABLE 16
Empirical and Model LEV Functions for ON - Drugs
Upper Limit  Empirical LEV Gamma Weibull Burr Generalized

Pareto

50 43.39 43.40 43.26 4341 43.45
100 74.69 74.45 7431 74.45 74.48
145 94.65 94.33 94.27 94.29 94.32
190 109.1 108.6 108.6 108.5 108.6
235 119.4 1189 118.9 118.8 118.8
280 126.8 126.2 126.2 126.1 126.1
fos] 1459 144.0 143.2 . 1452 1447

All four distributions provide a very good fit to the empirical LEV function. The Burr model provides the best fit
in the tail by a marginal amount. We select the Gamma model since it had the highest p-value and very closely
matches the empirical LEV function.

The parameter ¢stimates and p-values for Quebec (PQ) - Drugs are given in Table 17.
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TABLE 17
Marginai Models for Quebec - Drugs

Distribution ; Parameter Values 12 p-value
Log-logistic 7=2.177 1=89.48 0.9822
Inverse Gamma &=2.455 i=1914 0.9788
Burr a=1175s 1=99.43 7=1.990 0.9930
Inverse Burr 7=0.7103 i=1108 y=2.292 0.9933
Generalized Pareto a=2.662 1=18.92 T=11.39 0.9853
Inverse Transformed Gamma 5= 3,538 1=392.9 $=0.7890 0.9822
Transformed Beta a=0.9914 A=H13 7=2.310 0.9706
T=0.6981

We can eliminate the Transformed Beta for the sake of parsimony, and we can also eliminate the Inverse
Transformed Gamma since it does not provide a better fit than the Inverse Gamma. The five remaining

distributions are compared in Table 18.

TABLE 18
Empirical and Model LEV Functions for PQ - Drugs
Upper Limit  Empirical LEV  Log-logistic  Inverse Burr Inverse Burr  Generalized

Gamma Pareto

95 69.66 73.93 76.75 73.10 72,26 75.62
210 104.4 103.7 106.2 103.2 102.5 105.5
3258 115.5 1139 116.4 113.4 112.7 115.7
435 1202 1185 1210 118.0 117.2 120.3
545 1229 1212 1237 120.5 1197 122.9
650 124.5 122.8 125.3 1221 1213 124.4
760 1256 124.1 126.5 123.2 1224 1255
o0 1288 130.2 131.5 128.0 127.4 129.6

We select the Log-logistic as the best model, sipce it is the best two parameter mode] and fits the empirical LEV as
welt as the Burr model, which has the highest p-value and best fits the empirical LEV function.
The distribution, estimated parameter values, and corresponding p-values for British Columbia (BC) - Other are

given in Table 19.
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TABLE 19
Marginal Models for British Columbia - Other

Distribution Parameter Values %2 p-value
Lognormal j1=3.879 5=1417 0.8720
Inverse Gaussian k=121.2 1=37.5 0.7939
Pareto &=1.638 i=94.08 0.8406
Gamma &=0.4625 1=2334 0.8669
Weibull 7=0.6491 ;1=81.79 0.9780
Burr 7=7.075 1=1,107 ¥=0.7209 0.9679
Inverse Burr 7=0.2612 1=19.3 7=1.802 0.9859
Generalized Pareto &=2.970 1=3897 =0.6019 0.9747
Transformed Gamma a=1.787 1=2142 $=0.4851 0.9619
Transformed Beta @=0.7167 1=1756 y=12.251 0.9615
7=0.1967

We can climinate the Lognormal, Inverse Gaussian, Pareto, Gamma, Inverse Burr and the Transformed Beta

models since they all have a very poor fit in the tail of the LEV function. The remaining models are compared in

Table 20.
TABLE 20
Empirical and Model LEV Functions for BC - Other
Upper Limit  Empirical LEV Weibull Burr Generalized Transformed
Pareto Gamma
50 37.14 2n 3330 3298 33.43
100 57.36 52.42 52.88 52.60 5299
150 70.87 65,91 66.15 65.89 66.27
195 79.54 74.82 74.86 74.61 75.03
245 86.90 82.33 8221 81.94 82.42
295 92.48 88.05 87.86 87.56 88.10
345 96.85 92.49 92.30 91.98 92.55
450 103.6 99.01 98.98 98.65 99.22
o0 1153 1119 116.9 119.1 114.8
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We select the Weibull model as the best two parameter model, and the Transformed Gamma model as the best
three parameter model and overall best model. The Transformed Gamma model has the best fit to the LEV of all
the models and a very high p-value.

The parameter estimates and the model p-values for Alberta (AB) - Other are given in Table 21.

TABLE 21
Marginal Models for Alberta - Other
Distribution Parameter Values 12 p-value
Lognormal i1=4.887 5=1.128 0.8889
Inverse Gaussian 01=246.0 i=1201 0.8190
Pareto ¥=16.30 i=3175 0.8795
Log-logistic 7=1.437 i=1328 0.8521
Gamma &=09870  1=2048 0.8690
Weibull $=0.9872 i=2016 0.8704
Burr &=2.335 1=336.8 $=117 0.6765
Inverse Burr 720.5946 1=214.4 $=1.135 0.6507
Generalized Pareto &=3.281 2=417.0 T=1.274 0.6831
Transformed Gamma &=4.938 1=3.122 =0.4053 0.6991

The Lognormal, Inverse Gaussian, and Log-logistic all have a very poor fit in the tail of the LEV function. The
Burr, Inverse Burr, Generalized Pareto and Transformed Gamma all have relatively low p-values and can also be

eliminated. The remaining three models are compared in Table 22.

TABLE 22
Empirical and Model LEV Functions for AB - Other
Upper Limit  Empirical LEV Pareto Gamma Weibull
75 63.42 62.33 62.43 6241
145 104.1 102.7 103.1 103.0
220 134.4 133.0 133.6 1335
295 1559 1542 154.7 154.6
o0 190.6 207.5 202.1 202.7
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All three models over estimate the LEV fuaction in the tail. The Pareto seems a little further out than the Weibull
and the Gamma, so we suggest taking either the Gamma or the Weibull as the model of choice.

The parameter estimates and p-values for Manitoba (MB) - Other are given in Table 23.

TABLE 23
Marginal Models for Manitoba - Other
Distribution Parameter Values 12 p-value
Gamma &=1275 1=86.70 0.9055
Weibull 7=1161 i=1154 0.8519
Inverse Burr 1=0.5129 1=132.7 F=2.198 0.6005
Generalized Pareto a=1.543 1=1,209 $=1344 0.8121
Transformed Gamma &=1851 1=48.07 $=0.7961 0.8327

The Inverse Burr has a relatively low p-value, and the Transformed Gamma does not give a much better fit than

the two parameter Gamma model, so it is not considered further. The remaining models are compared via their

LEV functions in Table 24.
TABLE 24
Empirical and Model LEV Functions for MB - Other
Upper Limit  Empirical LEV Gamma Weibull Generalized

Parcto
20 18.88 18.92 18.34 18.97
40 35.15 35.20 35.07 35.27
60 48.64 48.90 4378 48.91
85 62.35 62.79 62.76 62.71
110 73.34 73.70 73.77 73.51
190 95.86 94.76 94.93 94.50
0 1120 110.5 109.5 112.6

The Generalized Pareto has the best fit in the tail of the LEV function, but by a marginal amount. We suggest
either the Gamma model or the Weibull model, as both fit the empirical LEV function quite well and have high p-

values.
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The parameter estimates and p-values for Ontario (ON) - Other are given in Table 25 below.

TABLE 25
Marginal Models for Ontario - Other
Distribution Parameter Values 12 p-value
Gamma &=1.246 1=200.6 0.6862
Weibull =1146 A=2611 0.7635
Burr &=139.14 1=6,056 y=1161 0.6108
Inverse Burr 7=0.3275 1=3839 5=12.905 09778
Transformed Gamma &=0.9599 1=272.6 T=1175 0.6072

We can climinate the Burr and Transformed Gamma as they have relatively low p-values. The remaining

distributions are compared via their LEV functions in Table 26.

TABLE 26
Empirical and Model LEV Functions for ON - Other

Upper Limit  Empirical LEV Gamma Weibull Inverse Burr

55 50.66 51.10 50.92 50.56
130 136.5 135.1 135.2 135.8
290 183.4 180.3 180.9 181.8
380 207.0 204.0 204.9 205.2
480 2238 2211 2220 2217
620 2378 2351 2356 235.1
[es) 259.6 250.0 248.7 260.0

The Inverse Burr model has the best fit to the LEV function and the highest p-value. Although the Inverse Burr
model has the highest p-value and provides the best fit to the empirical LEV function, the first two moments do
not exist, making it a rather useless model. We suggest the Weibull model as the best choice.

The parameter estimates and p-values for Quebec (PQ) - Other are given in Table 27.
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TABLE 27
Marginal Models for Quebec - Other

Distribution Parameter Values %2 p-value
Lognormal fi=4.979 5=0.9728 0.7515
Generalized Pareto &=3.322 1=2863 T=1878 0.7613
Transformed Gamma &=17.65 1=0.001222  7=0.2436 0.8530

The LEV functions of all three distributions are compared in Tabie 28.

TABLE 28
Empirical and Model LEV Functions for PQ - Other

UpperLimit Empiricat LEV  Lognormal Generalized  Transformed

Pareto Gamma
58 52.84 5443 53.79 53.99
116 94.07 95.25 94.80 94.88
175 1243 124.9 125.0 125.0
233 1459 146.1 146.6 146.7
290 161.9 161.7 162.4 162.6
360 176.8 176.0 176.7 1772
600 206.6 2034 203.2 203.7
foo) 2263 233.1 231.5 225.5

We select the Transformed Gamma as the best model since it has the highest p-value and the best fit to the LEV

function. The best two parameter choice is the Lognormal model.

3.4 The Conditional Marginal Distributions.

Recall that we need the conditional marginal distribution functions F_(x) and F, (y) for the copula
function. We will use Klugman's {5] FIT software (0 find the conditional marginal densities. We again chose to
group the data. In section 3.5 we will discuss the grouping of the data in more detail. Following Hogg and
Kiugman (3], we will also use the Limited Expected Value (LEV) function to compare the best models.

The distribution, estimated parameter values, and corresponding p-values for British Columbia (BC) -

Drugs are given in Table 29.
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TABLE 29
Conditional Marginal Models for British Columbia - Drugs

Distribution Parameter Values %2 p-value
Pareto &=339.2 1=48,520 0.9144
Gamma &=1.004 i=142.7 0.9150
Weibull +=1.001 1=143.4 0.9149
Burr &=129.56 1=3,905 y=1018 0.8281
Inverse Burr $=0.3369 i=2223 7=2.423 0.7898
Generalized Pareto &=40.31 1=5,531 $=1.024 0.8282
Transformed Gamma &=1,095 i=1271% 7=0,9488 0.8285
Transformed Beta &=10.76 1=1,292 5=1.135 0.6835
+=0.8672

We can eliminate the Burr, Inverse Burr, and Transformed Beta distributions form further consideration, as their
p-values are relatively fow compared to the other distributions. The Transformed Gamma model and the
Generalized Pareto model can also be eliminated from further discussion, since they do not provide a better fit than
the two parameter models. The Limited Expected Value (LEV) function for each or the three remaining models

as well as the empirical LEV function are given in Table 30.

TABLE 30
Empirical and Model LEV Functions for BC - Drugs
Upper Limit  Empirical LEV Pareto Gamma Weibull
45 38.97 3861 3865 38.64
90 67.40 66.80 66.89 66.87
135 88.09 87.40 87.52 87.49
180 103.4 102.4 102.6 102.5
220 113.5 1124 1125 112.5
265 1218 120.7 1208 120.8
310 1277 126.8 126.9 126.9
o 145.7 143.4 143.3 143.3
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It is clear that all 3 models are equally good. We recommend either the Gamma or the Weibull model, and becausc

the Gamma model was selected for the unconditional marginal distribution, we will choose it as the model of

choice.
TABLE 31
Conditional Marginal Models for Alberta - Drugs
Distribution Paramelter Values 2 p-value
Lognormal £=4.840 o=1.089 0.9793
Log-logistic $=1497 1=126.9 0.9720
Gamma &=1.073 2=175.9 0.9463
Weibull T=1.036 i=1912 0.9403
Burr &=1732 1=223.6 7=1.297 0.9373
Inverse Burr $=0.6722 i=1821 ¥=1731 0.9311
Generalized Pareto &=2.944 1=290.4 t=1481 0.9403
Transformed Garara @=8.370 1=0.1976 1=0.3216 0.9435

The distributions and their parameter values for Alberta (AB) - Drugs, are given in Table 31. The Log-logistic,
Burr, Inverse Burr, and Generalized Pareto can all be eliminated, as they have a very poor fit in the tail of the LEV
function. The Transformed Gamma distribution can also be eliminated as it does not provide a better fit than the

two parameter Gamma model. The three remaining distributions are compared in Table 32.

TABLE 32
Empirical and Model LEV Functions for AB - Drugs
Upper Limit  Empirical LEV ~ Lognormal Gamma Weibull
60 52.50 53.90 52.14 51.96
110 85.09 86.17 84.79 84.52
160 109.6 110.1 109.8 109.5
210 1284 1283 1288 1286
295 1512 150.8 1514 151.2
a0 182.8 2287 188.8 188.5
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All 3 distributions over estimate the empirical LEV function in the tail and we eliminate the Lognormal since it is

the worst. We select either the Gamma or Weibull distributions as the best model. In Table 33, the distributions

and parameter estimates, and p-values are given for Manitoba (MB) - Drugs.

TABLE 13
Conditional Marginal Models for Manitoba - Drugs
Distribution Parameter Values %2 p-value
Gamma &=1.360 i=7134 0.6871
Weibutl t=1.241 i=102.2 0.8025
Inverse Burr 7=0.2176 1=169.9 $=4.25 0.8811
Transformed Gamma a=0.4011 i=178.4 7=2.405 0.8789
The LEV functions of the four distributions are compared in Table 34.
TABLE 34
Empirical and Model LEV Functions for MB - Drugs
Upper Limit  Empirical LEV Gamma Weibull Inverse Burr  Transformed
Gamma
15 14.27 14.42 14.40 14.17 14.21
27 24.53 24.83 2483 24.44 24.50
42 35.90 36.31 36.40 36.01 36.05
59 47.15 47.37 47.62 47.49 47.46
80 59.00 58.50 5894 59.35 59.21
96 66.48 65.37 65.93 66.76 66.54
117 74.36 72.64 73.28 74.51 74.26
136 79.72 71.81 7845 79.83 719.60
168 85.79 84.23 84.73 85.90 85.73
[o'e] 97.98 97.00 95.38 9545 92.39

The Gamma model provides the best fit in the tail of the LEV function, but has the lowest p-value. We

recommend the Weibull as the best two parameter model and the Transformed Gamma as the best 3 parameter

model, to be consistent with the models selected in the case of the unconditional marginals.

The parameter estimates and p-values for Ontario (ON) - Drugs are given in Table 35.
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TABLE 35
Conditional Marginal Models for Ontario - Drugs

Distribution Parameter Values x2 p-value
Gamma a=1271 i=1217 0.9726
Weibull T=1L171 1=1611 0.9663
Burr &=13.25 2=1,337 $=1.200 0.9459
Inverse Burr 7=0.4713 i=1915 7=2.306 0.8905
Transformed Gamma &=1274 i=1214 7=0.9985 0.9515

We can eliminate the Transformed Gamma as it does not provide a better fit than the simpler two parameter
Gamma model. We can also eliminate the Inverse Burr distribution since it has a very poor fit in the tail of the

LEV function. The remaining distributions are compared via their LEV functions in Table 36.

TABLE 36
Empirical and Model LEV Functions for ON - Drugs

Upper Limit  Empirical LEV Gamma Weibull Burr
16 15.53 15.56 15.52 15.54
28 26.47 26.48 2641 26.44
39 35.83 35.88 35.79 35.84
50 4453 44.69 44.60 44.66
65 55.49 55.79 55.73 55.77
80 65.54 65.88 65.86 65.89
99 77.13 77.30 77.36 71.35
114 85.35 85.34 85.47 8541
130 93.12 93.05 93.24 9314
152 102.4 1023 102.6 102.4
174 110.4 1103 110.6 1104
203 119.2 119.0 1193 119.1
235 126.9 1267 127.0 126.8
0 1518 1547 152.5 155.1
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Al three distributions provide a very good fit to the empirical LEV function. The Weibull model provides the best
fit in the tail by a marginal amouni. We select either the Gamma or the Weibull models since both have similar p-
value and very closely match the empirical LEV function.

The parameter estimates and p-values for Quebec (PQ) - Drugs are given in Table 37.

TABLE 37
Conditional Marginal Models for Quebec - Drugs
Distribution Parameter Values xz p-value
Gamma &=1.042 1=1274 09320
Weibull 3=1.024 1=134.0 0.9293
Burr &=15.15 1=1,680 7=1.058 0.9005
Inverse Bure 7=0.3476 1=2002 ¥=2.475 0.8937
Generalized Pareto a=2.836 21=3,412 $=1.072 0.8983
Transformed Gamma a=1145 i=112.8 1=0.9443 0.8955

We can eliminate the Transformed Gamma, since it does not provide a better fit than the simpler model. The

remaining models are compared in Table 38.

TABLE 38
Empirical and Model LEV Furctions for PQ - Drugs
Upper Limit  Empirical LEV ~ Gamma Weibull Burr Inverse Burr  Generalized

Pareto

28 25.48 2542 2539 2547 25.23 25.47
37 32.59 32.55 32.51 3261 3236 32.61
50 4207 42.04 41.99 42.11 4189 42.11
61 49.40 49,38 49.33 4945 49.29 49.44
76 58.45 58.46 58.40 58.51 58.47 58.49
92 67.14 67.07 67.02 67.09 67.18 67.07
108 74.86 74.69 74.65 74.68 74.87 74.65
126 82.45 82.22 82.19 82.16 82.43 82.14
149 90.73 90.46 90.44 90.34 90.61 90.32
172 97.61 97.36 91.35 97.18 97.39 97.17
206 105.7 105.6 105.6 105.3 105.4 105.3
245 112.7 1127 1127 1124 1123 112.4
328 1223 1223 1223 1221 1218 1221
fo'e) 136.4 132.8 1327 134.0 143.1 133.7
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All five models provide a good fit to the empirical LEV function. For the sake of parsimony we select either the
Gamma or the Weibull models.

The distribution, estimated parameter values, and corresponding p-values for British Columbia (BC) - Other are

given in Table 39.
TABLE 39
Conditional Marginal Models for British Columbia - Other
Distribution Parameter Values 2 p-value
Gamma &=1.066 i=134.0 0.6610
Weibull 7=1031 i=144.5 0.6364
Burr 7=4.348 1=463.7 F=1131 0.6070
Inverse Burr 7=0.5366 i=1614 7=1.932 0.4197
Generalized Pareto &=6.313 1-66517 $=1.190 0.6290
Transformed Gamma &=2.065 A=42.16 7=0.6645 0.6648

We can eliminate the Inverse Burr due to the relatively low p-value. The Transformed Gamma is not much better

than the two parameter Gamma so it can also be eliminated. The remaining models are compared in Table 40

TABLE 40
Empirical and Modet LEV Functions for BC - Other
Upper Limit  Empirical LEV Gamma Weibull Burr Generalized

Pareto

10 9.754 9.712 9,693 9.740 9.754
30 27.52 27.35 27.26 27.44 27.48
50 42.83 4275 42,60 42.81 42.85
70 5578 56.16 55.96 56.09 56.11
95 69.51 70.47 70.24 70.14 70.14
125 8330 84.61 8437 83.93 83.89
160 96.51 97.69 97.47 96.63 96.58
200 108.5 109.1 108.9 107.8 107.7
255 1199 1203 120.1 1189 1188
310 127.5 127.7 121.7 126.6 126.6
o) 1455 1428 1427 150.0 149.2
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We select either the Weibul) mode] or the Gamma model, as they both fit the empirical LEV function quite well.

The parameter estimates and the model! p-values for Alberta (AB) - Other are given in Table 41.

TABLE 41
Conditional Marginal Models for Alberta - Other
Distribution Parameter Values 2 pvalue
Pareto &=6.349 2=1,165 0.9500
Gamma &=0.8765 i=2368 0.9801
Weibull 7=0.9188 A=2013 0.9774
Inverse Burr 7=0.3348 i=3281 y=2.246 0.8665
Transformed Gamma &=0.7760 1=270.0 7=1.086 0.9142

The Pareto and Inverse Burr both have a relatively poor fit in the tail of the LEV function, and the Transformed

Gamma is eliminated on the basis of parsimony. The remaining two models are compared in Table 42.

TABLE 42
Empirical and Model LEV Functions for AB - Other
Upper Limit  Empirical LEV Gamma Weibull
30 27.59 27.36 27.43
80 64.64 64.38 64.47
140 98.93 98.41 98.41
260 146.1 1436 143.4
360 169.3 166.4 166.2
o0 2014 2075 209.5

Both models over estimate the LEV function in the tail. We suggest taking either the Gamma or the Weibull as the
model of choice.

The parameter estimates and p-values for Manitoba (MB) - Other are given in Table 43.
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TABLE 43
Conditional Marginal Models for Manitoba - Other

Distribution Parameter Values 12 p-value
Lognormal f=4.238 5=1.265 07723
Pareto &=3.550 1=3475 0.9595
Log-logistic y=1.331 1=71.00 0.7972
Gamma &=0.8553 1=145.7 0.7028
Weibull =0.8906 i=1189 0.7892
Burr &=2.226 1=186.0 7=1.096 0.9426
Inverse Burr 7=0,5554 i=1217 F=1.701 0.9555
Generalized Pareto &=2.153 1=2199 7=1.128 0.9387
Transformed Gamma &=3.798 1=3.875 $=0.4216 0.9086
Transformed Beta a=0.9127 1=1239 =179 0.3819
7=0.5179

The Log-logistic, Burr, Inverse Burr, and Transformed Beta can be climinated as they have relatively poor fits in
the tail of the LEV function. We can also eliminate the Gamma mode] as it has a relatively low p-value, and we
can eliminate the Generalize Pareto as it does not give a better fit than the two parameter model. The remaining

models are compared via their LEV functions in Table 44.

TABLE 44
Empirical and Model LEV Functions for MB - Other
Upper Limit  Empirical LEV Pareto Weibull Burr Transformed
Gamma
15 14.03 13.92 13.81 14.06 14.11
30 26.19 25.94 2578 26.23 26.25
55 43.13 42.59 4257 42.99 42.91
80 56.63 5593 56.27 56.30 56.18
120 73.08 7232 73.32 12.46 72.45
145 80.85 80.28 81.64 80.25 80.36
330 115.2 1115 1129 111.0 111.6
o0 131.1 136.3 125.8 143.9 133.0
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The Transformed Gamma has the best overall fit, but the Pareto and Weibull are also good. The Burr has the
worst fit in the tail. We suggest the Pareto model as it has the highest p-value, but the Transformed Gamma is also
a good model.

The parameter estimates and p-values for Ontario (ON) - Other are given in Table 45 below.

TABLE 45
Conditional Marginal Models for Ontario - Other

Distribution Parameter Values %2 p-value
Gamma &=1463 1=172.9 0.8667
Weibull #=1.234 A=268.3 0.6879
Burr &=4.456 1=1709.7 $=1.393 0.6638
Generalized Pareto &=14.82 1=2,178 +=1.628 0.7090
Transformed Gamma @=2.469 A=71.62 +=0.7555 0.7312

The Gamma model has a much higher p-value than the other distributions, and also has as good a fit to the LEV
function as any of the other models. We select the Gamma model, and in Table 46 , the empirical LEV and the

model LEV are compared.

TABLE 46
Empirical and Model LEV Functions for ON -
Other

Upper Limit  Empirical LEV Gamma

135 1118 113.5
262 176.9 177.6
393 2141 2141
520 2337 2329
o0 2616 2530

The Gamma model under estimates the LEV function in the tail, but overall provides a good fit.

The parameter estimates and p-values for Quebec (PQ) - Other are given in Table 47.
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TABLE 47
Conditional Marginal Models for Quebec - Other

Distribution Parameter Values 12 p-value
Pareto a=166.6 1=35,810 0.7070
Gamma &=1.043 21=206.3 0.7656
Weibull $=1.022 i=2171 0.7453
Burr &=5.968 1=9921 y=1.102 0.8039
Inverse Burr 7=0.4404 =211 y=2.170 0.8894
Generalized Parcto &=10.26 A=1,820 T=1119 0.7782
Transformed Gamma &=1.324 1=1475 $=0.8606 0.7292
Transformed Beta &=1235 i=3049 7=1.952 0.8231
7=0.4973

We can climinate the Pareto as the p-value is relatively low. We can also eliminate the Inverse Bunr and the
Transformed Beta, as they both have poor fits in the tail of the LEV function. The Transformed Gamma is also
eliminated , since it does not provide a better fit than the two parameter model. The LEV functions of the

remaining distributions are compared in Table 48.

TABLE 48
Empirical and Model LEV Functions for PQ - Other
Upper Limit  Empirical LEV Gamma Weibull Burr Generalized

Pareto

20 19.16 19.19 19.16 19.26 19.25
45 40.98 40.90 40,82 41.08 41.05
80 67.96 6743 6730 67.64 67.57
105 84.69 83.92 83.76 84.05 83.96
135 102.1 1013 1012 101.3 101.2
175 1213 121.1 120.9 120.7 120.6
220 138.7 139.2 139.1 138.5 138.4
285 158.2 159.5 159.4 158.3 158.3
375 1778 179.0 1789 1775 177.6
520 1973 197.2 197.1 196.0 196.1
o0 2214 2153 215.2 221.5 219.9
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All four models follow the LEV function quite closely, with the Burr being the best in the tail, followed by the
Generalized Parcto. We select the Burr as the best model, and either the Gamma or the Weibull as the best two

parameter model.

3.5 The Grouping

In sections 3.3 and 3.4, the Chi-square p-value of each modet was given. In some cases it was surprising
how many distributions we were able to fit to the grouped data. We were also able to manipulate the grouping to
get a high p-value. Since the data has been discretisized it is subject to clustering, and one of the purposes of
grouping data is to overcome clustering. The question is; how far can we go? Briefly consulting some of the
research done in the area, it was found that the problem has not really been solved. Most of the literature we
consulted usually deals with equiprobable classes, and specific families of alternatives. Here we are dealing with
no specific alternative. We tried grouping the data into equiprobable intervals, with success in only 2 instances.
Kallenberg et al {4] suggest that for altematives with heavy tails, partitions with some smaller classes in the tails
may lead to an increase in power. In general they recommend trying § partitions with probability .05, .3, 3, .3,.05
or 6 partitions with probability .05, .15, .3, .3, .15, .05. We tried this type of grouping with British Columbia,
Alberta, Manitoba, and Ontario for the conditional models and only in British Columbia were we able to

successfully fit any model.
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4, CONCLUSIONS
The distributions that were fit to the data in sections 3.3 and 3.4 are summarized in Tables 49 - 52 below.

The summary of marginal models fitted to the data for Drugs by province is listed in Table 49.

TABLE 49
Summary of Marginal Models for Drugs
Province Distribution Parameter Values
British Columbia Gamma &=1139 1=102.5
Alberta Gamma &=1.050 i=1111
Weibull 7=1.031 1=118.9
Manitoba Transformed Gamma &=0.5630 i=184.6 T=1727
Ontario Gamma a=1143 1=126.0
Quebec Log-logistic ¥=2.177 1=89.48

It appears that the Gamma model is the most common model.

The summary of marginal models fitted to the Other category by province is given in Table 50.

TABLE 50
Summary of Marginal Models for Other

Province Distribution Parameter Values
British Columbia Transformed Gamma a=11787 1=2142 T=0.4851
Alberta Gamma &=0.9870 1=2048
Weibull 7=0.9872 A=2016
Manitoba Gamma a=1275 2=86.70
Weibull T=1161 A=115.4
Ontario Weibull T=1146 21=2611
Quebec Transformed Gamma a=17.65 1=0001222  7=0.2436

The Gamma is again a popular model.
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The summary of conditional marginal models fitted to the data for Drugs by province is listed in Table S1.

TABLE 51
Summary of Conditional Marginal Models for Drugs
Province Distribution Parameter Values
British Columbia Gamma a=1.004 A= 142.7
Weibull 7=1.001 1=143.4
Alberta Gamma &=1.073 i=1759
Weibull T=1.036 i=1912
Manitoba Transformed Gamma &=0.4011 1=1713.4 +=2.405
Ontario Gamma a=121 1=1217
Weibull $=1171 A=16L1
Quebec Gamma &=1.042 1=1274
Weibull 7=1.024 A=134.0

It appears that the Gamma and Weibull models are the most common models.

The summary of conditional marginal models fitted to the Other category by province is given in Table

52.
TABLE 52
Summary of Conditional Marginal Models for Other
Province Distribution Parameter Values
British Columbia ~ Gamma &=1,066 i=1340
Weibull 7=1.031 As144.5
Alberta Gamma &=0.8765 1=2368
Weibull 7=0.9188 1=2013
Manitoba Pareto &=13.55 i=3415
Ontario Gamma &=1.463 i=1729
Quebec Burr $=0.4404 A=277.1 7=2.170
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The Gamma is again a popular model.

Table 53 shows the maximum likelihood estimates for the number of claims in each province.

TABLE 53
Maximum Likelihood Estimates for the Number of Claims
Province Pop Pp Po] Py
British Columbia 0.00290 0.69797 0.08228 0.21684
Alberta 0.00404 0.90431 0.01617 0.07547
Manitoba 0.00137 0.71683 0.11218 0.16963
Ontario 0.00229 0.85072 0.04011 0.10688
Quebec 0.00358 0.65698 0.09347 0.24597

We note that the probability of no claims for either category is very small, and that a claim in Drugs with no claim
in Other is the dominant form of a claim. A claim in both categories is the next most popular form of a claim.

We were able to fit parametric models to the marginal and conditional marginal distributions of this data.
Some questions about the chi-squared test were asked but not answered. Due to the severe clustering of the data it
was sometimes necessary to reduce the number of groups to as few as 5 or 6. The guestion still remains, did we
"over group” the data, and hide the true underlying distribution, or worse yet, lead oursclves to believe that there
was indeed any such underlying distribution at all? Although Klugman's [5] FIT software has the capability to
group the data, we feel that there is certainly a market for a more sophisticated package that could greatly reduce
the amount of work required to group large data sets. Klugman's (5] FIT software was very fast, but as the author
states, it provides very little error checking.

We did not address the theoretical implications of our model with regards to the copula function. As
mentioned previously there are many unanswered questions about the efficiency and consistency of the model.

Referring back to equation (6) in section 3.1 we can see that, in general, it will not be easy to find the
moments of the distribution. An assumption of independence would facilitate, in most cases, the calculation of the

moments. Note that in either case it would not be difficult to calculate the cumulative distribution function.
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In sections 3.3 and 3.4 we follow the lead of Hogg and Klugman [3] and use the limited expected value
function to compare the best models we found. In most cases the LEV function did not supply a lot of new
information, rather we found it useful in eliminating many of the models which were not listed in the tables.

Making a quick comparison between the models for the conditional marginals and the models for the
marginals reveals that the Gamma and the Weibull are both very good models for this data. In most cases the
Gamma model provides the best fit to the data. In all but a few cases, if the Gamma model fit well then the

Weibull model would also fit well.
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Appendix I

The densities for seven of the fifieen distribution models used in Klugman's FIT {5} software are given in Table 54.

TABLE 54
Distributions
Distribution Probability Density Function
—~1
T(a+ 9yl %!"
Transformed Beta Sx)= (at oy

T Ty +x7)*HT

. fxy= INa+ t),lalrf"1
Generalized Pareto (O (DAs 0T (@T(HA+ 007

al®
Pareto )= A+ x)a+l

rx ™
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Inverse Pareto (Aen) T+
ra r-1

__arX
Burr f(X)_(ly+x7)a+l

y, -l
A
Inverse Burr f(x)=—T%

Log-logistic Sy=L

All of the densities in Table 1 are special cases of the Transformed Beta distribution. All parameters must take
positive values and the support is always positive as well. All unused parameters in the less general cases are set

equal to 1.
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The remaining eight distributions used in Kiugman's {5) FIT software are listed in Table 55.

TABLE 55
Distributions
Distribution Probability Density Function
@127 FIN
Transformed Gamma Jx)=

Inverse Transformed Gamma

Gamma

Inverse Gamma

Weibull

Inverse Weibull

Lognormal

Inverse Gaussian
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r/l’e—('“x)r
f(x)='——xm—‘

F(x)= ] {_ (lnx-y)z}
x

r T 22
172 5
f(x)=(_l§] exp[— l(x—/;) }
2 2xu

The first two distributions, the Transformed Gamma and the Inverse Transformed Gamma, are the general case of

the 4 distributions which follow them. All parameters must take positive values, with the exception of the

Lognormal distribution, where u can be negative. Once again all support is positive.
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