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Abstract 

Two-dimensional data can be smoothed by minimizing a combination of the sum of 
weighted absolute deviations from initial estimates and the sums of absolute values of 
differences in the two directions. The techniques of parametric programming make it 
feasible to explore the different results obtained by varying the emphasis given to fit vs 
smoothness. 

I. Introduction 

In 1978 Donald Schuette suggested a variation in the familiar Whittaker-Henderson 
method of graduation, replacing squares by absolute values in the measures of both fit and 
smoothness and finding the solution via linear programming. Because the method is 
described very briefly in [London, 1985], which is the official syllabus of SOA Course 165, 
many actuaries will recognize the name; but probably few have studied it carefully. 
Standing in the way of wider practical use of Schuette's method are a lack of appreciation 
for the rationale and (possibly more important) perceived computational difficulties. 
Recent work in parametric programming has made it possible to streamline the 
computations, so that one can solve completely the Schuette problem (that is, generate all 
the critical values of the control parameter as well as the vectors of graduated values) as 
quickly as one can generate solutions to the Whittaker problem for a few different 
parameter values. 

Generalization to bivariate graduation initially appears to be straightforward, but 
some interesting complications arise. Given two-dimensional initial estimates uij ,  we seek 

vii to minimize 

M(a,~) } 

where A~ represents difference in the "vertical" direction (for example, 

A~ Vl l=  v21 -- Vll ) and ~ represents difference in the "horizontal" direction 

(3 Vll = v12 - Vll)" In practice we rarely begin with specific values for a and ~i rather, 

we use the form above as an aid in searching for a good graduation. Since the minimization 
can be viewed as a linear programming problem, the optimal solution for any particular 
(a,~) will occur at one or more "basic '~ solutions, of which there are only finitely many, and 
the positive quadrant in the (a,~) plane is divided into regions in which the optimal 
graduation is constant. Thus we shift the emphasis of the search: instead of beginning with 
(off) and looking for optimal vff we begin with vii and ask for what set of (o,/~) the 
indicated graduation is optimal. This subtle change turns out to be remarkably fruitful. 
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The choice of absolute values in the measure M has been discussed at length. The 
strongest competitor, of course, uses squared deviations for the terms relating to fit, and 
squares of differences in both directions - -  two-dimensional Whittaker graduation. 
Compared to this It-measure, the/r-measure used here is more robust: if some of the uij 

have values out of line with others, then measuring fit by absolute deviation rather than by 
squared deviation will result in a graduation that is less influenced by those outl/ers. 
Specifically, if one of the uij is changed but does not cross the graduation curve (so that the 

sign of (vi i-  uij ) is not changed), then the graduated values do not change at all. 

There are other candidates for robust measures of fit (see, for example, Klugman's 
discussion of [Schuette, 1978]), but they seem to present considerable computational 
difficulties. A final advantage of the Ii method (which will not be demonstrated here, but 
see [Koenker and Bassett, 1978]) is the prospect of providing estimates of the likely spread 
of values. A single graduation by the 1~ method corresponds in a natural way to a median 
estimate; by changing the fit measure we can obtain, say, 25th and 75th percentiles. 

2. Mecl~ani~ of the graduation 

In this section we present the parametrie-programmingmethod of determining the 
region in which a particular solution is optimal, and of proceeding from one optimal 
solution to an adjacent one. We will ignore, for the moment, certain complications that 
can arise. It may be helpful to follow the very simple example presented in Exhibit 1 as 
the needed quantities are defined. A more general discussion of parametric programming 
can be found in [Guddat et al., 1985]. 

We begin with initial estimates u/j(1 _< i _< m, 1 _< j_< k). Set mk = n, the number of 

"coordinate" variables, and N = n + k(m-z) + ra(k-- 0. Define an N~n design matrix D 
made up of the n,,n identity matrix, followed by the di'fferencing matrices kiz and ~ ~. 

At a "basic" solution to the problem (in the linear-programming sense) some observed 
values are matched, some differences vanish, and the remaining quantities can be expressed 
in terms of the basic variables. Let D 1 be the nonsingular submatrix made up of those 

rows of D corresponding to the basic variables, and D 2 the (N-n)*n matrix of remaining 

rows. Define a column vector b whose elements are, first, the weights toij , then a for each 

of the k(m-z) vertical differences, and finally/3 for each of the re(k-- 0 horizontal 

differences. Divide b into vectors b I and b 2 just as D was divided. Let D2h be the matrix 

obtained by multiplying each row of D 2 by the appropriate factor among 

~ij sgn (~qj- ~i} 
sgn (A| z 

and g sgn (A¢ vi, ~ . 
(We assume for now that none of the terms above vanish. Degeneracy is a problem that 
will be treated in Section 3.) Finally, let y be the row vector obtained by summing the 

columns of D ; .  The elements of y give those terms of M that do not vanish near the basic 
t 

solution, each with appropriate sign, as functions of the coordinate variables vii. 
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Right-multiplication by D11- gives the same terms but now as functions of  the basic 

variables. 

If one of the basic variables increases (resp. decreases) while the others are 
unchanged, the resulting change in M is proportional to the appropriate element of b 1 ( w .  

-1 
or aor/~) ,  plus (resp. minus) the corresponding element o f y - D  1 . For a particular (a,B), 
M will be minimized at the basic solution in question provided a//of these changes are 
non-negative; that is, coordinate by coordinate, 

D "t - bl  T - y "  1 > 0 .  
We have thus a set of 2n linear inequalities in (aft) ,  together with the constraints a, fl _> 0. 
The region in which these are satisfied simultaneously is either the empty set or a convex 
polygonal region in the (aft) plane. If the number o f  variables is large, determining the 
region may be difficult. Some suggestions are made in Section 4. 

Next, define another column vector m of current values (ie vii-  uijor A~ vijor 

A(  vi; , which must therefore have O's in the "basic" rows. Note that all the information 

about a particular basic solution is conveyed by the matrix [D. DiL:m:b]. Imbedded in 

D. Di  I is an identity matrix, marking the basic variables; the remaining rows D 2. Di  z give 

the non-basic variables in terms of the basic ones; and we can develop the vector y.  D i  I by 

multiplying the ~h row of D. Di I by bjsgn(m~ - -  with the understanding that sgn(0) = 0 

and then adding each column. 

In particular, if D 1 = InK n then: 

m = [0,...,0,A~ Ull, . . . ,~ ~" ~m:k__C] r 

vii -- uij 
b 1 = [Wll,...,Wmk IT and 

(the no-graduation case) 

The resulting inequalities are all of the form -wij < aij a + bij ~ < wij , where the a i j  and 

bij  are algebraic sums of the binomial coefficients of orders z and ~ respectively. It is 

obvious that (0,0) satisfies each of these inequalities, as do (a  O, O) and (Oflo), where ~0 = 

min{wi./[aij[) > 0 and dO = min{wij/[bij[} > O. Thus the no-graduation solution is 
optima~in a region which includes a nontriviai neighborhood of (0,0). In the 
one--dimensional case, Schuette gave an explicit formula for the first critical value of the 
smoothing parameter, below which the optimal solution is no-graduation. To date we 
cannot give an analogous formula in the two-dimensional case. It can be shown that  under 
some modest assumptions the region is bounded; it is not necessarily a triangle. 
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Transition from one basic solution to an adjacent one is effected by a single simplex 
pivot, as follows. In the process of determining the region in which a particular basic 
solution is optimal, we must associate with each actual edge of the region one of the 2n 
inequalities. This singles out a particular variable to leave the basic set, and tells us. 
whether to increase it or decrease it in order to cross the edge. Suppose that a certain edge 
is defined by the constraint corresponding to increasing the rth basic variable z r (which 
may be some coordinate variable vijor some vertical or horizontal difference). The row of 

-1 
D. D 1 corresponding to z r has all O's except 1 in the rth column. The other elements in 

the rth column tell us how the other variables will change as we change z r but hold the 

other basic variables fixed. Some of the non-basic variables may increase, others decrease, 
and some may remain unchanged. (All the other basic variables have O's in the rth column 

of D-Dl"t.)_ We need to increase z r until some currently non-basic variable reaches its 

basic value. 

Suppose a particular nonbasic variable Ys has a positive entry in the rth column of 

D.D11_ and a positive entry in m. That is, Ys is already above its basic value and will only 

increase further as z r is increased. We need to find a nonbasic variable such that the ratio 

of the m-coordinate (ie the current value) to the entry in the rth column of D. D1 t is 

negative, and if there are several, choose the one with the smallest absolute value to define 
the entering basic variable. If the constraint had involved decreasing z r then we would 

look for a minimum positive ratio m./ (D.  D it). r" (A tie will lead to degeneracy at the 

new basic solution.) Once the entering variable is selected, we do a simplex pivot, using 

elementary column operations so that the row of the new [D. D ia:m] corresponding to the 

entering variable has all O's except a 1 in the rth column. (The vector b does not change.) 
The only difference between this and the standard simplex method is that we must 
determine the appropriate sign for the ratio at each pivot. 

3. Degeneracy/ 

It can happen at a basic solution that some of the non-basic variables take on their 
basic values; that is, that M has more than n vanishing terms at that solution. The terms 
corresponding to non-basic variables that happen to vanish will increase (if they change at 
all) with both increases and decreases in the basic variables, instead of increasing with 
some changes and decreasing with others. We can alter the inequalities to reflect this, but 
the altered set will not necessarily suffice for optimality. We would need to generate every 
possible basis among the variables that take on their basic values, generate 2n inequalities 
for each basis, and combine them (some inequalities will appear in several sets) to form a 
defining set of inequalities. 

In the one--dimensional case degeneracy is a mere nuisance: it arises when by 
happenstance some of the initial values lie on a small-degree polynomial curve, and it can 
be avoided by "dithering" the initial estimates (adding or subtracting small amounts that 
will be lost in round-off). In the two--dimensional case the problem is more severe, since 
as originally stated there are systemic dependencies among the variables. For example, 
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when both a and ~ are sufficiently large the optimal solution has all differences vanishing, 
and a few of the initial estimates matched. Exhibit 1 is atypical in exhibiting degeneracy 
only at this "last" stage, and having only one extra 0 in the final m vector. In what is still 
an impractically small example, m = k = 5, z = ~ -- 2, the last stage has at least 33 
variables at their basic values (all 30 dif/erences vanishing, and three of the initial 
estimates determining a plane), of which we require only 25 for a basis. Moreover, there 
will be degeneracies "earlier" as the vanishing of certain sets of differences will force the 
vanishing of others. 

Fortunately, there is an easy way around this difficulty. Instead of dithering the 
initial estimates uij , we can dither the design matrix, by adding to each initially nonzero 

entry of the original D 2 submatrix a random quantity e, say, uniformly distributed on 

10"-5,+10-5). (Remember that the entries in the initial design matrix are integers). 
at that means is that we will be minimizing not the original M but a slightly different 

function. In effect, we "trick" the program into running through different bases for the 
same solution. This is illustrated for Exhibit 1. For reasonable-sized examples, some 
investigation will be required, to make sure that the small changes introduced do not 
accumulate to significance. It may be reasonable to do the longer analysis for a few 
solutions among which one finally chooses the desired graduation. 

4. De t emi~ in9  the region, ~ h w  the numbr f  of ~ariables is large 

In Exhibit 1 it was possible to write down the eight inequalities generated at each 
stage and reduce them by hand to a minimal set, one for each edge of the region. If the 
number of variables is large we need to automate this process. In addition, we need to 
associate with each edge the basic variable that will change (and in which direction) as we 
cross that edge, in order to be able to go easily to an adjacent solution. A method that 
seems promising is to reformulate our problem into a one--dimensional parametric 

I I  I !  programming problem. We illustrate this at the initial , no-graduation solution. It can 
be applied beginning with any basic solution, though it does help to start at one known 
edge. 

We ask, in what region (that is, for what values of a and fl) is the no-graduation 
solution optimal7 We know that it is optimal at (0,0). Moving along the w-axis, we 
formulate the one-climensional parametric programmingproblem: find the interval in 
which the no-graduation solution minimizes M(a,0). The mechanics described in Section 2 
apply perfectly well; we simply arrive at a system of inequalities -w iJ  -~ ai3 ~ - < wiJ ' which 

are clearly satisfied as long, and only as long, as a < min{wij/I  aijI } = a 0 . Even if n is 

large, it is not hard to pick out the smallest among a set of u numbeis, and to keep track of 
the indices (i,3) that give rise to it (assuming it is unique). 

So we know that one edge of the region of optimality is (0,0), (a0,0), and we know 

that the adjacent edge lies along the line ai3~ + b i / =  wij sgn(aij ). We parametrize this 

line as ( s  0 - t. b i j / a i j ,  0 ,  and ask for what interval of (non-negative) t values the 

no--graduation solution is optimal for M(a 0 - ~. b i j / a i j  , t) . Again, viewing this as a 

one-dimensional parametric programming problem leads us easily to a maximal t 1 where a 

particular inequality becomes an equality. (~0 - t l b i j / a i j '  tl) is a vertex of the region of 
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optimality, and we move along the next segment as far as possible. Repeating this 
process,we eventually come to a vertex on the/~-axis, which can only be (0,80); moving 

down the axis to (0,0) completes our circuit of the region of optimality. 

We do not yet have a program running to accomplish this part of the solution. 
Clearly, considerable care will be needed to prevent missingthe completion of a circuit 
because of round-off error. Some "subroutines" that havebeen used on somewhat more 
complicated examples than the one in Exhibit 1 should form the foundation of a more 
complete program. 

5. Mot'ing toward a good graduation 

For examples of even moderate size, it may not be practical to find the complete set 
of optimal solutions. The natural goal, of course, is to find (and justify) a good graduation, 
so we may be content to find a collection of solutions among which we can reasonably 
expect to find one that is satisfactory. This section presents one method by which this 
could be done. 

Suppose we have an a prior/estimate for suitable values of a and ~, or at least an 
initial estimate of the ratio affi. Carry out a one--dimensional routinegenerating the 
critical values and optimal solutions for M ( t ~ t ~ ) ,  0 < t < ®. Note a few good candidates, 
and find the regions of optimality for each. If nothing really satisfactory is found - -  or if 
the regions seem to be very small - -  one can proceed along one or more lines transverse to 
the first one. 

For truly one-dimensional problems, there exists some quite fast software that not 
only generates the critical values of the parameter, but graphs the graduated values at each 
stage. The graduator can watch as the process develops, and stop when a suitable balance 
between fit and smoothness is attained. (In fact, for this reason Keenker suggests that it 
may generally be better to start with one of the existing good algorithms to obtain the 
/t-fit polynomial (all differences vanishin!g), then proceed downward by parametric 
programming through smaller values of the smoothness parameter. Generally one will stop 
wall before the no--graduation limit is reached.) Analogous software displaying 
two-dimensional solutions would certainly facilitate the hunt for a suitable graduation, but 
may be beyond our currect capabilities. 
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Exhibit 1 

The design matrix D = 

. 

1 0 0 0  
0 1 0 0  
0 0 1 0  
0 0 0 1  

-1  0 1 0  
0 - 1  0 1  

-1  1 0 0  
0 0 - 1 1  

Of necessity, ¢ = z =  1, so n = 4 ,  N = 8 .  

The basic variables are vl2, v21, Alvj~ and A.4vu. Near this point we have M = 5[ vlr--31 + 

- ~vtr-v21+A~v12] • Next, 

y = [ 2-a, o, ~+Z, 3-8] 
y.D~ I = [S-~-~,~+Z,3-Z,~2] 

The basic solution is optimal provided bT1 • y. DI1 > 0 ie 

s~(s-a-E)>o 
7~(~+~)~o 

• ( a - 2 1  _> 0 

[D. Dl - l :m:b  ] = 

1 0 0 - - 1 : 2 : 2  
1 0 0 0 : 0 : 5  
0 1 0  0 : 0 : 7  

-I 1 0 
0 0 1  0 : 0 : a  
0 0 0 1: 0 : ~  
1--1 1 0 : - 2 : / ?  

pivot 

0 1 0 - - 1 : 4 : 2  
1 0 0 0 : 0 : 5  
0 1 0  0 : 0 : 7  
1 0 1 0 : 1 : 3  
0 0 0 1: 0:c~ 
0 0 1 0 :  0 : a  
1--1 0 l : - - 2 : f l  
1 - - 1 1  0 : - - 2 : f l  

The complete solution divides the positive (aft) quadrant into the seven regions shown in 
Figure 1. 
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FIGURE 1. REGIONS OF OPTIMALITY 
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The "graduated" values in the several regions are: 

"Dithering" the design matrix: 

~D = 

i 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

-.99997 0 .99995 0 
0 -1 .00009 0 1.00008 

--.9999,5 . 9 9 9 9 9  0 0 
0 0 - .99998 .99991 

splits region G into two parts ~long the dotted line, and causes insignificant changes in the 
graduated values and regions of optimality. For example, the vertices of the regions of 
optimality, under dithering as above, are: (2.00006,0), (2.99976,0), (2.49995,0.49990), 
(0,2.00010), (4.50014,2.50013),(0,3.00027), (1.99980,5.00041), to five decimal places; these 
agree with the original vertices to three decimal places. There are similar fourth- and 
fifth-place d/fferences in the "graduated" values. 
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