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interest rates from 1953 to 1992, and thedaily rates from 1981 
to 1992 for various fOrlS of chaotic b~hRvior. The primary 
analysis was in determining the Burst Exponent by the use of 
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consider the efficiency of the TrensuryMarket. This paper also 
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Finance Theory, Macroeconomlcs, end Actuarial Science. 
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Predicting interest rates 0r the direction of their movement 

has been and continues to be an ongoing problem in the financial 

world. This paper takes a hard look at that problem from the 

perspective of Chaos. This presentation does not Include 

extensive detail on the fundamentals of Fractals in Chaos Theory, 

which is quite adequately done in [I],[2], and [3]. 

The outline of this paper is as follows: 
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Section 1. Description of D~ta. 

Section 2. Discussion of Deterministic Chaos and analysis 

of ninety day daily interest time series. Also 

contained is a discussion of possible hidden cycles in 

this data. 

Section 3. Discussion of Fractional Brownian Motion and the 

Hurst Exponent. 

Section 4. Reecaled Range Analysis 

Section 5. Empirical Results. 

Section 6. Conclusions and Further Research. 

Section i. Description of Data. 

We empirically examine the following four time series in 

this paper: 

A. The 90 Day T-Bill Daily rates from May i, 1981 through 

April 30, 1992 (a total of 2,704 data points). These rates are 

at bond equivalent value, allowing a proper comparison with the 

ten year rates. See [4]. 

B. The 90 Day T-Bill Monthly rates from April 30, 1953 

through December 31, 1992. These rates are also at bond 

equivalent value. 

C. The 10 Year T-Note Daily rates from May 1, 1981 through 

April 30, 1992. 
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D. The 10 Year T-Note Mon~hly rates from April 30, 1953 

through December 31, 1992. 

The source of these rates ;are [5], [6], and [7]. 

The graphs of the time serles A, B, C, and D, along with 

their first differences, denoted 6A, &B, 8C, and 6D are displayed 

in Figures 1 and 2. 

Section 2. Deterministic Chaos 

In deterministic chaos, no;nmally one takes a time series 

X(t) and embeds the series into a low dimensional vector space of 

dimension m by examining vectors of the form 

(X(t) ,X(t+~) ,X(t+2T), .... X(t+ (m-l) ~). 

where ~ is some increment in time. Let this vector be denoted 

x(t}. Next, one can examine the behavior of the path or orbit 

that these vectors take in the vector space as t changes. If the 

dynamic system that generates X(t) converges, the orbit will 

spiral to a point. If the dynamic system is periodic, the orbit 

will form a closed path. If the dynamic system diverges to 

infinity, the orbit will spiral out to infinity. Now, some 

dynamic systems will not converge nor diverge, yet appear to 

generate random nnmhers. The orbit traced out is called a 
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strange attractor. Here the o]~it follows a "strange" trajectory 

that never crosses back over itself. However, ~h4, trajectory 

could be contained in a low dimensional vector space. Though the 

trajectory may never repeat a path, different times on the 

trajectory may be very close to other points and they track near 

one another for a period. If this is the case, one could predict 

several values into the future, based on the performance of these 

neighbors. See references [8] through [20], for more details. 

There are several algorit.tms.~at allow time series analysis 

to see if the data follows a low dimensional strange attractor. 

Examples include the determination of the Lyapunov Spectrum, the 

Correlation Dimension, or other various predictor models. The 

Lyapunov Spectrum, if determined, summarizes or classifies the 

strange attractor. The information dimension is derived from the 

Lyapunov Spectrum. The information dimension gives a rate of 

loss of information. This rate of loss is used to determine how 
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far into the future one can predict from a strange attractor's 

orbit, before information loss dominates the prediction process. 

In trying to determine the Lyapunov Spectrum, for 6A, the 

algorithms would not converge, for m < 10. The calculation time 

for higher m was prohibitive and hence was not considered. See 

[8], [9], [10], [11], [14], and [15] for further discussions. To 

determine the correlation Dimension mentioned in [15], and [21], 

let N(r) be the n-~her of pairs of vectors (x(i),x(j)] whose 

Euclidian distance is less than r. The Correlation Dimension 

will then be 
in (N(r)) 

lim 
r->0 in(r) 

If this converges, the data has a scale invariance. Time scale 

invariance is discussed luther in Section 3. The predictor 

models provide measures of ability to predict from the orbit. See 

[12], [13], [16], and [17]. With these models, when looking for 

low dimensional orbits, one usually creates some statistic, such 

as the Correlation Dimension on the trajectory and examines that 

statistic as one increases the dimension m. If the orbit can be 

contained in a low dimensional vector space, the statistic will 

start at some level, for m = I, and rise or fall as m increases. 

At some point, as the dimension m increases, the statistic will 

reach a plateau. After reaching this plateau, an increase in m 

produces little effect. 

Studying 6A, none of the various deterministic chaotic 

algorithms, referenced above, reach a plateau. Interestingly, 
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the highest correlation Dimenslon obtained is O.O6 for ~6. 

However, as m increases past 6, the Correlation Dimension drops 

and never regains that level. When we examine 6A, by other 

methods later, we will compare to this number. The practical 

result of the failure of these statistics is that there is little 

hope to obtain a deterministic model that can predict interest 

rate changes within ~A. 

Analyzing the power spectrum of the time series 6A for 

cyclic behavior, there appeared several high frequency cycles. 

However, autocorrelation analysis suggested no revelevant cycles 

at these frequencie?. Mandelbrot and Wa11Is mentioned this 

problem in [22]. Also, an overdetermined autoregressive model, 

constructed from all 2703 autocorrelation coefficents for 6A, 

produced poor predictions for t~e prediction period chosen (May 

1992). The model predicted that rates would rise when they 

actually dropped and vice versa. The maximum error was 12 bp~ 

the minimum error was -23bp. A~ain, for comparison, the 

autocorrelations for 6A, ranged from -.07 to .12. 

Attempting to predict interestrates by using a Neural 

Network model, the predictive ability of the model degraded as 

the learning time increased, when processing the daily time 

series from 1981 through 1992. This model consisted of the 

current ninety-day rate as the output, and the entire previous 

three days yield curves for input. 
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At this point any confidence in obtaining a cyclic or 

deterministic model for the prediction of &A turns to the 

possibility of noise. This could be also reasoned from the 

Efficent Market Hypothesis. If a method existed that predicted 

interest rate changes, the forecast would create an arbitrage 

opportunity and the predicted value would immediately be 

reflected in the current rate. This correspondes to Maurice 

Kendall's results in trying to predict how the stock market moved 

in his 1953 research. See [36] for a brief summary of his 

results and a discussion of the Efficient Market Hypothesis. 

The method used to analyze the data for noise is called 

Rescaled Range Analysis (R/S Analysis). Rippi originally 

developed this technique for reservoir design, and Harold Edwin 

Hurst improved it for his analysis of the Nile River and its 

water storage problems. Mandelbrot and Van Ness in [23] and 

Mandlebrot and Wallis in [22], [24], [25], [26], and [27], 

generalized these methods in developing Fractional Brownian 

Motion. We will use Rescaled Range Analysis and the Hurst 

Expontent as a possible measure of the efficiency of the Treasury 

Bill and Note Market. 

Section 3. Fractional BrownlanMctlon 

In 1827, Scottish botanist Robert Brown described the motion 

of pollen under a microscrope as a physical and not a biological 

phenomenon. Now, we refer to this activity as Brownian motion. 
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Beginning in 1905, Albert Einstein and others used Brownlan 

motion to model diffusion at an atomic level. Later in 1923, 

Norbert Wiener completely characterized the process, which we now 

term a Wiener Process. Brlefly, one dimensional Brownish motion 

exists when the incremental change in position of some particle 

at time t from time t O is dlrectly proportional to a normal 

Gaussian random sample • times the absolute value of the 

difference in time It-tol to the H'th power where H = %. That 

is: 

BH(t) - B H ( t O )  : • I t -  t O I H (3 .1 )  

Brownish motion exhibits several properties of interest 

here. One such property is that the motion has average 

increments of zero. This implies that Brownian motion through 

time will on average return to the starting position of the time 

series. This is similar to the concept of mean reversion. 

Second, the variance of the increments will diverges with 

time. See [28] for a more extensive presention of these two 

properties. 

Third, Brownish motion is time scale invariant. Mandelbrot 

described this property in [29]: 

"To define a scallng noise in intuitive fashion, 
let us recall that any natural fluctuation can be 
processes to be heard--as implied by the term noise. 
Tape it, and listen to it through a speaker that 
reproduces faithfully between, say, 40 Hz to 
14,000 Hz. Then play the same tape faster or slower 
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than normal. In genezal, one expects the character 
of what is heard to change considerably. A violin, 
for example, no longez sounds like a violin. And a 
whale's song, if played fast enough, changes from 
inaudible to audlble. There is a special class of 
sounds, however, that behave quite differently. 
After the tape speed is changed, it suffices to 
adjust the volume to make the speaker output 'sound 
the same' as before. I propose that such sounds or 
noises be called scaling." 

The last property that we will discuss, is that Brownian 

motion involves no memory effect. One incremental change is 

independent of another. 

Mandelbrot, Van Ness, and Wallls generalized Brownian motion 

in formula (3.1), to Fractional Brownian motion, denoted FBM, 

where H could take On values between 0 and I inclusive. 

Mandelbrot called H the Hurst Exponent in honor of Harold Hurst's 

work. 

FBM also has three of the above properties, namely average 

zero increments, diverging variance, and time scale independence. 

However, FBM has a memory effect which depends on the value of H. 

When H = %, you just have Brownian motion. When ~ < H ~ 1, FBM 

will be persistent. That is, if the trend has been positive in 

the immediate past there is a high probability that it will 

continue to rise. If the trend is negative, it will tend to 

continue to fall. When 0 ~ H < ~, FBM will be anti-persistent. 

That is, if the trend has been positive in the immediate past 

there is a high probability that it will become negative. 

Conversely, if negative, it will tend to reverse to a positive 

direction. Mandelbrot coined the this persistent behavior as the 
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Noah and Joseph effects. See [30] for his discussion of the 

Joseph and Noah effect, as they relate to this long term memory 

effect. 

The long-term memory can be measured by the long-term 

correlation which is 2 (2H-1) - 1. So if H=.5, the correlation is 

O. This type of correlation is not related in the sense of 

autocorrelation, when one term is related to another term, but 

this correlation is long-term, spanning many periods. See [31]. 

Feder generated in [32], taree examples of FBM with Hurst 

exponents H at 0.5, ~0.7 and 0.9, by using the followlng approach: 

"Let BH(t ) represent a FBM dependent upon Hurst 
Exponent H. Let M represent the memory of the 
process. Let t--nT, where • represents the smallest 
time interval of the process. Let {.el} with 
i = 1,2,...,M,..., be a set of GaUSslsn random 
variables with unit variance and zero mean. Let the 
discrete fractional Brownlan increments be generated 
as follows: 

BH(t ) - BH(t -1  ) = 

n - H  

r (H+%) 

n t  

. Z (i)~-%#(l+n(M+t)_i) + 
1=1 

(3.2) 

n(M-I) 
Z 

i=1 
((n+i) B-% - (1)B-%)0(l+n(x_l+t)_i)] 

Let BH(0 ) be equal to the most current value of the 
time series that is being modelled. By using the above 
generation of the increments, you can cumulate the 
values and generate the Fractional Brownian series 
BB(t  ) . "  
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Feder's figures 9.4 and 9.5 are dupllcated i n  Figure 3. 

Feder mentions that formula (3.2) works best for values of H 

near 0.5. Feder also states that Mandelbrot's method in [33] is 

faster than (3.2). 

To calculate an H value for a specific time series, one must 

conduct Rescaled Range Analysis on the series This analysis is 

designed to examine the behavior of the time scale invariance. 

Section 4. Rescaled Ranqe Analysis 

Let X(t) be a stationary time series with T values. Assume 

that the time series is uniformly spaced in time from t = 1 to 

t - T. Define the cumulated time series X*{t) as follows: 

t 
x * ( t )  = ~: x(u)  

u -1  
(4.1) 

Xe(t) correspond to BH(t ) in Section 3. Now s-lx*(s} is the 

average of the first s values and s-l[x*(t+s)-X*(t}] is the 

average of the values of X(t) between time t+l and t+s. 

t+s [ t+s ]2 
Define S2(t,s) = s -I Z X2(t} - s -I Z X(u) (4.2) 

u=t+ 1 u=t+ 1 

S2(t,s) becomes the sample variance of the values of X(t) 

between time t+l and t+s. 
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Let xt,e, u be defined as: 

u 
X t,s,u = X*(t+u) - X*(t) - 

s 
for 0~u~s. 

[ X * ( t + s )  - X * ( t ) ]  ( 4 . 3 }  

x t,s,u is the cumulated departure at time t+u from the 

average between time t+l and t+s. 

Define R(t,s) as follows: 

R(t,s) -- max 
O<U~S 

u 
(X*(t+u) - xe(t) - -[xe(t+s)-xe(t) ] ) 

s 

mtn 
O~u~s  

u 

{ X * ( t + u )  - X * ( t )  - - [ X * ( t + s ) - X * ( t ) ] )  
s 

or equivalently 

4 4 . 4 )  

R ( t , s )  . . . .  ( x t , s ,  u ) - a i n  ( x t , S ,  u ) ( 4 . 5 )  
O~u~s O~U~S 

R(t,s) is the range of the cumulated departure between time t+l 

and t+s. . 

Define the R/S statistic as 

R/S(t,s) -- R(t,s)/S(t,s) 44.6) 

Mandlebrot and Wallis in [27], showed the following method 

of determining H with Rescaled Range analysis was robust: 
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Create a collection of R(t,s)/S(t,s) for a various s over 

different times ts,i, where {ts,i} will vary based on s. Then 

find the expectation of these R(ts,i,s}/S(ts,i,s } for each s. 

Let this expectation be denoted E[R/S(s}]. If 

lira s -H E[R/S(s} ] is finite and positive 
s->4o 

then the time series satisfies the s H law in the mean. Next, 

estimate H to be In(E[R/S(s)])/Log(s), by doing a linear 

regression between In(s} and In(E[R/S(s}]}, assuming a zero 

intercept. Mandlebrot and Walls and Feder in [27] and [34] go 

into further detail on the analysis of the results of the 

regression. This type of analysis is of data differs 

substantially from that of standard ARIMA analysis. In ARIMA 

analysis the statistician is attempting to split the behavior of 

the time series into a cyclical component and into a noise 

component. The chaotic approach using in this paper, however 

treats the data holistically in that it does not try to create 

this distinction. 

Mandlebrot and Wallis in [22] and [26], and Feder in [35] 

discusses that values of In(E[R/S(s)]) have certain properties 

based on the location of ln(s). When s < 20, the values for 

In(E[R/S(s)]) are considered random and should not be taken into 

consideration, when doing the regression analysis. Mandlebrot 

argues that this is because that for s < 20, the various 

statistics generated for the derivation of In(E[R/S(s)]}, have 

Student t distributions, and the s H Law of the Mean begins to 
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show its influence at m-20 due to the Law of Large Numbers. The 

second region is the actual region that reveals the long term 

correlation or memory effect. Mandlebrot hypothesized that this 

was for values of s between 20 and i0,000. However, Feder in 

[35] observed that the memory effect ended when s was near 4,000. 

For s above this upper bound, the FBM, returns to pure Brownian 

motion with H=%. 

Section 5. Empirical Results 

To convert the~tlme series, &, B, C, and D into stationary 

time series, we first obtain the sample means and variances for 

each of the time series. Next, we derive the time series A', B', 

C', and D', by subtracting the sample means from each value in 

the respective time series and dividing those results by the 

respective sample standard deviations. Taking first differences 

produces the time series &A', 6B', 6C', and 6D'. 

Mandlebrot and Wallis in [22], discusses the choice of the 

various s and t to calculate E[R/S(s)]. Roughly following their 

approach, the list of s for daily time series analysis was {3, 4, 

5, I0, 15, 20, 25, 30, 45, 50, 60 75, i00, 200, 220, 300, 600, 

900, i000, 1800, 2700}. For the s values from 3 through 100 the 

list of t was {i, 100, 200, 300, ..., 2600}. For s = 200, t was 

{i, I00, 200, ..., 2500}. For s - 220 and 300, t took on values 

(I, 100, 200, ..., 2400). For higher s < 2700, t was (1, 100, 
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200, ..., 2700 -s). For s = 2700, t was singularly (i). 

The list of s for the monthly time series analysis was (3, 4, 5, 

I0, 15, 20, 25, 30, 45, 50, 60, 75, I00, 200, 220, 300, 450}. 

For s from 3 to 25, t was (1, 25, 50, ..., 450}. For s = 30 to 

50, t was {i, 25, 50, ..., 425}. For s - 60 and 75, t was (I, 

25, 50, ..., 400). For s = i00, 200, and 300, t was 

(I, 25, 50, ..., 475-s}. For s = 220, t was [i, 25, 50, ..., 

250}. Finally, for s - 474, t was taken as 1. The only 

deviation from their method was the choice of t = 220. This 

value was chosen because earlier spectral analysis of the time 

series pointed to a possible hidden cycle of 220. This was later 

discredited, as noted in section 2. However, the value for t was 

not removed from the R/S analysis, and should not have any 

effect. 

Tables 1 through 4 show in(s) and In(E[R/S(e}] that are 

generated from the above values of s and t. 
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S 

3 
4 
5 

10 
15 
20 
25 
3O 
45 
5O 
6O 
75 

IO0  
200 
22O 
300 
600 
900 

1000  
1800  
2700  

Table 1 
Daily 90 Day Rates 8A' 

l n ( s )  l n (z [ ;Vs  (s) ] 

1 . 0 9 8 6 1  .30469 
1 . 3 8 6 2 9  .50134 
1 . 6 0 9 4 4  .67257 
2 . 3 0 2 5 9  1 .15113  
2 . 7 0 8 0 5  1 .38467  
2 . 9 9 5 7 3  1 . 6 0 4 7 1  
3 . 2 1 8 8 8  1 . 7 3 9 9 6  
3 . 4 0 1 2 0  1 .79715  
3 . 8 0 6 6 6  2 . 0 2 8 6 0  
3 . 9 1 2 0 2  2 .07937  
4 . 0 9 4 3 4  2 .22787  
4 . 3 1 7 4 9  2 . 3 5 3 9 6  
4 . 6 0 5 1 7  2 .50148  
5 . 2 9 8 3 2  2 .87622  
5 . 3 9 3 6 3  2 . 9 7 8 4 5  
5 . 7 0 3 7 8  3 .15794  
6 . 3 9 6 9 3  3 . 5 5 9 5 5  
6 . 8 0 2 3 9  3 .89229  
6 . 9 0 7 7 6  3 . 9 7 0 8 1  
7 . 4 9 5 5 4  4 . 2 0 1 8 6  
7 . 9 0 1 0 1  4 . 3 5 1 3 4  

S 

3 
4 
5 

10 
15 
20 
25 
30 
45 
50 
60 
75 

100 
200 
220 
300 
474 

Table 2 
Monthly 90  Day Rates 6B' 

l n ( s )  In  (x[l~'s (s) ] 

1 . 0 9 8 6 1  .30983 
1 . 3 8 6 2 9  .55008 
1 . 6 0 9 4 4  .72638 
2 . 3 0 2 5 9  1 . 2 2 7 9 5  
2 . 7 0 8 0 5  1 .49911  
2 . 9 9 5 7 3  1 .71054  
3 . 2 1 8 8 8  ~ 1 .80269  
3 . 4 0 1 2 0  1 .97925  
3 . 8 0 6 6 6  2 .30833  
3 . 9 1 2 0 2  2 . 3 5 0 8 1  
4 . 0 9 4 3 4  2 .47558  
4 . 3 1 7 4 9  2 . 5 5 7 6 1  
4 . 6 0 5 1 7  2 . 6 0 2 2 5  
5 . 2 9 8 3 2  2 .80264  
5 . 3 9 3 6 3  2 . 8 6 7 7 1  
5 . 7 0 3 7 8  2 . 9 2 1 9 1  
6.16121 3.33171 
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S 

T a b l e  3 
Da.il.lv 10 Y e a r  Day R a t e s  6(::' 

l n (s )  ] . .  (E[R/S (s) ] 

3 1 . 0 9 8 6 1  . 2 9 4 3 7  
4 1 . 3 8 6 2 9  . 4 9 0 0 5  
5 1 . 6 0 9 4 4  . 6 6 3 7 2  

10 2 . 3 0 2 5 9  1 . 1 4 3 3 0  
15 2 . 7 0 8 0 5  1 . 4 3 1 3 0  
20 2 . 9 9 5 7 3  1 . 5 5 9 7 6  
25  3 . 2 1 8 8 8  1 . 6 6 5 6 8  
30 3 . 4 0 1 2 0  1 . 7 7 1 4 5  
45 3 . 8 0 6 6 6  2 , 0 3 9 9 9  
50 3 . 9 1 2 0 2  2 .06084  
60 4 . 0 9 4 3 4  2 . 1 9 4 6 9  
75 4 . 3 1 7 4 9  2 . 3 3 5 2 1  

100  4 . 6 0 5 1 7  2 . 5 0 1 8 9  
200  5 . 2 9 8 3 2  2 , 9 8 3 9 4  
220  5 . 3 9 3 6 3  3 . 0 4 5 3 1  
300  5 . 7 0 3 7 8  3 . 1 7 4 0 4  
600  6 . 3 9 6 9 3  3 , 5 9 9 2 7  
900  ~ 6 . 8 0 2 3 9  3 , 8 7 4 3 1  

1 0 0 0  " 6 . 9 0 7 7 6  3 , 9 4 2 8 0  
1 8 0 0  7 . 4 9 5 5 4  4 , 2 1 4 4 0  
2 7 0 0  7 . 9 0 1 0 1  4 . 1 7 6 5 7  

S 

3 
4 
5 

10 
15 
20  
25  
30 
45 
50 
60 
75 

100  
200  
220  
300  
474  

T a b l e  4 
lqont.b..llr 10 y o u r  ]Rates  D'  

].Tits) L~ (X [R/S (s) ] 

1 . 0 9 8 6 1  . 3 0 2 4 5  
1 . 3 8 6 2 9  . 5 1 6 5 6  
1 . 6 0 9 4 4  . 6 2 2 3 9  
R . 3 0 2 5 9  1 . 2 1 3 4 4  
2 . 7 0 8 0 5  1 . 4 3 1 1 5  
:2 .99573 1 . 6 3 7 3 3  
3 . 2 1 8 8 8  1 . 7 6 4 9 2  
3 . 4 0 1 2 0  1 . 9 1 5 1 5  ,, 
3 . 8 0 6 6 6  2 . 1 7 1 4 6  
3 . 9 1 2 0 2  2 . 2 2 4 6 8  
4 . 0 9 4 3 4  2 . 3 5 1 5 3  
4 . 3 1 7 4 9  2 . 4 3 2 8 3  
4 . 6 0 5 1 7  2 , 5 9 8 4 5  
5 . 2 9 8 3 2  2 . 2 9 2 6 5  
5 . 3 9 3 6 3  2 . 9 4 2 5 3  
5 . 7 0 3 7 8  3 , 1 5 3 5 6  
6 . 1 6 1 2 1  3 . 5 6 5 1 6  
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Figures 4 through 7 illustrate pox diagrams for the A' time 

series. (Mandlebrot and Wallis introduces pox diagrams in [22].7 

Figure 4 shows the log-log Ln(s) vs Ln(R/S(s,t)), with a line 

drawn through Ln(E[R/S(s}]) for each s. In Figure 5, includes 

the line H-.5. Note that the bulk of the pox are above the H=.5 

line. Figure 6 overlays the regressed line of H=.553. This 

addition completes the pox diagram. Finally, Figure 7 shows the 

diagram with the pox. Figures 8 through 13 show corresponding 

diagrams for the other time series. 

Note the lighting bolt shape of the Ln(s) vs Ln(E[R/S(s)} 

graph in either figure 8, or 9. There are three possible reasons 

for this behavior. Mandlebrot and Wallis in [27], discusses the 

potential of cycles contained within the data. However, ARIMA 

analysis (see section 2) precluded the cycle possiblity. The 

second possibility is that the data is moving into the third 

region where the memory effect wea~cens. However, the memory 

effect is not declining, since the graph moves back to the H=.556 

line for high s values. The third possiblity is the higher 

volatility in the monthly ninety-day rates. Higher volatility 

could very well cause the high standard error o£ the ¥ estimate, 

and the lower R 2 value. The graph~ corresponding to the other 

three time series 6B, 6C, and 6D, have smaller standard errors 

and higher R 2, and their I~(s) vs Ln(E[R/S(s)) graphs, do not 

meander about the regressed H line as ~A'. 

The following chart is a summary of the the data 
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regressions. The calculation of the H coefficents excluded all 

values of s < 10. Using a cutoff of 10, instead of 20, caused 

little information loss from increased variability of the data. 

Std Err Std Err Long-term 

Series H of Coeff of Y Est R 2 correlation 

6A' .553 .004 .08 .994 .075 

6B' .556 .009 .14 .946 .081 

6C I .560 .004 .06 .993 .086 

6D' .551 .004 .i0 .991 .073 

The H coefficents are significantly away from .5. Since the 

standard error of the coefficent is a magnitude of 10 less than 

the difference of H and .5, one can reject the null hypothesis 

that H = .5. Note also the high R 2 value for all the models. 

However, low correlation indicate that the persistent memory 

effect is very weak. 

Section 6. Conclusions and Further Research 

The empirical results suggest several conclusions. First, 

there is an evident persistent bias that spans decades for both 

ninety-day and ten-year rates. However, this bias is very weak, 

implying that the market is nearly efficent. See [31]. In fact 

one could use H as the measure of market efficiency. The failure 

of the deterministic chaos algorithms in section 2 also 
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revalidates some form of the Efficent Market Hypothesis. The 

closeness of the various H over both the short-term and long-term 

rates point to the similar marketing of these investment 

vehicles, or the Federal Reserve'E: "defensive" purchases and 

sales of securities. See [39]. 

Second, the H values are con~.istent for both the daily and 

the monthly time series. This reE~ult independently verifies the 

time scale invariance between the different time series. 

Third, it is Improbable that one can predict interest rates 

with any accuracy, due to the very low long-term correlation and 

the fact the the market is nearly efficent. See [36]. Possibly, 

one could predict the direction oi! movement. The persistent bias 

of the FBM creates a weak momentum in the current direction of 

movement. 

Fourth, one can not make any good short term predictions, 

due to the random nature of the time series for s < 20, and the 

low correlation dimension, from the deterministic analysis. Note 

the correlation dimension's value is comparable to the long-term 

correlation for ~A', note also the auto-correlations are within 

reason as well. 

The results also point to various research possibilities. 

First, FBM may be a good model for these various time series. 

The mean zero increment of zero and increasing variance 
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properties of FBM may explain Eecker's observation that the time 

series, do not follow a lognormal distribution [37]. Note 

Kapteyn's formula 

BH(t  ) - BH(t-1 } : * ~ s ( t - 2 )  (6.1) 

for the law of proportional effect for the lognormal 

distribution. The formula is similar to formula (3.1) for FBM. 

See [38]. However, further research on the actual empirical time 

series is necessary to see if the FBM is either Gaussian or Non- 

Gaussian. Our formula (3.2), assumes that • is from a standard 

Normal distribution. However, the empirical data for the 90 day 

rates, shows that the volatility of the rates is greater when the 

rates are high, and~lower when the rates are low. Such behavior 

does not correspond to a Gausslan FBM. Also, the rates are 

restrained between 0 and some positive rate (possibly about 25%). 

However, the FBM as modelled in (3.2) does not have these 

restraints. This might be overcome by modeling the rates as Log 

FBM, that is model Exp(Z), where Z is a Gausslan FBM process. 

This will need to be a topic of a future paper. 

Second, many modern financial models, e.g. Black Sholes 

Option Pricing and its many spinoffs, set up stochastic 

differential equations. These stochastic differential equations 

have certain term(s) which follow a pure Brownian Motion model. 

So, there is potential in modeling these same terms using FBM. 

This approach may create additional means to ellminate certain 

market inefficiencies. 
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Third, one can use this analy:~Is to generate various 

business scenarios. Simply determLne the H exponent, and use 

formula (3.2), or one similar to i~. 

Fourth, studies of the H exponent originated with 

hydrological analysis. Casualty actuaries could use the extensive 

research in this area, and apply corresponding B exponents for a 

specific river systems, generating random scenarios to improve 

flood insurance pricing. 

Fifth, in Macroeconomics, the concept of rational expections 

in the study of inflation states that the expections of inflation 

are based on all available information, and any expectations of 

inflation and its actual rate will differ only when a random 

shock affects the rate. This is also modelled with Brownian 

Motion, and FBM should be considered. See [40]. Also, FBM 

should be considered in the modeling of the wage-price spiral. 

See [41]. 

Sixth, on a more theorical note, there is a need to 

generalize R/S analysis into multiple dimensions. Such a theory 

would aid the analysis of coupled long-term and short-term 

interest rates. 
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