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Abstract

This paper presents a multi-state stochastic model for analyzing continuing care re-
tirement community (CCRC) populations. The model considers CCRCs with a number
of independent living units and a skilled nursing facility. Residents may transfer tem-
porarily or permanently to this facility. It is assumed that units vacated by deaths,
withdrawals or permanent transfers are immediately occupied by new residents. Trans-
fers are modeled using a time-homogeneous Markov process. The paper provides some
probabilistic results and some numerical results obtained using this model. Some im-
portant gencralizations of the model are also briefly discussed.
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1 Introduction

Actuarial Standard of Practice No. 3 [see Actuarial Standards Board (1994)] defines a con-
tinuing care retirement community (CCRC) as “a residential facility for retired people that
provides stated housekeeping, social, and health-care services in return for some combination
of an advance fee, periodic fees, and additional fees.” CCROCs house up to several hundred
residents and have facilities to provide one or more levels of long-term care. Residency agree-
ments are typically of long duration and care may be provided with no adjustment of fees.
Winklevoss and Powell (1984) discuss the operation of CCRCs in considerable detail,

The uncertainty of future services required by CCRC residents has created a need for
actuarial analyses. As outlined in Actuarial Standards Board (1994), actuaries may be asked

to:

o design and price residency agreements in order to (1) provide for the economic survival
of the community in the short and long run; and (2) fairly represent to the user the

economic conseqitences of entering into a residency agreeinent;

e project future cash flows;

e project changes in the future population of residents and estimate the future needs for

health care beds;

o determine actuarial assets and labilities, and plan for surplus needs;

e participate in the design of a CCRC’s financial management and accounting systems;
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o assist in developing financial feasibility studies;

o provide appropriate rates of mortality, morbidity, or life expectancy for the commu-

nity’s use; and
¢ perform mortality, morbidity, and withdrawal experience studies.

These and other actuarial issues relating to CCRCs are discussed by Brace {1994).

In order to carry out actuarial analyses of CCRCs one requires an appropriate model
that describes the CCRC population over time. The model should allow for the movement
of residents among the various levels of care and should provide information on the variability
of future outcomes as well as expected values. Such a model is necessarily rather complicated.

Cumming and Bluhm (1992) describe a CCRC population and financial model that allows
one to perform actuarial valuations and cash flow and population projections. Expected
results can be obtained using the decrement rates, and random V;ariati011 may be estimated
by simulation. A limitation of the model is that utilization of the care facility due to
temporary stays is reflected on an average basis; the model does not permit transfers from
higher to lower care states.

Jones (1994a and b) analyzed a simplified stochastic model for CCRCs. The model
considers a community that offers single independent living units and one level of care.
Residents may transfer either temporarily or permanently to the care facility. Transfers
occur according to a Markov process with constant forces of transition. It is also assumed

that the CCRC operates in a high demand environment, so that living units vacated by
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death, withdrawal or permanent transfer (to the care facility) of a resident are immediately
occupied by new residents.

The purpose of this paper is to present some results obtained using the latter model and to
point out some generalizations that must be considered in developing a practical stochastic
model for analyzing CCRCs. Section 2 describes the model in more detail. Probabilistic
results are discussed in Section 3, and some numerical results are provided in Section 4.

Section 5 considers a number of generalizations.

2 The Model

Consider a CCRC with m single independent living units (ILU) and a skilled nursing facility
(SNF). The SNI is assumed to have an infinite capacity in that no restriction is placed on
the number of residents in the facility at one time. Practically, this represents a situation
in which the CCRC’s commitment to residents is such that care will be provided even if
residents must be moved off site.

Residents transfer from their living unit to the SNF when care is needed. Transfers
are deemed to be either temporary or permanent based on an assessment of whether the
individual will ever again be capable of living independently. Thus, at any time after entering

the community, a resident is in one of the following four states:

1. ILU

Residents in this state live normal active lives and occupy independent living units.
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2. SNF (temporary)
Residents in this state have transfered temporarily to the SNF. They are expected to

recover and return to their living units.

3. SNF (permanent)
Residents in this state have transferred permanently to the SNF. Upon entry to this

state, their living units are made available to new residents.

4. Dead or Withdrawn
Individuals in this state are previous residents who have either died or otherwise left
the CCRC. Such individuals’ living units are made available to new residents upon

death or withdrawal, or earlier permanent transfer to the SNF.

Figure 1 illustrates the setup, showing the four states and the possible transitions.

Now assume that the demand for living units in the CCRC is such that those units vacated
by permanent transfers, deaths and withdrawals are immediately occupied by new residents.
This “high demand” assumption has some interesting and rather nice consequences. The first
is that the sum of the number of ILU residents and the number of temporary transfers is m
at all times. The second is that the m living units can be assumed to operate independently
with respect to the movement of residents. This allows one to analyze the CCRC by first
considering just one living unit.

Transitions between the four states in Figure 1 occur according to a Markov process with

constant forces of transition. Let uy; represent the force of transition from state h to state
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Figure 1: State Transition Diagram for Individual Residents
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1, where h,i € {1,2,3,4}. Thus, the probability that a resident in state h at time t — dt
moves to state 7 during the siall time interval (t — dt,t] is p,;dt. Note that this probability
does not depend on ¢. Also, the time an individual spends in state & (for A = 1,2,3) has an
exponential distribution with mean 1/3,., ptai.

The assumption of constant forces of transition is questionable in many actuarial appli-
cations. One might expect such quantities to depend on the age of the resident and perhaps
on the time since entry to the current state. However, allowing for the current state of a
resident may remove some of the effect of age and duration. Clearly, though, the assumption
must be tested.

Let J(t) represent the number of permanent transfers in the community at time ¢t > 0.
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Also, let K(t) be the number of temporary transfers at time ¢. Then m — K(t) is the number
of ILU residents at time ¢. Time is measured from some arbitrary date that we let be time
0. We are interested in the bivariate stochastic process {(J(1), K(t)),t > 0}. It will be
convenient to assume that J(0) = K(0) = 0, though this assumption can be relaxed without
difficulty.

Define Ji(t) and K(t) to be the number of permanent transfers and temporary transfers
associated with living unit { at time ¢, { = 1,2,...,m. Clearly, K;(f) must be either 0 or
1 and Ji(t) is a non-negative integer. Ji(t) is the number of permanent transfers at time t
who once resided in living unit I. We have J(t) = 32, Ji(t) and K(t) = T2, Ki(t). Also,
Ji(0) = K;(0) = 0 for all L.

Assume that the processes {(Ji(t), Ki(t)),t > 0}, I = 1,2,...,m are mutually indepen-
dent. That is, the state of any living unit at a given time is independent of the states of all
other living units at all points in time. This assumption is reasonable in light of the high
demand assumption and the fact that the SNF has infinite capacity.

According to this setup, the paths of the m processes are identically distributed. Thus,
in seeking information about the distribution of (J(t), K(t)), we can first consider the dis-

tribution associated with an arbitrary unit, say, (J1(¢), K1{?)).
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3 Probabilistic Results

Considerable information about the process {(J,(t), i,(1)),t > 0} is contained in the prob-
abilities Pr(Ji(t) = j, Ki(t) = k), 5 = 0,1,2,...;k = 0,1; t > 0. Though we cannot find
explicit expressions for these probabilities, we can for a number of related quantities.

Since K (t) is either 0 or 1 for all ¢, the (marginal) distribution of this quantity is
characterized by Pr(I;(#) = 1). This probability is actually Pr(i,;(¢) = 1|K,(0) = 0)
because we have assumed that K;(0) = 0. Now the process {£;(t),¢ > 0} is a two-state
Markov process with state space {0,1}. The force of transition from state 0 to state 1 is u2,
and the force of transition from state 1 to state 0 is py. = pg1 + 23 + pt24. Therefore [see

Ross (1983, p. 150)],

— —(u12+ua Jt
Pr(K,(t) = 1) = £z~ A12° . (1)
faz + fiz.
It follows from (1) that
. 12
im Pr(i,(0)=1) = ———. 2
t—oo (o) ) fia t fa. @)

Equation {2) gives the long-run proportion of time that the SNF has a temporary transfer
from a given living unit.

It was shown by Jones (1994a) that if juy9, 23, i34 > 0 and pp; < oo for all ki, then
'lilg Pr(Ji(t) = j,K1(t) = k) exists and is positive for 7 = 0,1,2,...5k = 0,1. These
limits form what is called an equilibrium or stationary distribution for the state of a living
unit. Jones (1994a) provides a method for finding the probabilities associated with this

distribution.
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The marginal distribution of Jy(t) is considerably more complicated than that of K (t).
Some information can be gained by considering a new process {N(t},t > 0} where N(¢)
represents the number of permanent transfer occurrences from a given living unit by time t.
Of course not all of those included in this count are still in the community at time t. It is
easily scen that {N(¢),t > 0} is a renewal process. Furthermore, as shown by Jones (1994b),

the inter-occurrence time distribution function is

Pla) =1+ Bie™™" = fe™, 2 20, (3)

where

e+ s+ po + \/(/112 + s + pa.)? = Apaapie. + piaapns)

2
1z + pas + pe — \/(1112 + iz + p2.)? — 4perape. + paspaz)
a3 = 9 3
fi2 + po. —
h = —,
| — g
fiz + 2. — g
g = fntlr—c
] — (xp

Let mn(t) = E[N(1)] be the renewal function for {N(¢),¢ > 0}. Recognizing that

dm(y) = Pr(permanent transfer occurs during (y — dy, y
y p g

Il

[PF(KI (y) = 0)pis + Pr(Ki(y) = 1)1123] dy

= [y 4y Bzt gy (4)

where

_ Hiaftz + s
iz + pa
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and

133 — H2s
o= /llz(l 13—} 23)

iz T Ha.
we {ind that
_ Y2 —(m12+u2. )t
7nt—7i+—[l—c‘” w2t 5
) ! taz + pa ( )
Then
. ¢
thm m(t) =7. (6)

Equation (6) provides the long-run expected number of permanent transfer occurrences per
unit of time. Since the expected time that each permanent transfer spends in the SNF is
/434, from Little’s Result [see Kleinrock (1973, p.17)] the long-run expected number of

permanent transfers in the community is

(lL]B’ 15’[.]|(f)] = '}’1/‘1,34. (7)
Also,
¢
ElL()] = / e 0= din ()
0
= £ +ege M 4 536—(un+u2 )" (8)
where
|
g = —
JIRY
_ T T2
gg = ——— —
H34  fl3a — M2 — M2
_ Y2
&3 =

34 — fl1z — fla2. '
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Clearly, (7) is the limit of (8).
It is also possible to obtain Var[J,(t)] and Cov[Ji(t), K;(t)] using the following approach.

Conditioning on the time of the first permanent transfer we have

Pr(y(t) = j) = /DtPr(.]l(t—x):j)[l — e (DR ()
+/O'Pr(J,(z C2) = —1)e s DGR(s), )

j=1,93,....

Multiplying both sides of (9) by j? and summing from j = 1 to oo we obtain

L) = fg?nwau—n:nu-fmﬂﬂwmn
+ [ 61 2 P 0) = )
= [ B~ 20 - e Nar ()
+ t{E[Jf(t — ) 4 2B~ o) + 1} R (o)
= 0+ [ B - o), (10
where

o) = /()'{QE[J,(z —a)+ 1}6—‘1«('—””(1). (1)

The interchange of summation and integration is justified by the fact that the integrands are

positive. Equation (10) is a renewal equation with well known solution [see Feller (1971)]

B0 = o)+ [ o(t = 2)dm(a) (12)
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To find a more convenient expression for ELJE(1)] we must first evalnate the integral in (11).

From (3) and (8) we have

I

t
g(t) f {2[51 4 ege #u(tm7) | g emlnatin )"“"} + l}e'“3‘("”{ﬂ2age“’” - /3,016_"‘z}d;17
[}

= (e ™ et g Cue_u“t + (et 4 C5(3'(‘“7+“2 tuaa)t (13)
where

- (2e7 + )y _ 2e9 10 2e3/31 ¢
b= fi34 — 234 — M1z + 2+ faa —
G = (2e1 + 1)Bray n 2eqfh0, 2e3 3200

: fizqg — Q2 2izg = @y ftiy + jra. + piag — Qg
- (et Dpiar (261 + 1)

= 34 — M 34 — 2

(s = 2e90h - 22,804

* 234 — @ 2439 — y

2e30 2e3/20rg

1z + g2+ paa — - f12 + f2 + pag - Q2

Substituting (13) and (4) into (12) we obtain

Cle—a]t + CZ“ia?t + Cac—;lul + Czlli_zuul + Cse—(un-ﬂt; Huajt
¢ .

+ -/; {Cl (fﬂn(t—r)+<2€-m(t—r)_+_C‘_]C—uu(‘*T)+(4C—luu(lvr)+<‘56—(l‘1?+”2 ‘H‘J‘)(‘_T)}
0

x [71 + ,726-'(mz+n: )r](lr

m+ nZe.‘“lt + 7]36_°7t + 7746_“3” + ”56—%34! + ,]G(i-(itxz+tt2v)i + 7’76'(u12+m +u3«]" (14)

where
"= Gim + G + (a1 + gﬂ + (s
vy ay M3 234 phg o+ fag
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_ %7 _ Giv2

m = O
(241 oy — fi12 — Ha.
m o= (o — LM _ (272
. az Qg — p12 — H.
€Y7 (372
M = 3—— """
34 H34 — 12 — fia.
_ Can (a2
s = - S —
2pt3s 234 — 12 — Ha.
e = G2 + (272 + Cs’Yz + [ + G2
Qg — fiyz — p2. Oz — 1z — M. 34 — K12 — Ha2. 2#34 — Hi2 — W K34
Cs’h 45’72
= -

P prz + o+ fas fiza
Then, of course, Var[J;(t)] = E[J(t)] — {E[/1($)]}>.
To find Cov[Ji(t), K1(t)], consider the following equation which is analogous to {9).
Pr(/i(t) =7, Ki(t) =1)
t
= / Pr(Ji(t — z) = 5, Kyt — 2) = D)[1 — e40=9)]dF(z)
0
¢
+/ Pr(fi(t—2)=j—1, Ky(t—z)= 1)e =D gp(z), (15)
0
j=1,2,3,....
Multiplying both sides of (15) by ; and summing from j = 1 to oo we have
£ oo
ELOK.(1)] = / S IPr(Ji(t - z) = 5, Ki(t — z) = D[1 — e~ #(=]dP(2)
(et

+ /Dt f:{(j—l) FUYPr(L(t—2) =5 — LK (t - z) = Ve 5 dP(x)

I

/ CE[L(t - 2) (= 2)|[1 — e D) dF(z)

+ /O'{E[Jl(z — 2Kyt — 2)) + P (t— 2) = 1)}6-“3«@-*)#*(1)

h(t) + /0' E[L(t - 2)Ky(t — 2)]dF (z), (16)
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where
¢
h(t) = / Pr(K\(t - z) = 1)e~**~dF (z).
0
Equation (16) is a renewal equation with solution
t
E[L (O K ()] = h(t) +/ h(t — z)dm(z).
0

From (1) and (3), (17) becomes

A(t) /t g — I‘ne—(nnﬂtz)(!—z)e_uu(,_,)(gl)az’e_azz - Brone™™")dzx
0 fi2 + e
= 01e” ™ 4 fae 2t 4 PuemHnt 4 046—(u|z+u2-+uu)‘,
where

9, = Hi2 [ By N Broy }
iz + pee [pi2 b gz pag — a1 pag — o

0, = H12 [ Bac _ Bacrg }
taz + po [(paa — a2 2 b opg iy — o

0, = prz [ A B ]
faz 2 [paa — . jizg — o

0, = iz [ Bacr; _ By ] )
Hiz+ pa (a2 Fpeo s — o g +ope e - o

Substituting (19) and (4) into (18) we have

E[LQ)K\(t)]

ole—a,r + oze-agt + 036-“3‘t04€-(“n+“ +uaa)t

+ /l{olcvm(l—r} + 026—02(1—1') + aae—ﬂs«(1—1‘)048—(u12+u2 + 134 )("‘I)}
0
% [,“ + 726—(u12+u2 )z](llt

K1+ Ko Kpem ™t 4 R,‘e_““t + Kse—(unﬂtz ) + NGE-—(unﬂAz +u;u)¢’

444

(17)

(18)

(19)

(20)



where

6 6 0 ¢
On O Om ,  Oum

K1 = -
o7 az f34 faz + p2 + fas
g [4
kg = Gy —2B_ v
ay ayp — {12 — {2,
0 [/
ks = O — am . %
g Qg — f12 — Ha.
[ 1
Ko = 03— 3N 372
34 H3s4 — [z — M.
[ 0 [/ 0
ks = 172 272 + 372 + 472
Q) — H12 — jM2. Qg — {12 — K2 MH34 — 12 — Ha. H3q
_ 8am 0472
Ke = -—

YUat e b e o
Then Cov[Ji(t), Ki(t)] = E[Ji(t)K.i(t)] — E[Ji()] E[K1(¢)] can be obtained using (20), (8)
and (1).

The fact that we can find the first two moments of J(t) and K;(¢) is quite significant.
Since CCRCs typically have up to several hundred living units, it will usually be reasonable
to approximate the distributions of J(t) and K(t) by normal distributions. We therefore

require only the first two moments. They are

BU(0) = 3 ELA(0)] = mELA(D) (21)
E[K()] = li_n:E[l\’,(t)] = mE[K\(t})], (22)
VarlJ()] = ;i Var[Ji(t)] = mVar[Ji(t)] (23)
and
Var[K(t)] = i Var[K((t)] = mVar[l{(t)]. (24)

i=1
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We may also be interested in the total number of residents, 5(¢t) = J(¢t) + K(t), in the SNF

at a given time. We have

E[S(t) = E[J()] + E[K(t)] (25)
and
Var(S(t)] = VarlJ (1)) + Var[K (8)] + 2Cov[J (1), K (1)), (26)
where
CovlJ(t), K(t)] = é@ov[.],(t), Ki(t)] = mCov[ (), Ky (8)). (27)

4 Numerical Results

This section illustrates the results of the previous section with a nurnerical example. The

following (arbitrary) parameter values will be used.

2 =012 113 = 0.05
o1 =005 g3 =007  pipq = 0.12
paa = 0.20
Cousider a CCRC with 100 living units. Using equations (21) through (27) we have the

following momeunts for various time points.
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t
1 5 10 20 s
E[J()] 4.6316 | 17.0660 | 24.0488 | 27.7412 | 28.3333
E[K ()] 10.0775 | 27.8234 | 32.4225 | 33.3084 | 33.3333
E[S(1)] 14.7090 | 44.8894 | 56.4713 | 61.0496 | 61.6667

Var[J(t)] 4.6286 | 16.9497 | 23.7845 | 27.4077 | 27.9960
Var[K(t)] | 9.0619 | 20.0820 | 21.9103 | 22.2139 | 22.2222
Var[S(t)] | 13.2332 | 32.8087 | 39.4643 | 42.8011 | 43.4722
Cov[J(t), K(t)] || -0.2287 | -2.2225 | -3.1153 | -3.3653 | -3.3730

Figures 2 through 5 display the results graphically. In Figure 2 the expected numbers of
temporary and permanent transfers are shown for times from 0 to 30 years. We see that the
expected number of temporary transfers is larger than the expected number of permanent
transfers at all points in time. Also, the expected number of temporary transfers appears
to converge more quickly to its limit. Figures 3 through 5 show the expected numbers
of permanent, temporary and total transfers along with 95 percent (pointwise) confidence
intervals. The confidence limits were calculated as the expected value plus or minus 1.96
times the standard deviation. Clearly the number of transfers to the SNF is subject to

considerable variation.

5 Generalizations

The model discussed in this paper makes a number of assumptions for simplicity and math-
ematical convenience. They allow one to obtain explicit expressions for various quantities of
interest. However, in order to make the model more realistic, certain generalizations must

be considered. These generalizations pertain to the CCRC structure, the forces of decrement
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Figure 2: Expected Numbers of Permanent Transfers
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and the demand for living units.

The model considers CCRCs that offer only single living units. In fact, most CCRCs
provide double units for couples. The state of a double unit at time ¢ cannot be described
by Ji(t) and K,(t} as is the case for single units. We require a third quantity, L,(¢), which
represents the number of 1LU residents associated with a living unit at tine ¢. L;(¢) may be
¢, 1 or 2. K;(!) may also be 0, 1 or 2. However, K;(t)+ L:(t) must be 1 or 2. Asin the single

unit case, Jy(t) is a non-negative integer. Thus, the possible outcomes for (J; (t), I, (t), L1 (1))
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Figure 3: 95% Confidence Interval for Permanent Transfers
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are (37,0,2), (7,0,1), (7,1,0), (5,2,0) and (j,1,1) for 7 = 0,1,2,.... The joint distribution
of K;(t) and Ly(t) can be analyzed by recognizing that {(K,(t), L.1(t)),t > 0} is a five-state
Markov process. Results for J(t} are more difficult to obtain since the permanent transfers
no longer occur according to a renewal process. We can still find the long-run expected
number of permanent transfers using Little's result.

CCRCs usually provide more than one level of care, often a personal care facility and

a skilled nursing facility. This also increases the number of states and possible transitions.
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Figure 4: 95% Confidence Interval for Temporary Transfers
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However, the analysis of the state of a CCRC unit can be approached in much the same way
as described above.

As stated in Section 2, one must test whether or not it is reasonable to assume that
forces of transition are constant. It may be that one must assume that forces vary by age of
resident and/or time since entry to the various model states. I this is the case, the modecl
becomes much less tractable mathematically. Numerical results can, however, be found using

simulation techniques.
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Figure 5: 95% Confidence Interval for Total Transfers
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Finally, in the analysis of CCRCs with lower demand for living units, one cannot assume
that the units are independent. The time until a vacant unit becomes occupied depends on
the number of vacant units. Therefore, one must consider the state of the entire CCRC and

not just one living unit. Simulation can again be used to obtain results in this case.
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