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The *amount of 17 (i.c., the amount that § 1 is worth after 1 year) for an account carn-
ing a nominal interest 7 compounded n times annually (assuming that the n compounding
periods all have the length 1/n years) is {1 + r/n)". If the n compounding periods were

of possibly different lengths ¢y, ... t, then the correct value would be

P.(r.t) =L (14 rt;),

where t = (£,...,%,). Note that P,(r,t) is a polynomial in r of degree n. Tt is an casy
exercise using the inequality between the arithmetic and geometric means to show that if

t1,..., 1, arc nonnegative numbers whose sum is 1, then
(1) Pu(rt) < (14 7/m)".

It is worth recalling that the latter quantity increases monotonically to ¢, which of course
leads to the formula for continuously compounded interest.

Now suppose that the n compounding periods have lengths Ty,..., T, chosen at ran-
dom. What can we say about P, (», T), where T = (T,...,T,)? This depends of course
on what is meant by choosing “random lengths” and we will consider two different natural

possibilitics that give rise to different answers to this question.

Model 1.

Recall that a random variable with a uniform distribution on a set § is such that
the probability of the value of the random variable being in any particular subset of S 1s
proportional to its size. Thus, if S is the unit interval {0, 1], the probability of finding a
uniformly distributed variable in any particular subinterval of § is just the length of the
subinterval. OQur first model 1s obtained by choosing n — 1 points Uy, ..., U, _; at random
ou [0,1], e.e. Uy, ..., U, — are independent random variables uniformly distributed on [0,1].
Now arrange these values in ascending order: Ugyy, ..., Ugn—yy (these are called the order
statistics). Set Ty = Ugyy, T = Uy = Ugyyy oo, Ta = 1 = U=y Thus, the compounding
periods are obtained by * throwing down” n — 1 points at random on the unit interval,
which then divides it into n pieces, and compounding the interest at the end of each of
these intervals. It can be shown that this model is equivalent to that obtained by choosing
a point of the “surface™ {T € R* : T, 2 0, > T; = 1} according to a wniform distribution.
(See [2] for a discussion.) We now proceed to compute the expected effective interest rate

aud see what happens when n is allowed to increase without bound.
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Let (M) ={xeR": 20, Yt = A} and take X := (T, ., T.) to be uniformly
distributed on Q,,(1). 7.e. the probability that X lies in any particular (measureable) subset
S of Q,,(1) is proportional to the surface measurce of §. We denote the surface element by

do,,. The following Lemma will be useful in our computations.

Lemma 1. For A >0, 0<d<nandn=2,3,...,

do )‘n—|+d

(2 / TP
) da(h) T (n—1+d)

Proof. An easy computation shows that the surface measure do, is given by

Vvndey o oodt,_y, where we set ¢, = 1 —#; — ... t,—;. It is also casy to sce that (2) is
correet for n = 2, and we proceed by induction. Using Fubini’s theorem and the induction
hypothesis,

/ : . do,
P =
Q. (A v

)
A A n4d—2
do, 4 (A —1))
11/ tzfd*— U:/ flv"‘(lfl,
A S (A=) Vvn =1 0 (n+d-2)!

and computing the last integral immediately gives the result. Lemma 1 is actually a special
case of a result proven by Dirichlet; see [3] p. 258.

When d = 0 we obtain from (2) that the measure of Q,(1) is % so that the
uniform distribution on £2,,(1) has density function (n — 1)ldo, /1. We now compute
EP,(r, T}, the average (i.e. expected) value of 1 dollar after 1 year in the account. To
do this, we first observe that by symmetry, the distribution of (T7,...,T;,) is the same as
that of (Trq1y, ... . Tr(ny)s where 7(+) 1s any permutation of the integers 1,2, ..., n. Such
a sequence (1,...,T,) is called ezchangeable. A consequence of this property is that if

1 <1y < ... <14 < nthen for any continuous funetion @
E®(T, .. ... T,,) =F&(T\,.. . .1Ty).

Using this exchangeability with ®{t,,....t4) = t; - ... t4, expanding the expression for

P,(r,T), and applying (2),we obtain

" n . — 1 !

d=u d=0

Observe that

n (n—=1) nl{n —1}! 1 < 1
dfn+d-1)" (n—-dn-1+d1d — d°
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It 15 then readily scen, using the dominated convergence theorem, that linm, oo M, = ¢”.
But by (1), ¢” is the maximum possible value of ¥, := P,(r, T), so we conclude that Y,
converges in mean to the degenerate random variable ¢”. Note that we have not established

here that this convergence takes place with probability 1.

Model 2

We now imagine that the banker waits a randoni amount of time before computing
the first tnterest payment, then waits a random amount of time during the remaining time
to make the second payment, and so forth; making a total of n payments by year’s end.
It should be clear that this model must be different from the first one, since it is rather
likely that most of the interest payments are made toward the end of the year.

To formalize the model, suppose that the T; are random variables chosen by packing
T uniforly on [0,1], T, uniform on [0,1 — T3] and in general, T} is chosen uniformly on
0,1 =Ty —... — T;—1]. As before, our goal is to calculate the expectation of the random
variable P, = P,(r, T} for cach n.

The conditional density of Tyqy given Ty = ¢, , 1 < 1 < ks (1 — Ef ¢)~ ! for
1 <k <n—1. We obtain a recursion formula by conditioning. Let p, () = E(P,). The
functions p,(r) are polynomials of degree n:py =1+7r,p2 =1+ 7 +r*/0.

Theorem 1. If Ty, = ¢, then E(P(r, Ti = t) = (1 + rt)pai{r(1 ~ ).
Proof. E(PuT, = 1) = (1 + r)E((1 + 1T)(1 + rT)|S0 Ty = 1 — 1)) Let Sk =

Tiw/(1 —t) k= 23,..,n. Then the random variables Si satisfy the same conditions as
the original 7; but they are one less in munber; Sy > 0, Y. Sp = 1. Let w4 =ty /(1 —1).

Then Sy is uniform on (0,1) and Sy is uniform on (0,1 — s;), etc. Now

E(PlTy = 1) = (1 + 1OE((1 +7(1 = )83)(1 4 r(1 = )5)) = (1 + 1) E( P y(r(1 — 1))
which is (1 4 r#)p,—1{r(1 — ¢)), as desired.

Corollary. For every n, p,p(r) = E((1 ++T)p,.(r(1 = T))), where T is uniform on (0,1).

From this formula it is easy to find the polynomials p, by recursion. We can replace

T by 1 — T in the formula of the corollary. Then
Par1(r) = E{(1+r(1 =T))p(rT)) = (1 + r)E(p,(rT)) — rE(Tp,(rT)).

Lot pu(r) = S ap(n)rf where ap(n) — 0 once k > n. It follows by equating coefficients

and writing the moments for T in the above recursion formula that

ar(n+ 1) = ar_1(n)/(k(k + 1)) + ax(n)/(k + 1)
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for k= 1,2,3. ... The formula gives p3(r) — 14 ¢ +(2/9)7 + (1772305,

In theory the coctlicients ag(n) are caleulable from the recursion.For example,
wp ) = (1/6)(1/3) 2 + (1/4)(1 — (1/3)" %)

We are mterested 1 what happens when n (the number of compounding periods) goes to
infinity.
It is interesting to see the difference in the two models for different interest rates.
For rates in a reasonably healthy cconomy, the following table shows that there is little
difference in the two compounding schemes, Note that 7 is the average annual return in
model 1, and wir) =% PR /0N s the average annual return in model 2. In the event of
hyperinflation, there is o big difference indeed!
rate " w(r)
05 1.051 1.051
0.1 1.105 1.103
0.3 1.350 1.323
1 2718 2.280
10 22026 90
Theorem 2. For k =0,1,...,
i ey () — (/\'5}7"’.
n
The proof is based on the recurrences. We break it up nto a sequence of computations.
2

Lemma 2. For cvery k, for every 1, ag(n) < (k!)™2%.

Proof. The proof is by induction. The statement is true for all n when A = 0. Suppose
the statement is true for all n for some b~ 1. Now ap(1) = 0 when k > 1 50 the statement

for k is true when n = 0. Suppose ap(n) < (&) 7% for some n. Then

ar(n+1) = ago () k{E+ D4 ar(n) e+ < (=174 /k(k+ D46 72 /{k+1) = ()72
The conclusion follows.

Lemma 3. For kb > 1 and for every n, ag- (n) = kag(n).

Proof. The proof is by induetion. When b =1, a,{n) = 1¥n, and a,(n) = 1¥n. Suppose
that ag_(2) > kag(n) for some k and all . To prove ag(n) > (k + 1) agy(n) for all n.
When 2 = 1 we want a3 (1) > (b + 1)%ags (1) but when k> 2 ag(1) = 0 and ag4,(1) =0

s0 ap(1) > (k4 1%ap (n). Suppose ax(n) > (k + a1 (n) for some n: to prove

agln+ 1) 2> (k + 1)2(1k+|(” +1).
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The left side of this fnequality is
ap (1) k(k =+ 1)+ ap(n)/(k + 1) 2 Magln)/h(h + 1) + ag(r)/(k + 1) — ag(n),
so agln + 1) > ag(n). The vight side of the desired inequality is
(k4 D2arpi (e + 1) = Tk + 1D ag ()UK + D)0k +2)) + agg () /(5 + 2)]
which is less tlhieus or equal to
(k+ D%ar () /((k + Dk +2)) + ax(n)/(k + 2) = ag(n).

Therefore,
ar(n+1) > ap(n) > (k + 1) agp(n+ 1)

which: was to be proved. Note from the last line, we see that for every b and every n,

ar{r -1 1) > ag(n).

Proof of Theorem 2. Each sequence {ag(n)} is non-decreasing in 1 and bounded above,
therefore it has a limit. Let agp = lan, ag(n). From the recurrence ag = ap—y fk(k + 1) +
ap/{k 4 1), henee ax = (B1)72 by induetion. This completes the proof.

Note that the expected effective interest rate for model 2 is less than that of model
1. The kind of result is typical of the many interesting examples of “paradoxes” that arisc
in probability theory when one does not carefully specify what is meant by the phrase “at
random”. [2] provides an excellent discussion of this issue in the geometrical context.

Acknowledgment. We first heard of this problem when it was posed by Dick Ma-

honey in a class on problem solving.
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