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ABSTRACT. In this paper, we study a survival regression model known as Cox’s
proportional hazards model. We assume that the data available are alredy grouped
and develop a minimum distance estimatiou procedure that is also applicable when
the data are also left or right censored. Asymptotic properties of the estimators are
established and the numerical implementation of the method based on an iterated
reweighted least squares algorithm is discussed.

1. INTRODUCTION

If one wants to estimate the survival function from a sample, one could suppose
that all individuals under observation have the same lifetime distribution. However,
in practice, most samples are somewhat heterogeneous. Consequently, one must take
into account a number of factors having a direct influence on each individual’s survival
time.

One of the most popular model used to deal with this heterogeneity is Cox’s pro-
porttonal hazards regression model. According to it, any two individuals A and B
with vectors of concomitant variables x4 and xp respectively have hazard functions
h(t ]| x4) and A(t | xg) such that A(t | x4)/h{t | xg) is a constant function of t. One
immediate implication of the model is that

h(t | x) = holt) - g(x)
Here ho(t) is called the baseline hazard function and in general we restrict ourselves
to those models for which g(x) has a particular form, namely

g(x) = e*?
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so that
h(t | x) = hy(t)e*?

where x' = (21,7;... ,2,) is any vector of regressors and @' = (H,...,3,) is the
unknown vector of parameters of interest.
For this model, the survival time function can be written as

S(t | x) = Sp(t)xex®)

where So(t) is called the baseline survival function , see Cox (1972), Kalbileisch and
Prentice (1980), Lawless (1982) and Amemiya (1988) for example for maore discussion
on hazard functions and proportional hazard model.

The proportional hazards model includes the Weibull and exponential models as
particular cases. It has been used to model duration time until a special event occurs,
Among many successful applications beside modelling survival times or remission
time in cancer study, we mention modelling of compensation time in actuarial science,
duration of working time in pension study and duration of unemployment time in
economics see Lancaster (1979), Butler and Worral (1985) or Johnson and Ondrich
(1990) for example.

Estimation of the proportional hazards model has been studied essentially with
maximum likelihood methods, see Lawless (1982). Kalbfleisch and Prentice (1980).
Looking at one of these references, one can quickly see that although the asymptotic
propertics of those estimators are quite good in general.the caleulations are fairly
complicated and can get a lot more involved when censored data are present. Our
minimum quadratic distance approach is very simple to compute and as we'll indicate.
can be easily adapted to handle left or right censored data. In fact. anybody familia
with any linear regression package can use it to find our estimator after a hittle
manipulation of the data. Ryu (1994) gets essentialy the same estimator as we do
here, however, our quadratic distance approach allows us to unily the problets of
estimating the model’s parameters and testing the gooduness of fit. This is what
we propose to show in subsequent paper where we will extend our method to other
models of regression survival models.

The situation we study is the following. We have a sample of mdependent ob
servations which is supposed to follow a proportional hazards survival model. The

concomitant or covariate characterization vector x = (xq,... ,z,) of each individnal
is known. Moreover, we suppose that Ve in {1,... .p},z, can only take a finite nim-
ber n{z) of values {1‘3,13,... ,.1‘:‘(‘]}. Note that this setup is particularly suitahle
when we have indicator variables taking on value 0 or 1 for exaniple.

Finally, we suppose that lifetimes arc broken into J intervals [, = [¢,_).q;)
J =1, ... JwithD=ae<a <...<aj_;1 <ay.

We observe for each regressor vector x, the number n(x, j) of individuals of type
x at the beginuing of [; and ¢(x, 7) the number of those that survived nntil the end
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of Ij.

From the situation above, we want to get estimators ﬁ of B as well as S’o(t) of Sol(t)
simultaneously. Consequently, our estimators are semi-parametric estimators since
we do not require So(t) to be specified. Furthermore, we shall see our estimators are
fairly easy to compute and will be based on grouped data. It happens often that
data is already grouped, such as in a life table study, our method is thus particularly
suitable.

We introduce our quadratic distance estimators in section 2 and derive its asymp-
totic properties. Procedures to estimate the survival function based on quadratic
distance estimators are given here. In section 3, we show the methods can also han-
dle censored data. Adjustments are easy and outlined here. In section 4, we show
the procedure how to obtain our quadratic distance estimator numerically based on
an iterated reweighted least squares algorithm and finally a numerical example is
included at the very end.

2. MiINIMUM QUADRATIC DISTANCE ESTIMATION

Now that the problem is stated, let’s list all that we know. Since each z, takes only
a finite number of different values, there are only a finite number ! of different vectors
x. We chose an ordering of those I vectors x(), X(2),- - . , X() as in Amemiya (1988,
p-275) and we let this ordering be fixed from now on. This way, one can classify all the
covariates into only one of the I classes represented by {x(1),%(z), ... , %) }. Moreover,
we assume that there are replications of observations from each x(;) covariate for large
samples.

To simplify notation, we write n;; = n(x@y, s) for the number of individuals with
concomitant variables vector x(;y present in the study at the beginning of interval /;
and c; = (X, j) for the number of individuals with regression vector x(;) still alive
at the end of interval ;.

We then write pi; = ¢;j/n;;. As mentionned in London (1988) or Lawless (1982),
conditioning on the set {n,;}, the distribution of each ¢;; is binomial. We compute
the mean and variance of p;; as follows. First, lets define

Pi(x) = S(a; | x)
Po(x) =1 ¥x
and

Pi(x) .
= == 172, ey J
])](X) Pj—-l (X) J
If we also let P; = P;(0) and p; = p;(0) then one can easily verify that

J

)§Xl>(X’B)

p;i(x) =p;
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is the probability of survival in interval j for an individual with covariate x. Therefore

. exp(x(iy'B) .
E[I’ij]=l’,p O =g =100

and

pi;(1 — piy) P =
s ’

Var[[)ij] = 1,...,L

We will be using minimum quadratic distance methods to find estimators 8 and
p = (1, ... ,pJs). So we will minimize an expression of the following form

(Oy — Ey)?
2.2 W,

i=1 ;=1

This can alsa be viewed as a form of minimum chi square method.

exp(le)ﬁ)

We could use Oy; = iy, Eyy = p; , and Wi =1 for example but the compu-

tations would be fairly complicated and the estimators are not efficient. Instead we
propose to use the standard transformation ln(—In()) and let

O,; = In(~Inp;;)
and

E;=In ( - Inpjx”("('nﬁ))

= In(~Inp;) + x{;)8
=7; + x;‘]ﬁ

if we let v; = In(— Inp;).

As for W:

ij the efficient choice as we shall see will be given by the approximate
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variance of O;; that we write Var(0;;)
W,y = Var(0,)

d 2
= [a(ln(—ln t))}

- (tlnl(t))z
1

2 X

X Var(ﬁ;j)

t=pqiy

Pi; (1 = pij)

e
t=p,, 1

1 —pij
n,'j

 pisIn(pij)
1 —

- exp(x(,,3)
nijp; () exp(?x?i)ﬂ) In(p;)?

exp(x,\)
p;

- exp(x(,,0) ,
_ (»; - l)exP(—Qx(.')ﬂ) (2.1)

W,
ni;(In p;)?

Y

So we have transformed the problem into one where the usual linear regression
methods are applicable. That is we have the analogous of a linear model

Yi = +xmB + &
where
Yi; = In(=In(5;;))

Let’s set B = (B1,... , 85,71, ,7J), the vector of parameters of interest. Therefore
the same model can be written as:

Y; = 2B +¢;

wher‘e Z; = .(x’('-)}, 87) and §; € R’ is a vector with a single nonzero component equal
to | in position j. If we let

Y = (yn,yzl,-- ¥y Y2y y¥1J, Y20 ...,yu),

/
£ = (611,621, e €N E125E22y 00 Ry e vE10 €20, - .,51_1)
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and I; denote the J x J identity matrix, the design matrix X of the model becomes:

’
X(1)

T ¥
XE”
X(2)

I ¥

X = [ X2
<

)
Iy
!
X()

Therefore, using matrix notations, we have the following model:
Y =XB +e.
Conditioning on {n;}, asymptotically, E(e) = 0 and
V(e) =X = Diag(Wy, , Woy,... Wy, ......... Wip Wy, o0 W) (2.2)

where the W;;’s are defined as in (2.1}.

By now, we have transformed the original problem into one for which standard
weighted least squares theory applies. If we chose the weights matrix to be I we
get the following estimator for B

B = (X’X)'X'Y.
B is consistent and asymptotically normal with variance covariance matrix
V(B) = (X'X) ' X'EX(X'X)™!

where X is the variance-covariance matrix for Y, as defined above in (2.2%, Now. if
we clhiose X as the weights matrix, we get the following estimator

B, = (X'¥'X)7'X'2Y,
which is consistent and asymptotically normal with variance-covariance matrix
V(B,) = (XS 'X) "

Theorem 1. ]::5“‘ is a better cstimator than B



Proof. : We need to show that V(B) - V(Bw) is non-negatively definite. But
V(B,) = (X'Z71X) (X'E (T 1X)(X' T X) !
= (X' X)) XeT'X)(X'e ' x)!
= (X'=7'X)!
So if we compute the variance-covariance matrix of the random vector
U=(XX)'XY - (X 'X)""(XZTY
we get
VU) = (X'X)'X'EX(X'X)™
—(X'X)"' X' X(xX'sx) !
— (X'Z7IX)THX'EH)ES(X)(X'X) ! +(X'EIX) !
= (X'X)T'X'EX(X'X)!
—(XEX)! - (X' 4 (X'ETIX) !
= (X'X)'XEX(X'X)!' - (X'E'X)!
V(U) = V(B) — V(B,,).

V(B) — V(B,,) being the variance-covariance matrix of the random vector U is clearly
positive semi-definite. [

Of course from now on we will be using B,, which is the efficient quadratic distance
estimator and for notation sake, we write

B:,U = (ﬂhﬂ?v ",ﬂpv&h:h»-"v:y")

As a result of the above computations, we could compute the covariance matrix for
the estimators of our 8 and consequently S(a;|[x). Obviously, V() is easy to find.
By letting A be the p x (p + J) matrix of the form: A = [Ip OPXJ] then @ = AB,,
and its variance-covariance matrix is V(B) =AX'Z'X)'A

Also,let’s define P such that P’ = (p;,p,,...,ps) as the vector of the base survival
probabilities in each of the J intervals considered. So, from B,,, we can extract P
the estimator for P by applying the adequate transformation to the last elements of
B,..as i

P’ = (exp(—exp(1)), exp(— exp(%2)), - - . ,exp(— exp(s)))-

Consequently, it is easy to estimate the survival function S(a;{x) and the base survival
function Sp(a;). The estimators and their asymptotic properties are given in the
following theorem, the proof of which consists of using a Taylor expansion type of
argument as the one used in deriving (2.1).
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Theorem 2. For a given value of the covariate X' = (x1,%3,...,T,), we can estimate
the survival function S(a,}x), with S(a;|x) = [Ti, ﬁkc’(p(x’ﬂ).

In this case,the approzimate variance of S(a;|x) is
Var [W)] = [S(a )P exp(2XB)V(X'S'X) "V

where
1 1 1
, .
Vi=|—x Ze"‘,—xz Ze"‘,...,——:z:p Ze"‘,—e‘”,—e"’,..‘,—~e",0,...,0 .
k=1 k=1 k=1

We can estimate the base survival function Sy(a;), with TTi, px and in this case,the

approximate variance of So(a;) is
Var [Saa)] = [So(a)]? exp(2xB) V4 (X' X) "V

where
o . .’ Y
Vi=1(0,...,0,~e", —€?,...,—e",0,...,0)
p times

Note that these variance expressions can be estimated easily in a semi-parametric
way.

3. CENSORED DATA

So far, in our exposition, we assumed without stipulation that all withdrawals
from a survival study were due to "death” (or due to whatever other cause whose
duration time we are trying to estimate} and that all individuals under study are
present at age 0 at the beginning of the observation period. However, often in such
studies, there will be withdrawals due to other external factors that shouldn’t be
considered as "deaths”, in other words, the data could be censored. Moreover, rather
than tossing away those individuals retiring too early, and considering the artificially
reduced population resulting, we would like to get as much information as possible
from all individuals under study. We do this in the following way.

As we have seen, we are lead to use a general linear regression model to obtain
our estimators for the beta's and S( |x). Essentially, the estimators are based on the
Di;’s, the probabilities of survival in interval ; for individuals with characterization
vector x(;). Obviously, the closer the p;;'s reflect reality, the better our estimators
should be. This leads us to the notion of exposure.

For a given vector of concomitant variables x(;;, we had defined in scction 2
Py = ¢;/n;; where n;; is the number of individuals with that vector of concomi-
tant variables present in the study at the beginning of interval I; and ¢;; for the
number of individuals with the same vector of regression still alive at the end of
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interval I;. Suppose for simplicity that all intervals are of length 1 and that a total
of K individuals with vector of concomitant variables x(;) appear in the interval I;
for some time.

For each of these, define s;, k = 1,..., K as the time of entry into the study and
ty, k=1,..., K as the time of departure from the study for external reasons. Those
are left and right censoring times. One way to take all pertinent information into
account is to define

Cij
it (te — s¢)’
where, the denominator is the exposure measure mentionned in London (1988) and
Lawless (1982). We can then apply our procedure to those p;;’s, keeping in mind
that it is then an approximate one.

Pij ~

4, NUMERICAL IMPLEMENTATION

4.1. Algorithm. To compute the estimator B is fairly straightforward with any
statistical package that handles multple linear regression. As a matter of fact, the
only non-trivial work involved is in organizing the data correctly and generating the
design matrix X, obtaining B is then simply a matter of using already available
routines. .

The efficient quadratic distance estimator B,, though depends on the p;;’s and the
é's However, those quantities are not available a priori but easily estimated once
one has an initial estimate of B. This leads clearly to an iterative procedure where
one first estimates B by B, extracts the p Pi;’'s and the @’s from it and then uses those
values to compute the entries of the weight matrix W. From this pomt on, one
repeatedly computes B, and updates W until a criterion for convergence is met. So
we use a series of iterated reweighted least squares procedures. R

In practice, in all examples of computations we have tried, the first estimates B
were slightly off, though the weight matrix generated gave a preliminary B, quite
different from B. The next couple of iterations gave it a slight correction and from
that point on, any further iteration gave relative changes of far less than 0.01% for
each parameter. In all examples we tried, we never needed more than 3 or 4 iterations
to obtain an acceptable accuracy.

4.2. Example. We have implemented our method in S-Plus. We wrote code that
would create the design matrix X from the situation at hand. We haven’t tested it on
real life data but we did test it extensively by simulation. In the example described
here, we decided to let 89 = (0.1, 0.3, 0.2) while the values that could be taken by
x were X = (1, 23,23) where z,€{0,1}, 72¢{0,0.4,0.9} and z3e{~1,1}.

We fixed the base survival function to be that of an exponential random variable
with parameter A = 0.1 so that the base expected time of survival is 10. For the
12 different vectors of covariates, we simulated corresponding times of survival for
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an initial sample of 1000. We chose to split the time interval at all quarters from 0
to 3, thus generating 12 sub-intervals. With this setup, we then ran our estimation
procedure on the result of the simulations. We repeated this process 200 times to
have a good idea of how good our method was. The results are fairly encouraging.

In the following table, we compare the result of our two methods, namely with and
without weights.

No weights With weights
Mean Variance Mean Variance
51 ] 0.09369945 0.001677068 | 0.09302015 0.001587944
B2 | 0.28838041 0.002404128 | 0.28927907 0.002317426
B3 [ 0.19315782  0.000319992 | 0.19340011 0.000316183
pr | 0.97617147 2.64575e-006 | 0.97620276 2.58179¢-006
p | 0.97623301 2.20511e-006 | 0.97620834 1.97766e-006
pa [ 0.97647781 2.13237e-006 | 0.97645571 2.06813e-006
ps | 0.97642031 2.60941e-006 | 0.97639730 2.39343e-006
ps | 0.97655229 2.34267e-006 | 0.97655295 2.21630e-006
ps | 0.97648027 2.67874e-006 | 0.97651056 2.45656e-006
pr | 0.97659894 2.50644e-006 | 0.97662187 2.52137e-006
ps | 0.97651214 3.45007e-006 | 0.97650509 3.45923e-006
pe | 0.97668582 2,76196e-006 | 0.97664985 2.69636¢-006
pro | 0.97654216 2.81350e-006 | 0.97654069 2.78533e-006
Pt | 0.97655769  2.09560e-006 | 0.97658714  2.03501e-006
P12 | 0.97645519  2.09560e-006 | 0.97651284 2.03513e-006

Empirical means and variances for
the two estimation procedures.

It appears that the weighted version performs better than the unweighted one, as
confirmed by the theory.

4.3. Exceptional cases. Because of the transformation In{—In) aplied to our p;;’s,
there are a few situations raising concerns. Basically there are two situations which
are opposite extremes and that should be avoided.

The first one is when all individuals with the same characterisation vector die in
a given interval. The problem is that this would give p;; = 0 and we couldn’t apply
the desired transformation. In other words, the observation period has gone too long
and it should have been truncated before. Or another way to look at it is to say that
the sample isn’t large enough. Unfortunately, if the data has already been collected
in this way, there is nothing that can be done to fix this.

The other problematic situation is when no individual with a given characterisation
vector die in a certain interval. Here, that would mean p;; = 1 and the second log
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can’t be taken. Again, we could interpret this as too small a sample. However,
this can be easily fixed by extending that interval of observation to contain also the
previous or next one.

As a concluding note, we recall that

as introduced in section 2 defines a distance. Consequently, a goodness of fit test
statistic can be constructed based on that expression. This will be dealt in another

paper.
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