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Venter (1991) showed that the only premium calculation principles that 
preserve layer additivity are those that can be generated from transformed 
distributions, where the price for any layer is the expected loss for that layer 
under the transformed distribution. Stimulated by this results, Wang (1995) 
introduced the concept of PH-transform of a random risk X and hence calcu- 
lated risk adjusted premium by using transformed distributions. The concept 
of transformed distributions is generalized in this paper. First the concepts of 
net premium intensity, loaded premium intensity and load generators arc intro- 
duced. Then transformed distributions are identified with premium intensity 
and hence the loaded premium is calculated from transformed distributions. 
Finally it is shown that this method of premimn calculation is arbitrage free 
and it incorporates the strengths of the utility approach. 
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1 I n t r o d u c t i o n  

An insurance risk is a contingent claim X, having a probability distribution 
function. In other words, an insurance risk is a random loss. An insurance 
in its technical legal meaning, is a legal mutual agreement between two par- 
ties exchanging an insurance risk for a fixed payment called premium. The 
principle of assigning a premium to a risk is an essential issue to pricing an 
insurance risk. The calculation of an insurance premium is one of the most 
important function of a practicing actuary. 

Risk loadings are required by insurers/reinsurers as a source of solvency 
margin and potential profit. But the question is : how to decide on risk loading 
to different risks? Extensive research has ended up with numerous principles 
of premium calculations (see Goovaerts et al (1984)). Each one of them has 
its pros and cons. None of them totally satisfy all the ideal premium princi- 
ple. None of them satisfy layer additivity principle. Recently Wang (1995a) 
proposed a PH transform principal which satisfy several ideal principles of 
premium calculations, namely layer additivity, scale invariant, translation in- 
variant. In this chapter we will propose two new principles which will be a 
generalization of Wang's results. First let us describe various principles sug- 
gested by different researchers as found in the literature. Our discussion will 
follow along the lines of Goovaerts, De Vylder and Haezendonck (1984). 
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2 Premium Calculation Principles and its Prop- 

erties 

A premium principle is a we•defined rule for calculating the premium for 
a given risk which is a random variable. The term premium usually means 
the risk premium which incorporate both process risk and parameter risk; 
commission and expenses axe always excluded from premium principle and 
handled separately. For a class 7~ of all risks, a premium principle u is a 
mapping 

7r : T~ ---~ R, 

which means that for any risk X E T~ a premium P = ~(X) is well-defined. 
One can consider T~ as a class of distribution functions of all risks. If Fx be 
the distribution function of any risk X, then the premium P = ~r(Fx) is the 
unique value assigned to the risk X. Note that the actual real premium charged 
for a risk X will have an additional component for commission and expenses. 
Let us now briefly describe the twelve different principle of calculating risk 
premium. For the first ten, detail descriptions are given by Goovaerts, De 
Vylder and Haezendonck (1984). For the last two see Kaas, van Heerwaarden 
and Goovaerts (1994) and Wang (1995b). 

All the symbols used in this section have the standard meaning, namely E 
for expectation, a 2 for variance, Fx for distribution function of random risk 
X. 

P.1 The  expec ted  value principle : 

Definit ion 1 The premium calculated according to the expected value princi- 

ple is given by 

~r(X) = (1 + A)E(X) 

where )~ E R + is the premium loading. For )~ = O, this principle is known as 

Net  P r e m i u m  principle. 

P.2 The  maximal  loss principle : 

Definition 2 The premium ~r(X) calculated according to the maximal loss 

principle is given by 

~r(X) = pE(X) + qMax(X) 

where q = 1 - p, and M a x ( X )  denotes the right end point of the range of X .  
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P . 3  T h e  v a r i a n c e  p r i n c i p l e  : 

Def in i t ion  3 The premium ~r(X) determined by the variance principle for a 

given risk X is given by 

~(X)  = E ( X )  + f l ~ ( X )  

where fl E R +. In this case the safety loading is proportional to the variance. 

P . 4  T h e  S t a n d a r d  d e v i a t i o n  p r i n c i p l e  : 

Def in i t ion  4 The premium ~r(X) determined by the standard deviation prin- 

ciple for a given risk X is given by 

. ( X )  = E(X)  + aa(X)  

where ct E R +. In this case the safety loading is proportional to the standard 

deviation. 

P . 5  T h e  s e m l - v a r i a n c e  p r i n c i p l e  : 

Def in i t ion  5 The premium 7r(X) determined by the semi-variance principle 

for a given risk X is given by 

~(x) : E(x) + ~ + ( x )  

where fl C R + and 

a2+(X) = fE~X)( z -- E(X))2dFx(~c). 

P.6 T h e  Mean  value principle : 

Def in i t ion  6 Let f(.) be a continuous and strictly monotonic function on 

a domain D (the domain of the random risk X) .  The premium calculated 

according to the mean value principle, denoted by 7r(X, f) ,  is the unique root 

of the following equation 

f(~) = E( f (X) ) .  
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For f ( x )  = c ~=, this principle is known as Exponent ia l  Principle,  and the 

corresponding premium is given by 

7r(X) = l logE[e~X]. 

P.7 The zero uti l i ty principle : 

Definit ion 7 Let u(.) be a utility function. The 7r(X, f )  calculated according 

to the principle of zero utility is the root rr of the equation 

E[u(~-  - X ) )  = o 

where X is the random risk. Note that u(O) = 0 for any utility function. 

P.8 The  Swiss premium principle : 

Def init ion 8 Let f ( . )  be a continuous strictly monotonic real function defined 

on R .  Let z E [0,1]. Let X be a real random variable (risk). The Swiss 

premium associated to the risk X is the root of the equation in p 

E ( I ( X  - zp)) = 1((i - z)p) 

The Swiss premium is denoted by 7r( X,  f ,  z ), since it is dependent on the choice 

of f and z. Note that z = 0 implies mean value principle while z = 1 implies 

zero utility principle. 

P .9  The  Orlicz principle : 

Definit ion 9 The premium 7r(X) calculated according to the Orlicz principle 

is given as the root of the equation 

E [ ¢ ( X ) ]  = ¢(1) in P 

where ¢(x),  x >_ 0 is a function with the following properties 

• ¢(x)  is continuous and increasing in R 
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• ~'(x) is nondecreasing in R .  

P.IO T h e  E s s c h e r  pr inc ip le  : 

Def in i t i on  10 The premium lr(X) calculated according to the Esscher prin- 

ciple is given by 
7 r ( X ) -  E(Xe'~X) 

• 

P.11 T h e  D u t c h  p r e m i u m  pr inc ip le  : This was introduced by Van 
Heerwaarden and Kass (1992}. The motivation was to incorporate some of 
the basic properties of premium principle, namely unjustified loading, no rip- 
off, preservation of stochastic order and of stop-loss order etc. For detail see 
Kaas, van tleerwaarden, and Goovaerts (1994). 

Def in i t ion  11 The Dutch premium for a risk X is given by 

7 r ( X ; O , , a ] = E [ X ] + O , E [ ( X - c ~ E [ X ] ) + ] ,  ~ > 1, 0 < O, < 1. 

P.12 T h e  P H  t r a n s f o r m  pr inc ip le  : In a recent paper, Wang (1995a) 
proposed a new principle to calculate the risk-adjusted premium by using 
proportional hazard transform(PH) to a random risk. For a insurance risk X,  
we define the survivor function Sx(t)  = 1 - Fx(t) ,  where Fx(t)  is the left 
hand tail probability. This tail probability plays a crucial role to define the 
new premium principle. The appropriate definition of this premium principle 
as given by Wang (1995b) is as follows. 

Def in i t ion  12 The PH transform is a mapping of one random variable X 

into another random variable Y 

I I p : X  ~-~ Y 

such that 

Sy(t) = Sx(t)  ~ (p > 1). 

Now for a risk X ,  the risk-adjusted premium is the mean of the transformed 

variable Y = lip(X) and is given by 

f f  ' ~- , , (X)  = E [ r l o ( X ) ]  = Sx( t ) ; ,  

where p > 1 is called the (risk-averse) index. 
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2 . 1  B a s i c  r e q u i r e m e n t s  f o r  a c o n s i s t e n t  p r e m i u m  p r i n -  

c i p l e  

Let X be an insurance risk with a distribution function [ix(t)  = P r ( X  _< t). 
A premium principle is a rule that  assigns a premium value to a given risk. 
To be consistent, a premium principle must satisfy some basic requirements. 
Goovaerts, De Vylder, and Haezendonck (1984) has extensive discussion of 
basic requirements. Boyle and Nye (1991) pointed out some constraints on 
a premium principle required for arriving at premiums for stop-los contracts. 
Wang (1995c) has compiled some most common requirements for a consistent 
premium principle which are as follows. 

R.1 Positive loading and no ripoff : E ( X )  < 7r(X) < m a x ( X ) .  
R.2 Linearity : rr(aX + b) -- a~r(X) + b, a >_ O. 

• ~r(aX) = art(X) is called scale invariant (homogeneous); 

• ~r(X + b) = 7r(X) + b is called translation invariant; 

• 7r(b) = b is called no unjustified loading. 

R.3 Sub-additivity : For any two risks U and V regardless of dependence, 

~(U + V) < ~(U) + r(V). 

R.4 Higher loading for a higher risk : ff  U is less risky than V (notation 
U -< V in some sense) then ~r(U) should be less than ~r(V). 

R.5 Layer additivity : If  a risk X is divided into countable stop-loss layers, 
then the layer price should be additive. 

R.6 Decreasing stop-loss layer premiums : For any two stop-loss layer of 
the same length, higher layer should have lower premium than that  of lower 
layer. 

R.7 Increasing relative risk-loading. 

3 Premium Calculation by spreading load over 

stop-loss layers. 

Venter (1991, p.228) showed that  "the only premium calculation principles that  
preserve additivity are those generated by transformed distributions." Similar 
results were pointed out by Harrison and Kreps (1979), Harrison and Pliska 
(1981), Delbaen and Haezendonck (1989), and Sondermann (1991). Their con- 
clusive comments were that  in an arbitrage free market,  pricing of a risk should 
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take place according to the expectation under a risk adjusted probability dis- 
tribution. In the finance literature, this risk adjusted pdf is sometimes called 
risk-neutral distribution. In the same principle, Wang (1995a) used the pro- 
portional hazard transform measure to find a risk load adjusted distribution. 
The risk adjusted premium is then calculated by taking the expectation of the 
risk X, with respect to the adjusted distribution. The amount of risk load for 
a risk is determined by the market. Once the amount of risk load is deter- 
mined by the market, does it uniquely determine the corresponding adjusted 
distribution or could it create infinitely many adjusted random variable whose 
expected value equals the market premium? So the question arises, how to 
choose the adjusted distribution? An insurer's assessment of a risk will reflect 
the subjective attitude of the individual company towards different layer of 
uncertain outcomes. As an example, let X be a risk ranges over [0, 1,000,000) 
with expected net premium $1,000, and risk load $100. The spread of the risk 
load $100 over the range (virtually layers) of X is subject to the attitude of 
the insurer's view to different layers of the risk. An insurer with theoretically 
very large wealth will spread the load almost uniformly over the layer. On 
the other hand, a small insurer will spread this risk load over different layers 
in a very skewed manner, very high load for the upper layer and smaller load 
for lower layers. The net premium for a risk is fixed by the nature of the risk 
and is given by the expected value of the risk, and its spread over the layer 
is determined by the inherent nature of the risk. The amount of load by each 
insurer and its spread are determined by the individual insurer whose reactions 
totally depends on its financial health. The market premium is determined 
by the market equilibrium which is caused by the joint effect of all individual 
insurers that constitute a market. So the amount of market load settled by the 
market may not reflect the actual behaviour of individual company but the 
joint behaviour of all insurers. Detail mathematical interpretation is deferred 
to section 9.5. Here our aim is to model the market behaviour in loading 
a gross premium. Before going in detail, let us put forward few definitions 
needed later for our pathological treatments to premium calculation for an 
insurable risk. 

3.1 S o m e  basic def ini t ions  

Def in i t ion  13 A layer l(~,bl of a given risk X is defined by a stop-loss cover: 

0, O _ < X < a ;  

= ( X - a ) ,  a < X < b ;  

(b-a), b<_X. 
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Figure 1: Stop-loss slicing of risk (cross-sectional slicing) 
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which has a distribution function 

Fi( ,l(t) = { 
Fx(a  + t), O ( t < b - a ,  

" 1, b - a < t .  

where Fx( . )  is the cumulative distribution function of the risk X .  

Obviously the amount of coverage defined by the definition of the layer above 
is a random quantity. So its expected value is meaningful. 

Def ini t ion 14 Net premium for a layer I(a,b] is defined to be the expected value 

of the layer and is denoted by n( l(a,b]). 

R e m a r k  : The net premium for a risk X is denoted by 7r(X) and is 
defined as the expected value of the layer I(0,M] where M is the largest value 
X can take. 

Now we are going to define a infinitesimal concept of premium that will 
help to define the net premium of an arbitrary layer. 

Def ini t ion 15 The Net  p r e m i u m  in tens i ty  of a random risk X at a point 

X = x, denotes by ¢(x) is defined to be the derivative of the net premium for 

a layer I(o,~] and is given by 

In other words, 

¢ ( ~ )  = d . ( z ( 0 , ~ l ) .  

limh-~o 7r(II~'~+hJ) 
¢(~) = h " 

Literally, ¢(z) is the expected loss per first dollar claim in an infinitesimal 

layer at stop loss level X = x. In other words, it is the marginal net premium 

at x. 

R e m a r k  : Having defined net premium intensity, the net premium for 
any layer is easily given by 

/) ~(I(o.bl) = ¢ ( ~ ) d ~ .  

Similarly, 

, r ( X )  = ¢ ( x ) d ~ .  
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Note that if we slice the risk into equal layers (in fact it works for any arbitrary 
partition of the range of the risk) of width h, we have 

and 

oo 

X = ~ I(ih,(i+l)h] 
i = 0  

OO 

. ( x )  = 
i = O  

t With the help of the concept of net premium intensity, layer additivity of 
net premium is easily demonstrated above. Until now, we have no idea what 
the function ¢(z)  will look like. But since the net premium principle satisfies 
all the basic requirements listed in R.1 to R.6 in the previous section, we can 
list the following characteristic of ¢(x) whose proofs are obvious from previous 
section. 

1. 0_<¢(x)  < 1 

2. qb(0) = 1 and ¢(M) = 0 where M is the largest value X can take 

3. ~b(x) must be function of Fx(z) (because of R.2). 

4. ¢(x) must be decreasing in z (on account of R.6). 

5. ¢(x) is independent of market and uniquely determined by the nature of 
the risk X. 

E x a m p l e s  : 
Let X be a risk with cdf Fx(x), then by definition 
Net premium for/(o,=l : ~r(I(o,=l) = to(1 - Fx(t))dt 
Net premium intensity:  ¢(x) = 1 - Fx(x) 
Net premium fox" I(a,bl : lr(I(a,b]) = f~¢(t)dt 
Net premium for X:  ~r(X) = f~  ¢(t)dt 

Using the concept of net premium intensity, our next task is to introduce 
the concept of loaded premium intensity which will be used to calculate the 
loaded premium for a risk and that of its arbitrary stop-loss layers. 

3.2 Loaded premium calculation 

In this section, our first task is to define a loaded premium intensity along the 
line of net premium intensity defined in the last section. 
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D e f i n i t i o n  16 Let p be the index of loading, and 7rp(I(o,,l) be the loaded pre- 

mium for the layer /(0,,], then the l o a d e d  p r e m i u m  i n t e n s i t y  at a point 

X = x, denoted by ep(x) /s defined to be the derivative of  the loaded premium 

for the stop-loss layer l(0,x} and is given by 

d 

In other words, 

h " 

Literally, ep(x) is the expected premium per first dollar claim in an infinitesi- 

mal layer at stop loss level X = x. 

R e m a r k  : Having defined loaded premium intensity, the loaded premium 
for any layer is easily given by 

Similarly the loaded premium for the risk X is given by, 

Note that  if we slice the risk into equal layers of width h, we have 

.o(x) = ~ ~.(I(,~,(,+,~hl). 
i=O 

With the help of the concept of loaded premium intensity, layer additiv- 
ity of loaded premium is easily demonstrated above. Until now, we have no 
idea what the function ep(x) will look hke. But since the loaded premium 
principle should satisfy all the basic requirements listed in R.1 to R.7 in the 
previous section, we can list the following characteristic of Co(z) whose proofs 
are obvious from previous section. 

1. For given z, ep(z) must be monotonic in p and there should be a unique 
value of p for which ep(z) is identical with net premium intensity ¢(x) 
signifying zero loadings. 

2. 0 < ¢ . ( z ) < l  

3. ep(0) = 1 and Co(M) = 0 where M is the largest value X can take 
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4. ¢,(x) must be fimction of Fx(x )  (because of R.2). 

5. ep(z) must be decreasing in z on account of R.6 

6. ep(x) is not independent of market and is uniquely determined by the 
market and the nature of the risk X. 

So far we have defined loaded premium intensity in terms of loaded layer 
premium 7rp(I(o,~]) which in turn depends on loaded premium intensity. There- 
fore we need to explore some other way how to create or model loaded premium 
intensity. With that view in mind let us define the concept of relative loading. 

Definit ion 17 The relative loading factor  of a random risk X at a point 

X = ~, denoted by ep(x)  is defined to be the ratio of loaded premium intensity 

to the net premium intensity and is given by 

~(~)  = ¢o(~) 
¢(~) 

where ¢(x) is non-zero. Literally, ep(x) is the market loading on expected 

premium per first dollar possible claim in an infinitesimal layer at stop loss 

level X = x. 

Until now, we have no idea what the function ep(z) will look like. But since 
the loaded premium principle should satisfy all the basic requirements listed 
in R.1 to R.7 in the previous section, we can list the following characteristic 
of ¢(x) whose proofs are obvious from previous section. 

1. For given x, ep(z) must be monotonic in p and there should be a unique 
value of p for which ep(z) is identically unity signifying zero loadings. 

2. 1 < ¢.(~) 

3. ¢0(0) = 1 and ¢,(x) > 1 

4. ¢,(~) must be function of Fx(x )  (because of R.2). 

5. Co(x) must be increasing in x on account of R.7 

6. % ( z )  x ¢(=) must be decreasing in • on account of R.6 

7. Cp(x) is not independent of market and is uniquely determined by the 
market and the nature of the risk X. 
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On account of R.2, Cp(x) must be a function of Fx(x) .  In order to facihta~e 
the modeling of relative loading factor, let us introduce the following definition 
of load generator. 

Def in i t ion  18 The l oad  g e n e r a t o r  gp(.), indezed by p, is a mapping gp(.) : 

[0, 11 ~-~ [1, oo) such that g.( Fx(x))  is a relative loading factor and g.( Fx(x)  ) (1-  

Fx(x) )  is a loaded premium intensity. 

Having introduced the concept of load generator, we have the following 
theorem about the intrinsic behaviour of the load generator. 

T h e o r e m  3.1 Let gp(t) be a mapping: [0, 1] ~-~ [1, oo). I f  g.(t) is continuous 

and differe~iable then it is a load generator iff, (a) gp(O) = 1 (b) g'p(t) > 0 

and (c) ~ < ap(t) - 

P r o o f  : The results immediately follows because of R.6 and R.7. We will 
prove the "if" part  ( only forward direction). The "only if" (the backward 
direction) par~ follows immediately. Now let Fx(z )  be the cdf of the risk X. 
Condition (a) follows by definition. Since the relative loading factor gAFx( z ) )  
must be increasing in z (ref R.7), we have by differentiation g'p(t)Fx'(z) > 0 
for all z where t = Fx(x) .  Since Fx ' (x)  >_ 0, g'p(t) must be non-negative. To 
prove (c), recall that  the loaded premium intensity given by 

~ . ( ~ )  = g . ( F x ( ~ ) ) ( 1  - Fx(~)) 

must be decreasing in z. Differentiating both sides with respect to z we have 

' t  . . . .  g A )  1 
¢. ' (x)  = ~p[z)i.g---~ 1 - t }Fx ' ( z )  

Since Fx ' ( z )  > 0, (c) follows immediately. The "only if" part  follows as a 
consequence of the above definition of load generator. (QED) 

What  we have achieved so far is that  first we defined a load generator which 
can be easily built up depending on the market  (see examples below). A load 
generator gives a loading factor for all values of z. When multiplied with the 
net premium intensity, it gives the loaded premium intensity. Then premium 
can be calculate for any stop-loss layer just simply by integration. The pre- 
mium calculated using load generator satisfies all the basic requirements given 
in R.1 to R.7. 

E x a m p l e s  1. g p ( t ) = e  pt for O _ < p < l .  
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Note that  go(t) = 1, hence p = 0 gives the case of no loading, gp(O) = 1 

= d  g / ( t )  > 0 and ~ < ,~. a p ( t )  = P - 

E x a m p l e s  2. gp(t) = (1 - t) -p for 0 _< p < 1. 
One can easily check that  gp(t) is a load generator, p = 0 gives the case of 

no loading. 

E x a m p l e s  3. gp(t) = (1 + pt) for 0 _< p < 1. 
One can easily check that  gp(t) is a load generator, p = 0 gives the case of 

no loading. 

Examples  4. g,(t) = (S~c(] t ) ,  for 0 _< p < 1. 
One can easily check that  gp(t) is a load generator,  p = 0 gives the case of 

no loading. 

p - t  
E x a m p l e s  5. g p ( t ) = ( 1 - t )  , for l _ < p < o o .  
One can easily check that  gp(t) is a load generator, p = 1 gives the case of 

no loading. 

E x a m p l e s  6. Any convex combination of load generators given in example 
1, 2, and 3. 

In fact there are infinitely many load generator one could create. The 
above examples are only a few. For a pricing actuary,  the first prudent  job is 
to choose a suitable load generator that  closely reflects the market.  Once the 
load generator is chosen, the adjusted distr ibution could be found by routine 
operat ion mentioned above. The calculation of of premium of any coverage 
of the risk X is the appropria te  expected value with respect to the adjusted 
distribution. So the final definition of the loaded premium is given by the the 
following definition. 

D e f l n l t i o n  19 Let X be a risk with cdf Fx (x). Let gp(t) be the load generator. 

Then the loaded premium for any stop-loss layer I(a.b] is given by 

,~(r(o ,bj /=  g , ( F x ( ~ ) ) ( 1  - Fx(=))a~ 

and the loaded premium for the risk X is given by 

fo ° , ~ ( x )  = g , ( F x { ~ , ) ) ( t  - £ x ( ~ ) ) d ~ .  
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3.3 Link w i t h  P H  trans form p r e m i u m  

Wang (1995a) recently used PH-transform to define a premium principle which 
satisfy all the properties in R.1 to R.7. Let us see how PH-transform fits into 
our load generator. In order to do that let us start with our load generator 
given in example 4. The loading factor Cp(x) is given by 

g p ( F x ( ~ ) )  = (1  - Fx(~)) "-' tot p > i 

and the loaded premimn intensity is given by 

C p ( ~ )  = ( 1  - Fx(~))'.  

Hence the loaded premium for a stop-loss layer I(a,b] is given by 

/ b(1 7rp(/(~,b]) = - F x ( x ) ) ~ d x  

and the total loaded premium for a risk X is given by 

Z = F x ( x ) ) ~ d x  p _ up(X) (1 - ' for > 1 

which is same as the premium calculated by PH-transform as was introduced 
by Wang (1995a). So our method is a generalization of PH-transforms to 
calculate the loaded premium. 

3.4 Haza rd  ra te  of  ad jus ted  d is t r ibu t ions  

The loadcd premium intensity Cp(u) is a non-increasing function with Cp(0) -- 
1 and decreases down to zero. It can be considered as the survival function 
of a random variable. Let Y be such a random variable whose right hand tail 
probability at u matches with the loaded premium intensity Cp(u) at X = u, 
Y is called risk neutral adjusted random variable whose survival function is 
given by 

s y ( , , )  = g p ( F x ( ' , , ) ) ( t  - Fx(u)). 
We can easily find a relation between the hazard rates of X and Y. Let Ax(u) 
be the hazard rate of t h e  risk X and At(u) be the hazard rate of the adjusted 
random variable Y. Then we have by definition 

' t  d g.( ) . . . .  
A y ( , , )  = -~ logSr (u )  = Ax(, , ) -  gC~i~,'x ~u~ 

where t = F x ( u ) .  Hence we have the following theorem. 
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T h e o r e m  3.2 (a) The hazard rate of the risk adjusted random vaT"iable Y at 

Y = u is always less than or equal to the hazard rate of the risk X at X = u 

for all u. 

(b) The adjusted random variable Y is stochastically larger than the risk 

X ,  i.e. X a  <_Y. 

P r o o f  : (a) b-Yom above, we [lave 

' t g.( ) . . . .  

where t = F x ( u ) .  Since g;(0 -> 0 and Fx'(u) _> 0, results immediately foUow. 
(b) By definition, we have 

1 - Fr(u)  = gp(Fx(u))(1 - Fx(u) )  

and gp(Fx(u)) >_ 1 for ~U ~. Hence 1 -  Fr(u) > 1 -Fx(~). Or Fr(~) < Fx(u) 
for all u and that  completes the proof. 

E x a m p l e s  I (revisited) : gp(t) = e p* for 0_< p < 1. So, 

1 - Fv(u)  = e"~X(")(1 - Fx(u) )  and At (u)  = Ax(u) - pFx'(u) .  

The hazard rate  at u is decreased by the amount  pFx'(u) .  

E x a m p l e s  5 (revisited) : gp(t) = (1 - t) p for 1 < p < oo. So, 

1 - Fy(u)  = (1 - Fx(u))~,  and Xr(u) = ~Ax(u) .  

Obviously, the hazard rate is proport ionately deflated in this case. In fact in 
each of those examples 1 to 5 mentioned earlier, the adjusted distr ibution is 
created by deflating the hazard ra te  of X.  

4 P r e m i u m  C a l c u l a t i o n  b y  s p r e a d i n g  l o a d  o v e r  

f r a n c h i s e  l a y e r s  

Since Venter (1991) proposed to calculate premium using t ransformed distri- 
bution,  Albrecht (1992) created an strange coverage (could be called franchise 
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coverage) and argued that the premium principle using transformed distribu- 
tion fails to calculate a consistent premium for the franchise coverage. In this 
section we will a t tempt  to use our load spreading technique on the franchise 
layers of the risk. In the earlier section, we have sliced the risk X in stop-loss 
layer and then spread the load over the stop-loss layer in a consistent fashion. 
In this section we will a t tempt  to use our load spreading technique on the 
franchise layers of the risk. First we will split our risk X into franchise layers 
(to be called longitudinal slicing) and then spread the load over the franchise 
layers. So the approach will be exactly same as in the previous subsection 
but applied on a longitudinal slicing as opposed to cross section slicing used 
in stop-loss layerings. 

I 
/ 

I 

i x-~-h 
0 h 

L k I I 

W 

Figure 2: longitudinal slicing of risk (franchise-sectional shcing) 
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4.1  S o m e  b a s i c  d e f i n i t i o n s  r e l a t e d  to  l o n g i t u d i n a l  s l i c i n g  

Definition 20 A long i tud ina l  l aye r  L(.,b] of a given risk X is defined by a 

franchise cover: 

0, O < X < a ;  

L(a,bl = X, a < X < b ;  

O, b < X .  

which has a distribution function 

Fx(a)  + l - ex (b ) ,  O_<t<a,  

FL~.,,~(t) = Fx(t) + 1 -- Yx(b),  ~ <_ t < b, 

1, b < t .  

where Fx( . )  is the cumulative distribution function of the risk X .  

Obviously the amount of coverage defined by the definition of the layer above 
is a non-trivial random quantity. So its expected value is meaningful. 

Definition 21 Net premium for a layer L(~,~,] is defined to be the expected 

value of the layer and is denoted by 7r(L(~,bl). 

R e m a r k  : The net premium for a risk X is denoted by rr(X) and is 
defined as the expected value of the layer L(0,M] where M is the largest value 
X can take. 

Now we axe going to define a infinitesimal concept of premium that will 
help to define the net premium of an arbitrary layer. 

Def in i t ion  22 The N e t  p r e m i u m  in t ens i t y  of a random risk X at a point 

X = x under longitudinal slicing, denotes by et(x) is defined to be the deriva- 

tive of the net premium for a layer L(o,=] and is given by 

el(x) : dTr(L(0,=]). 

In other words, 

et (z) = limh~o 7r(L(=,=+h]) 
h " 

Literally, el(x) is the expected loss per first dollar claim in an infinitesimal 

layer at franchise cover level X = x. 
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R e m a r k  : Having defined net premium intensity, the net premium for 
any layer is easily given by 

Similarly, 

u(L(a,bl) = Z b ¢:(m)dz. 

j~O °° 
~(x)  = @'(~)d~. 

Note that  if we slice the risk into equal longitudinal layers (in fact it works for 
any arbitrary partition of the range of the risk) of width h, we have 

Oo 
X = ~ L(~h,(~+l)h] 

i=O 

and 

7r(X) = y~ ~(L(,~.<,+,)h]). 
i=O 

With the help of the concept of net premium intensity, layer additivity of 
net premium is easily demonstrated above. Until now, we have no idea what 
the function ~bt(x) will look like. But since the net premium principle satisfies 
all the basic requirements listed in R.I  to R.6 in the previous section, we can 
list the following characteristic o fe t (x)  whose proofs are obvious from previous 
section. 

1. 0 < ¢'(~) 

2. ¢:(x) is independent of market and uniquely determined by the nature 
of the risk X. 

Note that  e t (z)  is much simpler than that in case of cross sectional shcing. 

E x a m p l e s  : 
Let X be a risk with cdf Fx(x), then by definition 
Net  p rem ium for L(o,.] : ~r(L(o,.l) = fo(tfx(l))dg 
Net premium intensi ty:  et(x) = z /x (x)  
Net premium for Ll~,bj : 7r(Lla,b]) = J'~ ¢ '( t)dt  
Net premium for X :  7r(X) = f ~  ¢'(t)dt 

Using the concept of net premium intensity, our next task is to introduce 
the concept of loaded premium intensity which will be used to calculate the 
loaded premium for a risk and that of its arbitrary franchise cover layers. 
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4 . 2  L o a d e d  p r e m i u m  c a l c u l a t i o n  u n d e r  l o n g i t u d i n a l  s l i c -  

i n g  

In this section, our first task is to define a loaded premium intensity along the 
line of net premium intensity defined in the last section. 

Definit ion 23 Let p be the index of loading, and rp(L(0,=]) be the loaded pre- 

mium for the layer L(0,~], then the loaded p r em iu m  in tens i ty  at a point 

X = x, denoted by et(x) /s defined to be the derivative of the loaded premium 

for the franchise cover layer L(0,=] and is given by 

In other words, 

d 

¢ 'A=)  = 
h " 

Literally, eto(= ) is the expected premium per first doller claim in an infinitesi- 

mal layer at franchise coverage X = x. 

R e m a r k  : Having dubiously defined loaded premium intensity, the loaded 
premium for any longitudinal layer is easily given by 

7r,(L(~,b]) = f b ¢~(x)dx. 

Similarly the loaded premium for the risk X is given by, 

/J = 

Note that if we slice the risk into equal layers of width h, we have 

lrp(X) = ~ "p( L(,a,(,+t)N). 
i=0 

With the help of the concept of loaded premium intensity, longitudinal layer 
additivity of loaded premium is easily demonstrated above. Until now, we have 
no idea what the flmction ¢~(~) will look like. But since the loaded premium 
principle should satisfy all the basic requirements listed in R.1 to R.7 in an 
earlier section, we can list the following characteristic of ¢~(x) whose proofs 
are obvious from previous section. 
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1. For given x, ¢~(z) must be monotonic in p and there should be a unique 
value of p for which ¢~(z) is identical with net premium intensity ¢t(z) 
signifying zero loadings. 

2. o < ¢'.(~) 

3. ~btp(x) is not independent of market  and is uniquely determined by the 
market  and the nature of the risk X. 

So far we have defined loaded premium intensity in terms of loaded layer 
premium zrp(L(0,~l) which in turn depends on loaded premium intensity. There- 
fore we need to explore some other way how to create or model loaded premium 
intensity. With that  view in mind let us define the concept of relative loading. 

D e f i n i t i o n  24 The r e l a t i ve  l oad ing  f a c t o r  of a random risk X at a point 

X = ~, denoted by ~bp(z) is defined to be the ratio of loaded premium intensity 

to the net premium intensity and is given by 

= + ; i x t  

'where el(z)  is no,t-zero. Literally, ¢~(z) is the market loading on expected 

premium per f irst  doller possible claim in an infinitesimal layer at franchise 

cover level X = z.  

Until now, we have no idea what the function %b~(x) will look like. But since 
the loaded premium principle should satisfy all the basic requirements listed 
in R.1 to R.7 in the previous section, wc can list the following characteristic 
of ¢~(z) whose proofs are obvious from previous section. 

1. For given x, %b~(x) must be monotonic in p and there should be a unique 
value of p for which ~b~(z) is identically unity signifying zero loadings. 

2. 1 _< ¢~(z) 
a.  #,'Ao) = 1 and #,'.(~) _> I 

4. ¢~(z) must be function of Fx(m) (because of R.2). 

5. ¢~(z) must be increasing in z on account of R.7 

6. ~b~(x) is not independent of market  and is uniquely determined by the 
market  and the nature of the risk X. 
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On account of R.2, ¢~(x) must be a function of Fx(x). In order to facilitate 
the modeling of relative loading factor, let us introduce the following definition 
of load generator. 

D e f i n i t i o n  25 The load g e n e r a t o r  gp(.), indexed by p, is a mapping gp(.) : 

[0, 1] ~ [1, co) such that gp(Fx (x)) is a relative loading factor and gp(Fx (x))f/p(x) 

is a loaded premium intensity. 

Having introduced the concept of load generator, it is important to note 
that the load generator must be increasing function because of empirical re- 
striction on premium as pointed in Venter (1991) One can consider the load 
generator as a increasing function of z, in which case it maps [0, co) to [1, oo) 
and the principle looses its homogeneity property. 

What  we have achieved so far is that first we defined a load generator which 
can be easily built up depending on the market (see examples below). A load 
generator gives a loading factor for all values of x. When multiplied with the 
net premium intensity, it gives the loaded premium intensity. Then premium 
can be calculate for arty franchise layers just simply by integration. The pre- 
mium calculated using load generator satisfies all the basic requirements given 
in R.1 to R.7. 

E x a m p l e s  1. gp( t )=e  pt for 0 _ < p < l .  
Note that g0(t) = 1, hence p = 0 gives the case of no loading, gp(0) = 1 

and gpP(t) > O. 

E x a m p l e s  2. g p ( t ) = ( 1 - t ) - "  for 0 < p < l .  
One can easily check that gp(t) is a load generator, p = 0 gives the case of 

no loading. 

_eL  
E x a m p l e s  3. g.(t) = (1 - t) , for 1 < p < co. 
One can easily check that gAt) is a load generator, p = I gives the case of 

no loading. 

E x a m p l e s  4. Any convex combination of load generators given in example 
1, and 2. 

In fact there are infinitely many load generator one could create. The 
above examples are only a few. For a pricing actuary, the first prudent job is 
to choose a suitable load generator that closely reflects the market. Once the 
load generator is chosen, the adjusted distribution could be found by routine 
operation mentioned above. The calculation of premium of any coverage of 
the risk X is the appropriate expected value with respect to the adjusted 
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distribution. So the final definition of the loaded premium using longitudinal 
slicing is given by the the following definition. 

Definition 26 Let X be a risk with cdf Fx(x). Let gp(t) be the load generator. 

Then the loaded premium for any franchise layer L(~,b] is given by 

/: ~r(L(~,b]) = gp(Fx(x))¢l(x)dx 

and the loaded premium for the risk X is given by 

~ ( x )  = go(Fx(~))¢t(:~)d~. 

4.3 Link with net premium principle 
In case of a net premium principle, total premium is given by (1 + 8)E(X) for 
the risk X where 8 is the constant load which is same as taking our loading 
function (1 +/9) independent of x but uniquely determined by p. On the other 
hand if/9 becomes flmction of p and ~, we get the above premium principle 
based on longitudinal slicing and is given by rr(X) = E(1 +/9(p, X) )X .  If we 

take 6(p,X) = (1 - Fx(x))} -a - 1, then ~r(X) = f o x ( 1  - Fx(x))}- ldFx(x)  
which is similar (not equal) ~o wha~ we have found in e×ample 5 under stop loss 
slicing. Note that under PH-transform, Wang (1995a) showed that 7rp(X) = 

l L _  1 
f o (1  - Fx(~));a~, which is equal to f o  ~(1 - Fx(~))~ dFx(~), whici, is 
similar (but not equal ) to what we have derived above. By choosing suitable 
function for/9(p, X),  we can easily show that our longitudinal slicing principle 
leads to the total premium equal to the sum of E(X)  and a risk premium 
R(X) -=- E(X/9(p,X)) as was done in Ramsay (1994) or as formulated in 
Carrier (1994). So our method is a generalized result to calculate the loaded 
premium. 

5 L ink  w i t h  ut i l i ty  t h e o r y  and  arbi trage  free 

m a r k e t  

Venter (1991) studied premium calculation principles under one aspect of com- 
petitive market theory : the impossibility of systematic arbitrage. He showed 
that  the principles based on second moments or utility theory lead to arbi- 
trage possibilities some other principles, namely adjusted distribution, do not. 
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Albrecht (1992), in his discussion paper to Venter contributions, argued that 

. . .  in contrast to the theory of financial markets-it is not reasonable 

to demand that insurance markets are arbitrage free. 

In addition he claimed that the adjusted distribution principles put forward by 
Venter are invalid. Both Venter (1991) and Albrecht (1992) had discussed some 
important issues but failed to justify (i) no arbitrage (ii) utility theory and (iii) 
adjusted distribution principle in premium calculation. Our load spreading 
principle really accommodate and justify all of the above three issues. 

In earlier sections, we have derived the load spreading technique and hence 
premium calculation. It is virtually nothing but creating an adjusted distribu- 
tion with a careful attention to the empirical restrictions imposed on premium 
calculation. Now we are going to show how no-arbitrage principle and utility 
theory are taken care in our prenlium calculation. 

Let U(t) be the utihty function followed by all the insurance/reinsurance 
company. Let to 6 [0, oo) be the amount of wealth owned by a particular 
company. Note that to could be any positive but finite number. Let P~ be the 
premium (under no competition) assumed to be charged by a company having 
wealth w. Under utility principle P~ is given by the equation 

E(U(to + e~ - X)) = U(to) 

where X is the random risk to be insured and E stands for the expected value. 
Obviously the premium P~o will be a decreasing function of w in accordance 
with the fact that large insurers can maintain the same level of security at a 
lower price. Venter (1992) argued that 

Our risk theory training leads actuaries to believe that the smaller 

needed security premium for large insurers will induce them [all 

insurers] to charge lower prices. This is not necessarily true in the 

market, however. Larger insurers may in fact charge the market 

price and make more profit. 

In our view, none of the above arguments is precise and the market price 
is not properly defined. In what follows, we will show that the market price 
is determined by load spreading technique and the heterogeneity of premium 
P~o and its spread induce reinsurances and risk sharing. 

Let Cp~(x) be the intensity of loaded premium P~,. For two arbitrary level 
of wealth say u and v, ,where u < v, P~ must be less than P,. The intensity 
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of loaded prem.{~m must be dependent on wealth level such that for every pair 
u and v where u < v, there should he at least one real number z. such that 
~bp.(z.) = ~bp.(z.), and for all z < z., ~bp.(z) must be less than or equal to 
@p. (z), and for all z > z.,  ¢?,(z)  mast be greater than or equal to ibp,(~'). In 
other words, the mtensi~ of loaded premium is less variable for a large insurer 
than that of a small ins~uer. Let ¢,~(z) be the La~.easity of market premium, 
where m stands for market (era abuse of indexing notation). Obviously 

Hence the market premium for the risk X Es given by 

~(X) =/0 °° ¢~(~)~.  (5.1) 

Note that 
~(x)  _< P~, for ~ ~, E [o, ~). 

It is interesting to note that the market prern~u.m has an upper bound which 
is the minimum of all P~ for w E [0, oo). It is the utility fi.mction and va.,'ious 
nature of spreading of load by di~erent insure~ which induce risk sharLags in 
layers by different insurer. Let 

F~, = set of real numbers z where intensity for market premium equals intensity 
for premium 

= ( = :  ¢~(~)  = ep . (z ) ,  ~ ~ a + )  

and r , ,  = U~=~[a~, b~] be the k ddsjoint union of the intervals [a~, b~] where 
k is some positive integer. Then a insurer with wealth w will get the business 
of stop-loss coverage .rr. = ~"~=~/'{=,~,;1 a~ & premhlm 

= ep . (~)d~  
L ] .  I 

and get reinsurance coverage from the market for the coverage X - I t .  at 
market price. Thus the risk X [s sold {I1 the maxket at a uniform price v(X)  
creating no arbitrage opportunity and the price does take utility theory into 
considerations. 

6 C o n c l u s i o n  

Fh:st we have introduced the concept of net and loaded premium intensity. 
The concept of load generator is introduced and it c~llminates into an adjusted 
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distribution which is used to calculate a loaded premium for a risk X. The 
premium calculation method under the above load generator technique satisfies 
all of the basic requirements R.1 to R.7 for a consistent premium principle as 
illustrated in section 9.2.1. Utility theory and arbitrage free market concept 
are for the first time in the literature properly accommodated in this method 
of premium calculation. 

In this paper we have simply put forward the definition of the new method 
of premium calculation. One can easily use this method in a simple and con- 
sistent way to calculate the increased limit factors (ILF) for casualty actuaries. 

Further research are needed to investigate the properties of the load genera- 
tor methods of premium calculation, in particular order preserving properties. 
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