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Abstrac t  

This paper presents an approach to analyzing continuing care retirement commu- 
nity (CCRC) data, and demonstrates the methods using data from a large CCRC. It is 
assumed that  residents make "transitions" among a number of "states" that represent 
the levels of care required by residents. There is randomness associated with both 
the transition times and the states entered at these times. The model is conveniently 
characterized in terms of "transition intensity functions", which represent the instan- 
taneous rates of transition between pairs of states. Statistical methods for estimating 
these functions are discussed, and estimates are obtained from the data set. A simu- 
lation approach to determining probabilities and other interesting quantities based on 
the estimated intensity functions is also described and illustrated. 

1 Introduction 

1.1 Background  on CCRCs 

Continuing care re t i rement  communit ies  (CCRCs) offer housing and a wide range of services 

to elderly individuals. These services typically include daily meals, housekeeping, flat linen, 

maintenance  of apa r tmen t  and grounds, emergency nursing, security, scheduled t ranspor ta -  

tion and activities (see Smith [22]). The most  notable service from an actuarial  perspective 

19 



is long-term health care. CCRCs usually provide two or three levels of long-term care. 

CCRCs generally charge a rather substantial entry fee as well as periodic fees paid 

throughout an individual 's duration of residence. Additional fees may also be charged for 

some services. Many CCRC contracts provide for the refund of some portion of the entry 

fee in the event of death or withdrawal. 

A key feature of most CCRC contracts is that some or all of the cost of long-term care 

is covered by the entry and periodic fees. Such contracts therefore provide a long-term care 

insurance benefit. For this reason, actuaries have a role to play in the financial management 

of CCRCs. 

Further discussions of the characteristics of CCRCs and CCRC contracts are given by 

Brace [6], Hewitt and DeWeese [ll], Rodermund [19, 20], Smith [22] and Winklevoss and 

Powell [23]. 

1 . 2  A c t u a r i a l  M o d e l s  f o r  C C R C s  

CCRCs offer a unique challenge for actuaries. Most communities provide two or more levels 

of care, and residents may transfer temporarily or permanently to the care units. Actuarial 

models must therefore permit '%ransitions" among a large number of "states", usually six 

or more. For pricing and valuation purposes, one should be able to estimate the probability 

that  a resident is in any given state at any future time as well as the probability that  a 

resident will move between any two states during any time interval. In order to perform 

cash flow and population projections, one should be able to estimate the expected number 
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of residents in each state at any future time and the expected number of transitions between 

any two states during any future time interval. It is also important to be able to quantify 

the variation about these expected values. 

Cumming and Bluhm [8] describe a CCRC population and financial model that  uses 

a multiple decrement approach. Expected results can be calculated directly and random 

variation estimated by simulation. Jones [13, 14, 15] explores continuous-time multi-state 

stochastic models for analyzing CCRCs. Emphasis is on parsimonious models for which 

direct calculation is possible for many quantities of interest. 

1 . 3  C C R C  D a t a  

Selection of parameter values for CCRC models is difficult. At present, there is no good 

source of CCRC industry data. Furthermore, the characteristics of CCRC residents may 

differ greatly between CCRCs. Some communities are like expensive resorts, affordable 

only to the wealthy. Others are much more modest with fees that reflect this. We expect 

to see differences in health care utilization between residents from different socio-economic 

classes. In addition, differing management philosophies with regard to resident transfers 

will affect CCRC experience. One should therefore choose carefully the data source upon 

which parameter values are to be based. Even if CCRC industry data were available, it 

would not necessarily be appropriate to use this data  in choosing parameter values for a 

particular CCRC. Industry would combine the experience of a number of possibly quite 

different communities. 
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Ideally, parameter values for a given community should be based on its own experience. 

Many CCRCs have not maintained appropriate records for this purpose or are too small 

to have accumulated substantial recent experience. It is important,  though, that as much 

information as possible be extracted from the data that  is available. Modern statistical 

techniques can help in doing this. 

Estimated rates of transition between model states should appropriately reflect the effect 

of various factors. These may include aspects of a resident's health history since entering 

the CCRC, as well as other information such as gender, marital status, fees paid, contract 

type, etc. One therefore requires data that provides this information. 

1 . 4  O u t l i n e  o f  P a p e r  

The purpose of this paper is to present an approach to analyzing CCRC data and to demon- 

strate the methods using data  collected from a large CCRC. Section 2 provides a description 

and some preliminary observations of the data set used. This will illustrate the nature of 

CCRC data and give an appreciation for the challenge presented by such data. Statistical 

methods for analyzing CCRC data are described in Section 3. The state occupied by a resi- 

dent is modeled as a continuous-time stochastic process which is characterized by transition 

intensity functions. We discuss a non-parametric approach to estimating these functions 

and the Cox regression model for quantifying the effect of important variables on these func- 

tions. The methods are used in Section 4 to obtain estimates based on the data  introduced 

in Section 2. Since these estimates are based on limited data  from one CCRC, they are of 
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illustrative value only and should not be used in actuarial analyses. In Section 5, we explain 

how probabilities and other quantities of interest can be obtained by simulation, and we use 

the results of Section 4 to illustrate the approach. Finally, some conclusions are discussed 

in Section 6. 

2 The Pilot Study Data 

2 . 1  B a c k g r o u n d  

In 1991, the Society of Actuaries and the American Association of Homes for the Aging co- 

sponsored a pilot study that involved the collection of data from a large CCRC in Florida. 

The purpose of the pilot study was to gain insight into the considerations involved in col- 

lecting CCRC data with a view to larger scale data collection and analysis projects to be 

carried out in the future. 

The CCRC under study houses (on average) 525 residents occupying three types of in- 

dependent housing (single family, garden apartment and highrise units) and two levels of 

health care (assisted living and skilled care beds). Access to health care is guaranteed with 

an increased charge to the resident. 

The data  comprises information on all individuals who resided in the CCRC during the 

three year period from April 1, 1988 to March 31, 1991, which we shall call the "study 

period". Information was also coded for those who resided in the facility before this period 

with a spouse who remained in the CCRC through some or all of the study period. A total 
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of 803 residents were included in the study. They spent a total of 1605 life years in the 

community during the study period. 

Information recorded for each resident includes an identification number, name, birth 

date, sex, couple status, apartment type at entry, apartment type at beginning of study 

period (or entry for those who entered during the study period), entry fee, service fee, health 

status (at later of entry or beginning of study period), room mate identification number (if 

any), entry date, contract type and refund provision. In addition, for each change of health 

status that occurred during the study period, the new status, date of change and cause of 

change (if known) were recorded. 

2.2 P r e l i m i n a r y  E x a m i n a t i o n  of  D a t a  

of  the 803 residents in the study, most were typical CCRC residents receiving residential 

services and possibly meals. Others, such as those admitted directly into assisted living, or 

those residing in assisted living units or skilled care beds on a per diem basis, were removed 

from the dataset. This left 722 residents who spent 1518 years in the CCRC during the 

study period. 

Since the number of individuals in the study was fairly small, it was thought reasonable to 

combine the three types of independent living units for the purpose of estimating transition 

intensity functions. This reduces the number of functions to be estimated. In larger scale 

studies conducted in the future, it will be appropriate to test whether or not the type of 

independent living unit affects the intensity function. 
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While in the community, individuals transfer among the following "states": 

1. Independent 

Residents in this s tate  are capable of living alone or with a roommate without twenty- 

four hour supervision. 

2. Assisted Living 

Residents in this state require some on-going, long-term supportive services in order 

to function. While some medical or nursing services may be provided, the emphasis is 

on personal care services. 

3. Skilled Care (Temporary) 

Residents in this state require continuous or on-going nursing or medical care services 

provided by a licensed practical nurse, a registered nurse, or a physician. These res- 

idents are expected to recover and return to either the independent or the assisted 

living state. 

4. Skilled Care (Permanent) 

This state is the same as state 3 except that  residents in this state are not expected to 

recover. 1 

Departure from the CCRC during the study period occurs either by withdrawal or death. 

1This is the traditional distinction between temporary and permanent. However, today it is common 
for residents to be classified as permanent only when the unit at the lower level of care is made available 
for another resident. If the individual was residing with a spouse, then this may not occur until the spouse 
vacates the unit. One must therefore recognize that the labeling of transfers to skilled care may differ between 
CCRCs. 
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Figure 1 i l lustrates the setup. The  boxes represent s tates  tha t  may be occupied by an 

individual,  and the arrows indicate the possible transitions.  The total  number  of years spent 

in each s ta te  during the  s tudy period is shown in the appropriate  box. Near the head of 

each arrow is the number  of t ransi t ions of the indicated type during the s tudy period. It is 

clear from Figure 1 tha t  certain t ransi t ions occur with much greater frequency than  others. 

For example, there were 371 transi t ions from s ta te  1 to s tate  3, but  only 2 t ransi t ions  from 

s ta te  1 to s ta te  4. Thus,  we should be able to say much more about  the 1 --~ 3 t ransi t ion 

intensity. 

Certain t ransi t ion should, in theory, not occur. There should be no recoveries from 

the assisted living s ta te  to the independent  state. Although the word "permanent"  has 

been omit ted  in describing the assisted living state, all visits to this  s ta te  were coded as 

permanent .  Also, there should be no recoveries from the skilled care (permanent)  s ta te  to 

the independent ,  assisted living or skilled care ( temporary)  states. Therefore the numbers  

of 2 --~ 1; 4 --4 1, 4 -~ 2 and 4 --~ 3 transit ions should be zero. In practice, assessments 

of future heal th s ta tus  cannot  be performed with 100 percent accuracy. Figure 1 i l lustrates 

tha t  some of these t ransi t ions  did occur. 

There were many more females in the dataset  than males. Of the 722 individuals included 

in the analysis, only 198 were males. Table 1 shows the the total  t ime spent in the CCRC 

during the s tudy period by s ta te  and sex. Table 2 provides a breakdown of the number  of 

t ransi t ions by t ransi t ion type and sex. 

One variable t ha t  is likely impor tan t  in determining t ransi t ion intensities is the age of 
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the resident. Therefore, it is helpful to understand how the CCRC population is distributed 

by age. To this end, we prepared graphs showing the number of residents attaining each 

age during the study period (see Figure 2). We display separate graphs for all residents and 

residents in each state. 

Another potentially relevant variable is duration since entry to the CCRC. This is due to 

the selection that occurs at the time of entry. Many CCRCs require residents to demonstrate 

that they are in good health before they are admitted. This is necessary because, as stated 

earlier, CCRCs provide a long-term care insurance benefit. Figure 3 shows the number 

of residents attaining each duration during the study period. The figure illustrates how 

the population was distributed by duration. The distribution is heavily skewed to the right. 

Roughly half of the total time that residents spent in the community during the study period 

was time spent during the first five years since entry. However, there were residents who had 

been in the community for as long as twenty-five years. 

3 Stat i s t i ca l  M e t h o d s  for A n a l y z i n g  C C R C  D a t a  

3.1 Introduction 

As stated in Section 1, CCRCs present a challenge for actuaries because of the complexity 

of the possible outcomes for a given resident. A CCRC resident may transfer many times 

before leaving the community by death or withdrawal. Thus, it is easiest to think of the 

outcome as a realization of a stochastic process. We then attempt to find a model that 
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reasonably describes the behavior of this process. 

Suppose we have n residents in the study. For j = 1 , 2 , . . . ,  n, let Xj(t)  represent the 

state occupied by resident j at t ime t. Then {Xj(t),  t _ 0} is a continuous-time stochastic 

process with state space {1 ,2 , . . . ,  6}. Often t will represent age. However, it will sometimes 

be convenient to let t measure the time since some event such as entry to the CCRC or entry 

to a given state. 

We can characterize the process in terms of transition intensity functions. These functions 

are also referred to as forces of transition since they are analogous to the force of mortality. 

Let 

: lira Pr ( X ( t  + : i X ( t )  : h, Z j ( t ) ) / u ,  (1) u---~0+ \ / I  

h , i = 1 , 2 , . . . , 6 ,  h ~ i, j = l , 2 , . . . , n  

be the transition intensity function for transitions from state h to state i by individual 

j .  Zj(t) is a vector of covariates containing relevant information about resident j that is 

available just prior to time t. Examples of possible components of Zj(t) are the t ime since 

resident j entered state h and an indicator of the sex of resident j .  The former depends on 

t, and is referred to as a time-dependent covariate. Initially, we consider the special case in 

which the transition intensity functions do not involve any covariates. We further assume 

that these functions are the same for all residents. That  is, 

,~h,j(t; zAt ) )  = ~h,(t). 

Our objective is to estimate the transition intensity functions. We attack this problem by 
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first finding estimators for the corresponding cumulative intensity functions, 

Am(t) = fot am(s)ds. 

Let Yhj(l) = I ( X j ( t - )  = h) and Ya(t) = ~jn=l Yai(t), where I (A)  is the indicator random 

variable of the event A. Yh(t) can be thought of as the number of residents "at risk" just  prior 

to time t of a transition from state h. Also, let Naij(t) represent the number of observed 

h -~ i transitions made by resident j during [0,t], and let Na,(t) = ~ j ~ l  Naij(t). Then 

{Nmj(t) , t  >_ 0} and {Nm(t) , t  >_ 0} are counting processes. An elaborate theory has been 

developed for statistical models involving counting processes. This began with the work of 

Aalen [1], and is well described in books by Andersen et hi. [4] and Fleming and Harrington 

[9]. The theory is based on the fact that the difference between a counting process and 

its integrated intensity process is a martingale. One can obtain variances of statistics that 

are stochastic integrals with respect to this martingale, and asymptotic distributions can be 

found using martingale central limit theory. The reader need not have an understanding of 

the theory of counting processes and martingales. 

3 . 2  T h e  N e l s o n - A a l e n  E s t i m a t o r  

A well known non-parametric estimator of Abe(t) = f~ am(s)ds is 

= fot Ya(s)-ldNh,(s).  (2) ~ih,(t) 

Intuitively, this estimator makes sense if we break up the interval [0, t] into many sub-intervals 

of length ds. The probability that an individual in state h at time s - ds moves to state i 
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by time s is ~m(s)ds. A reasonable estimator of this probability is the number of observed 

h -÷ i transitions during (s - ds, s], which is dNh~(s), divided by the number of individuals 

in state h at time s - ds, which is Yh(s). Summing the actual probabilities over all sub- 

intervals in [0, t] gives Am(t), and summing the estimators gives the right-hand side of (2). 

If The1, The2,... are the observed times of the h -+ i transitions, then ,4re(t) can be expressed 

as a simple sum, 

A a , ( t ) :  ~ Yh(Th,k)-'. 
k:Ta~k <_t 

,4~ is the well known Nelson-AMen estimator. It was introduced by Nelson [16] in the context 

of estimating the hazard function of failure time distributions using censored data. Nelson 

explored how to use plots of the estimates to gain information about the distribution. AMen 

[2] discussed the estimator in a general counting process framework, and considered exact 

and asymptotic properties of the estimator. 

The Nelson-Aalen estimator is not an unbiased estimator of A~i, but is biased downward. 

Let 

/: A~(t)  = am(s)Jh(s)ds, 

where Ja(s) -- l(Yh(s) > 0). A~1($) is almost the same as Ahi(t) when Pr(Yh(s) = 0) is small 

for all s < t. It turns out that 

E[Aai(t)] = E[A*hi(t)] = c~h,(s) Pr(Ya(s) > O)ds. 

Hence, the bias in using ¢i.ai(t ) to estimate Ahi(t) is 

E[.4a,(t)] Ah,(t) fo¢ - = - ~ h , ( s )  P r ( Y h ( s )  = O)ds. 
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The implications of this in estimating transition intensity functions using the CCRC Pilot 

Study will be discussed shortly. 

It is important to be able to quantify the variability of an estimator. The variance of the 

Nelson-Aalen estimator is 

Var[ , i~ ( t ) ]  = E[{,4a,(/) - A*ai(t)} ~] 

Z'[ ] = E g . ( s ) L ( ~ )  -~ d,4h~(~). 

An unbiased estimator of the variance is 

V~ar[,4h, Ct)] = fo' Yh(s)-~ dAh~(s) 

= f0' Yh(s)-~dNh~(s)' (3) 

As with equation (2), we can express the right-hand side of (3) as a sum, 

~-arIAm(t)]= ~ ,  Yh(Tmk) -2. 
k:T~o, <_t 

This variance estimator can be used to obtain approximate pointwise confidence limits for the 

cumulative intensity functions. In doing so we use the fact that  the asymptotic distribution of 

/ihi(t) is normal. Since the distribution may depart significantly from the normal distribution 

when Yh(t) is small, confidence limits obtained using the normal distribution assumption are 

not reliable in this case. 

To illustrate the ideas discussed in this subsection, we now examine the use of the Nelson- 

Aalen estimator in analyzing one transition type using the CCRC Pilot Study data. We 

consider transitions from state 1 to state 6. That  is, deaths from the independent state. 
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Since only 31 such transitions occurred, we can clearly see how the Nelson-Aalen estimator 

works. 

Table 3 shows, for both males and females, the ages at which each death from the 

independent state occurred, as well as the number of residents at risk of dying while in the 

independent state at each of those ages. The corresponding Nelson-Aalen estimates of the 

cumulative intensity functions for females and males are shown in Figure 4. The estimated 

cumulative intensity functions are step functions with jumps at each of the transition (death) 

ages. The size of each jump equals the number of transitions that occurred at that age 

divided by the number of residents at risk of making the transition at that age. Perhaps the 

most appealing aspect of using Nelson-Aalen estimates is the ability to plot the estimates 

and observe the general shape of the estimated cumulative intensity function. A cumulative 

intensity function that appears to increase linearly suggests a constant intensity function 

(because the cumulative intensity function is the integral of the intensity function). A 

cumulative intensity function that is convex (concave) suggests an increasing (decreasing) 

intensity function. Of course, one should keep in mind that estimates based on a small 

number of transitions, as in this example, are limited in how much information they can 

convey. Figure 4 seems to indicate that the female intensity function is increasing with age, 

and the male intensity function may be constant, though there are only ten male transitions. 

As stated above pointwise confidence limits can be obtained assuming that estimators 

have a normal distribution. For example, an approximate 95 percent confidence interval 

for A'hi(t) is given by Aai(t) :t: 1.96~/~ar[Ahi(t)]. Figure 5 shows the estimated cumulative 
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intensity functions along with these 95 percent confidence limits. Since, for males, the 

number at risk at each age is rather small, the confidence limits should not be trusted. 

We mentioned earlier that ,4hi(t) is an unbiased estimator of E[A*ai(t)] and a biased 

estimator of Aai(t). A* m and Aa~ are quite different in the above example since there are no 

residents at the younger ages. In fact, Ya(s) = 0 for all s < 55. Fortunately, we are less 

interested in estimating the function Am than we are in estimating c~ai(t) for values of t in 

the age range of the CCRC residents. Now c~ai(t) is the slope of Am at age t. For an age 

interval with Yh(t) > 0, the slopes of Am and A~ are the same. Thus, we can estimate (~hl(t) 

by estimating the rate of increase of A'hi at time t. This can be done by averaging the jumps 

in ,4m at ages near t. This is considered next. 

3 . 3  K e r n e l  F u n c t i o n  E s t i m a t o r s  

Smooth estimates of ~hi can be obtained using a kernel function estimator. This approach 

is discussed by Ramlau-Hansen [17, 18], Andersen et al. [4] and Gavin et al. [10]. The 

estimator is defined as follows. 

'£ ~hi(t) = ~ ~ dAhiCs), (4) 
OO 

where f_°°~o K(x)dx = 1 and K(z) = 0 for Ix[ > 1. K is called the kernel function, and b is 

called the band width or window size. Viewing the real line as many small intervals of length 

ds, we see that  (~h~(t) is a weighted average of the jumps in the Nelson-Aalen estimator that 

occur in the interval It - b, t + b]. The smoothness of the estimates increases as the value of 
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b increases. Again letting Thil,Thi2,.. .  be the observed h --~ i transition times, (4) can be 

written as a sum, 

~h~(t )  = b k 

A variance estimator of the kernel function estimator is given by 

Va~r[&ai(t) ] = 1 [oo K 2 I t  - s'~ yh(s)_2dNhi(s) ' 
b2 J-oo \ b ) 

which can also be written as 

A popular choice of kernel function is the Epanechnikov kernel function, 

g ( x )  = 0.75(1 - x2), 121 <_ 1. 

We shall use this kernel function to obtain smooth transition intensity functions. Other 

kernel functions are discussed by Ramlau-Hansen [18]. 

Note that it is appropriate to use (4) only if Yh(s) > 0 for all s E I t -b ,  t+b]. Otherwise, a 

substantial downward bias could result since the absence of transitions in a given time t:ange 

will produce a low transition intensity estimate. The actual transition intensity might be 

quite large, but no residents were at risk of making the transition. We discussed earlier that  

Nelson-Aalen estimates are informative only if calculated for a time interval [tl,t2], where 

Yh(t) > 0 for all t E [t~, t2]. If  Ya(t) = 0 for t outside this interval, then we should restrict 

use of (4) to obtaining estimates of crai(t) for t E It1 + b, t2 - b]. 
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Smoothed transition intensities for deaths from the independent state were calculated 

using the CCRC Pilot Study data and appear in Figure 6 along with approximate 95 percent 

confidence limits. A window size of 6 was used for both females and males. 

In this example, we have too few observations to make conclusions about the transition 

intensity functions. The confidence bands are quite wide (and for males they should not 

be trusted). We shall see later the usefulness of the kernel function estimator when more 

transitions are observed. 

3 . 4  R e g r e s s i o n  M o d e l s  

The transition intensity functions defined in (1) are resident-specific and depend on Zj(t) ,  a 

vector of covariates that provide relevant information about resident j that  is available just  

prior to time L One approach to reflecting the effect of covariates is by using a multiplicative 

hazards model. This approach was introduced by Cox [7] in the context of analyzing censored 

survival data, and is often referred to as the Cox regression model. Andersen and Gill [5] 

extended the ideas to general counting processes. Let 

~h~j(t; zj(t)) = ~h,0(t) e x p ( ~ Z A 0 ) ,  (5) 

where/3hi is a parameter vector, and am0 is the "baseline" intensity function. Under this 

model, the transition intensity functions for different values of a fixed covariate are propor- 

tional. For example, if ZJ (t), the first component of the covariate vector for resident j ,  is 0 

if the individual is a female and 1 if a male, then the model assumes that the male transition 
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intensity function is exp(~i )  times the female transition intensity function, where fl~, is the 

first component of f~a,. 

In order to fit a model of this type we must estimate the components of fib, and the 

baseline intensity function. One can argue (see Cox [7]) that little information about flhi 

is provided by the transition times since the baseline transition intensity function could be 

very small except near the transition times where it could be very large. Hence, most of the 

information about f~ai is provided by the knowledge of which individuals made transitions 

given the transition times and the individuals at risk of transitions just  prior to these times. 

This is the motivation for the partial likelihood, 

L(/~,,) -- l-I fl 
exp([3~Zj(Tmj}) ) 

, ~=, Z~'=, exp(f~Z~(T^. . ) )YhdT~. . ) '  

where Thql, Tmj2,...  are the h --} i transition times for individual j .  The components off'hi 

can be estimated by maximizing L(f~h, ). Inferences can then be made about ]3~, i as in the 

usual maximum likelihood setting (see Hogg and Craig [12]). Having determined estimates 

/3m, the estimated baseline cumulative intensity function is 

~T 
Aai0(t,/~ai) --- ~ exp(f~mZj(Tmk))Ynj(Tmk ) . (6) 

k:Tmk <t 

This generalizes the Nelson-Aalen estimator and is often referred to as the Breslow estimator. 

The statistical package S-PLUS is capable of fitting a Cox regression model. One need 

only specify, for each visit to state h (by all residents), the time at which the visit began, the 

time at which the visit ended, an indicator for whether or not the visit ended in a transition 

to state i, and the value of each covariate. If time-dependent covariates are being used (more 
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specifically, covariates whose values may change during the visit to state h), each visit can be 

partitioned into several shorter visits based on the h -4 i transition times (by all residents). 

That  is, the first such visit will end at the first transition time after the visit began. The 

covariate value used should be the actual covariate value just  before this transition time. 

The traditional actuarial approach to handling data with covariates is to group the data  

into homogeneous cells. All data in a given cell would have the same (or approximately the 

same) values of the important covariates. Separate estimates are then obtained for each cell 

using only data from that cell. Some smoothing across cells may then be done. 

The Cox regression approach offers some advantages. Statistical tests can be performed to 

see which covariates are important. Accuracy is improved since transition intensity functions 

are estimated using all of the data, and not just  the data from a given cell. The only 

cost is that one must be willing to assume that the transition intensity functions have the 

multiplicative form given in (5). 

4 Est imat ion  of  Transit ion Intensi ty  Funct ions  using 

the  Pi lot  Study Data  

4.1 Introduction 

In this section, we illustrate the techniques of Section 3 using the pilot study data described 

in Section 2. Our goal is both to demonstrate the methods of estimation and to show the 
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forms we might obtain for the transition intensity functions. We use the results of this 

section to show how to determine probabilities and other important quantities in Section 5. 

We stress at the outset that  the pilot study data is not sufficient to estimate all of the 

intensity functions with reasonable accuracy. In practice, one should consult other sources 

of information when faced with this situation. Since our objective is to demonstrate the 

methods described earlier and to find estimates to be used later in the paper, we are content 

with estimates based solely on the pilot study data. We further remark that, in using 

the Cox regression model, we do not perform a thorough regression analysis. Our goal is 

simply to gain an understanding of what covariate information may influence the transition 

intensity functions. We use the regression coefficients that result to illustrate the nature 

of the intensity estimates one might obtain. A more thorough regression analysis, which is 

beyond the scope of this paper, should be undertaken if one wishes to use this approach in 

practice. 

To begin, note that  the intensity functions corresponding to certain transitions shown 

in Figure 1 should be zero. In particular, the 2 --+ 1, 4 --+ 1, 4 ~ 2 and 4 --+ 3 intensity 

functions should be zero in light of the permanent nature of states 2 and 4. In addition, the 

1 --+ 4 transition intensity function will be set to zero. Only two such transitions occurred. 

Given the total t ime spent in state 1 by all residents, this suggests a very small intensity for 

this CCRC. 
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4 . 2  W i t h d r a w a l s  

Just twenty-eight withdrawals occurred during the study period. We do not expect to con- 

elude very much based on this. We should, however, be able to get some idea of the behavior 

of the withdrawal intensity by age, and also test whether the differences in the withdrawal 

rates among the states from which withdrawal occurred are statistically significant. This 

can be accomplished by using a Cox regression model. Rather than model the four differ- 

ent withdrawal types separately as described in Subsection 3.4 and suggested by (5), we 

can model them together assuming that the withdrawal intensity functions are proportional. 

This leads to the following model. 

a.sj(t; Zj(t)) = a .~( t )  exp(f]~Zj(t)), 

where a.50 is the baseline intensity function for withdrawals from any state. We assume that 

the last three components of the covariate vector, Zj (t), are variables which indicate (1 if yes, 

0 if no) whether resident j was in state 2, 3 and 4, respectively, just  prior to time t. If the 

resident was in state 1, then all three variables are zero. Thus, if Z~(t), the kth component 

of Zj(t), is the indicator for state 2, then the intensity for withdrawals from state 2 is et~.~ 

times the intensity for withdrawals from state 1, where ]~  is the kth component of/~.s. 

Table 4 shows the results of a Cox regression run performed using S-PLUS. The input 

comprised an observation for each stay by a resident in one of the four staten. For each 

observation the following information was provided: age at entry to the state (or beginning 

of study period if later), age at departure from the state (or end of study period if earlier), 
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indicator of whether or not the stay ended with a withdrawal (1 if yes, 0 if no). Additional 

information about each stay was provided by five covariates that  were included in the model. 

The first was an indicator of whether or not the resident was a male. The second was the 

age at which the individual entered the CCRC. The remaining three covariates were the 

indicators corresponding to states 2 (assisted living), 3 (skilled care temporary) and 4 (skilled 

care permanent),  as described above. For each covariate, the table provides the estimate of 

the coefficient, fl.~, the corresponding proportionality factor, e ~.~, the standard error of the 

coefficient, the p-value for a two-tailed test of the hypothesis that the coefficient equals zero, 

and upper and lower 95 percent confidence limits for the proportionality factor. At the 

bottom of the table are the likelihood ratio and efficient score statistics. These can be used 

for an overall test of whether or not the variables in the model are related to the withdrawal 

intensity. 

Table 4 suggests that  the indicator for skilled care (temporary) is significant with a p- 

value of 0.00126, and entry age is marginally significant with a p-value of 0.09137. The other 

three covariates are not significant. We should note that regression runs in which each of 

the five covariates were iacluded separately produced similar results to those displayed in 

the table. The likelihood ratio statistic and the efficient score statistic both indicate that 

the regression is significant at the 5 percent level. This is largely due to the presence in the 

model of the skilled care (temporary) variable. 

The results indicate that the withdrawal intensity for those in skilled care (temporary) is 

higher than that  for residents in other states. However, this is based on just four withdrawals, 
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and the 95 percent confidence interval for the proportionality factor is very large. Due to 

this uncertainty, we assume that the withdrawal intensity is the same for all four states. 

The fact that  the coefficient corresponding to entry age is positive suggests that  the 

withdrawal intensity may be higher for those who entered the CCRC more recently. However, 

since this variable is only marginally significant, we shall ignore it and model the withdrawal 

intensity as a function of age only. It should be noted that this result is based on the limited 

data of one CCRC; the significance of age and duration to withdrawal may be different for 

other CCRCs. 

Figure 7 shows the Breslow estimates of the baseline cumulative intensity function along 

with smooth kernel function estimates of the intensity function using a band width of 10. 

The concave behavior of the estimated cumulative intensity function suggests an intensity 

function that  decreases with age, and we do observe a decrease in the intensity function 

estimates. To obtain a simple mathematical expression for the intensity function and to 

improve the smoothness, we assumed that the intensity function has the linear form a.5o(t) = 

at+b. The corresponding cumulative intensity function is A.5o(t) = at2/2+bt,  and we assume 

that A*so(t ) = at2/2 + bt + c, It is necessary to distinguish between A.50 and A's0 because 

~{.~o is greatly influenced by the fact that  there are no residents at the younger ages. The 

latter quadratic was fit to the cumulative intensity estimates using least squares (a routine 

for this is available in S-PLUS). The resulting parameter estimates are a = -0.001346058, 

b = 0.1342243 and c = -6.09296. The function is plotted in Figure 7 (dashed line). The 

relevant parameter values in determining the intensity function are a and b. The linear 
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function based on these values is plotted (dashed line) along with the smoothed intensity 

estimates in Figure 7. 

4.3 Mortality 

We analyze mortality transitions in the same manner as withdrawals. However, 126 deaths 

occurred during the study period. This is considerably more than the 28 withdrawals. Also, 

we have more prior knowledge of mortality patterns. We expect the intensity (force of 

mortality) to be greater for males than females, and we expect the intensity to increase with 

the level of care provided. 

A Cox regression run with the same covariates as in the analysis of withdrawals revealed 

that age of entry was not significant at all. We therefore dropped entry age from the model 

and obtained the results shown in Table 5. The table indicates that only the two skilled care 

variables are significant. The p-values for the male indicator and the assisted living indicator 

are 0.320 and 0.256, suggesting no evidence against the hypothesis that  the corresponding 

two coefficients are zero. However, the proportionality factors for all four variables seem to 

make sense. It is reasonable for the male intensity to be 1.27 times the female intensity. We 

expect the intensity for those in assisted living to be somewhat larger than the intensity for 

those in the independent state. The intensity for those in skilled care should be considerably 

larger than the intensities for those in the assisted living or independent states. The numbers 

in the table are consistent with this. Note that the proportionality factor in the table for 

skilled care (temporary) is almost exactly twice that for skilled care (permanent). This is 
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reasonable if we assume that the permanent designation implies some degree of stability that 

may not apply to the skilled care (temporary) residents. 

Although the confidence intervals for the proportionality factors are quite large, the fact 

that the estimates of these factors conform to our expectations provides a level of comfort. 

We therefore estimate the intensity functions in terms of the estimated baseline intensity 

function, &.6o(t), as follows: 

,~ j ( t ;  zj(t)) = ~.so(t), 

, ~¢ ( t ;  z~(t))  = 1.57,~.~o(t), 

a~6~(t; z j ( t ) )  = 16.01,~.~o(t), 

d~4~j(t;Zj(t)) = 8.02~.6o(t), 

if resident j is a female. Each function should be multiplied by 1.27 if resident j is a male. 

Figure 8 shows the Breslow estimates of the baseline cumulative intensity function as well 

as kernel function estimates of the baseline intensity function obtained using a band width of 

6. The estimated cumulative intensity function has a convex shape through the eighties and 

early nineties, suggesting an increasing intensity function. The smooth intensity function 

estimates exhibit this increasing behavior. As with the withdrawal intensity, we can obtain 

a simple mathematical expression for the intensity by assuming an intensity function of the 

form cr.6o(t) = a + bct (Makeham's law). The corresponding cumulative intensity function is 

A.6o(t) = at + b(c t -  1)/logc,  and we assume that A*~(t)  = d + at  + b(c t -  1)/logc. The 

latter function was fit to the Breslow estimates by least squares. The resulting parameter 
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values are a = 0.01200684, b = 7.075078 x 10 -z, c = 1.122718 and d = -0.8505983, and the 

function is represented by the dashed line that  appears aJong with the baseline cumulative 

intensity estimates in Figure 8. The corresponding intensity function is also plotted along 

with the smoothed intensity estimates. 

4.4 Other Transitions from Independent  

We have two types of transition from the independent state for which we have not yet 

estimated the intensity function. They are transitions to assisted living and transitions to 

skilled care (temporary). The latter is the transition type for which we observed the most 

transitions (371) during the study period. We discuss this transition type first. Since we 

observed a relatively large number of transitions, we should be able to say more about the 

impact of covariates on the transition intensity function, and perhaps reflect one or more 

covariates in our intensity function estimates. Elements of a resident's health status history 

that might affect the intensity function are the time since the current stay in independent 

began, and the number of previous visits to skilled care (temporary). Unfortunately, for 

many residents, we do not observe one or both of these quantities. For a stay in independent 

that began before the beginning of the study period, we only know that this stay has lasted 

at least since the beginning of the study period and no longer than since the date of entry to 

the community. Also, for residents who entered the CCRC before the beginning of the study 

period, we do not know how many visits have been made to skilled care. We only know how 

many visits have been made since the beginning of the study period. 
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Recognizing these l imitations,  it is still informative to examine the results of regression 

runs tha t  include as t ime-dependent  covariates the "observed" durat ion of the current stay 

and the number  of previous "observed" visits to skilled care. This provides information as to 

whether durat ion of the current stay and number  of previous visits to skilled car(.' influence 

the intensity. However, the coefficients obtained from such runs cannot  be used to obtain 

transit ion intensity estimates. This is because the covariate values do not correctly represent 

the quanti t ies we wish our intensity fimction to reflect. 

Other  eovariates considered were sex an(] durat ion since entry to the CCRC. The lat ter  

ha~s the same effect as entry age. Durat ion in the community was found not to be significant. 

Sex, number  of observed visits to skilled care, and observed durat ion of the current stay in 

independent  were found to be significant, the lat ter  being most impor tan t  in terms of its 

effect on the likelihood ratio and efficient score statistics. 

While the number  of prior visits to skilled care may be relevant in es t imat ing the t ran-  

sition intensity, we cannot  appropriately reflect its i m i ) ~ t  using the pilot s tudy data.  As 

stated above, we do not know the number  of prior visits for residents who entered the com- 

munity before the beginning of the study period. Thus, we would be required to base our 

estimates on new entrants  only. Since these residents gave rise to only 49 of the 371 transi- 

tions, we would have to discard a substantial  port ion of the da ta  on these transit ions.  For 

this re~.son, we have chosen not to incorporate the number  of prior visits to skilled care into 

our intensity estimates.  

A similar problem exists in producing intensity estimates tha t  are flmctions of the dura- 
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tion of the current stay in the independent  state. This durat ion is known only for stays tha t  

began during the study period. However, these stays resulted in 197 of tile 371 transit ions.  

Giw~n the importance of this variable, we chose to accept the loss of information in order to 

obtain est imates tha t  reflect the durat ion of the current stay as well as age and sex. 

We found tha t  tile intensity decreases with durat ion of the current stay. We would expect 

this to be the case for those who have returned from a stay in skilled care. llowever, we 

would not expect this for those who have just  entered the CCRC. Since we are considering 

only stays tha t  began during the s tudy period, we can determine whether  or not the stays 

follow visits to skilled care. Larger likelihood ratio and efficient score statistics were achieved 

when the durat ion of stay covariate was multiplied by an indicator of whether  or not the 

stay followed a visit to skilled care. These statistics also increased when we replaced the 

durat ion of the current  stay by its natural  logarithm, reflecting the fact tha t  the effect of 

this durat ion wears off quickly. We considered including an addit ional  covariate indicating 

whether or not the current  stay was preceded by a visit to skilled care. This allows for effects 

of this not related to durat ion.  ]lowever, these effects were not statistically significant. In 

order to ~nsure tha t  the intensity for those who previously visited skilled care w a s  not smaller 

than the intensity for new entrants ,  we capped the durat ion of current stays at one year. 

Table 6 shows the results of a Cox regression run. The covariate labeled "dur" is ax:tually 

log(rain(durat ion of current stay, 1)) t imes an indicator tha t  is 1 if the stay was preceded by 

a visit to skilled care and 0 otherwise. 

It is interesting tha t  the t ransi t ion intensity for males is smaller than tha t  for females. 
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This may be because a higher proportion of males live with a spouse. 

The baseline cumulative intensity estimates and kernel function intensity estimates us- 

ing a band width of 4 are shown in Figure 9. The smooth intensity estimates appear to 

be somewhat linear. We therefore fitted a quadratic function to the cumulative intensity 

estimates using least squares. The function appears on the graph (dashed line) in Figure 

9. The derivative of this function is linear with intercept and slope given by -1.059995 

and 0.01789773, respectively. This function is plotted in Figure 9 along with the smoothed 

intensity estimates. 

We now consider transitions from independent to assisted living (1 -~ 2). There were 32 

such transitions, 29 were females and 3 were males. Cox regression runs indicat~l that sex 

and duration of the current stay in independent are important in estimating the transition 

intensity. Unfortunately, we have the same problem reflecting the duration of the current 

stay as we did in analyzing the transitions from independent to skilled care. If we consider 

only stays that began during the study period, we are left with only 14 transitions, making 

estimation of the baseline intensity function difficult. We therefore chose to ignore duration 

of the current stay in estimating the transition intensity. 

The results of a Cox regression run in which the only covariate is an indicator of whether 

or not the individual is a male is shown in Table 7. We see that the estimated prol)or- 

tionality factor for males, 0.284, is quite small, and that the 95 percent confidence interval, 

(0.0863, 0.936) is rather large. This wide confidence interval along with the fact that  only 

three male transitions occurred cause us to be somewhat skeptical about the estimated 
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proport ionali ty factor. We decided to instead use the corresponding proport ional i ty  factor 

obtained for the 1 -4 3 t ransi t ion intensity. Tha t  is, 0.590. 

The baseline cumulative intensity est imates and kernel function intensity est imates us- 

ing a band width of 4 appear  in Figure 10. We again fitted a Makeham curve to the 

Brcslow est imates (dashed line). The Makeham t)arameter values are a = -(/.001871268, 

b = 4,312047 × 10 -8 and c = 1.173223. 

4 . 5  O t h e r  T r a n s i t i o n s  f r o m  A s s i s t e d  L i v i n g  

There are two types of t ransi t ion from assisted living tha t  we have not yet considered, those 

to skilled care (both teml)orary and permanent) .  We first examine t ransi t ions to skilled care 

( temporary).  The  nunlt)er of observed transit ions of this type was 174. Again, we found tha t  

the ol)served durat ion of the current stay in assisted living and the number  of observed prior 

visits to skilled care both  had a statistically significant impact on the t ransi t ion intensity. 

For the reason stated in the previous subsection, we reflect only the durat ion of the current  

stay in assisted living (as well as the sex of the resident) in our intensity estimates.  Also, we 

once again base our est imates only on those stays tha t  began during the study period. Such 

stays gave rise to 148 of the 174 transitions. Table 8 shows the results of a Cox regression 

run in which the covariates are an indicator of whether  or not the resident is male and the 

natural  logari thm of the durat ion of the current stay in assisted living. Our est imates will 

be based on the coetficients shown in the table, 

The Breslow estimates of the baseline cumulative intensity fimction and kernel function 
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estimates of the intensity function using a band width of 4 are shown in Figure 11. We 

note that the estimated cumulative intensity function is approximately linear, suggesting a 

constant intensity function. The dashed line added to the plot of the cumulative intensity 

estimates was fitted by least squares. The intercept and slope of the line are -53.4908 and 

0.7498699, respectively. The slope is the relevant quantity as it represents the value of the 

resulting transition intensity. A (dashed) horizontal line at this level appears on the graph 

of the smoothed intensity estimates. We shall use this constant intensity as our baseline 

intensity estimate. 

Only twelve transitions occurred between assisted living and skilled care (permanent). 

This was too few to discern the importance of any covariates or even a pattern in the intensity 

by age. ~Ve. therefore simply assume that the intensity is constant and is the same for all 

residents. Our intensity estimate is the number of transitions divided 1)y the total t ime spent 

in assisted living, that is, 12/163 = 0.0736. 

4 . 6  O t h e r  T r a n s i t i o n s  f i ' o m  S k i l l e d  C a r e  ( T e m p o r a r y )  

Other than mortality and withdrawal, three types of transition can occur from the skilled 

care (temporary) state. They are, transitions to independent, transitions to assisted living 

and transitions to skilled care (permanent). It is important to note that the transition 

intensities for these transition types depend on the previous state visited. For example, 

if the previous state was assisted living, then the intensity of transition from skilled care 

(temporary) to independent is zero. tlowever, if the previous was independent, then the 
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t ransi t ion intensity is not zero. In fact, for all 288 residents who moved from skilled care 

(teml>orary) to independent  during the s tudy period, the previotls s tate  was indel)endent. 

Figure 2 indicates that ,  for a substant ial  port ion of the relevant age range, the number  

of residents in skilled care ( temporary)  was zero. This suggests tha t  the Nelson-Aalen (and 

Breslow) es t imator  would have a significant downward bias if age is used as the t ime variable. 

To avoid this t)roblem, we can use the t ime since entry to skilled care as the t ime variable. 

The effect of age can be reflected by including the age at  which the stay began as a eovariate. 

For stays in skilled care tha t  began before the beginning of the study period, we do not know 

the t ime since entry to this state. We t reat  these stays as "censored" observations, since we 

know tha t  the stays have lasted at least since the beginning of the study period. Fortunately, 

there were only six residents in skilled car(; (teml)orary) at the beginning of the study period. 

\Ve f r s t  examine t ransi t ions to the independent  state. As discussed above, the  intensity 

is zero for for those whose previol~s s tate  w~.s assisted living. V~re therefore consider only 

those stays in skilled care ( temporary) for which the l)revious s ta te  was independent.  Wc 

found tha t  the age at  which the stay began and the age at  which the individual entered the 

C C R C  were significant, while the sex of the resident was marginally significant. The number  

of observed prior visits to skilled care was also significant, but ,  for reasons discussed earlier, 

we do not reflect this in our intensity estimates. Table 9 shows the results of a Cox regression 

run. The coetiicients shown in the table will be used in determining intensity estimates. 

The Bres]ow estimates of the cumulative intensity fimction are shown in Figure 12. Since 

most of the t ransi t ions occurred quite close to t ime zero, the tail problem associated with 
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using a kernel function est imator  is relevant in this case. However, we recognize from the 

concave nature  of the estimates, t ha t  the intensity function will decrease over time. We 

could therefore use Makeham's  law with 0 < c <: 1 to describe the intensity function. Hence, 

the intensity function would be given by a + bc t, and the cumulative intensity flmction by 

at + b(c t -  1) / log  c. F i t t ing  the lat ter  function to the cumulative intensity est imates by least 

squares, we obtained the parameter  values a = 3.79241, b = 63.4064 and c = 8.317622 × 10 -15. 

The function appears in Figure 12 ((lashed line). 

Of the 173 transi t ions from skilled care ( temporary)  to assisted living, 37 were by residents 

who previously resided in the independent  state, 133 were by residents who previously resided 

in assisted living, and 3 were by residents who previously resided in skilled care (permanent )  

We ignore the latter,  and focus on the former two. For both  we found tha t  the age at 

whic.h the current  stay in skilled care began and the age at which the resident entered the 

C C R C  were significant, llowever, almost all of the effect of these covariates is contained in 

their difference. Tables 10 and 11 show the Cox regression results with a single covariate 

representing this difference. 

Breslow estimates of the cumulative intensity flmctions appear  in Figure 13. We see tha t  

for those whose l)revious s tate  was independent,  the cnmulative intensity est imates are quite 

linear, while for those whose previous s ta te  was assisted living, the es t imated CUnlulative 

intensity function is concave. In the former case, we fitted a straight  line with intercept  zero 

to the cumulative intensity estimates (dashed line in Figure 13). The resulting slope, which 

gives our constant  intensity est imate is 0.73112. In the la t ter  case we fitted a Makeham 
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curve (dashed line in Figure 13), and obtained the parameters a = 2.89537, b = 45.5908 and 

c = 9.39390 x 10 -16. 

The nnmt)er of observed transitions from skilled care (temporary) to skilled care (l)exma- 

neat) was 52. Of these, 23 resided in independent before entering skilled care (temporary),  

28 resided is assisted living and 1 resided in skilled care (permanent).  Due to the small 

numbers of transitions, rather than performing separate analyses for the different previous 

states, we used a covariate to reflect the difference. Examination of the Nelson-Aale.~ esti- 

mates for each c()nfirmed that  it was rea.sonable to do this. We considered only those stays 

in skilled care (temporary) for which the previous state was independent or assisted living, 

and used an indicator of whether or not the previous state was assisted living as a covariate. 

Cox regression runs showed that  this variable is in fact significant. The only other covariate 

fimnd to be significant was the age at which the resident entered the CCRC. Neither the 

duration since entry to the CCRC nor the age at which the stay in skilled care (temporary) 

began were significant. Since it did not seem to make sense to allow the transition intensity 

to depend on entry age without regard for current age, we chose not to include entry age in 

the model. Table 12 shows the results of a Cox regression run in which the only eovariate is 

the indicator of whether or not the previous state was assisted living. 

The Bresh)w estimate.s of the b~qeline cumulative intensity fimction appe~ar in Figure 14. 

The shape of this function is such that  it is difficult to fit a siml)le curve. This is because the 

flmction is convex until about time 0.2 and then b(~omes somewhat linear and less steep. 

We therefore fitted a Makeham ct, rve to the estimates for t < 0.2 and a straight line to 
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the est imates for 0.2 _< t < 0.5. We assume tha t  this line also applies to values of t larger 

than 0.5. The parameter  values for the Makeham curve are a = 0.1195655, b -- 0.114535 

and c ~- 2.825737 x 10 s. The parameter  values for the straight line are a -- 1.347154 and 

b = -0.01725844. The dashed line in Figure 14 illustrates the fit of these functions. 

5 Determining Probabilities and Other Quantities 

5.1 I n t r o d u c t i o n  

As stated in Subsection 1.2, for pricing and valuation purposes, one should be able to es- 

t imate  the probabil i ty tha t  a resident is in any given s ta te  at  any fltture time, as well a.s 

the probabil i ty tha t  a resident will move between any two states during any t ime interval. 

Depending on the complexity of the transit ion intensity flmctions, these probabilit ies may be 

difficult to calculate directly. In this  section, we present an approach to determining prob- 

abilities and other quantit ies using simulation. The method can be used for very general 

forms of the t ransi t ion intensity functions. The approach is described in Subsection 5.2, and 

numerical results obtained using the intensity flmctions found in Section 4 are provided in 

Sul)section 5.3. 

5.2 Simulation Approach 

Consider the general setup in which the transit ion intensity functions are given I) 3" c~h, (t; Zj (/.)). 

We assume tha t  the (!Oml)onents of Zj(s)  are either constant  over tinle, or del)end only on 
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the  his tory of  { . \ ) ( t )}  up to t ime s - .  Thus ,  if we know X-i(t) for 0 < t < .s, then  we also 

know ~hi(/; Z j ( t ) )  for values of  t up to t ime s. Fur thermore ,  if we know Xy(t)  up to t ime s, 

and we assume tha t  no t rans i t ions  occur dur ing the  next  w years,  then  we. know t~hi(/; Z i(/)) 

up to t ime s + w. 

For example ,  suppose  tha t  t~hi(/; Z j ( t ) )  --- O~hi(t , U) where t is the  age of  the  individual ,  

and ~L is the  t ime  since the  individual  entered s ta te  h. Now if, at  age s, the  individual  has 

been in s ta te  h for v years,  then  assuming no t rans i t ions  occur dur ing the  next  w years the  

]J -+ i t rans i t ion  in tensi ty  at age s + w is c~h,(s + w, v + w). 

Assume tha t  resident  j is in s t a t e  h a t  t ime  s, and we wish to de t e rmine  the  probabi l i ty  

tha t  this  individual  will be in s t a t e  k at  t ime r > s. We can do this by s imula t ing  the  t ime 

and s t a te  entered  at  each t rans i t ion t ime np to t ime r. Then if we repeat  this a large mlmber  

of t imes,  the  propor t ion  of t imes tha t  the  individual  is in s ta te  k at t ime r app rox ima tes  the  

desired probabi l i ty .  

We use a m e thod  known a.s thinning (See Ross [21, p. 73]). As s ta ted  above, if no 

t rans i t ions  occur  1)y t ime s + w, then  the  values of C~hi(t; Zj( t ) )  are known for s < t < s + w 

a n d i = l , 2 , . . . , 6 ,  i ~ h .  Let 

a ssuming  tha t  no t rans i t ions  occur before t ime r. Now ~i:i~h ~hi(t; Zj( t ) )  is the  intensi ty  

of t rans i t ion  out  of  s ta te  h at t ime t, and c~ is no less than  th is  intensi ty  for t E [s, r]. To 

de te rmine  the  first t rans i t ion  t ime after  t ime s, we successively genera te  the  event t imes,  
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T1, T~,. . . ,  of a Poisson process with intensity a, and accept 7] with a probability equal to 

Z ~ , ( s  + T~; Zj(.~ + T~))/~, 
i:i:f=h 

The event times of a Poisson process with intensity a are easily generated since the times 

between successive event are exponentially distributed with mean 1/a.  An event time can be 

accepted with a given probability by generating a random number that is uniform on (0, ]), 

and accepting the event time if the number is no greater than this probability. Let TI* , the 

first accepted time, be the time until the next transition. The state enter(;(] at t ime s + TI* 

can then be generated based on its conditional distribution. For i* ~: h, the probability that 

i* is the state entered at time s + 7'1" equals 

~h,.(s + T~*; Zj(s + T;))/ ~ ah,(s + T;; Zj(s + T~*)). 
i:i~:h 

The following algorithm provi(les the steps outlined above. The statement "generate U" 

means " generate a random number U whose distribution is uniform on (0, 1)." 

Algorithm: 

Step 1: To* = To = s 

Step 2: I = 0 

Step3:  l = l + l  

Step 4: generate U 

Step 5: Tl = Tl_l - ~ l o g U  

Step 6: generate U 
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Step 7: if U > ~ e~m(s + Tl; Z , (s  + "I}))/~, go to Step 3 
i:i~h 

Step 8: 7"1" = Tl 

Step 9: generate U 

SteplO:i*=max{rn: ,<m:i#h ~ °ehi(S+T~;ZJ(s+T~))/Y~ahi(S+T~;ZJ(s+T~))<U}i:i¢t, 
Once the t ime of and state entered upon the next t ransi t ion are found, we determine 

the intensity flmetions tha t  will apply after this transit ion,  recalculate c~, and repeat  the 

procedure. We continue until  we have a t ransi t ion t ha t  occurs after t ime r, or until death  

or withdrawal. We then know the value of Xj( t )  for s < t < r. 

By repeating the procedure a large number  of times, not only can we est imate various 

probabilit ies,  but  we can est imate other interesting quantities. For example, fi)r each simula- 

tion outcome we could compute the [}resent value of the fee income tha t  ~vuld result. Then 

the average of these present values provides an est imate of the actuarial  (expecte<l) [)resent 

value of the fi~e income. 

5.3 N u m e r i c a l  I l lus t ra t ion 

Using the method described in gubsection 5.2 and the intensity fimction est imates fotlnd 

in Section 4, 10,000 simulations were performed for a 75 year-old female and for a 75 year- 

old male, both having just  entered the CCRC. Tahle 13 summarizes the results of these 

sinn,lations. The colunms of tile table provide the probabili ty t ha t  the resident is in each 

of the six s tates  at the end of each of the next twenty years. Since 10,000 simulations were 
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for each probability estimate, the standard deviation is at most ~(0.5)2/10000 performed, 

0.005. Uence, the estimates should be within 0.01 of the true value (that is, true according 

to our estimated intensity flmctions) with probability at least 0.95. 

One interesting observation we make from Table 13 is that  the probability that the 

resident is in state 6 (dead) is higher for females than for males. This can be explained by 

the fact that our estimated transition intensities from state 1 to states 2 and 3 are smaller 

(by a factor of 0.590) for males than for females. Therefore, females tend to move more 

quickly to states in which the mortality rate is higher. As stated in Subsection 4.4, this 

may be because a higher proportion of males live with a spouse. We have not allowed for 

this in estimating intensity fimctions. One should not conclude from this that female CCRC 

residents experience higher overall mortality than male residents. Rather, some feature of 

this data set or this CCRC has caused us to obtain intensity estimates that produce this 

anomalous result. 

6 C o n c l u s i o n s  

This paper has described and demonstrated an approach to analyzing CCRC data. We 

conclude the paper with some observations that are relevant to those wishing to conduct 

such an analysis. 

Given the number of transitions that ean be made by a given resident and the frequency 

with which these transitions occur, it is natural to use a continuous-time multi-state stochas- 
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tic model in order to fidly capture the randonmess in resident transitions. It is convenient 

to characterize such a model in terms of the transition intensity functions. The methods 

described in Section 3 can then be used to obtain estimates for these functions. 

The analysis discussed in Section 4 suggests that  a model that  incorporates the important  

sources of variation in resident outcomes will be rather complicated. For example, we have 

seen that  duration in the current state, duration since entering the CCRC, and number 

of previous visits to skilled care as well as age and sex may affect transition intensities. 

Furthermore, other variables that  we did not explore may have some impact. Pi t t ing such 

a complicated model requires good data and careful use of statistical methods. We have 

introduced some usefld methods in this paper. 

We pointed out in Section 4, that  the pilot study data is not sufficient to accurately 

estimate all of the transition intensity fimctions. We shouhl therefore consider how much 

data is required. The accuracy with which we can estimate a transition intensity fimction 

depends greatly on the number of ohserved transitions. As we have seen, this varies con- 

siderably across transition types. We observed 371 transitions from indel)endent to skilled 

care (temporary),  and are able to estimate the transition intensity fairly accurately. The 

number of deaths from each state was rather small, llowever, if we are willing to a.ssume that  

the intensity fimctions for mortality are proportional, we can combine the transitions. This 

allows us to obtain reasonable intensity estimates. Unfortunately, for some of the transition 

types, such as those from assisted living to skilled eare (permanent),  there were very few 

observed transitions, and we have little confidence in our estimates. Based on our analysis 
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with this da ta  set, we believe tha t ,  with five to ten times as much data,  one could reasonably 

est imate all of the  t ransi t ion intensity functions. 

Another  impor tan t  issue in deciding how much da ta  is required relates to the  completeness 

of the data.  We determined tha t  the intensity fimction for t ransi t ions from independent  

to skilled care ( temporary)  is influenced by the number  of previous visits to skilled care. 

Unfortunately,  for most residents, we do not know this number  because information is only 

available for t ransi t ions tha t  occur during a three-year study period. A similar problem 

exists in quantifying the effect of durat ion in the current s tate  on the t ransi t ion intensity. 

It would be ideal to have complete health s tatus histories for all residents involved in the 

study. In summary,  more da ta  on a given group of residents is be t ter  than  da ta  on more 

residents. 

Finally, we remind the reader tha t  the numerical results presented in this paper  are 

intended to be illustrative. They have been obtained using a small amount  of da ta  from 

one CCRC. One should not assume tha t  these results are representative of the experience of 

other CCRCs. 
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A Tables  

Table 1: Time spent in each state by sex 

State Females Males Total 
Independent 807.7 288.8 1096.5 
Assisted Living 141.1 22.1 163.2 
Ski[led Care (Temporary) 37.4 6.9 44.3 
Skilled Care (Permanent) 185.3 28.4 213.7 

Total 1171.4 346.2 1517.6 

Table 2: Number of transitions by type and sex 

Type Females Males Total 
1 ~ 2 29 3 32 
1 --~ 3 308 63 371 
1--+4 2 0 2 
1 -+ 5 11 6 17 
1 -+ 6 21 10 31 
2 - + 1  3 0 3 
2 -+ 3 156 18 174 
2 ~ 4 10 2 12 
2 - + 5  3 1 4 

2 - + 6  , 8 1 9 
13-+1 I 244 44 288 

3 -+ 2 155 18 173 
3 --+ 4 42 10 52 
3 - 4 5  4 0 4 
3 --+6 16 7 23 
4 - + 1  0 0 0 
4 - + 2  3 2 5 
4 - + 3  4 0 4 
4--+5 2 1 3 
4 -+ 6 56 7 63 
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Table 3: Deaths 

Females 
Age At 

74.00958 17 
76.21903 24 
77.67830 30 
77.67830 30 
79.29363 45 
79.29911 44 
82.02053 61 
83.14305 62 
83.36482 62 
84.27926 53 
85.17180 46 
85.60986 46 
86.25873 46 
87.09651 53 
87.72621 53 
89.06776 35 
90.62834 23 
92.06571 19 
92.90075 [ 14 
94.06160 9 
101.54689 1 

from the independent  s tate  

Males 
Risk Age At Risk 

75.69884 11 
77.27584 10 
80.18891 17 
80.38877 18 
80.60780 17 
83.38946 24 
85.13621 22 
87.34565 13 
89.84531 12 
90.14648 8 

Table 4: Cox Regression Results for Withdrawals  

Covariate 
male 

entry age 
assisted 

skilled (t) 
skilled (p) 

Coefficient 
0.2361 
0.0968 
0.6103 
1.8725 
0.3135 

exp(Coef) 
1.27 
1.10 
1.84 
6.50 
1.37 

std error p-value 
0.4270 0.58040 
0.0573 0.09137 
0.5985 0.30785 
0.5808 0.00126 
0.6547 0.63204 

Likelihood ratio stat is t ic  -- 11.4 on 5 (If, p=0.0439 
Efficient score stat is t ic  = 16.5 on 5 dr, p=0.00551 

lower 95% upper  .95% 
0.548 2.92 
0.985 1.23 
0.570 5.95 
2.084 20.31 
0.379 4.94 
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Covariate 
male 

assisted 
skilled (t) 
skilled (p) 

Table 5: Cox Regression Results for Mortal i ty 

Coefficient exp(Coef) std error p-value 
0.239 1.27 0.240 0.320 
0.448 1.57 0.394 0.256 
2.773 16.01 0.292 0 
2.082 8.02 0.245 0 

Likelihood rat io stat is t ic  = 123 on 4 df, p=0  
Emcient  score s tat is t ic  = 166 on 4 (If, p=0 

lower 95% upper  .95% 
0.793 2.03 
0.723 3.39 
9.042 28.35 
4.964 12.95 

Table 6: Cox Regression Results for 1 ~ 3 Transit ions 

Covariate Coefficient exp(Coef) std error p-value lower 95% 
male -0.527 0.590 0.2091 0.0117 0.392 
dur  -0.504 0.604 0.0532 0 0.545 

Likelihood ratio s tat is t ic  = 91.4 on 2 df, p=0  
Efficient score s tat is t ic  = 125 on 2 dr, p=0  

upper  .95% 
0.890 
0.671 

Table 7: Cox Regression Results for 1 --~ 2 Transi t ions 

Covariate Coef f ic ien t lexp(Coef )  s t d e r r o r  p-value lower 95% l upper .95% 
male -1.26 0.284 0.608 0.0386 0.0863 0.936 

Likelihood ratio s tat is t ic  = 5.96 on 1 (if, p=0.0147 
Efficient score s tat is t ic  = 4.87 on I dr, p=00274 

Table 8: Cox Regression Results for 2 -+ 3 Transi t ions 

Covariate Coefficient exp(Coef) std error p-value lower 95% 
male -0.849 0.428 0.3256 0.00915 0.226 

log(dur of stay) -0.349 0.706 0.0641 0 0.622 
Likelihood ratio stat is t ic  = 44.8 on 2 dr, I)=0 
Efficient score stat is t ic  = 46.4 on 2 dr, p=0  

upper .95% 
0.81 
0.80 
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Table 9: Cox Regression Results for (1 --~)3 ---r 1 Transi t ions 

Covariate Coefficient exp(Coef) std error p-value 
male -0.2871 0.750 0.1661 0.0839 

age ent skilled -0.0657 0.936 0.0168 0.00009 
age ent CCRC 0.0339 1.035 0.0165 0.0399 
Likelihood ratio statist ic = 18.6 on 3 df, p=0.0003 
Efficient score stat is t ic  = 17.8 on 3 df, p=0.0005 

lower 95% upper  ,95% 
0.542 1.039 
0.906 0.968 
1.002 1.069 

Table 10: Cox Regression Results for (1 --+)3 ~ 2 Transi t ions 

Covariate Coefficient exp(Coef) std error p-value lower 95% 
dur in CCRC at 0.0893 1.09 0.029 0.00209 1.03 

s tar t  of stay 
Likelihood ratio stat is t ic  = 8.13 on 1 dr, p=0.00435 
Efficient score statist ic = 9.86 on 1 df, p=0.00169 

upper .95% 
1.16 

Table 11: Cox Regression Results for (2 --+)3 --+ 2 Transit ions 

Covariate Coefficient exp(Coef) s t d e r r o r  p-value lower95% 
dur in CCRC at -0.0341 0.966 0.0169 0.0436 0.935 

s ta r t  of stay 
Likelihood ratio stat is t ic  = 4.32 on 1 dr, p=0.0376 
Efficient score statist ic = 4.1 on 1 (If, p=0.0428 

upper  .95% 
0.999 

Table 12: Cox Regression Results for 3 --+ 4 Transi t ions 

prey s tate  = 2 0.955 2.6 0.286 0.00082 1.49 4.55 
Likelihood ratio s tat is t ic  = 11.2 on 1 df, p=0.0008 
Efficient score stat is t ic  = 12.1 on 1 df, p=0.0005 
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T a b l e  13: S i m u l a t i o n  R e s u l t s  fo r  75 Y e a r - O l d  N e w  R e s i d e n t s  

Females 
Probabi l i ty  of being in 

Age s ta te  1 s ta te  2 s ta te  3 s ta te  4 s ta te  5 s ta te  6 
75 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
76 0.7492 0.0407 0.0759 0.0704 0.0284 0.0354 
77 0.5474 0.0802 0.0728 0.1606 0.0566 0.0824 
78 0.3906 0.1050 0.0561 0.2305 0.0804 0.1374 
79 0.2734 0.1095 0.0442 0.2732 0.1002 0.1995 
80 0.1912 0.1087 0.0311 0.2913 0.1167 0.2610 
81 0.1339 0.0954 0.0219 0.2942 0.1315 0.3231 
82 0.0885 0.0833 0.0178 0.2839 0.1434 0.3831 
83 0.0554 0.0691 0.0151 0.2632 0.1528 0.4444 
84 0.0363 0.0577 0.0088 0.2393 0.1609 0.4970 
85 0.0236 0.0443 0.0049 0.2120 0.1668 0.5484 
86 0.0154 0.0349 0.0035 0.1821 0.1718 0.5923 
87 0.0097 0.0261 0.0037 0.1515 O. 1754 0.6336 
88 0.0051 0.0203 0.0020 0.1246 0.1771 0.6709 
89 0.0024 0.0154 0.0015 0,1018 0.1791} 0,6999 
90 0.0012 0.0107 0.0011 0.0803 0,1802 0.7265 
91 0.0006 0.0069 0.0007 0.0616 0.1811 0.7491 
92 0.0003 0.0052 0.0005 0.0441 0.1817 0.7682 
93 0.0002 0.0032 0.0008 0.0328 0.1819 0.7811 
94 0.0001 0.0020 0.0000 0.0232 0.1819 0,7928 
95 0.0000 0.0013 0.0001 0.0160 0.1819 0.8007 

Males 
Probabi l i ty  of being in 

Age s ta te  1 s tate  2 s ta te  3 s ta te  4 s ta te  5 s ta te  6 
75 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
76 0.8198 0.0256 0.0461 0.0417 0.0337 0.0331 
77 0.6650 0.0567 0.0424 0.0949 0.0641 0.0769 
78 0.5311 0.0764 0.0416 0.1327 0.0887 0.1295 
79 0.4195 0.0931 0.0345 0,1551 0.1135 0,1843 
80 0.3283 0.1039 0.0281 0.1639 0.1313 0.2445 
81 0.2500 0,1092 0.0223 0,1746 0,1476 0.2963 
82 0.1908 0.1079 0.0175 0,1691 0,1601 0,3546 
83 0.1443 0.1054 0.0137 0.1585 0.1729 0.4052 
84 0.1022 0,1021 0.0112 0.1465 0.1809 0.4571 
85 0.0762 ! 0.0936 0.0074 0.1328 0.1876 0.5(}24 
86 0.0572 0.0822 0.0054 0.1162 0.1948 0.5442 
87 0.0403 0.0742 0.0061 0,0985 0.1985 0.5824 
88 0.0289 0.0650 0.0036 0.0841 0.2022 0.6162 
89 0.0189 0.0549 0 2 0 3 2 ,  0.0691 0.2042 0.6497 
90 0.0121 0.0454 0.0024 : 0.0582 0.2057 0.6762 
91 i 0.0084 0.0391 0.0013 0,0438 0.2074 0.7000 
92 0.0058 0.0308 0.0013 0,0319 0.2(180 0.7222 
93 0.0029 0 . 0 2 6 4  0.0013 0.0236 0,2082 0.7376 
9 4 1 0 . 0 0 1 9  0.0202 i 0 . 0 0 0 9  0,0176 0.2089 0.7505 
95 0.0013 0 . 0 1 6 5  0.0002 0,0119 0.2090 0.7611 
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B Figures 

Figure 1: State transition diagram for CCRC residents 
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Figure 2: Number of residel~ts attaining each age. during the study period 
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Figure 2: Number of residents attaining each age during the study period 
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Figure 2: Number of residents attaining each age during the study l)eriod 
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Figure 3: Number of residents attaining e~h duration during the study period 
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Figure 4: Estimated cumulative intensity flmctions for female and males (dotted) 
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Figure 5: Estimated cumulative intensity functions with approximate 95 percent pointwise 
confidence limits (dotted) 
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Figure 6: Smoothed intensity functions with al)proximate 95 percent pointwise confidence 
limits (dotted) 
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Figure 7: Cumt, lative and Smoothed Baseline Withdrawal Intensity Estimates 
Cumulative Intensity Estimates 
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F i g u r e  8: C u m u l a t i v e  a n d  S m o o t h e d  B a s e l i n e  M o r t a l i t y  Intensity E s t i m a t e s  
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Figure 9: Cumulative and Smoothed Baseline 1 --> 3 Intensity Estimates 
C u m u l a t i v e  In tens i ty  E s t i m a t e s  
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Figure  10: Cumula t ive  and Smoo thed  Baseline 1 --~ 2 Intensi ty  Es t ima te s  

Cumulative Intensity Estimates 
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Figure 11: Cumulative and Smoothed Baseline 2 -~ 3 Intensity Estimates 
Cumulative Intensity Estimates 
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Figure  12: C u m u l a t i v e  Base l ine  3 --~ 1 In t ens i t y  E s t i m a t e s  

Cumulative Intensity Estimates 
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Figure 13: Cumulative Baseline 3 --~ 2 Intensity Estimates 
Cumulat ive Intensity Estimates (Previous State 1) 
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Figure 14: Cumulative Baseline 3 -4 4 Intensity Est imates  

Cumulat ive Intensity Estimates 
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