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Australia has conducted ten national censuses since World War 
II: in 1947, 1954, 1961 and at five-year intervals through 1996. Life 
tables [1] have been prepared in connection with each of these 
censuses (except the most recent one, for which data is still being 
collected). For ages past infancy, the life tables are based on census 
counts and counts of deaths in the three-year period surrounding the 
census. The Australian Government actuaries provided me with data 
relating to these life tables, namely the death counts and central 
exposures, by sex and single year of age. The exposure figures are 
combinations of the adjusted census counts Px (adjusted for example 
for migration and international travel); since 1971 (and for ages 4 to 
about 100) the formula has been 

= 1/8 px-2 + 7/8 Px-1 + + 7/8 P x .  + 1/8 Px+2. 

The census population counts for any given year exhibit considerable 
irregularity. Although age misstatement is presumably a factor, 
perhaps especially at older ages, a more fundamental  cause is the 
significant fluctuation in birth and immigration rates from year to 
year. The coefficients in the central-exposure formula were chosen to 
give a more accurate estimate than 3 Px for the average number  of 
persons aged z (last birthday) at various times during the three-year 
period. I have not tried to analyze either the accuracy of counts or 
the validity of adjustments, but have simply taken the ratios of 
numbers provided to me as initial estimates of age- and sex-specific 
central mortal i ty rates, mx = D ~ / E x  . 

The graduation step in producing national life tables is frequently 
an ad-hoc  blend of different techniques in different age ranges. There 
are methods that could handle the entire age span at once - -  
Whit taker 's  method, or fitting a multi-parameter model such as that  
of Heligman & Pollard [4], for example - -  but they present other 
difficulties. In comparison to other options I claim that  L1 regression 
methods (generalizing Schuette graduation) offer the following 
advantages: 
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• They produce in one step a graduation for the whole age range. 
• They do not require assumption of a particular parametric 

form either for the pattern of mortality or for  the distribution of  
errors (which can be an important consideration, for example when 
graduating mortal i ty rates measured in dollars instead of lives). 

• They are robust in the sense of being resistant to outliers. 
• They quickly L produce a number of graduations among which 

the graduator can choose one (or more). 
• The also produce "regression quantiles", curves that estimate 

the (conditional) quantiles at various ages and can be interpreted as 
providing some indication of the variability of rates. 

We begin as usual with a series of initial estimates Ux, and obtain 
revised estimates Vx that minimize the composite measure 

t x- xf IA  xl . 
Using the second difference in the smoothness portion of M forces the 
revised values to vary linearly over moderate stretches of ages. 
Although the mechanics of Schuette graduation work just as well with 
higher degrees of difference, there are good statistical reasons for 
choosing z = 2 (see Koenker, Ng & Portnoy, [5]). As an example, 
consider Figure i,  which shows part of two graduations of the 1990-92 
male data,  one using the Schuette method (with z=2) and the other 
the Whit taker  method (with z=3). The sharp corners on the Schuette 
graduation may initially be considered an unpleasant feature; but they 
represent the data more faithfully than the curves with multiple 
inflection points that are a common result of Whit taker  graduation or 
cubic splines. 

Because mortali ty rates differ so much over the full span of years 
(the rate at age 100 being about 2000 times that at age 10), a 
transformation is helpful for visual interpretation. Popular choices 
have been the log and logit, which reduce the span to a ratio of about 
7.5 and 10 respectively. The logit has the advantage of producing a 
more nearly linear series of initial estimates from about age 60 
upwards (in the sense of having smaller total absolute deviation from 

1I used a collection of Splus programs, some with FORTRAN 
subroutines. Speed is not their primary advantage. Recent work by 
Steve Portnoy and Roger Koenker [7] indicates that L1 methods can 
challenge or even surpass least-squares methods in speed, particularly 
for very large data sets. 
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a best-f i t t ing line). Since the graduated values are likely to vary 
linearly in moderately long stretches at these ages, it seemed best to 
begin with the more linear series. Accordingly, the following analysis 
is all done on initial estimates 

ux = logit (Dx/Ex) = log (Dx/Ex)-log (1 - Dx/Ex). 

We~h~ 

We turn next to the question of weights. The most common 
choices (for example in Whittaker graduation) have been uniform 
weights, weights proportional to exposures, and weights proportional 
to inverse variance. 

The use of inverse variance would be more appropriate if the 
penalty for lack of fit were based on squared error rather than on 
absolute errors. Under the logit transformation the inverse variance is 
approximately rnx(1-mx)Ex, which is much smaller in youth than at 
higher ages. (For example, in the 1991 series for females, the weight 
assigned at age 50 would be about 22 times that assigned at age 11, 
where mortality is lowest, and the weight assigned at age 85 about 65 
times that  at age 11.) This is a consequence of the fact that  the logit 
spreads out the values where rnx is near 0 (or near 1) and compacts 
them near 1/2. Assigning higher weights at ages with much lighter 
exposure violates our intuitive sense of the purpose of differential 
weighting; more importantly, it results here in graduations that seem 
less satisfactory than those obtained with other weighting schemes. 

The asymptotic theory for L1 methods has been better developed 
for uniform weighting. One desirable feature that is not necessarily 
retained under differential weighting is the fact that the results 
provide local as well as global medians (and other quantiles) - -  that 
is, about half of the observed points near some age z will lie above, 
and about half below, the regressed values. But in experiments with 
the series under consideration here, which have only about 100 points 
to be graduated, uniform weighting led to graduations that seemed, 
depending on the smoothing parameter, either insufficiently smooth at 
high ages, or poor fits at lower ages. Figure 2 gives an example, 
showing the younger ages from the 1945-47 male data. 

Of the options mentioned, the most satisfactory seems to be 
weighting proportional to the given central exposures, which drop off 
with increasing age. This weighting would have more appeal if we 
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were not doing the logit transformation, because then the "fit" part of 
the measure M would be the sum of absolute deviations in numbers of 
deaths, which seems a natural quantity to control. Weights were 
normalized (so that the sum was 1) in order to cope with some 
numerical stability problems. 

Smoothing parameter 

The last question is the choice of the smoothing parameter A. 
Here the L1 methods have a very important practical advantage. 
Using parametric linear programming, we can generate rather quickly 
the graduated values for many (or even all) values of A. The 
programs2 used here (most developed by Pin Ng, see [6]) begin with 
the best (Ll-fit)  line, which is the optimal solution for all A above 
some finite value, and then "pivot" back through successive solutions 
with lower values of ~. (Schuette [8] identified the linear- 
programming aspects of this problem, but was probably not aware of 
the parametric-programming method that expedites solution.) As A 
decreases, the graduation tends to match more of the initial estimates, 
and have more "breaks" or turning points; but progress is not strictly 
monotonic. Figures 3a and ab show the graduated values for just a 
few different A values, for the 1990-92 female data. It is possible to 
continue through all the (finitely many) optimal solutions, but to save 
time one can stop when, say, 30 or 35 of the initial estimates are 
matched exactly. These graduations are generally too irregular to be 
satisfactory, so we will not be ignoring any good candidates. 

Now we need only select among 150 to 200 graduations. The 
asymptotic theory (see Koenker, Ng & Portnoy, [5]) suggests that a 
good choice for A will give a relatively small value for the Schwartz 
information number, 

SIC(A) = log (1 ~ WxlVx_ Uxl) + 2-~n log n ,  

where n is the number of initial estimates (in these examples, about 
100) and p is the number exactly matched (vx = ux). Of course the 
absolute minimum is SIC = - ® when Vx -= Ux ; but we find that the 

2Most of the examples were generated using qsbs, which is available 
from statlib. Ng now recommends using cobs, developed more 
recently with some additional features suggested by this and other 
experiments; but I did not test cobs on these data. 
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Australian females, 1990-92, various lambdas 
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SIC has several local minima as • varies. Figure 4 shows the SIC 
values for some of the optimal solutions for the 1990-92 female data. 
The horizontal axis is, unfortunately, only the index of the optimal 
solution, with #1 being the La-fit line, and ~ decreasing as the index 
increases. The four graduations of Figure 3a are identified by arrows. 

The Splus program dynplt (written by Stephen Portnoy) permits 
the graduator to view the solutions in succession. Visual inspection is 
not a reliable guide to the "best" graduation, but it can be used to 
limit the candidates. I generally found satisfactory graduations 
matching 15 to 20 of the initial estimates, and chose among them one 
that gave a local minimum for the SIC. Usually the plots of 
graduations near the one selected showed little discernible difference, 
indicating that the solution had a sort of stability. 

Regression quantiles 

A significant strength of the Ll methods is that they permit us to 
generate regression quantiles, estimating the curves of conditional 
quantiles. If we alter the measure to be minimized to 

Mo=r~Wxpo(Vx-Ux ) + Ar~lZx2vJ 

where p0(y ) is the "check" function 2 {0. y+ + (1-0).  y-}, then the 

optimizing Vx satisfy the following "quantile" condition: 

( O g w ~ ( Z  Q: ZVx> uxW~ - vx>uxW× 

(that is, the v values lie above the u values at most a fraction 0 of the 
time, by weight, and below the u values at most a fraction 1-0 of the 
time). The Schuette graduation, obtained with 0=0.5, estimates the 
curve of conditional medians. The Splus programs used will generate 
solutions for a given 0 and all (or many) /~, or for fixed )~ and all 0. 
The main advantage of this method over most other ways of 
estimating quantile curves is that it is non-parametric:  we need not 
assume a particular functional form for the curve itself, or a particular 
distribution for errors. 

The regression quantile method is very useful when we are really 
interested in some (non-median) quantile curve, say the 75th or 90th 
quantile for medical costs as a function of age. More commonly we 
want simultaneous estimates of several quantile curves. 
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Unfortunately, the method above does not readily provide 
consistent selections. For example, if 0 is very near 0 or 1, the 
optimal solution will be a straight line for modest values of )~, whereas 
for the more central quantiles one reaches the linear case only for 
quite large A. More embarrassingly, it is difficult to avoid crossings. 
We have no assurance, for example, that the 7570 curve does not drop 
below the median curve at some points. Such crossings do occur in 
practice, as Figures 5a and 5b demonstrate for two different data sets. 

What we need is a way of looking at the other quantiles with 
reference to a selected median. An obvious first step is to consider the 
residuals. In very general terms, let us suppose we have a model 

y(x) = J(x) + ~(z) 
where E is random error. Having observed y(xi) and obtained in some 

fashion an estimate f (x)  , the residuals (rx = Ux - Vx, in the notation 
of graduation) provide estimates of c(z). 

If we thought the errors were IID we could simply calculate 
^ 

quantiles of the set {r×}, and then displace f (x)  by the appropriate 
amount to obtain an estimate of a particular quantile curve. 
However, visual inspection in this case (as in many others) strongly 
suggests that  the errors are not IID, but have larger dispersion in 
some age ranges than in others (Figure 6). We might even try to 
draw smooth curves through the residual plots to estimate, say, the 
quartile curves of the residual function; but we ought to have a more 
objective method. 

My initial idea was to apply the regression quantile method to the 
residuals. Indeed the median obtained this way is close to the 
0-function for most values of the smoothing parameter,  but there are 
some surprises involving other quantiles - -  the most important  being 
that  the method does not eliminate crossings. 

The followin/~ method of restr ic ted regress ion quanti les suggested 
by Xuming He [3] offers a way around the crossing problem. He 
restricts the model by supposing that y(z) = J{x) + s(x) .  e ,  where e 
represents error, and s(z) > 0. That is, we assume the error 
distributions at any two ages differ only by a nonnegative 

multiplicative scalar. After selecting an estimate f for f a n d  setting 

rx = Yx - f (x) ,  we smooth the absolute residuals I r×l to obtain a 
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Australian females, 1991; regression quartiles 
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(nonnegative) function s(x). Finally, He suggests we estimate the 

quantile curves by the (non-crossing) functions f + cos , where the c o 

are chosen to minimize S(0) = ~ Wx.Po(rx - c 0. s(x)) . The 
^ 

fundamental idea here can be used no matter how the f and s are 
selected; but I use the L1 (Schuette) method in both steps. One 
advantage is that this usually gives us a strictly positive function for 

s, though zeros can occur if there are several consecutive zero 
residuals (possibly indicating a poor selection of the median estimate); 
and, rarely, one might get negative values at the endpoints. 

Unfortunately, with the constants c O defined as above, the curves 
^ 

f + cos do not (quite) satisfy the quantile condition Q defined earlier. 

As is shown in the appendix, there are a finite number of critical 
values co, each "optimal" , i.e. minimizing P, Wx.po(rx  - c. Sx), in an 

interval of 0 values, namely those satisfying the inequality 
Y~rx<CSx w×s~ <_ 0 .~  WxSx <_ Y~rx<CS,¢ WxSx . 

Condition Q, however, requires 

r'rx< CSx Wx < O. ~ w~ <_ r'r×<csx ' W  x . 

The intervals defined by these two conditions will not generally 
coincide, though the set of critical values of c are the same. He's 
functions will satisfy condition Q asymptotically (as the number of 
graduated points tends to infinity); also, his method may be more 
efficient for large samples and may give more realistic estimates when 
there are outliers among the a: values. But for the application here, 
with relatively small samples and x values at successive integers, it 
seems preferable to select the c O so that condition Q is satisfied. In 

particular, c.5 is necessarily 0 when chosen in this fashion, not 

necessarily so by He's method. 

In either case the selection of the c O is simple, essentially 

equivalent to finding the quantiles of a set of numbers (details in the 
Appendix). The c O are related to (estimates of) the quantiles of the 
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error distribution, but the relationship is not entirely simple. 
Quartile curves for the 1990-92 female data, generated by this 
method, are shown in Figures 7a and 7b; Figure 7c has the quartile 
curves for the 1985-87 female data (younger ages only), which 
demonstrate more dramatically the possibility of obtaining quite 
different shapes for the upper and lower quantiles. 

Figure 8 shows the absolute residuals and the function s(z) for the 
1990-92 female data. To eyes accustomed to least-squares methods 
the error function does not seem to increase at the extreme ages as 
much as it "ought". But this is an inevitable consequence of the 
robustness of the Lt method. The outlier at age 100 has not been 
ignored, but it is recognized only as lying above the regression line, its 
distance being unimportant .  The function is linear beyond age 82, 
and if its slope were much steeper then it would pass above 7 of the 10 
values at the end, and not be a local median estimate. 

The germ of these L1 ideas goes back to 1760 and a Jesuit named 
Roger Boscovicha. Gauss knew Boscovich's work; and when he wrote 
about curve-f i t t ing [in 2] he discussed Boscovich's idea and discarded 
it in favor of least-squares. One of the reasons given was the above 
characteristic of insensitivity to outliers. Gauss may have been 
justifiably confident of his ability to avoid (or recognize) mistakes in 
data, but most of us are glad to have robust methods that offer some 
protection against them. 

Well into my analysis of these data, it turned out that  in some of 
the sets the las t -age  data was contaminated: the number of deaths 
was correct for that (single) age, but the exposure figure was for that  
and all higher ages. Consequently the central mortali ty rate 
calculated was considerably lower than it should have been. When I 
regraduated the data leaving out that last age (because it was not 
clear how to estimate the exposure), I found that the change was 
minimal. This would not have been the case with least-squares 
methods. 

aA man of many talents, whom I admire so much I carry his picture i 
my wallet, on a ten-d inar  note issued by the Republic of Croatia. 
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Australian females, 1990-92 
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Australian females, 1986 
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APPENDIX: Determining the constants c o 

Normally He would obtain the constants c o that minimize 

~; Wx- p 0(rx  - c. sx)  

(or some small set of them, such as c.25 , c.5 and c.75) by L1 

regression through the origin, accomplished rapidly for example by a 
standard Splus program. However, the following algebraic 
presentation clarifies the relation between He's method and the 
"direct" method based on the quantile criterion Q. 

^ 

Suppose that f and s > 0 have been chosen, and let c be any real 
number. For what (if any) values of 0 will c minimize 

Wx. P o ( r x -  c.s×) ? 

We begin by dividing the set of indices into I + = {Z:rx > c Sx}, 
I- = {z:rx < c s×}, and Io = {~.rx = c Sx}. Of course the division 
depends on e and will be different for different values; but in the 
following discussion we will hold the division fixed. Now 

S(0) = ~ w×.po( r×-c . s×  ) = 

20 Y,I+ Wx.(rx - c . s . )  + 2(1-0) ZI- w, . (c . s× - rx) + £Io 0 . 

If c increases by a positive amount Ac which is small enough so that 
rx > (c +/xc)~x for all z e I +, then the change in S(0) is 

Ac {-20 Y,I+ WxSx + 2(1-0) ZI_w×Sx + 2 0 - 0  ) £Io w×sx} 

de-_f-2zXc{OS+-(j-O)(S- + So)}. 
If c is optimal at 0, this change must be nonnegative; that is, 

0(s + + s - +  so) <_ s - +  so 
On the other hand, if c decreases by a positive amount A c small 
enough so that rx < (c--  ZXc)Sx for all z e  I-, the change in S(0)is 

Ac {20 ~i+ W×Sx--2(1-O) Z I_ WxSx + 20 ~Io WxSx} 

= 2Act0 S + (1-0)S- + 0So)}. 
Now optimality requires 0(S + + S - +  So) _> S-. Combining these 
inequalities we obtain 

s - f 0 ( s  + + s - + s o )  d £ f 0 . s _ < s - + s o .  
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For most values of c, Io will be the empty set, so S o = 0 and the 
continued inequality reduces to the equation 0 = S-/S . Io is 
nonempty if and only if c = r×/Sx for one or more values of x; this 
provides the finite collection of critical values of c. To carry out the 
determination for a moderately small sample, we can sort the ratios 

rx/S× by size and calculate the S-, So quantities. Note that if f was 
obtained by L1 regression, then rx=O for at least two (and probably 

^ 

more) values of z, so c=0 is a critical value; and if s was chosen by L1 
regression of I rxl on z then s× = I rx I at least twice, so that at least 
one of +1, -1  is a critical value (and probably both are). 

A critical value c is optimal for 0 in the interval 
[S-/S, (S- + So)/S]. The smallest critical value has S- = 0 (because I- 
is empty). As we pass from one critical value to the next, the former 
Io becomes part of I-, while one or more indices move from I + into Io. 
Thus the upper limit of the interval of optimality for one critical 
value is the lower limit for the next. Finally, at the largest critical 
value, I + is empty, thus S- + S O = S, and the upper limit is 1. Thus 
the entire interval [0,1] is covered. 

The same approach applies to determine the constants c o to 

satisfy condition Q. Setting Vx = ~/(x) + c. sx,  then Vx > ux if and 

only i f c .  s × +  ~ / ( z ) - u × =  c . s × - r x >  0 ; t h a t i s ,  xe I - .  Condi t ionQ 
is thus equivalent to 

E I_wx< OZwx<~i_kjioWx, 
which we might write as 

W-< 0 W <  W - +  Wo. 

The critical values of c (the ones for which Io is nonempty) are the 
same as under He's criterion; and if all the Sx had the same value they 
would have the same intervals of optimality. 

Normally the Sx have different values, and the intervals of 
optimality [S-/S, ( S - +  So)/S] and [W-/W,  (W- + Wo)/W] will be 
different. This means that for some 0 values the constants c o (and 

therefore the regression quantile curves) will be different under the 
two methods, although they are asymptotically equivalent. 
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