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Abstract. We discuss a class of asymmetric distributions arising in a random summation
scheme. We call members of the class asymmetric Laplace distributions as the standard
Laplace distributions, which are symmetric, constitute a proper subclass. Among distribu-
tions which are limits in random summation schemes asymmetric Laplace distributions play
an analogous role to that of normal distributions among distributional limits of non-random
sums. Asymmetric Laplace laws are more “peaky” and have heavier tails than normal laws.
They have stability properties and are convenient in applications, as their densities have
explicit forms and estimation procedures are easily implemented. Anticipating increasing
interest in this class of distributions we present statistical tools which can be utilized in
practice, including algorithms for simulation and estimation. We also discuss more general
classes of distributions, where asymmetric Laplace distributions appear as special cases.
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1 Introduction and notation

Probably the most widely known and used theorem of the probability theory is the Central
Limit Theorem (CLT). This theorem in its nmost often used form gives necessary and sufficient
conditions for the convergence of sums of independent and identically distributed (i.i.d.)
random variables to the normal law. Consequently, many scientists and practitioners believe
that, provided the number of stunmands is farge, their sum can always be approximated by
a normal distribution. This, however, may not be the case. If the summands have infinite
variance, then the sum may converge Lo a stable law (see for example Samorodnitsky and
Taggu [20]). Moreover, even if the variables are independent and normally distributed, the
sum of their random number may not be distributed according to the normal law.

In VFigure 1, we compare two histograms, each obtained for 5000 observations of the
sums of Lid. randon variables. lor the one on the left, the observations were generated
as nott-random sutns of 1000 independent normal random variables with a non-zero mean.
On the right hand side we generated sums of random variables having the same normal
distribution but this time with a random number of terms distributed according to the
geometrie distribution with parameter p = 1/1000 and independently of the terms themselves.
The data were centered on their mean and scaled by their variation. We clearly see asymmetry
and peakedness in the case of random sunmation scheme,
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Figure 1: [listograms of non-random sums (left) and sums with geometrically distributed
number of terms (right}.

Apart from its interesting thearetical properties, the random sumination scheme appears
naturally in various fields, particularly in insurance mathematics. In risk theory, we are
interested in the distribntion of aggregate claims generated by the portiolio of insurance
polices. 1If the individual claims are denoted by X’s (usually assumed to be ii.d.) and the
random variable i, denotes the uumber of claims in a given time period, than the aggregate
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claim S, is given by
S,=X1+-+X,,. (1)

We consider a class of distributions that approximate geometric compounds, that is
componnd distributions (1) with the geometric number of terms:

Plop,=k)=p(l-p)* 1 k=1,2,..., (2)

when the parameter p converges to zero (so that the average number of terms in (2) converges
to infinity}. Geometric compounds frequently appear in applied problems from various fields,
including actuarial science, as discussed in Kalashnikov [5]. As shown in Mittnik and Rachev
[16), the geometric compounds (1), appropriately normalized, converge (in distribution) to
a geometric stable random variable, which is a location - scale mixture of stable random
variables.

In this paper we focus on an important special case, where the random variables X;’s
have a finite second moment (variance). Then, the limiting distribution of normalized S, is
a random variable with the following characteristic function:

Pl1) = [1+ 0% —ipt] ™! (3)

(see for example Mittnik and Rachev [16]). By specifying p = 0, we obtain Laplace distribu-
tions which are the only symmetric distributions within this class. Thus, it seems pertinent
to name the distribution with ch.f. (3) an asymmetric Laplace distribution (AL).

We introduce AL laws in Section 2, where we present their basic properties and pro-
cedures for simulation and estimation. We show that the probability distribution of every
AL random variable is the same as that of the difference of two independent exponentially
distributed random variables. This crucial observation leads to explicit formulas for densities
and distribution functions of AL distributions, facilitating their practical implementation.
We also define a time dependent random process through an AL distribution, which plays
an analogous role to Brownian motion. In the symmetric case, this process was applied to
mode] financial data in Madan and Scneta [14], where it was termed the Variance Gamma
process.

We think that AL laws should provide an alternative to normal distributions as distri-
butional models in a variety of settings. This class is particularly well suited for modeling
phenomena where the variable of interest results from of a large rendom number of inde-
pendent innovations, while the empirical distribution appears to be asymmetric, “peaky”,
and has tails heavier than those allowed by normal distribution. One area of application
where modeling with AL laws should be explored is mathematical finance, where the empir-
ical data often have the above features. The idea that the price change during a period of
time is produced by a random number of “individual effects” first appeared in Mandelbrot
and Taylor [15] and Clark [3], and was further explored in Mittnik and Rachev [16, 17] and
Kozubowski and Rachev [8]. [n Section 3, we apply the AL model to the interest rates data
studied by Klein [6], showing the consistency with our model. In the Appendix, we collect
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main properties of AL laws and comment on their various further extensions, The results are
brief and presented without proofs, as the more detailed treatment of AL laws will appear
elsewhere.

Notation.
e 7y - exponential random variable with the density

1

folw) = g(\xp(~‘l:/6‘), x>0, (4)

e 7 =/ standard exponential random variable,

e For a vector {or matrix) t, t’ denotes the transpose of t,

e s't = }:?:l t;s; - the inner product of s = (s1,...,8¢) and t = (t;,...,t4),
o [t = (t't)V2 = (4, t2)/? - the Euclidean norm in R,

- convergence of distributions,

i

¢

equality of distributions,

e Forv >0, I'(¢)= [ +¥"Le ™ dx (the gamma function),

e sign{wx) equals Lior & > 0, =1 for 2 < 0, and 0 for z = 0,

e ;€ 12, 0 >0 location aud scule parameters of AL distribution,

r =20/ + Vdo? + p?) - scale invariant parameter.

2 Asymmetric Laplace distributions

In this Section we deline univariate asymmetric Laplace distributions and derive their basic
properties. We omit most proofs and refer an interested reader to Kozubowski and Podgérski
(11] for a more detailed treatment.

Definition 2.1 A rendom variable is said to have an asymmetric Laplace (AL) distribution
if there are parameters g € B oand o > 0 such that its characteristic function has the form
(3). We denote such roe. and its distribution as Y, , and AL{a, 1), respectively, and write
Yo~ AL(o,u).

Note the following relations among the parameters:

1 L L : :
—A/;:ﬁ‘——(—/;: ‘I+(ﬁ),;2+h‘2:2+(ﬁ).
I a K o K a
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2.1 Special cases
While the distribution makes sense for every u € I and ¢ > 0, we have several special cases.
1. If g = o =0, then ¢(t) = 1 for every t € I, and the distribution is degenerate at 0.

2, For ¢ = 0 and o > 0, we have an exponential distribution with mean g, denoted
throughout as Z,. Similarly, if 0 = 0 and ¢ < 0, we have —Z_,,.

3, If g = 0 and o # 0, we have the Laplace distribution with location zero and scale o,
whose density is

1
fla) = Ee_(r/”l, z € R. (5)

2.2 Mixture representations

In this section we present various representations of AL distributions. The representations
lead to explicit formulas for AL densities and distribution functions, and facilitate computer
simulations of AL random variates.

Mixture of normal distributions. Let N and Z be independent and standard normal
and exponential distributions, respectively. Then, the following relation takes place:

Y, & uZ + V2027 N. (6)

Thus, conditionally on Z = z, the r.v. Y, , ~ AL(0o, ) is norinal with mean p2z and variance
202z,
An exponential mixture. Let I, be a discrete r.v. taking values —x and 1/« with prob-
abilitics p = x%/(1 + #*) and ¢ = 1 /(1 + %), respectively. Let Z be standard exponential
independent of /. Then

, d

A @
In the symmetric case (¢ = 0 and & = 1), the random variable 7, takes values 1 with
probabilities 1/2 each, and we obtain the well-known representation of symmetric Laplace
distribution.

Mixture of exponentials. The ch.f. of Y, , can be factored as

v(t) = - :

(14 iter)(1 - ita/k)’ ®)

which shows that every AL random variable has the same distribution as the difference of
two independent exponential random variables:

You20-Zyjw -0 Zn. 9)
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Figure 2: Asymmetric Laplace densities, ¢ = 1 and p =0, 0.8, 1.5, 2, 3, 4, 6, 8, 10 which
correspond to x =~ 1.0, 0.68, 0.50, 0.41, 0.30, 0.24, 0.16, 0.12, 0.1.

2.3 Densities

Let p,, aud Fy,, denote probability density function (p.df.) and cumulative distribution
function {c.d.f.) of an AL(o, ) distribution, respectively. The representation (9) produces
the following explicit formulas:

exp(—2z), if2>0
1 s { I( a) = (10)

Poulr) = G132 exp (#l) ,ifz <0,
and

1

) 1 - H—lxyexp(—gx), ifa >0
‘o) = n? .
¢ T exp (U—N-L) , ifz <0

Figure 2 shows AL densities for various values of the parameters. 1t is clear that the distri-
bution is unimodal with the mode equal to zero. We see the characteristic peakedness of the
density at zera. Some basic properties of AL densities are collected in the Appendix.

2.4 Moments and related parameters

Since the density of an Al law is a simple exponential function, the values of moments and
other related parameters of AL laws follow. We summarize them in Table 1.
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Parameter Definition Value

. a 1+ xHot+1)
Absolute moment Ly|* f’.) =
Y| (ﬂ Pla+ 1)
nth moments EY? n! (Z)n lw
K 14 k2
Mean EY m
Variance E(Y — EY)? u: + 207
250" =1)
Mean deviation ElY - EY| m
_ Var(X) o2 VI/REF 2
Coeflicient. of Variation e 94 l=Yrr T
[EX] 7t
7 /6 -«
3_ .3
: : _ _B(X-EX)* g MR-k
Coeflicient of Skewness 7= m (1/R2 1 K2)372
v 12
S - E(X - EX)! 6— ——
Kurtosis (adjusted) T2 = W -3 (1/k2 + x2)2

Table 1: Moments and related parameters of ¥ ~ AL(o, u).

Remark 1. The mean deviation equals ¢ for g4 = 0. Further, we have

mean deviation - 2er% -1 (1)

standard deviation (1 4 x2)y/1 4 PN

For the symmetric Laplace distribution (;z = 0, k = 1}, the above ratio is equal to 1/v/2.

Remark 2. For a distribution with finite third moment and standard deviation greater than
zero, the coefficient of skewness is a measure of symmetry (for symmetric distributions its
value is zero). and is independent of scale.

Remark 3. For a distribution with a finite 4th moment, kurtosis (adjusted, so that v, = 0
for normal distribution) measures peakedness, and is independent of scale. If y; > 0, the
distribution is said to be leptokurtic, and if v2 < 0, the distribution is said to platykurtic.



We see that an AL(o, u) distribution is leptokurtic and v, varies from 3 {the least value for
the symmetric Laplace distribution, where & = 1) to 6 (the greatest value for exponential
distribution, where & = 0).

2.5 The median and skewness

The calculation of the median and other percentiles is straightforward. We have the following
equation for the median m of an AL (e, i) distribution

log(2/(1 + x*))

12
1 — x? (12)

m=p

Note if u = 0, equation (12) yields m = 0, which is the median of symmetric Laplace
distribution. Similarly, for o = 0, we get m = plog 2, which is the median of an exponential
distribution with mean g (to which AL law simplifies in this case).

Further, the following inequalities hold for the three common measures of the center:

If > 0, then Mode < Median < Mean.

If 0 < 0, then Mode > Median > Mean.

All three measures are equal to zero if = 0 (and the distribution is symmetric).
Finally, we note that another measure of skewness of a distribution with c.d.f. I pro-
vided by the limit
L1 = Fa) = F(-x)
i —————,
oo | — Fla)+ P(-2)

in case of an AL(a, p) distribution is equal to sign{u).

2.6 Simulation

Since the distribution function of an AL distribution, as well as its inverse, can be written
in closed form, the inversion method of simulation is straightforward to implement. Alter-
natively, mixture representations (6). (7), and (9) can be used for simulation. Below is a
generator of a random variate from an AL distribution, based on the representation (7) for
o > 0 and on the representation (6) for o = 0.

An AL(o, u) generator.
o Gienerate a standard exponential variate Z.

e lFa=0
THEN Y ¢ u - Z.
BLSE {
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Set k « —22—
[L+\/}12+4(72

Generate uniform [0, 1] variate 7, independent of Z.
I U < w2/ (L + K%
THEN Set 1 « —+x.
ELSE Set [ « 1/k.
SetY «a-1-7.}
e RETURN Y.
Numerical subroutines (written in SP]us©) for simulating AL distributions as well as for

computing densities, quantiles, c.d.f.’s, and estimators are available from the anthoars upon
request.

2.7 Estimation

Here we derive moment and maximum likelihood estimators for AL parameters o and p. We
assume that ¥p,..., Y, is an i.i.d. random sample from an AL(o, i) distribution given by

ch.f. (3), and write our parameters in vector notation as § = [y, a]".

Method of moments. Let
my = EB(Y,,) =p and my = E(Y, )% = 2 + 207 (13)

be the first two moments of an AL (o, i) distribution (see Table 1). When we solve equations
(13) for ¢ and ¢ and substitute the sample moments,

~ 1 n R 1
M =~ > Vi and g, = - > Y (14)
i=1 i=1

for my and my, we obtain the method of moments estimators:

~ 7 ﬁl[n
b=t =] |- (15)
ay Man/2 — My,
Standard arguments of the large sample theory show that the method of moments estimators
of ¢ and @ are consistent and asymptotically normal. Namely, il @ > 0, then 6, given by (15)

is strongly consistent estimator of & and /n(f, — #) is asymptotically normal with (vector)
mean zero and covariance matrix

24 /ot ufo ] . (16)

b)) — ot
Yumg =0 2 45
[ tufa e+ byt ot + 2
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Maximum likelihood. Maximum likelthood estimators (MLE’s) in this case are efficient
(their asymptotic covartance matrix is the inverse of the Fisher information matrix). The
following standard notation allows for a compact formulas for estimators. For real y, let
yt = max(y,0) and y~ = max(—y, 0) be the positive and negative parts of y. respectively.
Applying the above notation to the random sample Yp,. .., ¥, we write vt = S Y,

T

and ¥ = 0 ¥.7/n. Now, we can express the MLE's for &, @, and y as follows:
E7LT</T—/T+‘ ﬁ“;—v‘ an: :/T_ 4V?+(V}_}.++\/a' (17)

The MLE 8,, = [fi,1, #,,]' is consistent and asymptotically normal. e asymptolic distribution
of /n{8, — 8) is bivariate normal with (vector) mean zero and covariance matrix
D[ Q1 /et o g2
o B(1/K< 4+ K H1/ k- K
{ (1/ ) AQ/e-w) ) (18)

WV L= . .
LALLE g A1k —K) I/RE+RE46

2.8 Generalized Laplace laws — Laplace motion

We can define a Lévy process on [0, 00) with independent increments, Laplace motion {Y (t), t >
0}, so that ¥ (0) = 0, Y (1) is given by (3), and for 0 < v the distribution of ¥ (») is given by
the ch.f.

pl0) = [+ ot = i) ™. (19)
One may call it a gencralized asymmetric Lapluce distribution. Denote the corresponding r.v.
by Yo . It is clear that Y, ., £ oY) 8., Where & = pfo, so we study the latter in the sequel.
Note that factorization (8) shows that the ch.f. of ¥ 5, can be written as the product of two

gamma ch.f.’s;
) B | v
/) = p
Vi.5.(1) <l + iiﬁ) (l — it/f;) ' (20)

14
Recall that (T_f—t/;) is the ch.f. of the gamma rov. Uy, whose deusity is given by

K" L -
xt TR > 0. 21
l‘(u)l € R (21)

gu.l/»:('” =

(For ¥ = 1 it reduces to the exponential distribution with mean 1/x). Thus, we have the
relation

Yl,é,u é i‘u,l/r; - Fu‘n') (22)
that gencralizes (9). Since these distributions will be considered in another paper, we limit
our discussion here to their densities. We can get the following expression for the density of
Y71 5, via the standard transformation theorem of random variables:

+1

PLS(Ta) = [l‘(u)]_z(’A" ¥ fw.lj"_l(:r + y)"_l(""y(ly, x>0, (23)
0
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where 7 = v/4 + . Note that in case v = 1 the above simplifies to (10), as it should. We
can write the density (23) as

1 aVr L ne
solEe) = ——— [ = Ealipe (‘) x>0, 24
Prow(Ee) TONG (”) ¢ A > (24)
where I{, is the modified Bessel function of the third kind:
. (z/2)°1(1/2) /‘X' —ztyy2 ~1/2
Ky (z) = —~>——— e~ ) dt. 25
Vo(2) fet1/2) /i e ) a (25)

If ¥ = k is an integer, then the density (23) is a mixture of k densities on (—oc, o0) and has
an explicit form. or j =0,...,k = 1, the jih density has the form

S (8) = Prigie g1 (@ 10,00 (2} + Gk jGh—jn (=) L(0,00) (= ), (26)
where g, stands for a gamma density as before, and

P Pt

A .

with p = 1/(1 + &%) and ¢ = x*/(1 + x%). Note that pjo = p and 1o = ¢. For k = 1 and
J = 0 the density (26) coincides with (10). Under the above notation, the density of Y] s

takes the form R
-1

PLsk(a Z A+J (p 7+ 7" fr(). (28)
=0

3 Applications

In this section we present two applications of AL distributions. The first one is in modeling
interest rates on 30-year Treasury bonds. Klein [6] studied yiekl rates on average daily
30-year Treasury bonds from 1977 to 1990, finding that the empirical distribution is too
“peaky” and “fat-tailed” to have been from a normal distribution. He rejected the traditional
lognormal hypothesis and proposed the stable Paretian hypothesis, which would “account for
the observed peaked middle and fat tails”. The paper was followed by several discussions,
where some researchers objected to the stable hypothesis and offered alternative models,
including a first-order moving average model of Huber. In our approach, we assume that the
successive logarithmic changes in interest rates are i.i.d. observations from an AL distribution.
Our model is simple, allows for peakedness, fat-tails, skewness, and high kurtosis observed in
the data. We were inspired by the ideas of Mittnik and Rachev [17], regarding the interest
rate change as the random sum of a large number of small changes:

Yp
interest rate change = Z (small changes),
=1
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Figure 3: Top-left: Empirical c.d.f. vs. normal c.d.f. Top-right: Empirical c.df. vs. AL
cdf. Bottor-lcft: Histogram of interest rates on 30-year Treasury bonds. Bottom-right:
Non-parametric estimator of the density (thin solid line) vs. the theoretical ones (normal
dashed line, AL - thick solid line).

where the number of terms, vy, that has a geonetric distribution. Thus, provided the small
changes have finite variance, the AL law (3) can approximate the distribution of the interest
rate change. We think of v, as the moment when the probabilistic structure governing the
interest rates breaks down. Sucli event could be a new information, political, economical or
ather event that affect the fundamentals of the financial market.

Our goal is to present the idea of modeling interest rates using AL laws. The data set
consists of interest rates on 30-year Treasury bonds on the last working day of the month and
is published in Huber’s discussion of Klein’s paper [6], p. 156. The data covers the period
of February 1997 through December 1993. We convert the data to the logarithmic changes
according to the formula: Y, = log(is/i;_1), where i, is the is the interest rate on 30-year
Treasury bonds on the last working day of the month t. There were the total of 202 values
of the logarithmic changes ;.

First, we have plotted the histogram of the data set (Figure 3 (bottom-left). We can
see the typical shape of a AL density: the distribution has high peak near zero, and appears
to have tails thicker than that of the normal distribution. Comparisons of the c.d.f. of
the normal distribution and the empirical c.d.f. seen on Figure 3 (top-left) and the density
functions Pigure 3 (bottom-right ) confirm these findings. We see a disparity around the center
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Parameter Theoretical value | Empirical value
Mean —0.001018163 -0.001018163
Variance 0.001733809 001372467

Mean deviation

0.02944785

0.02945773

Mean dev./ Std dev.

0.7072175

0.7582487

Coelficient of Skewness

—=0.07334177

—0.2274964

Kurtosis (adjusted)

3.003586

3.599207

Table 2: Theoretical versus empirical moments and related parameters of ¥ ~
AL(G 1)

of the distribution due to a high peak in the observed data. In order to fit an AL model,
we need to estimate the parameters g and ¢. We used the maximum likelihood estimators
finding & = —0.001018163 and & = 0.029434439. Further, we calculated the parameter x as
well as the theoretical values of various parameters presented in Table 2. We also calculated
the empirical counterparts of the parameters, where we used the following statistics:

e Mean: %EY,-‘

» Variance: 1 (¥, - V)2

e Mean deviation: 5[V - Y.

o Cocficient of skewness: 3, = L (¥, - T)¥/(L (Y, - V)H¥V2
o Kurtosis (adjusted): 75 = L 37(Y; - Y_)‘/(% (Y - V)2

T

We present the empirical and theoretical values in Table 2. Except for a slight dis-
crepancy for the skewness, the match between empirical and theoretical values is striking.
In addition, we show, in Figure 3 (top-right), the theoretical AL c.d.f. compared with the
empirical c¢.d.f. and, in Figure 3 (bottom-right}, the density kernel estimator based on the
data against the theoretical densities of normal and AL distributions with the estimated pa-
rameters. We see that at the mode agreement is better for the AL distribution than for the
normal one.

The second example illustrates how AL laws can account for asymmetry in the data.
The data consists of currency exchange rates: the German Deutschemark versus the US
Dollar (DMUS). The observations are claily exchange rates from 1/1/80 to 12/7/90 (2853
data points). As usual, we consider the change in the log(rate} from day t to day t + 1.
First, we plotted the histogram (Figure 4 (left)) We see the typical shape of a AL density.
The distribution has a high peak near zero, and appears to have non-symmetric tails thicker
than that of the normal distribution. A normal QQ plot (see Figure 4 (middle)) confirms
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these findings. We used maximum likelihood for estimating the AL parameters obtaining
B o= 0.0007558 and ¢ = 0.00521968. The quantile plot of the data set and the theoretical
AL distribution is presented in Figure 4 (right). It shows only very slight departures from
the straight line. We conclude that AL distributions model this data set more correctly than
normal distributions.
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Figure 4: Analysis of the currency data.

4 Appendix

4.1 Properties

We collect here the main properties of AL laws. We omit most proofs and refer an interested
reader to Kozubowski and Podgérski [11] for a more detailed treatment.

4.1.1 Stability

Paretian stable distributions, that include normal laws, have two fundamental properties.
First, they are limiting laws for appropriately normalized sums of i.i.d. random variables.
Thus, they work well as approximations to sums of i.i.d. random variables. Second, they
are stable: the sum of i.i.d. normal (Paretian stable) r.v.’s has a normal (stable Paretian)
distribution. These properties are shared by AL laws, if deferministic summation is replaced
by geometric summation. By definition, AL laws are limits of geometric compounds of i.i.d.
conmpornients. The stability properties of exponential and Laplace distributions are well known
(see for example Arnold [2] [or exponential and Lin [12] for Laplace):

Yp
Y £a,5 v, (29)
1=

where v, is geometric (2), Yi's are i.i.d. copies of ¥, and »p, and (Y]) are independent (the
constants a(p) are equal to \/p for Laplace and p for exponential distributions}. Although
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general AL r.v.’s do not satisfy (29), they have the following characterization (see Kozubowski
[7]): A r.v. ¥ with finite variauce is AL if and only if

vp
w3 (Yi+b,) 5 Y, (30)
i=1

where v, is geometric (2), ¥;’s are i.i.d. copies of Y, and v, and (Y;) are independent.
Moreover, if o > 0, the normalizing constants in (30) can be taken as

ap=Cp'?, by = (p'? = C)u/C, C=1/2/(2+ (n/0)?).

In addition, all AL laws are geometric infinitely divisible, that is
“p
Y23y, (31)
i=1

where v, is geometric (2), Y ~ AL(0, ), }",)(")’s are i.i.d. with AL(o./p, up) distribution for

each p, and v, (Yp('.)) are independent.
Remark. AL laws are infinitely divisible in the classical sense as well. Please see Kozubowski
and Podgdrski [11] for the exact form of their Lévy measure.

4.1.2 Self-decomposability
Relations (7) and (9} are special cases with ¢ = 0 of the more general representations:
You Lo Yot (81/5 =622 ¢ Yo+ 610210~ 607, 0<c< 1, (32)

where (81, 6;) has the following joint distribution:

.P(é] = 0,62 = 0) = (.‘2,

Pl =1,8,=0) = (1_c)(c+%),
.2
P, =06,=1) = (1-¢ (H%),

and the r.v.’s Y5, (41, 82}, and Z (correspondingly, Yo, (61, 82), Z1x, and Z,) are mutually
independent. Written in terms of ch.f.’s, the relation (32) takes the form

P(t) = ¢(et)e(t), 0<c<1, (33)

where ¥ and ¥, are ch.f’s of Y, , and (8,/x — 3;1) Z, respectively. Recall that a ch.f. 3 that
satisfy (33) is said to be self-decomposable, and the corresponding distribution (and r.v.) is
said to be in class L. Thus, all AL laws are in class L, which implies that they are unimodal,
as self-decomposability implies unimodality (Yamazato [21]). It is clear from the explicit
formula for the density, that modes of all AL laws are actually equal to zero.

Remark. We note that self-decomposability and unimodality of AL laws was established in
Ramachandran {19].
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4.1.3 Properties of the densities
We discuss here basic properties of AL densities.
Values at zero. We have the following relations:

1 K K
— FE, (0} = P(Y,, <0)= .
0_1_*_'\‘2 ri() ( '#_) 1+h2

I t
im pau(0) = —, lim p,(0) = —, lim p,,.(0) = oo.
B “tl wo—=0"

JIEE S 2a 1— T —

pﬂ,u(o) =

Symmetry with respect to u. The densities p, , are symmetric with respect to the
parameter fi
Pou{2) = po,-p(=2),

which follows from (10) and the relation

2 Vided +pt - p

20
ToT+ 2+ 20

K=

Asymmetry of the density. The density p, . of a AL distribution with g > 0 satisfies the
relation

Poull) > Paul—x), x> 0.
By synunetry, an analogous results hold for g < 0. In fact, we have
Do)
Poul(~w)
s0 that p, . (~2)/Pop(a) = 0 as 2 — oo,

=exp(x(1/k — k) /0) = explap/a?),

Derivatives. [cxcept for @ = 0, AL densities have derivatives of any order n > 0:
M

—lye (Bt L emme e s 0
i?i?(l‘):{( 7 L+g (34)

AT(M.;" T TR 1) i e < 0
Further, we have
1 % n+1 N} ] n+1
lim (— 1)U (@) = (—) . lim pl (2 = - (—) .
1‘—b0+( V) 14+ k% \o I—m—l"'“( ) |+ k% \ ko
The two limits are equal if either n = 0 (showing the continuity of the density at zero) or
x =1 (and thus g = 0), producing the symmetric Laplace distribution.

Complete monotonicity. A function f defined on [ C R is called completely monotonic
(respectively, absolutely monotonic) if it is infinitely differentiable on [ and (=1)¥f(*)(2) > 0
(respectively, f*)(x) > 0) for any @ € I and any k = 0,1,2,.... The complete and absolute
monotonicity of AL densities follow directly from (34). Namely, if p,, is the density of an
AL(o, p) distribution, then the functions p, (L) are completely monotonic on (0, oc) and
absolutely monotonic on (—oc, 0.
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4.2 Further extensions

The class of AL laws can be extended in various ways. Tirst, the distributions may be shifted,
allowing for arbitrary modes. Next, one can consider a more general class of distributions
given by an AL clh.f. (3) raised to a positive power. These are marginal distributions of the
Lévy process {Y(¢).t > 0} with independent increments, for which Y(1) ~ AL(o, ) as it was
described at the end of Section 2. Further, one obtains a richer class of limiting distributions,
consisting of geometric stable laws, by allowing for infinite variance of the components in
the geometric compounds (1). More generally, if the random number of components in the
summation (1) is not geometrically distributed, a wider class of v-stable laws is obtained
as the limiting distributions. Finally, if the components in (1) are multi-dimensional, the
multivariate AL distributions are obtained.

4.2.1 Translated AL laws

fY ~AL(o, ), then Y + & is a r.v. with a three-parameter density

I« {CXP(—EW—E))w ifz>¢

a1+ K2 exx)(ﬁ(a:—f))‘ ifz <&, (%)

PU,U,E(J‘.) =
and distribution function

n,,,gm:{ - Gpew(fe-0), ifz>¢

l—f:;exp (ﬁ(r - §)) , ifz <&

Although these three-parameter distributions are no longer limiting laws for geometric com-
pounds (1), nor do they have stability property (29), they do provide more flexibility in data
modeling by allowing for arbitrary modes.

4.2.2 Geometric stable laws

If the random variables in (1) have infinite variance, than the geometric compound no longer
converge to an AL law. Instead, the limiting distributions form a broader class of geometric
stable (GS) laws. It is a four-parameter family best described in terms of characteristic
function:

Y1) = {1+ o™ [t wag(t) = ipt] ™1, (38)
where

) 1 —ipsign(z) tan{ra/2), if a# 1,

w.,,,g(I) = ca 2 p —
b+ i Zsign(z) log |z |, fa=1.

The parameter «« € (0,2] is the indez that determines the tail of the distribution: P(Y >
y) ~Cy™™ (as y — o) for 0 < o < 2. For o = 2 the tail is exponential and the distribution
reduces to AL law, as wy 3 = 1. The parameter 8 € [—1, 1] is the skewness parameter, while
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0 € R and o > 0 control the location and scale, respectively. We briefly comment on some
of the features of G5 laws, and refer an interested reader to Kozubowski and Rachev [10] for
an up to date information and extensive references on GS laws and their special cases.

Remark 1. Special cases of GS laws include Linnik distribution, for which 3 =0 and u =0
(sec Linnik [13]), and Mittag-Leffler [aws, which are GS with /7 = 1 and either & = [ and
o = 0 (exponential distribution) or (0 < o < L and g = 0. The latter are the only non-negative
GS r.v.'s (see Pillai [18]).

Remark 2. GS laws share many, but not all, properties of Parctian stable distributions,
which were discussed in the actuarial context in Klein [6]. In lact, stable and GS laws are
related through their characteristic functions, v and ¢, as shown in Mitinik and Rachev [16]:

@) = (= logp(t)), (37)

where y(x) = 1/{1 + 2) is the Laplace transform: of the standard exponential distribution.
Relation (37) produces the representation (36), as well as the mixture representation of a GS
random variable Y in terms of independent standard stable and exponential rv.’s , X and
Z:

(38)

y 4 wZ +2Mee X, o F 1,
T nZ +ZoX yaZs(2/w)log(Za), a=1.

Note that the above representation reduces to (G) in case a = 2, as then X has the normal

distribution with mean zero and variance 2.

Remark 3. The asymmetric Laplace distribution, which is GS with « = 2, plays the same
role among GS laws, as normal distribution does among stable laws. As normal distribution
is convenient in application, so is AL law, as its p.d.f., c.d.f. have explicit expressions.

Remark 4. Like stable laws, GS laws Jack explicit expressions for densities and distribution
functions, which handicap their practical implementation. Also, they are “fat-tailed”, have
stability properties {with respect to random summation}, and generalize the central limit
theorem (as they are the only lhmiting laws for geometric compounds). However, they are
different from stable (and normal) laws in that their densities are more “peaked”, while still
being heavy-tailed. Unlike stable densities, GS densities *blow-np™ at zero if & < 1. Since
many financial data are "peaked” and “lat-tailed”, they are often consistent with the GS
model (see for example Kozubowski and Rachev [8]).

4.2.3 v-stable laws

Suppose that the random number of terms in the summation (1) is any integer-valued ran-
dom variable, and, as p converges to zero, v, approaches infinity (in probability) while py,
canverges in distribution to a r.v. v with Laplace transform . Then, the normalized com-
pounds (1) converge in distribution to a v-stable distribution, whose characteristic function
is (37) (see for example Kozubowski and Panorska [9]). The class of v-stable laws contains
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GS and generalized AL Jaws as special cases: if v, is geometric (2), then pu, converges to
the standard exponential and (37) produces (36); similarly, if v, is negative binomial with
parameters # and p, then py, converges to a gamma distribution and (37) produces (19).
The tail behavior of v-stable laws is essentially the same as that of stable and GS laws (sce
Kozubowski and Panorska [9]).

4.2.4 Multivariate extension

The theory of AL laws can be extended to random vectors. Namely, a multivariate AL law
can be defined as the limit (in distribution) as p — 0 of appropriately normalized random
sums

spzx(1)+...+x(m. (39)
Here, (X)) is a sequence Li.d. random vectors with finite second moments and vy, has a
geomietric distribution (2), independent of X®'s, It follows that the limiting distributions
for normalized geometric compounds (39} are laws with the following ch.f.:

1 -1
Yit) = 1+§t'2t-it’m , {40)

where m is an arbitrary vector in B¢ and X is a X d non-negative symmetric matrix (see for
example Mittnik and Rachev [16]). We shall call a distribution given by (40) a multivariate
asymmetric Laplace law and denote it by AL(Z, m). The symmetric case with m = 0 was
discussed in the literature before (see Johnson and Kotz [4], Madan and Seneta [14]). If
3 is positive-definite, the distribution is truly d-dimensional and has a probability density
function

! _ vf2
zl‘yE m ylz ly i - s —1
g9ly) = ERLEDE (2+m'2—lm Ky (\/(2+n12 m)(y'S y)), (41)

where v = (2 — d)/2 and £, is the modificd Bessel function (25). In the symmetric case
(m = 0) this density was derived in Anderson [1]. In the one-dimensional case, where ¥ =
ayy, we have v = (2—1)/2 = 1/2 and the Bessel function simplifies to Iy /5 (v) = /7/(2u)e™™.
Cansequently, the density (41) simplifies to the density (10} of a univariate AL law with
parameters 0 = y/o;1/2 and p = m. For d > 1 the density (41) blows up at zero. Further,
if the dimensionality d is odd, d = 2r 4 3, the density has a closed form:

Cre¥' BT 'm-Cliyll z': (r+ &)
@rllyllg-0r B2

where v = (2— d)/2, C' = V24 m'X'm, and ||y||g-1 = V¥’ Ty is a norm in R%. In the

three dimensional space, we have r = 0 and the density is particularly simple:

gly) = L 2Clylls-)7" v #0, (42)

Y'ET m=Cllyll -

2oty ez Y70 (43)

g(y) =
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Multivariate AL laws share many, but not all, properties of univariate AL laws. Since a
more extensive stidy of the multivariate case will appear elsewhere, we only give few general
remarks.

Stability. Multivariate AL laws are geometrically infinitely divisible as well as infinitely
divisible in the classical sense, and satisfy the stability property (29) whenever either m or
X equals zero. However, relation (30) does not generally hold for d > 1.

Mixture representation. Mixture representation {6) extends to the multivariate case as
follows. Let Y ~ AL(X,m) and let X ~ N (0, X) (multivariate normal with mean zero and
variance-covariance 3). Let Z be an exponentially distributed r.v. with mean 1, independent
of X. Then the following representation holds

Y £ mz+ 2'2X. (44)

The mean and variance-covariance matrix. Representation (44) leads to the following
formulas for the mean and variance-covariance of Y ~ AL(X, m):

EY =m, E(Y-LEY)Y-EY)=%+mm' (45)

Linear transformations. Any lincar transformation of an AL r.v. leads to another AL
random variable. Let Y = (Y1,...,Yy) ~ AL(Z, m) and let A be an [ x d real matrix.
Then, the random vector Yo = AY is AL{Z A, ma), where mp = Amand ¥5 = ALA'
In particular, multivariate and univariate marginals of an Al random vector are AL, as are
all linear combinations of its components.

5 Summary

The class of AL laws plays an analogous role among geometric stable laws to that played by
the class of normal distributions among stable laws. AL laws arise as limiting distributions for
geometric compounds, as normal laws do {or deterministic sums, of i.i.d. random variables
with finite second moments. Al laws have a stability property with respecl 1o geometric
summation, as normal laws do with respect to classical summation. Both, AL and normal
laws are convenient in applications, as their densities have explicit forms and estimation
procedures are casily implemented. However, there are important differences boetween the
two families of distributions: AL laws are more “peaky” and have tails heavier than normal
laws and allow for asymmetry, whereas all normal distributions are symmetric. We hope that
our survey of results and methods for AL laws will lead to more frequent applications of AL
laws in actuarial science and other arcas of applied research.
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