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Abstract

This paper builds a new risk model for a firm which is sensitive to its credit
quality. A modified Jarrow, Lando and Turnbull model (Markov Chain model)
is used to model the credit rating. Recursive equations for finite time ruin
probability and distribution of ruin time are derived. Coupled Volterra type
integral equation systems for ultimate ruin probability, severity of ruin and
joint distribution of surplus before and after ruin are also obtained. Some nu-

merical results are included.
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1 Introduction

In actuarial science, ruin theory has been a major area of interest for a long period of
time. This is partly due to the fact that ruin probability has been used by insurance
industries as a risk measure, and also partly because actuaries have developed elegant
mathematics in this area over the past century. This makes the ruin theory both
theoretical interest and practical importance. There is a large amount of literature on
ruin theory, see, for example, Bihlmann (1982), Gerber (1979), Grandell (1991, 1997),
Daykin, Pentikdinen and Pesonen (1994), Klugman, Panjer and Willmot (1998) and
Rolski, Schmidli, Schmidt and Teugels (1999).

It is not difficult to see that ruin theory is closely related to default risk in finance.
Credit risk and credit risk derivatives have recently attracted considerable interest
in the finance society. J.P. Morgan’s “Introduction to Credit Metrics” provides an
overview on this subject. Also, see for example Das (1995), Das and Tufano (1996),
Jarrow and Turnbull (1995), Duffie (1998), and Duffie and Singleton (1996) and the
references therein. Jarrow, Lando and Turnbull (1997) proposed a Markov Chain
model for valuing risky debts that explicitly incorporates a firm’s credit rating as
an indicator of the likelihood of default. Later Kijima and Komoribayushi (1998)
did some further study on this model. Arvanitis, Gregory and Laurent (1999) built
models for credit spreads, a Markov Chain was used to represent the credit rating

dynamics.

More and more people have noticed that the interplay between finance and actu-
arial science is an interesting and productive research area. See for example, Gerber
and Shiu (1994) and Embrechts (1999). The purpose of this paper is to build a new
model which combines the credit rating model in finance, and ruin theory techniques.
This model can be used in two ways: As an insurance risk model (where we build the

credit rating classes in a ruin theory framework), and as a credit risk model (where we



use some ruin probability techniques which have been developed in actuarial science

to analyze the default probability, default time and severity of default).

We model the credit risk ratings using a Markov Chain which is similar to the
model of Jarrow, Lando and Turnbull (1997) or Kijima and Komoribayashi (1998).
By using the recursive method proposed in De Vylder and Goovaerts (1988) (which
is also used in Sun and Yang (2000)), recursive equations satisfied by the finite time
ruin probability and distribution of ruin time are obtained. Coupled Volterra type
integral equation systems for ultimate ruin probability, distribution of severity of
ruin and joint distribution of surplus before and after ruin are also obtained. For the

purpose of illustration, we present some numerical results.

This paper is constructed as follows: Section 2 presents the problem formulation
and the model. Section 3 derives the recursive equation satisfied by the finite time
ruin probability. The time of ruin is discussed. Section 4 deals with the distribution
of the severity of ruin and the distribution of surplus before and after ruin. Section 5
provides some numerical results. Some summary remarks and further research topics

are given in the final section.

2 The model

In this paper we consider a firm which could be either a financial corporation or
an insurance company. At the beginning of each time interval a rating agency will
provide a credit rating to assess the firm’s abilities in meeting its debt obligations
(to pay possible claims in an insurance company case). We use a Markov Chain to
model the dynamics of the firm’s credit ratings, it is a modification of Jarrow, Lando

and Turnbull (JLT) (1997) model. The only difference between our model and JLT

model is that we only consider the non default rating states.



Let I; be a time-homogeneous Markov Chain with a state space of N = {1,2,...,k},
where state 1 represents the highest credit class, and state k represents the lowest.
In Moody’s ratings, state 1 can be thought of as Aaa and state £ as Caa, and in
S&P’s state 1 as AAA and state k as CCC.

Let
Qij:P{[t+1:j|[t:7:}a ia.jeNv t:071323"' (21)

be the one-step transition probabilities, the transition matrix of the Markov Chain

I, can then be written as

g1 qi2 - qik

g1 Q22 ' Q2

k1 qk2 " Qkk

Let u be the initial surplus of the firm, and X! the portfolio change in the pth

time interval if the firm’s credit rating in time interval n is of class 7. The surplus of

the firm at time n can then be written as

U, =u+ Z Xf;hm_l, (2.3)
m=1
where we assume X! i =1,...,k, m = 1,2,... are independent random variables.

We say that ruin or default occurred at time n if U, < 0.

Let T = inf{n;U, < 0}, the stopping time, T, is called the ruin time. The

probability of ruin before or at time n is defined as

¢ni0(U) = P{T S n | [0 = io, U() = U} (24)

Remarks:



1. In this paper we assume that [; is a time-homogeneous Markov chain, this
is only for simplifying notations. The model can be used in cases of non-
homogeneous Markov chains. All the analysis in this paper works even if [; is

a non-homogeneous Markov chain.

2. We did not include the default state in the state space of I; because, in practice,
default is the most serious issue, so we would like to study it in detail. In our
model, we can study default probability, default time and severity of default,

assuming that we are able to estimate the transition matrix of the credit ratings.

3. The probability transition matrix, (), can be estimated by using real data. We
can also use some already available estimation results in literature, for example,

from J. P. Morgan’s home page, but conditional on non default.

We will assume that for any fixed i = 1,...,k, X' m = 1,2,..., are identically
distributed. X', ..., X* are independent but have different distributions. For exam-
ple, we may assume that X! only take positive values, X* may take negative values
with high probabilities. In our model, we assume that the rating at time ¢ is given
according to the information up to time ¢, for example the initial surplus at time ¢.
The future rating is random and taking values according to the transition matrix.

From now on, we will denote the distribution of X* by F;(z).

3 Recursive formula for finite time ruin probabil-

ities

Assume that at time 0, Iy = 9. Denote the ruin probability before or at time n given

that the initial surplus is v and the initial state is 7o by (2.4).



Let
Prio (u) =1- ¢nio (u> (31)

be the survival probability. We then have the following theorem:

Theorem 3.1 ¢, (u) satisfies the following recursive equations:

5‘912'0(“) = Fio(_u> =1- Fio(_u) (32)

e = S [ it ) Fyly) (3:3)

——

Proof:

eri(u) = P{Uy >0|Uy=wu,ly=io}
= P{X}° > —u} = Fi,(—u)
wai,(w) = P{Uy >0,Uy; >0|Uy=u,lg=1io}
= P{X{ > —u, X{* + X' > —u}
= /OO P{X;' > —u—y| X}* =y} d Fi,(y)

U—

k 0

= Z%oi/ P{X; > —u—y}d Fy(y)

i=1 —u=

= Zqzm/ pri(u +y)d Fiy (y).

—Uu—

Recursively, we have
Onig(w) = P{U >0,--- U, >0,|Us=wu,Io=10}

= P{X{O > —u,e Y X > —u}
=1
= / P{X211>—U_ya ZXH —u—y‘)ﬁo— } N

U—



k 00 n
= > P{X; S a3 X >—u—y}sz-o<y>
=1

—u- i=2

k o0
= Z Qiyi / 99(n-1)¢(u + y)d Fz'o(u) .
i=1

i yp—

In the above model, we have assumed that for any fixed « € {1,...,k}, X,
n=1,2,...arei.i.d. If we now assume that the business will expand, and the growth
rate over each time interval is constant. We may use the following model to model
the dynamic of the surplus process:

U, =u-+ Z X;{”_l (1+ T)m_l, (3.4)
m=1

with all other assumptions remaining the same as before, we have the following results:

Theorem 3.2 Let @nm(u) be the ruin probability on or before time n for model (3.4)

with an initial state 1o and an initial surplus u, and lel

9571770 (u> =1- 957“0(“) :

Then $piy(u) satisfies the following recursive equation:

Prio(u) = Fig(—u)

o) = 3 g / Boni((u + 9)(1+1)™)d Fa (),

=1 —u—

Proof: Similar to the proof of Theorem 3.1.

Remark:



1. In Yang (1999), a discrete time insurance risk model with interest income effects
was considered. Model (3.4) here is an analogous model but with a different

interpretation.

In the following, we will discuss the ruin time (default time) distribution. For
notational simplicity, starting from this section, we will only consider model (2.3).

Corresponding results for model (3.4) can be obtained without difficulty. Let
Gmo(u) = P{T: n|U0 :’u,[() = Zo} .

Using the recursive method, we can obtain the following result:

Theorem 3.3 The distribution of ruin time can be calculated using the following

recursive equations:
Ghig(u) = Fiy(—u)

k oo
Gm'o(u) = Z%z’/ G(n—l)i(u + y)dFZ-O(y).
=1 —u=

Proof: Similar to the proof of Theorem 3.1.

Remarks:

1. By using our model to consider the default risk, we can not only obtain the
default probability, but can also obtain the default time distribution. Further-
more, and as we will see in the next section, we can also obtain the distribution

of the severity of default.

2. Let

i, (1) = P{ D {Un < 0} ‘UO — o, Iy = z‘o}

n=1



be the ultimate ruin probability. Then, from definition, we have

Yig(u) = ZG’MO (u)

k 0o 0
= Fi(—u)+ Z (Jm/ Z Gn-1)i(u + y)d Fi, (y)
=1 —UT p=2

k %]
Pl + Y [ ut ) Folo)

io=1,2,... k.

Therefore, the ultimate ruin probability can be obtained from the coupled

Volterra type integral equation system above.

Note that, since G;i(u +y) < 1 and Fj (y) is a distribution function, the

convergences of the above summation and integration are obvious.

4 Distribution of surplus before and after ruin

In risk theory, actuaries are interested in the severity of ruin and the joint distribution
of surplus process immediately before and after ruin. In our setup, we are also able

to study these problems.

First, let
Hi (u,y) = P{Ur < —y,T < oo | Iy =19,Uy = u}

be the distribution of the severity of ruin, where y > 0. Then

Hiy(u,y) = P{Ur < —y,T <ool|ly=1i9,Uy=u}

= Y P{Ur< —y,T=nl|l=iyUs=u}

n=1

[ee]
= Y P{XP > —u, XP+ X >~ X4+ X >
n=1



= Z hnio(uv y)7

n=1

where

hnio(uay> = P{X;O >—u”Xi0++Xlri—12 > —u

n

XP - X < —u—y}
and hy, (u,y) can be calculated recursively by:
hig(u,y) = P{XP < —u—y} = F(—u—y)
hio(uyy) = i%i /OO hin-1yi(u + z,y)d Fiy(x)
— _

uU—

n=2,3,--.

Therefore, the distribution of the severity of ruin satisfies the following coupled

Volterra type integral equation system:

k 0o
Hi(u,y) = Fi,(—u—y)+ Z Qioz’/ Hi(u+z,y)d F,(z)
=1

io=1,2,-- k.
This system contains k& unknown functions Hi(u,y),..., Hy(u,y) and k equations.
Next we will consider the joint distribution of surplus before and after ruin. Define
Wi (u,z,y) = P{Ur < —y,Up_y > 2, T < oo | Iy =19, Uy = u}
where z > 0 and y > 0.
It is easy to see that

Wouw,z,y) = Y P{U <~y Uy > 2, T =n|ly=i,Up = u}

n=1

10



= ZP{X;°>—U,---,X?—I— —I—Xn2 > —u,

X{O—I—---—l—X;"l? >—u—|—m,X{°—|—---—|—X7€”‘1 < —u-—y}

00
= Z wmo(ua JE, y) 9
n=1

where

wnio(uaxay) = P{Xio > —u,---,XiO +"'+X2n23 > —u

n—

X+ X9 > —ut o, XP 4 X < —u— gyl
and wy, (u, ,y) can be calculated recursively by:

Fio(—u—1y) if u>ux
wy(u, z,y) =

0 if u<ux
Wi (uyz,y) = P{XP+ X3 < —u—y, X;* > —u+z}

= qu/ Fi(—u—y —s)d Fi,(s),

forn >3

wmg u :Uay Z%m/ (n—=1)i <u+5 $7y>sz'0(5) .

Therefore, let W, o(u,z,y), 10 = 1,..., k, be the solutions from the following coupled

Volterra type integral equation system:

k o0
mo(u’xay):Fio(_u_y)+zqioi/ I/Vz(u—s,x,y)dFZO(s) .
=1 —u

Then Wy, (u, z,y) is given by: when u > z,

—u+x

Wi (u,z,y) = (u,z,y) qu/ Fi(—u—y—s)dF,(s),

——

and when u < z

I/Vio(uvxay) = I/T/io(u,fﬂ,y) - Zqioi/_ Fi(_u - Y _S)dFio(s) - Fio(_u _y)'

Remark:
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1. In actuarial literature, the severity of ruin and the joint distribution of surplus
before and after ruin have been studied by many authors. Gerber, Goovaerts
and Kaas (1987) considered the distribution of the severity of ruin and an
integral equation was obtained. In cases where the claims have an exponential-
mixture or Gamma-mixture distribution, closed form solutions for the distrib-
ution of the severity of ruin were obtained. Later Dufresne and Gerber (1988)
introduced the distribution of the surplus immediately prior to ruin in the clas-
sical compound Poisson risk model. Similar results to Gerber, Goovaerts and
Kaas (1987) were obtained in that paper. Dickson (1992) used a different way
to deal with the distribution of the surplus immediately prior to ruin. Using the
relationship of various events, he found the relationship among the distributions
of the surplus prior to ruin, after ruin, and the ruin probability. In the paper,
Dickson used the distribution of the surplus after ruin and ruin probability to
express the distribution prior to ruin, then the results of the distribution of the
surplus after ruin and the ruin probability are used to obtain the results for the
distribution of the surplus prior to ruin. Gerber and Shiu (1997,1998) examined
the joint distribution of the time of ruin, the surplus immediately before ruin
and the deficit at ruin. They showed that, as a function of the initial surplus,
the joint density of the surplus immediately before ruin and the deficit at ruin

satisfies a renewal equation.

5 Numerical results

In this section, we will present some illustrative numerical results. This example is
chosen purely for illustration purpose. We use the one year credit rating transition

matrix from “CreditMetrics - Technical Document”. However, we use the conditional

12



probabilities on the non-default states rather than using the matrix directly.

| 0.9081 0.0833 0.0068 0.0006 0.0012 0 0
0,0070 0.9065 0.0779 0.0064 0.0006 0.0014 0.0002
0.0009 0.0227 0.9111 0.0552 0.0074 0.0026 0.0001

Q@ = | 0.0002 0.0033 0.0596 0.8709 0.0531 0.0117 0.0012

0.0003 0.0014 0.0068 0.0781 0.8140 0.0893 0.0101
0 0.0012 0.0025 0.0045 0.0684 0.8805 0.0429

i 0.0027 0 0.0028 0.0162 0.0296 0.1401 0.8086

We assume that the portfolio changes in each time intervals follows a shifted ¢ distri-
bution. That is
X'~ t(oy,m),

where «; is the shift parameter (i.e. Xi—a; ~ t(n;),), and n; is the degree of freedom
of the t distribution. In this example we let ny = 19,0y = 2;ny = 17, a9 = 1.5;n3 =
15,03 = I;my = 13,04 = 0.5;n5 = 11,05 = 0;ng = 9,06 = —0.5;n7 = 7,07 = —1.

All the numerical results are plausible.

Table 1 gives the non-ruin probabilities calculated from the recursive formulas

(3.2) and (3.3) for u = 5.

13



Table 1

3

© o I Oy Ot e W N =

S I T
O O 0 I Y Ut ke W NN = O

19 =1
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.99999
0.99999
0.99998
0.99997
0.99996
0.99994
0.99991
0.99988
0.99984
0.99979
0.99974
0.99967

19 =2
1.00000
1.00000
1.00000
1.00000
1.00000
0.99999
0.99999
0.99998
0.99995
0.99991
0.99985
0.99977
0.99967
0.99954
0.99939
0.99921
0.99900
0.99876
0.99850
0.99821

1o =3
1.00000
1.00000
1.00000
0.99999
0.99999
0.99999
0.99997
0.99992
0.99984
0.99970
0.99949
0.99920
0.99880
0.99832
0.99773
0.99703
0.99623
0.99532
0.99432
0.99321

1o =14
1.00000
1.00000
0.99999
0.99999
0.99997
0.99990
0.99972
0.99934
0.99869
0.99769
0.99630
0.99448
0.99222
0.98954
0.98646
0.98301
0.97924
0.97519
0.97089
0.96639

g =25
1.00000
0.99999
0.99998
0.99992
0.99964
0.99882
0.99698
0.99362
0.98847
0.98138
0.97243
0.96183
0.94987
0.93686
0.92310
0.90889
0.89446
0.88003
0.86576
0.85177

g =06
0.99999
0.99998
0.99988
0.99934
0.99736
0.99221
0.98225
0.96667
0.94567
0.92028
0.89179
0.86155
0.83069
0.80011
0.77046
0.74217
0.71549
0.69056
0.66741
0.64601

io=17
0.99998
0.99986
0.99910
0.99534
0.98360
0.95948
0.92310
0.87852
0.83067
0.78336
0.73880
0.69798
0.66115
0.62818
0.59875
0.57250
0.54909
0.52818
0.50947
0.49271

14




Table 1

21 0.99960 0.99789 0.99202 0.96174 0.83817 0.62629 0.47765
22 0.99952 0.99754 0.99074 0.95696 0.82502 0.60816 0.46409
23 0.99943 0.99716 0.98938 0.95209 0.81236 0.59151 0.45185
24 0.99934 0.99676 0.98795 0.94716 0.80022 0.57623 0.44079
25 0.99923 0.99632 0.98645 0.94219 0.78863 0.56220 0.43074
26 0.99912  0.99587 0.98489 0.93722 0.77757 0.54932 0.42161
27 0.99899 0.99538 0.98327 0.93226 0.76704 0.53748 0.41328
28 0.99886  0.99487 0.98160 0.92732 0.75704 0.52658 0.40567
29 0.99872 0.99434 0.97989 0.92243 0.74754 0.51654 0.39869
30 0.99857 0.99378 0.97814 0.91758 0.73852 0.50728 0.39227
31 0.99841 0.99320 0.97635 0.91281 0.72996 0.49873 0.38636
32 0.99825 0.99260 0.97454 0.90810 0.72184 0.49080 0.38089
33 0.99807 0.99198 0.97270 0.90347 0.71414 0.48346 0.37583
34 0.99789 0.99134 0.97083 0.89893 0.70683 0.47663 0.37113
35 0.99770 0.99068 0.96895 0.89447 0.69989 0.47028 0.36676
36 0.99750 0.99000 0.96706 0.89011 0.69330 0.56436 0.36267
37 0.99730 0.98930 0.96516 0.88583 0.68703 0.45882 0.35886
38 0.99708 0.98859 0.96324 0.88165 0.68107 0.45365 0.35528
39 0.99686 0.98786 0.96133 0.87757 0.67540 0.44879 0.35192
40 0.99663 0.98712 0.95941 0.87358 0.67000 0.44423 0.34876

The following table (Table 2) provides some values of the ruin time distribution

when the initial surplus u = 5.
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Table 2

3

© o I Oy Ot e W N =

S I T N i e
S O 0 NI O Ut ke W NN = O

19 =1
1.2997E-10
1.8770E-10
8.7780E-10
4.4848E-09
2.3004E-08
1.0173E-07
3.5422E-07
9.7136E-07
2.1788E-06
4.1711E-06
7.0671E-06
1.0902E-05
1.5640E-05
2.1205E-05
2.7492E-05
3.4396E-05
4.1810E-05
4.9642E-05
5.7808E-05
6.6238E-05

g = 2
9.6507E-10
4.8189E-09
2.4554E-08
1.3819E-07
6.8122E-07
2.5025E-06
6.8326E-06
1.4703E-05
2.6535E-05
4.2176E-05
6.1154E-05
8.2901E-05
1.0687E-04
1.3258E-04
1.5965F-04
1.8773E-04
2.1656F-04
2.4590E-04
2.7555E-04
3.0533E-04

1o =3
7.0516E-09
1.9492E-08
8.0193E-08
4.1796E-07
2.0001E-06
7.3792E-06
2.0742E-05
4.6545E-05
8.7857E-05
1.4562E-04
2.1888E-04
3.0538E-04
4.0226E-04
5.0652E-04
6.1531E-04
7.2609E-04
8.3670E-04
9.4538E-04
1.0507E-03
1.1517E-03

io =4
5.1063F-08
2.0253E-07
9.5123E-07
4.9600E-06
2.2119E-05
7.4065E-05
1.8855E-04
3.8589F-04
6.7031F-04
1.0306E-03
1.4461E-03
1.8929E-03
2.3483F-03
2.7933F-03
3.2135E-03
3.5986E-03
3.9426F-03
4.2424F-03
4.4972F-03
4.7083F-03

1o =15
3.7053E-07
2.1290E-06
1.2376E-05
6.7473E-05
2.8079E-04
8.4114E-04
1.8971E-03
3.4446E-03
5.3343E-03
7.3541E-03
9.3064E-03
1.1047E-02
1.2491E-02
1.3608E-02
1.4399E-02
1.4893E-02
1.5126 E-02
1.5143E-02
1.4985E-02
1.4691E-02

g =06
2.7431E-06
1.6471E-05
1.0254E-04
5.4213E-04
2.0211E-03
5.2587E-03
1.0240E-02
1.6114E-02
2.1787E-02
2.6452E-02
2.9744E-02
3.1647E-02
3.2343E-02
3.2090E-02
3.1149E-02
2.9747E-02
2.8067E-02
2.6245E-02
2.4381E-02
2.2543E-02

ig=17
2.1366E-05
1.2304E-04
7.7115E-04
3.7963E-03
1.1942E-02
2.4727E-02
3.7555E-02
4.6289E-02
4.9902E-02
4.9512E-02
4.6747E-02
4.2895E-02
3.8751E-02
3.4731E-02
3.1018E-02
2.7671E-02
2.4693E-02
2.2059E-02
1.9736E-02
1.7691E-02
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Table 2

21
22
23
24
25
26
27
28
29
30
31
32
33

7.4875E-05
8.3668E-05
9.2578E-05
1.0157E-04
1.1062E-04
1.1969E-04
1.2878E-04
1.3785E-04
1.4690E-04
1.5590E-04
1.6485E-04
1.7372E-04
1.8252E-04

3.3510E-04
3.6469F-04
3.9400E-04
4.2290E-04
4.5129E-04
4.7909E-04
5.0621E-04
5.3258E-04
5.5815E-04
5.8286-04
6.0668F-04
6.2957E-04
6.5151E-04

1.2474E-03
1.3374E-03
1.4213E-03
1.4990E-03
1.5703E-03
1.6353E-03
1.6942E-03
1.7470E-03
1.7942F-03
1.8358E-03
1.8722F-03
1.9037E-03
1.9306E-03

4.8779E-03
5.0089E-03
5.1048E-03
5.1693E-03
5.2058E-03
5.2179E-03
5.2088E-03
5.1815E-03
5.1389E-03
5.0833E-03
5.0169E-03
4.9418E-03
4.8597E-03

1.4295E-02
1.3826 E-02
1.3308E-02
1.2760E-02
1.2198E-02
1.1632E-02
1.1073E-02
1.0526 E-02
9.9973E-03
9.4891E-03
9.0036E-03
8.5421E-03
8.1049E-03

2.0776E-02
1.9106E-02
1.7548E-02
1.6108E-02
1.4787E-02
1.3580E-02
1.2481E-02
1.1484E-02
1.0580E-02
9.7610E-03
9.0199E-03
8.3492E-03
7.7418E-03

1.5891E-02
1.4306F-02
1.2910E-02
1.1679E-02
1.0593E-02
9.9331E-03
8.7835E-03
8.0302E-03
7.3612E-03
6.7657E-03
6.2346E-03
5.7600E-03
5




Table 3

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.1
1.2
1.3
1.5

2.5

1o =1
1.2418E-02
9.8649E-03
8.0567E-03
6.5590E-03
5.3240E-03
4.3100E-03
3.4807E-03
2.8047E-03
2.2555E-03
1.8107E-03
1.4514E-03
1.1618E-03
9.2892E-04
7.4200E-04
4.7239E-04
1.5190E-04
4.9075E-05
1.6125E-05

19 = 2
3.2484E-02
2.7390E-02
2.2895E-02
1.9060E-02
1.5808E-02
1.3064E-02
1.0761E-02
8.8377E-03
7.2383E-03
5.9137E-03
4.8208E-03
3.9220E-03
3.1852E-03
2.5829E-03
1.6921E-03
5.8011E-04
1.9835E-04
6.8694E-05

1o =3
7.3738E-02
6.5696E-02
5.6380E-02
4.8143E-02
4.0913E-02
3.4612E-02
2.9159E-02
2.4467E-02
2.0456E-02
1.7044E-02
1.4158E-02
1.1727E-02
9.6884E-03
7.9861E-03
5.3946E-03
1.9764E-03
7.1419E-04
2.5946E-04

190=14
1.4199E-01
1.3168E-01
1.1644E-01
1.0237E-01
8.9485E-02
7.7799E-02
6.7288E-02
5.7910E-02
4.9606E-02
4.2307E-02
3.5935E-02
3.0408E-02
2.5641E-02
2.1552E-02
1.5100E-02
5.9861E-03
2.3102E-03
8.8912E-04

g =25
2.2671E-01
2.1518E-01
1.9655E-01
1.7841E-01
1.6095E-01
1.4431E-01
1.2862E-01
1.1396E-01
1.0041E-01
8.7994E-02
7.6719E-02
6.6564FE-02
5.7492E-02
4.9447E-02
3.6163E-02
1.5714E-02
6.5380E-03
2.6852E-03

g =06
3.0059E-01
2.9007E-01
2.7334E-01
2.5610E-01
2.3852E-01
2.2080E-01
2.0314E-01
1.8573E-01
1.6876F-01
1.5241E-01
1.3683E-01
1.2212E-01
1.0840E-01
9.5706E-02
7.3522F-02
3.5481E-02
1.6065F-02
7.0903E-03

1g=17
3.4775E-01
3.4054E-01
3.2923E-01
3.1694E-01
3.0371E-01
2.8959E-01
2.7467E-01
2.5908E-01
2.4296F-01
2.2650E-01
2.0986E-01
1.9326 E-01
1.7689E-01
1.6094E-01
1.3091E-01
7.1544E-02
3.5804E-02
1.7204E-02

The following Table 4 provides some values of the distribution of the surplus

immediately after ruin for u = 2.
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Table 4

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.1
1.2
1.3
1.5

2.5

1o =1
6.9020E-03
1.5241E-04
1.2257E-04
9.8615E-05
7.9387E-05
6.3948E-05
5.1546E-05
4.1580E-05
3.3566E-05
2.7120E-05
2.1930E-05
1.7749E-05
1.4378E-05
1.1659E-05
7.6886F-06
2.7662E-06
1.0256F-06
3.9365E-07

19 = 2
1.9596-02
7.2591E-04
5.9461E-04
4.8705E-04
3.9897E-04
3.2687E-04
2.6786E-04
2.1956 E-04
1.8002E-04
1.4767E-04
1.2118E-04
9.9484E-05
8.1717E-05
6.7159E-05
4.5444E-05
1.7334E-05
6.7696FE-06
2.7277E-06

1o =3
4.8922E-02
3.2062E-03
2.6719E-03
2.2242E-03
1.8496E-03
1.5366E-03
1.2755E-03
1.0578E-03
8.7670F-04
7.2612F-04
6.0107E-04
4.9733E-04
4.1134E-04
3.4012E-04
2.3245E-04
8.9952E-05
3.5267E-05
1.4162E-05

190=14
1.0459E-01
1.2630E-02
1.0774E-02
9.1724E-03
7.7942E-03
6.6108E-03
5.5971E-03
4.7306E-03
3.9918E-03
3.3631E-03
2.8293E-03
2.3771E-03
1.9948E-03
1.6721E-03
1.1717E-03
4.7727E-04
1.9460E-04
8.0671E-05

g =25
1.8474E-01
3.8434E-02
3.3629E-02
2.9353E-02
2.5557E-02
2.2197E-02
1.9230E-02
1.6620E-02
1.4329E-02
1.2325E-02
1.0577E-02
9.0578E-03
7.7408E-03
6.6026-03
4.7791E-03
2.0844E-03
8,9758E-04
3.8957E-04

g =06
2.6550E-01
8.1929E-02
7.3182E-02
6.5198E-02
5.7931E-02
5.1334E-02
4.5362E-02
3.9973E-02
3.5124E-02
3.0778E-02
2.6894E-02
2.3437E-02
2.0370E-02
1.7661E-02
1.3183E-02
6.1474E-03
2.7988E-03
1.2759E-03

1g=17
3.2473F-01
1.3389E-01
1.2156E-01
1.1010E-01
9.9497E-02
8.9702E-02
8.0679E-02
7.2387E-02
6.4784E-02
5.7831E-02
5.1489E-02
4.5722E-02
4.0493E-02
3.5768E-02
2.7697E-02
1.4078E-02
6.9298E-03
3.4003E-03

The following Table 5 provides some values of the distribution of the surplus

immediately after ruin for u = 5.
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Table 5

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.1
1.2
1.3
1.5

2.5

1o =1
3.0304E-03
1.6459E-06
1.4198E-06
1.2250E-06
1.0568E-06
9.1160E-07
7.8598E-07
6.7727E-07
5.8316E-07
5.0171E-07
4.3123E-07
3.7029E-07
3.1763E-07
2.7220E-07
1.9932E-07
9.0347E-08
4.0801E-08
1.8707E-08

19 = 2
9.5178E-03
1.4431E-05
1.2584E-05
1.0971E-05
9.5598E-06
8.3252E-06
7.2443E-06
6.2977E-06
5.4689E-06
4.7435E-06
4.1092E-06
3.5549E-06
3.0714E-06
2.6501E-06
1.9656F-06
9.1560E-07
4.2289E-07
1.9783E-07

1o =3
2.6787E-02
8.3791E-05
7.2251E-05
6.2249E-05
5.3584E-05
4.6080E-05
3.9587E-05
3.3973E-05
2.9123E-05
2.4938E-05
2.1331E-05
1.8226E-05
1.5556E-05
1.3265E-05
9.6185E-06
4.2625E-06
1.8875F-06
8.5021E-07

190=14
6.5645E-02
6.2690E-04
5.4532E-04
4.7356 E-04
4.1054E-04
3.5529E-04
3.0694E-04
2.6471E-04
2.2789F-04
1.9587E-04
1.6806E-04
1.4398E-04
1.2317E-04
1.0521E-04
7.6494E-05
3.3972E-05
1.5018E-05
6.7398E-06

g =25
1.3293E-01
3.7077E-03
3.2778E-03
2.8910E-03
2.5438E-03
2.2328E-03
1.9551E-03
1.7077E-03
1.4880F-03
1.2934E-03
1.1217E-03
9.7055E-04
8.3799E-04
7.2207E-04
5.3320E-04
2.4402E-04
1.1014E-04
5.0187E-05

g =06
2.1385E-01
1.2464E-02
1.1174E-02
9.9917E-03
8.9101E-03
7.9235E-03
7.0263E-03
6.2128E-03
5.4778E-03
4.8160E-03
4.2223E-03
3.6917E-03
3.2193E-03
2.8004E-03
2.1045E-03
9.9927E-04
4.6452E-04
2.1707E-04

1g=17
2.8468E-01
2.8263E-02
2.5722E-02
2.3353E-02
2.1150E-02
1.9105E-02
1.7212E-02
1.5463F-02
1.3853E-02
1.2376F-02
1.1024E-02
9.7925E-03
8.6742E-03
7.6630E-03
5.9349E-03
3.0226E-03
1.4976F-03
7.4402E-04

6 Conclusive remarks and further research topics

In this paper we have built a new ruin theory model which incorporate the firm’s

credit risk. Recursive equations have been derived for the finite time probability

of ruin and the distribution of ruin time. Coupled Volterra type integral equation

systems for ultimate ruin probability, distribution of the severity of ruin and the
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joint distribution of surplus process before and after ruin have been obtained. As
an insurance risk model, this model, to the best of our knowledge, is the first to
incorporate the credit ratings. This model can also serve as a credit risk model. As
a credit risk model, we have, by using some actuarial science techniques, provided

some detailed study on the default risk. Some numerical result have been presented.

There are many problems which can be considered further. Currently the model
is a simple one. If we assume the rating process I, depends on the surplus process
U.,, then the problem becomes very difficult mathematically. The portfolio change
process X,, could be discussed further, especially some practical issues. Up to now
we have only considered the discrete time model. The ideas in this paper can be used

in other risk models, we will address this problem in future research.
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