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INTRODUCTION 

I 
N TSA I, 343, one of the authors of this paper described a symbolic 

method of deriving discrete interpolation formulas based on an 
analogy between interpolation and graduation previously pointed 

out by the other author (JIA LXXII ,  482). By a discrete interpolation 
formula is meant one which does not produce interpolated values for all 
arguments, but  only for certain specified arguments at equal intervals, 
the interval between interpolated values being an exact divisor of that 
between given values. Thus, the interpolation "formula" takes the form 
of a discrete set of coefficients to be applied to the given values to obtain 
the interpolated values. 

There are, however, certain situations in which it is desirable to inter- 
polate by a method which produces interpolated values for a continuum 
of values of the argument, i This is the case when interpolated values are 
desired for only a small number of particular arguments, which also may 
not divide the intervals between given values in a commensurable ratio, 
and further when it is desired to estimate the values of derivatives of the 
tabulated function. Such situations arise frequently in physics and astron- 
omy and occasionally in actuarial work. Moreover, for purposes of re- 
search and comparison of formulas--in considering smooth junction, for 
example--it is advantageous to consider interpolation from the continu- 
ous point of view. 

In TASA XLV, 202, one of the authors gave a systematic treatment 
of the more usual types of continuously defined smooth-junction inter- 
polation formulas. However, the methods developed there are somewhat 
cumbersome to apply, and there are certain types of formulas (including 
a few well-known and useful ones) to which they are not readily appli- 
cable. We were therefore led to investigate whether the symbolic short 

* Hubert Vaughan, not a member of the Society, is a Fellow of the Institute of 
Actuaries, General Secretary and Actuary of the Mutual Life and Citizens' Assurance 
Company, Ltd., Sydney, Australia, and a past President of the Actuarial Society of 
Australasia. 

1 We shall refer to such a formula as "continuously defined." "Continuous interpola- 
tion formula" might suggest that the curve of interpolated values is everywhere con- 
tinuous, which is not the case for some formulas we wish to consider. This point is 
discussed more fully on page 453. 
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cuts which resulted in a marked simplification in the theory of discrete in- 
terpolation could be applied in an analogous manner to continuously de- 
fined formulas. While it has unexpectedly turned out that the analogy 
does not strictly hold in certain respects, and that a rigorous mathemati- 
cal justification of the procedures presents greater difficulties than in the 
discrete case, we have succeeded in developing a symbolic method which 
is not difficult to apply and seems to have substantial advantages over 
other approaches3 

The mathematical development has been greatly influenced by the 
work of two eminent contemporary mathematicians, Professors I. J. 
Schoenberg, of the University of Pennsylvania, and Laurent Schwartz, of 
the Insti tut  Henri Poincar6, Paris. Schoenberg, in his remarkable paper, 
"Contributions to the problem of approximation of equidistant data by 
analytic functions" (Quarterly of Applied Mathematics, IV, 45 and 112), 
has developed a very elegant theory of interpolation based on the use of 
the Fourier transform. We have taken over much of his useful ter- 
minology, and a number of the results obtained in this paper were previ- 
ously given by him. Our approach differs from his in two main respects. 
First, by using symbolic operators rather than Fourier integrals, we be- 
lieve we have considerably reduced the extent of the mathematical knowl- 
edge required of the reader, making the results accessible to a larger 
group. Secondly, our main interest has been in developing a straightfor- 
ward method for constructing an interpolation formula of finite range 
with desired properties stipulated in advance. Schoenberg did not have 
this objective primarily in view, and his methods do not seem to us to 
lend themselves quite as readily for this purpose. This seems especially 
true of his criterion for determining the degree of polynomial maintained 
or reproduced by an interpolation formula. 

A rigorous development of a continuous theory of interpolation from 
the point of view of symbolic operators seems to require some extension 
of the usual notion of the derivative of a function, to include the case of 
functions having finite discontinuities. This is provided by the Theory of 
Distributions recently developed by Schwartz. 8 Our indebtedness to both 

A few of the results obtained in this paper have previously appeared (in Portu- 
guese) in the Revista Brasileira de Estat~stica, XIV (1953), 209. 

*L. Schwartz, Th~orie des Distributions, Tomes I e t  II (Nos. 1091 and 1122 of the 
series, A ctualitgs Scientifiques et Industrielles), Hermann & Cie, Paris, 1950 and 1951. 

In this connection, it may be of interest to mention that at the International Con- 
gress of Mathematicians held at Cambridge, Massachusetts, in 1950, Professor Schwartz 
received, in recognition of his work in developing this new branch of mathematics, one 
of the two Fields medals awarded at each international mathematical congress for out- 
standing mathematical achievement. 
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Schoenberg and Schwartz is so extensive that  it has not seemed practi- 
cable to make specific acknowledgment in every instance. A paper of Pro- 
fessor Haskell B. Curry 4 of the Pennsylvania State University has also 
influenced our general approach. While no direct application has been 
made of Curry's results, our reliance on operational methods is probably 
more thoroughgoing than would have been the case had we not read his 
paper. Mention should also be made of recent papers by Michalup (JIA 
LXXIX,  74) and Vaughan (JIA LXXX,  63) having some relationship to 
the subject of this paper. 

The principle utilized in this paper is capable of wider development. I t  
appears that it can be applied at least to mathematical forms which are 
the solution of a linear difference equation, i.e., such forms as exponen- 
tials and certain sine and cosine series. I t  is not, however, the present 
object to deal with this wider aspect, and this paper has in view mainly 
the application to polynomial interpolation as used in actuarial work. In 
the main part  of the paper, the principal results and methods are stated 
and described without proof. Full mathematical demonstrations are given 
in an appendix. 

7"HE BASIC FUNCTION OF AN INTERPOLATION FORMULA 

In the kind of interpolation generally used in actuarial work, the same 
interpolation process is applied in successive interpolation intervals, the 
interpolated values in each interval being calculated from a certain num- 
ber of neighboring given values. As we pass from one interpolation inter- 
val to the next, the formula is unchanged, but each given value entering 
into it is replaced by its immediate neighbor. Schoenberg was the first to 
point out that  an interpolation process of this type can be completely 
characterized by a certain mathematical function which he calls the basic 
function of the interpolation formula. Such a process Implies that  when 
the formula for a particular interpolated value (corresponding, let us say, 
to the argument x) is expressed in linear compound form in terms of the 
given ordinates, the coefficient of a particular given value (corresponding 
to the argument a, for example) can be expressed as a function of the 
difference, x - a. In other words, this coefficient is unchanged when we 
pass to a corresponding point in another interpolation interval, so that  
x and a both change, but the difference x - a remains unchanged. There- 
fore, we call this coefficient L(x -- a), and we define the basic function of 
the interpolation formula as the function L(y) which gives, for the entire 
range of possible values of y = x - a, the value of the appropriate coeffi- 

* "Abstract differential operators and interpolation formulas," Portugaliae Mathe- 
matica, X (1951), 135. 
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cient in the formula. Whenever y is sufficiently large in absolute value so 
that  the given value at the argument a does not enter into the computa- 
tion of the interpolated value for the argument x, we consider that 
L(y) --- 0. I t  will be seen that  the basic function plays the same role in 
continuous interpolation as the discrete set of coefficients which charac- 
terizes a discrete interpolation formula. 

All this can be stated much more simply algebraically in the form 5 

v~ = ~ L ( x - -  n)u, , ,  (1) 
n ~ -  c o  

where the u 's  are the given values and v~ is the interpolated value corre- 
sponding to the argument x. 

A few specific examples may help to clarify the concept of basic func- 
tion. In  the case of plain central-difference interpolation to third differ- 
ences, L(x) represents the "Lagrange"  coefficients, and is given by the 
expressions: 

0 

-~ ( x + 3 )  ( x +  2) ( x +  1) 

-- ½ (x-l-  2) (x-t- 1) (x -- 1) 

½ (x -t- 1) (x -- 1) (x -- 2) 

-- ~ ( x - -  1) ( x - -  2) ( x - -  3) 

0 

For  Karup 's  formula, another four-point 

for x <  -- 2 

for - - 2 < x <  -- 1 

for - - l < x < 0  

for 0_< x <  1 

for 1 <:x_< 2 

for x >__ 2 

formula, the basic function 
L(x) takes the form: 

0 for x ~ - 2 

½ ( x +  l)  ( x +  2) '-' for - 2 ~ x ~ - i  

-½(x+I ) (3x2+2x-2 )  for - l < _ x < O  

½ ( x -  1 ) (3x  - 0 - 2 x - 2 )  for O<__x< 1 

-- ½ ( x - -  1) ( x - -  2)'-' for l _ < x _ < 2  

0 f(~r x > 2 

(2) 

s While an infinite summation has been indicated in equation (1) as a matter of 
algebraic convenience, the summation is actually finite for the cases considered in this 
paper. Basic functions of infinite range are possible, and are considered by Schoenberg. 
For example, differential-equation interpolation could be included in the system, and 
could give rise to such a basic function. 
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It  is evident from these examples that a typical basic function differs 
from the usual functions encountered in elementary mathematics in that 
it changes abruptly at certain points from one algebraic expression to an- 
other. However, in developing a unified theory of continuous interpola- 
tion, it is a great convenience to regard the basic function as a single 
function, notwithstanding its rather complicated definition. 

The graphs of these two basic functions are shown in Figure 1. I t  will 
be noted that the curve for plain central third-difference interpolation 
changes its direction sharply at the points corresponding to integral values 
of x. The Karup curve follows the plain third-difference curve rather 
closely, but has a continuous first derivative throughout. Also plotted is 
the basic function of Jenkins' four-point smoothing third-difference for- 
mnla, an extreme type of "modified" formula with marked smoothing 
properties, which is given by: 

0 for x ~  - -2  

¼ ( x + 2 ) - '  for - 2 _ < x < _ _ - i  

--~(x - ° - 2 )  for - - l ~ x ~  1 

~ ( x -  2)"- for l ~ x _ < 2  

0 for x ~ 2  

In this paper, consideration will be limited to those interpolation for- 
mulas which involve only a finite number of equidistant given values, all 
situated within a specified distance of the interpolation interval in which 
we are working. This is tantamount to saying that the basic function 
L(x) vanishes outside a certain range of values of x, as it does in the three 
examples already given. We shall also be chiefly interested in interpola- 
tion formulas which are symmetrical--that is, have the property that re- 
versing the order of the sequence of given values merely reverses the order 
of the interpolated values in each interval, without changing their nu- 
merical values. This will be the case if and only if the basic function L(x) 

is an even function of x- - tha t  is, L ( - x )  = L(x) for all values of x. 

CLASSES OF SYMBOLIC OPERATORS 

In addition to the usual displacement operator E of the Calculus of 
Finite Differences, we shall use the symbol D to denote differentiation, 
and also Sheppard's central-difference notation, wherein ~ = Ell  2 - E -I/~ 

and ~ = ½(E ~/2 ~ E--I/2). We shall also introduce a new operator M de- 
fined by 

f_t.~ 
M ; ( x )  = f ( x + t )  dr, 

1 2  
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or, symbolically, 
_ [ i  112 

M - J - v 2  E~dt" 

I t  will appear later that this operator plays a role here analogous to that 
of [m] in the theory of discrete interpolation. I t  is easily verified that it 
satisfies the symbolic equation 

D M =  6 .  

I t  is important for our purpose to distinguish certain general classes of 
operators. Any operator of the form 

N 

Y = ~ c,E-~i, (3) 

where the c's and x's are any real numbers, will be called a discrete operator. 
Similarly, any operator of the form 

K = g ( t )E - , d l ,  (4) 

where g(t) is an integrable function of t, will be called a continuous opera- 
tor. It  may be well to explain that, in both cases, the minus sign in the ex- 
ponent of E has been introduced for algebraic convenience in later de- 
velopments, and is not an essential part of the definition. 

Obvious examples of discrete operators are 6 and #, and all positive 
integral powers of these operators. M and its positive integral powers are 
examples of continuous operators, as are also 3kM * and #3kM ~, k and l be- 
ing positive integers. 

For our purposes, it will be convenient to modify the definition (4) by 
defining a function f(t) so that 

(0 for t <  a 

= t g ( / )  for a<_l~  b 
/ 

f( /)  
/ 

(0 f~r t > b  

We may now rewrite equation (4) in the form: 

f° K =  f ( l ) E - t d l .  
c o  

We shall call the function f(O thus defined the basic fl~nction o[ the con- 
tinuous operator K. 
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TIIE CHARACTERISTIC OPERATOR OF AN INTERPOLATION FORMULA 

The characteristic operator of a continuously defined interpolation for- 
mula will be defined as the continuous operator whose basic function is 
also the basic function of the interpolation formula. In other words, the 
characteristic operator G is defined by 

G= f _ ~ L ( I ) E  tdt, (5) 

where L(t) is the basic function of the interpolation formula, e It  is clearly 
analogous to the graduation operator which the authors have associated 
with a discrete interpolation formula. Like the basic function, the char- 
acteristic operator completely characterizes the interpolation formula, 
and all the properties of the formula can be deduced from it. Particular 
interest attaches to the characteristic operator because, for most of the 
common interpolation formulas, it reduces to a surprisingly simple form 
in terms of the operators D, 8, #, and M. For example, the characteristic 
operator is M s for straight-line interpolation, Mr(1 - ~D 2) for plain cen- 
tral third-difference interpolation, M3(3M -- 2#) for Karup's tangential 
formula, and M4(1 -- ~ )  for Jenkins' well-known osculatory fifth-differ- 
ence smoothing interpolation formula. The characteristic operators of a 
number of continuously defined interpolation formulas are given in Table 
1, which follows the main part of the paper. 

As the above-mentioned formula of Jenkins is so well known, we di- 
gress to point out that the characteristic operator indicates a convenient 
method of applying the formula in practice, originally suggested by D. C. 
Fraser in TFA XII,  153-54. If we make a preliminary adjustment of the 
data by deducting -~2u, from each given value un, we can complete the 
interpolation by applying to the resulting values the four-point formula 
corresponding to M 4, which (in Everett form) is 

w h e r e y =  1 - x .  
Perhaps it should be emphasized that the correspondence between an 

interpolation formula and its characteristic operator is a purely formal 
one. Operating on a given function with a characteristic operator and 
using the corresponding interpolation formula to interpolate between 
given values of the same function are not at all the same thing, and do 
not give the same result except in special situations. In other words, the 
characteristic operator corresponds to the interpolation formula, but is not 

a In  essence, this is equivalent to the characteristic function of an interpolation for- 
mula  as defined by Schoenberg. 
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equivalent to it. Nevertheless, because of the fact that the formula and its 
characteristic operator have the same basic function, each property of the 
formula is reflected in a specific corresponding property of the operator. 
The usefulness of the characteristic operator arises from two circum- 
stances: (1) it is usually a much more compact expression than the for- 
mula, and (2) several of the properties of interpolation formulas in which 
one is usually interested happen to correspond to simpler and more imme- 
diately obvious properties of the characteristic operator. 

As stated earlier, our main purpose is to provide a convenient method 
for deducing an interpolation formula having previously stipulated prop- 
erties. To this end, we shall give a set of rules by which it will usually be 
possible to obtain rather easily the characteristic operator of the formula 
having the desired properties. The application of these rules is facilitated 
by some tables which follow the main part of the paper. Certain further 
tables will enable us to pass readily from the characteristic operator to 
the corresponding interpolation formula (or vice versa), or, if it is pre- 
ferred, to compute numerical values of the interpolation coefficients with- 
out actually obtaining the formula in algebraic form. 

Our rules and tables can also be used in another way. When an interpo- 
lation formula is given, its degree and the number of given ordinates it 
employs are obvious, but  fairly extensive analysis may be necessary to 
determine its order of contact, if this is not known. Sometimes, too, a cer- 
tain amount of algebra is required to ascertain the number of differences 
to which the formula is correct. However, if we first obtain the charac- 
teristic operator, the former property can be read off merely by inspec- 
tion, and the latter can be rather quickly deduced. 

DEFINITIONS Or SOM~ SPECIAL TERZS 

The rules mentioned in the two preceding paragraphs will employ a few 
special terms which require definition. 

A discrete operator of the form 

ao + a,#~ + a~ 2 + aa#~ ~ + . . .  

will be called a Stirling operator, while one of the form 

a0g + al/i + a~/z6 2 + aa6 3 + . . . 

will be called a Bessel operator. The analogy with the interpolation formu- 
las bearing these names is obvious. 

The span of an operator will be defined as the difference between the 
greatest and smallest exponents of E involved in the expression for the 
operator. In the case of a discrete operator, this is the difference between 
the greatest and least exponents of E in the summation (3). For a continu- 
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oUS operator,  i t  is merely the difference, b - a, between the l imits  of in- 
tegrat ion in equation (4).7 In  the case of a composite operator  of the  form 
(6) or (6a) used subsequently,  i t  is necessary to take into account  the 
exponents of E involved in all the terms. 

We shall define the trace of a continuous operator  K,  with bas ic  func- 
t ionf ( t ) ,  as the  discrete operator  t(K) given by  

t (K)  = ~ f ( n ) E  -n. 

I t  will be seen b y  comparison with equation (1) tha t  the trace of the char- 
acterist ic operator  of an interpolat ion formula (which, for b rev i ty ,  we 
shall refer to as the trace of the  interpolat ion formula) represents  the 
effect of the formula on the given values. Thus, the trace of any  formula 
which always reproduces the given values is I,  while tha t  of Jenkins '  
smoothing fifth-difference formula is 1 --  3A~664. 

RULES CONNECTING THE PROPERTIES OF AN INTERPOLATION FORMULA 
WITH THOSE OF ITS CH_ARACTERISTIC OPERATOR 8 

1. A continuously defined interpolat ion formula is correct to r th  dif- 
ferences if and only if both the following conditions (a) and (b) are  satis- 
fied: 

(a) I t s  character is t ic  operator  G is of the form M"+IH, where H is an 
operator  of the form indicated in Rule 3(a). 

(b) The  symbolic expansion of H in powers of D alone agrees, up to 
and including the term (if any) containing D r, with the s imilar  expan- 
sion 9 of M --~-1. 

2. I f  s denotes the number of terms in the linear compound form of a 
cont inuously defined interpolat ion formula correct to r th differences and 
the span of the operator  H i.~ an integer 1° h, then 

s = h + r + l .  

7 Here it is assumed that the interval a < t ~ b is the smallest interval containing 
all arguments t corresponding to nonzero values of the basic function f(t). It  involves no 
restriction on the definition of a continuous operator to choose a and b so that this is 
the case, 

8 Proof of these rules will be found in the Mathematical Appendix at the end of the 
paper. Throughout the rules, it is tacitly assumed, for the sake of simplicity, that only 
formulas of finite span are under consideration. Nevertheless, some of the rules still 
apply, and others apply with certain reservations, to formulas of infinite span. 

9 Table 2, page 446, gives a number of symbolic expansions in powers of D only which 
will facilitate the application of this rule in most cases. 

lo The span h is always an integer when (as is usually the case) the number of terms s 
is the same for all arguments (with the possible exception of those differing by an integer 
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3. (a) A polynomial  in terpola t ion  formula correct to r th  differences 
is of degree q and the order of contac t  of successive interpolating arcs is 
always a t  least  p if and only if H (Rule 1) can be expressed t~ in the form TM 

H = 3_q+rD -~+~ + J-q+~+lD - ~ ' + I  + . . . + J r - r - l D  ~ - 1  , (6)  

where the  J ' s  are discrete operators  and  J-~+r is different from zero. ~8 
(b) In  any  polynomial  interpolat ion formula, the  degree q, the order of 

differences r to which the formula is correct,  and  the minimum order of 
contact  p of successive interpolat ing arcs sat isfy the inequalities: 

q > r ,  q > _ _ p + l .  

(c) Any J ' s  with nega t ive  subscr ipts  in equation (6) are necessarily 
such tha t  the coefficients of negat ive  powers of D vanish in the symbolic 
expansion o f / / i n  powers of D only. 

4. (a) A polynomial  interpolat ion formula correct  to r th  differences 
(when r is even) is an end-point  formula ( that  is, points  of junct ion of the 
interpolat ing arcs occur only at  the  arguments  corresponding to the given 
values) if and only if the  J ' s  in equation (6) can all be expressed as Bessel 
operators;  i t  is a midpoin t  formula ( tha t  is, points  of junct ion of the in- 
terpolat ing arcs occur only a t  the arguments  midway between the given 
values) if and only if the  J ' s  can all be  expressed as Stifling operators.  

(b) A polynomial  interpolat ion formula correct  to r th  differences (when 

from a and b, the extremities of the smallest interval containing all nonzero values of the 
basic function). If this is not the case, and h = n + f ,  where n is an integer a n d / a  
proper fraction, then the number of terms is n q- r -q- I for some arguments and 
n + r + 2 for others. 

n This exact expression for H as afinile sum of powers of D with discr•e operators 
as coefficients is not interchangeable with, and should be clearly distinguished from, 
the (usually infinile) symbolic expansion in powers of D with nurr~ical coefficients 
which is referred to in Rules l(b) and 3(e). Only when// is  of span zero are the two ex- 
pressions identical. 

For a general interpolation formula (possibly employing other than polynomial 
arcs), the order of contact of successive interpolating ares is always at least p (for 
p < r) if and only if H is of the form 

H = K + do + J1D + . • • + Jr_~-xD ~ r - 1  , (6a)  

where K is a continuous (or zero) operator, and the J ' s  are discrete operators. Here 
p = r implies that H = K. In formulas (6) and (6a), p = 0 means that the curve of 
interpolated values is without discontinuities (but may have discontinuities in its first 
derivative), while p = - i means that discontinuities in the curve itself are permitted. 

~s If the order of differences to which the formula is correct is not specified, we may 
take r -- - 1 in formula (6) or (6a). 
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r is odd) is an end-point formula if and only if the J ' s  can all be expressed 
as Stirling operators; it is a midpoint  formula if and only if the Y's can all 
be expressed as Bessel operators. 

(c) A polynomial interpolation formula has the points of junction of its 
interpolating arcs limited to the arguments  corresponding to the given 
values and the arguments  midway between them if and only if each " J "  
operator in equation (6) is either a Sdrling operator or a Bessel operator, 
or a sum of both.  

5. I f  a continuously defined interpolation formula is symmetr ical ,  and 
if all the " J "  operators in equation (6) or (6a) are Stifling operators or 
Bessel operators, or sums of both,  then only even powers of ~ occur in 
those J ' s  which are coefficients of even powers of D, and, similarly, only 
odd powers of ~ occur in those f ' s  which are coefficients of odd pow- 
ers of D. 

6. (a) The  trace of any continuously defined interpolation formula 
correct to r th differences can be expressed as a Stifling operator  in which 
the leading term is 1 and the coefficients of powers 1 to r, inclusive, of 

vanish. If  the formula is symmetrical ,  only even powers of 6 occur. 
(b) I f  the formula is symmetr ica l  and s (Rule 2) is odd, the  span of its 

trace is a t  most  s - 1 .  
(c) I f  the formula is symmetr ical  and s (Rule 2) is even, and the curve 

of interpolated values is free from discontinuities whatever  the given 
values m a y  be (or, in other words, if p >_ 0), the span of its trace is a t  
most  s -- 2. 

7. I f  t(K) denotes the trace 1. of the continuous operator K, a n d j  is any 
positive integer, 

t(~2~1~ ~) = ~"-~t(K),  
o r  

t(K) = ~--"it(a-"JK). 

8. A continuously defined interpolation formula always reproduces the 
given values if and only if its trace is 1. 

In  addition to the rules proper,  the following three symbolic identities 
are frequently needed in the derivation of interpolation formulas:  

MkD ~ = 6 k , (7a) 

6kD -k = M k , (7b) 

6-kMk = D --k , (7c) 

where k is any positive integer. 

1, The traces of .11 l and u.ll ~ for l ~ 1, 2 , . . . ,  8 are given in Table 3. 



P O L Y N O M I A L  I N T E R P O L A T I O N  425 

SOME E X A M P L E S  OF APPLICATION OF T H E  R U L E S  

Example 1. Find the characteristic operator of a six-point, tangential 
(i.e., having order of contact 1), fourth-degree, symmetrical, end-point 
formula, correct to fourth differences. 

Solution: 
G = MSH, (Rule l(a)) 

H = Jo + J1D + J2D"-, (Rule 3(a)) 

Jo, f l ,  and J2 are at most of span 1. (Rule 2) 

Yo, Yl, and 3"2 are Bessel operators. (Rule 4(a)) 

J0 and J2 contain only even powers of 6, while J~ contains 
only odd powers of ft. (Rule 5) 

I t  follows from the last three statements that we may write: 

J 0 = a ~ ,  -11= bS, J ~ =  c~. 

Substituting these results in the expression for H gives: 

H =  au + b6D + cuD ~. (8) 

Substituting the symbolic expansions of # and 6 in powers of D from 
Table 2, we have 

H =  a +  (~a + b + c)D ~ + (a-~4a + u-~b + ~c)D 4 + . . . .  

Again, from Table 2, 

M - s =  1 - ~ D  2 + i ~ s D  4 - . . .  . 
By Rule l(b), 

a = 1 ,  

-~a+ b + c  = - ~ ,  

1 1 -~-~a + ~ b  + ~c = ~ . 

Solving these equations, we obtain: 

a = l ,  b = - ¼ ,  c = ~ .  
Substituting these values in expression (8) gives 

5 2 G = Ms(u - ~3D + ~-~#D ) ,  (9) 

which is the characteristic operator of Shovelton's formula. 

Example 2. Discuss the properties of Sprague's formula by means of 
its characteristic operator. 

Solution: From Table 1, the characteristic operator is found to be: 

G = / 5 ( 2 5 M  - 24# + ¼~D). 
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Taking H = 25M -- 24~ + ¼~D, and substituting, from Table 2, the 
symbolic expansions of M, ~, and ~ in powers of D only, we obtain, sym- 
bolically, 

t t  = 1 - -  -~4D 2 + ~ 2 " g D  4 27  . . . .  

This agrees, as far as the term containing D 4, with the symbolic expan- 
sion of M -s, also shown in Table 2. Thus, by Rule 1, the formula is cor- 
rect to fourth differences. 

H = 25~D -1 - 24u + ¼~D. (formula (7b)) 

The formula is of the fifth degree and has order of contact 2 
(i.e., is osculatory). (Rule 3(a)) 

I t  is an end-polnt formula. (Rule 4(a)) 

I t  is symmetrical. (Rule 5) 

Since the greatest and least powers of E involved in H are ½ and -½,  
the span of H is 1. Therefore, by Rule 2, the formula is a six-point for- 
mula. 

By Rule 6(a), the trace of the formula is of the form 

1 + k~6+ . . . .  

Since the formula is osculatory, the curve of interpolated values is, a for- 
tiori, free from discontinuities whatever the given values may be. There- 
fore, by Rule 6(c), the span of the trace is at most 4. Therefore, the trace 
is i, and, consequently, by Rule 8, the formula always reproduces the 
given values. 

Example  3. Examine the properties of Jenkins' smoothing fifth-differ- 
ence formula. 

Solution: G = M4(1 -- {~o-), (Table 1) 

H - -  1 - ~ D o - - - . . . ,  (Table 2) 

M -4 = 1 - {D °- + . . . .  (Table 2) 

The formula is correct to third differences. (Rule 1) 

H = J0 = 1 - ~&'. (Rules l(a) and 3(a)) 

The formula is of the third degree and is osculatory. (Rule 3(a)) 

It  is a six-point formula (since the span o f / / i s  2). (Rule 2) 

I t  is an end-point formula. (Rule 4(b)) 

I t  is symmetrical. (Rule 5) 

t(G) is of the form 1 + k~ 4. (Rules 6(a) and 6(c)) 
1 2 ,]4 I(G) = t ( M  4 --  g6 ~ ) = t ( ] l  4) - -  ~fi'l(M~), (Rule 7) 

1 1 k = --~(~) = -~g .  (Table 3) 
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Therefore, 

Example  4. Find the characteristic operator of a five-point, osculatory, 
symmetrical, midpoint formula of minimum degree, correct to second dif- 
ferences, which always reproduces the given values. 

Solut ion:  G = M s H  , (Rule l(a)) 

H = J _ I D  "-1 .3[_ j _ 2 D - 2  -4- • • • " ~ - J - ¢ ~ - 2 D  - q + 2  , (Rule 3(a)) 

J - l ,  J-~, • • • , J_q+o are all of span at most 2. (Rule 2) 

J - l ,  J-2, • • •, J-g+~ are all Stifling operators. (Rule 4(a)) 

J - l ,  J-3, etc., contain only odd powers of ~, while J-2,  3-4,  

etc., contain only even powers of ~. (Rule 5) 

I t  follows from the last three statements that 

3"-1 = al~  , J_g = b + c6 ~ , J - 3  = d l~  , J - 4  = e + f ~  , etc. 

Using formula (7b) and the symbolic expansions in Table 2 gives, sym- 
bolically, 

J_ID --l = a # M  = a + ~aD 2 + . . . 

J _ d )  -~  = b D  - 2  + c M  ~ = b D  - 2  + c + ~ c D  2 + . . . 

J_zD --3 = d •MD -2 = d D  -~ + ~d + ~ d D  2 + . . . , 

etc. Again, from Table 2, 

M -3  = 1 - -  ~ D  2 + . . . .  

From these expressions and from Rules l(b) and 3(c), we obtain the 
equations: 

b + d +  . . . .  0 ,  

a-k- c- i -  ~d-k- . . . .  1 ,  

~a + ~ c  + ~-~od + . . .  = - ~ . 

Now, q --- 3 would imply that b = c - -  d -- . . .  = 0, and these equa- 
tions could not be satisfied. Therefore q is at least 4. 

By Rule 6, t(G) is of the form 1 + k6 4. Now, 

G = M3(J_ ID -1 -t- J - ~ D  --~ -k- J - a l ~  "8 -k- • • .) 

= a u M  4 + bM~D --~ + c M  b + d u M 4 D  --~ + . . . .  

Therefore, by formula (7c), 

G = auM* + c M  5 + b6-~M 5 + dl~6-~M 8 + . . . .  
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By Rule 7 t5 and Table 3, 

k = ~ta6a -4- ~ 4 c  + 7-~so d + . . • , 

and, by  Rule 8, k = 0. I f  q = 4, then d = . . .  = 0, and this, together 
with the three equations previously obtained, gives: 

b = 0 ,  

a + c  = 1, 

S '  

~ a  + ~-~c = o. 

The last three equations are found to be inconsistent. If  q = 5, we have: 

b + d  = 0 ,  

a + c + ~ d  = 1,  

~a + ~ c  + l~o d = - ~  , 

~ a  + a--~c + ~ d  = O. 

Solving these equations, we have:  

a = T6,27 b = - 7 8 ,  c = - 1 i ~ ,  d = 78,  
whence 

O = M3178D-~(#M - 1) -- ~-oTM 2 + ~z-~stM], (10)  

the characteristic operator  of Jenkins'  " reproducing"  fourth-difference 
formula. 

Example 5. Find the characteristic operator of a two-point,  tangential,  
symmetrical ,  end-point formula of minimum degree which always repro- 
duces the given values. 

Solution: 

G = 1t = J_~D -~ + J _ d )  -4 + . . .  + J_q_lD-~l ,  
(footnote 13, Rule l(a),  and Rule 3(a)) 

J - s ,  J - , ,  • • • , J-q-1 are all of span at  most  2. (Rule 2) 

] -3 ,  3"_4, . . .  , J-¢-1 are all Stirling operators. (Rule 4(b)) 

J-~, J-5, etc., contain only odd powers of 6, while 
J-4, J--t, etc., contain only even powers of 6. (Rule 5) 

I t  follows from the last  three s ta tements  tha t  

J - s  = a#~,  J -4  = b + c~ 2, d - s  = d#5, 

is See proof of Rule 7 in the appendix for discussion of this application. 
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etc. Substituting these expressions gives 

G = a~6D -3 + bD -4 + c~D --4 + d~3D --5 + . . . 

= a ~ - 2 M  3 + b 6 - 4 M  4 + c6-2M 4 + d g 6 - 4 M  ~ + • . . 

t ( G )  = a6-~(1 + 16 ~) + bb'-4(1 + {6 ~) + c6-~(1 + ~.,2) 
+ d6-4(1 + ½~2 + ~g64) + . . .  (Rule 7 and Table 3) 

= ( b + d + . . . ) 6 - ' +  ( a + ~ b + c + ½ d + . . . ) ~ - :  
+ ( ¼ a + ~ + ~ d + . .  3. 

Rule 8 then gives the equations: 

b + d + . . .  = 0 ,  

a + ~ b +  c + ½d + . . . .  O, 

¼a + ~c + ~ d  + . . . .  1. 

I t  is obvious that q is at least 3. Taking q = 3 gives: 

b = 0 ,  

a + X b + c  = 0 ,  

¼a + ~c = 1.  

These equations can be solved, giving: 

a =  12, b = 0 ,  c =  - 1 2 .  
Therefore 

G = 1296D -s -- 1262/) --* 

= 12/zMD - - 2 -  12M2D --° , (formula (Tb)) 
or 

G = MI12D-:(u -- M)] ,  

which is the characteristic operator of formula (102) of T A S A  XLV,  254. 
Even though we did not specify any order of differences to which the 

formula was to be correct, actually it turns out to be correct to "zeroth" 
differences--that is, it reproduces a constant function. This formula, of 
course, is of no practical value, and is included only for illustrative pur- 
poses. 

Example 6. Find the characteristic operator of a four-point, tangential, 
symmetrical formula of minimum degree, correct to second differences, 
points of junction of the interpolating arcs being permitted to occur both 
at the arguments corresponding to the given values and at  those midway 
between them. 

Solution: G = Mal l ,  (Rule l(a)) 

q is at  least 2.  (Rule 3(b)) 

(formula (7c)) 
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Let us try q = 2. Then 
H = Jo. (Rule 3(a)) 

]0 is of span at most 1. (Rule 2) 

J0 is a Stirling operator or a Bessel operator, or a sum of 
both. (Rule 4(c)) 

Y0 contains only even powers of ~. (Rule 5) 

I t  follows from the last three statements that 

H = J ~ =  a + b # .  
Therefore, symbolically, 

H = (a + b) + ~bD"- + . . . ,  (Table 2) 

M -a = 1 - ~-D ~- + . . . .  (Table 2) 

Rule l(b) gives the equations: 

a W b = l ,  

I b  = - ~ .  

Solving these equations, we have: 

a = 2 ,  b =  - i ,  
whence 

G = M~(2- ~). (11) 

While this completes the solution, it may be pointed out that, in view 
of Rules 7(a) and 7(c), I(G) = 1, so that the formula always reproduces 
the given values. 

SOME GENERAL OBSERVATIONS CONCERNING THE RULES 

While the details vary in the different cases, a certain general procedure 
emerges from the examples just given. Rule l(a) determines the general 
form of the characteristic operator. Rule 3(a) usually limits the number 
of terms in H. Rules 2, 4, and 5 limit the individual remaining terms in 
such a way that frequently the characteristic operator is now fully de- 
termined except for certain numerical coefficients. Rule l(b) then fur- 
nishes some equations for determining these coefficients. In some cases, 
one or more further equations may be supplied by Rules 6, 7, and 8. For- 
mulas (7) provide certain transformations which may be needed in order 
to apply Rule 7. 

I t  is fairly clear from the rules and the examples that a continuously 
defined interpolation formula is not completely determined by the kind 
of properties thus far considered, unless its specifications include the re- 
quirement (explicit or implied) that it be a polynomial formula of the 
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lowest degree consistent with the other stipulated properties. I t  is per- 
haps partly for this reason that in the earlier work on smooth-junction 
interpolation so much emphasis was placed on formulas of minimum de- 
gree. I t  is the impression of the present writers that  this emphasis may 
have been somewhat exaggerated. There seems to be no compelling reason 
for using polynomial arcs in this connection rather than arcs of other 
curves. If they are employed, sometimes a polynomial of low degree is the 
most suitable; but  there seems to us to be no general reason for consider- 
ing that  one formula must be superior to another merely because it incor- 
porates polynomials of lower degree? 6 A possible alternative to the "mini- 
mum degree" criterion will be considered briefly in the next section of 
this paper. 

The rules also bring out certain limitations as to the types of formula 
that  are possible. Rule 3(b) shows that  the degree of a polynomial 
interpolation formula cannot be less than the order of differences to which 
it is correct, and also that the degree must exceed the order of contact by 
at least one. The latter fact was previously pointed out by one of the au- 
thors (TASA XLV, 212), who also stated that  a formula of minimum de- 
gree for its order of contact can never have the property of reproducing 
all sets of given values. This is true if one considers only end-point and 
midpoint formulas. However, a formula which has points of junction of its 
interpolating arcs both at  the arguments corresponding to the given values 
and at  those midway between them can be of minimum degree for its 
order of contact and also have the reproducing property. This is illustrated 
by formula (19) below, whose characteristic operator has already been 
obtained in Example 6. 

I t  follows from Rule 6 that  a symmetrical (r + 1)-point formula cor- 
rect to rth differences necessarily has the property of always reproducing 
the given values if r is even, or if r is odd and the formula has order of con- 
tact at least zero. Similarly, a symmetrical (r -4- 2)-point formula correct 
to rth differences has the reproducing property if r is even and the formula 
has order of contact at least zero. 

In connection with condition (a) of Rule 1, it will be recalled that in the 
discrete case a similar condition, G = [m]~+lH, was obtained. However, in 
that case, H is a discrete operator--the same kind of operator as G itself. 
In the continuous case, G is a continuous operator, but  H is not a con- 
tinuous operator unless the formula has order of contact at least r. This 

~s A similar opinion was recently expressed by Dr. Eric Miehalup in a paper, "Theo- 
rie und Anwendung der 'oskulatorischen' Interpolatiousformeln," Mitteilungen der 
Vereinigung schweizerischer Versicherungsma~hematiker, XL¥II (1947), 359-407. (See 
pages 373-74.) 
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circumstance makes the continuous case somewhat more complicated. 
The nature of the difference may be illustrated by writing the discrete 
analogue of the general expression for the characteristic operator of a 
formula correct to rth differences, namely 

[m]r+~(J0 + J15 + j ~ 2  + . . . + j , ~ , )  , 

and noting that the expression in parentheses reduces to a single discrete 
operator. In the continuous case, no such reduction occurs. 

I t  is interesting to observe that the characteristic operator for plain 
central-difference interpolation to rth differences (which it will be con- 
venient to denote by C,) is completely determined by Rules 1, 2, and 3(c). 
For, by Rule l(a), Cr = M " + I H ;  and the number of terms in the formula 
when expressed in linear compound form is r + 1. Therefore, by Rule 2, 
H is of span zero, which means that each of the Y ' s  in expression (6) re- 
duces to a mere numerical coefficient. By Rule 3(c), the coefficients of 
negative powers of D vanish. Thus, condition (b) of Rule 1 can be satis- 
fied only if H consists of the terms up to and including D" in the symbolic 
expansion of M - - ~  in powers of D. 

MINIMIZED DERIVATIVE I~ORMULAS 

A reasonable condition to impose on an interpolation formula is to re- 
quire, in addition to whatever other properties are specifically desired, 
that it be the smoothest possible formula of its type, according to some 
stated criterion of smoothness. In connection with discrete interpolation, 
several writers 1~ have considered the problem of determining the smooth- 
est possible formula of a given span correct to a stated order of differences, 
smoothness being judged by the size of the sum of the squares of some 
chosen order of differences of the interpolation coefficients. The analogous 
procedure in connection with continuously defined interpolation formulas 
would be to minimize the average value of the square of a specified deriv- 
ative of the basic function. The writers have studied such formulas but 
have not completed their investigations along this line. In any event, a 
full discussion of the matter probably would call for an entire paper. How- 
ever, certain limited observations may be of interest here. 

We shall approach the problem by considering the symmetrical dis- 
crete interpolation formula of a given span, correct to a stated order of 
differences, for subdividing the interpolation interval into m equal parts, 
such that the sum of the squares of a specified order of differences of the 
sequence of interpolation coefficients is a minimum. We then seek the 
function defined by this sequence of coefficients as m approaches infinity. 

t~ Beers, RAIA  XXXIII,  245 and XXXIV, 14; TASA XLVIII, 53; Greville, RAIA 
XXXIV, 21; TSA I, 343; Michaiup, op. cir.; Vaughan, J I A  LXXII, 482. 
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The order of differences whose mean square is to be minimized does not 
have to be related in any particular way to the order of differences to 
which the formula is correct. As we are concerned with a discrete formula, 
the question of continuity of the basic function does not arise, and there 
seems to be no good reason in this case for imposing any analogous condi- 
tion, such as the interlocking property considered by Mr. White ( T A S A  

XLIX,  337). We obtain, however, the rather interesting result that the 
limiting curve of interpolated values is always continuous, together with 
its derivatives up to and including the order one less than that of the dif- 
ferences whose mean square is minimized. Thus, a formula which mini- 
mizes the mean square of second derivatives must be tangential, and one 
which minimizes the mean square of third derivatives must be osculatory. 

Thus, if we seek a four-point formula, correct to second differences, 
which minimizes the mean square of second derivatives, we find that 
Karup's formula is a unique solution. The corresponding formula which 
minimizes the mean square of third derivatives is the osculatory formula 
(105) of T A S A  XLV, 264, for which the characteristic operator is 
Ma[120D--2(~ -- M) -- 9M]. If we consider six-point formulas correct to 
third differences, the formula minimizing the mean square of second 
derivatives is the smoothing, third-degree, tangential formula ~s 

~',~+~ = xu~+l + ~x(x ~ -- 1)~2u.+1 + 1-~--gsza(Sx - -  12)~4u.+1 

+ y u , ,  + ~y(y~ - 1)~2u, + l ~ g y 2 ( 5 y -  12)~4u~, 

where y = 1 -- x, for which the characteristic operator is M4(1 + i~g~ ~ -- 
- ~ D ) .  If the mean square of third derivatives is minimized, the result is 
Vaughan's smoothing, osculatory, fourth-degree formula " C "  ( J I A  

LXXII ,  491), 

1 x 2 _ ~ x ~ ( 3 x  5)~u,+1 v~÷~ = xu.+l  + -~x( 1)~2u~+~ + - -  

+ yu,, + ~y(y2 _ 1)fi2u~ + .~y3(3y  _ 5)~'u~. 

This formula was originally given as one of three, the other two being 
denominated "A" and "B."  I t  may be of interest to mention in passing 
that Jenkins' reproducing fifth-difference formula, formula "A," Jen- 
kins' smoothing fifth-difference formula, formula " B , "  and formula " C , "  

in that order, form an arithmetic progression, the common difference of 
1 2 the characteristic operators being M 4 ( 2 1 ~ M -  2 -  ~ ) ,  which corre- 

sponds to the "Evere t t"  expression 

~2x~(3x -- 4)~4u~+~ + ~ y 3 ( 3 y  -- 4)3'u,,. 

is This is formula (73) of TASA XLV, 261, with a0, = --7/108. 
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All five formulas are osculatory, correct to third differences, and of the 
fourth degree (with the exception of Jenkins' smoothing formula), and are 
particular cases of formula (84) of TASA X_LV, 262, being obtained by 
assigning to the parameter a04 in that formula the values 0, --1/72, 
--1/36, - 1 /24 ,  and --1/18. Formula (111) of TASA  XLV, 264, is the 
seventh term of the same progression. As the trace of formula (84) is 1 + 
ao4~ 4, this also forms an arithmetic progression for the five formulas. 

I t  will also be noted that, even though no restriction is placed on the 
form of the basic function, yet, for the minimized derivative formulas con- 
sidered, it has always turned out to be composed of polynomial arcs. This 
is due to the particular nature of the minimizing conditions and of the 
fidelity conditions used. The fidelity condition imposed is correctness to a 
stated order of differences, or, in other words, the requirement that poly- 
nomials of a certain degree be reproduced. With such a fidelity condition, 
the stipulation that the mean square of an order of derivatives be a mini- 
mum generally leads to the result that derivatives of some higher order 
vanish. If, on the contrary, we had required reproduction of all finite 
Fourier series of a stated order, the basic function would necessarily have 
involved trigonometric functions. 

Though it is not the present object to deal fully with minimizing for- 
mulas, it may be said that investigation along the lines sketched has 
shown that even in the discrete case the successive interpolation coeffi- 
cients lie on polynomial arcs. In every such case, these arcs may be re- 
garded as constituting the basic function of a certain continuously de- 
fined interpolation formula, of which the discrete formula in question is 
merely a particular application. I t  has been said in connection with cer- 
tain published discrete formulas that the mathematical form is indetermi- 
nate, but this is true only in the sense that most published minimizing 
formulas have been ascertained only for the particular case of subdivision 
in fives, and only the numerical values for that one case were sought. If 
we ascertain a formula for the general case of subdivision by m, a poly- 
nomial of specific degree does emerge as the solution. For example, for a 
six-point formula correct to fourth differences or a four-point formula cor- 
rect to second differences, it can be shown that to minimize the mean 
square of nth differences requires the interpolation formula to be of degree 
2n -- 1 (for n > 3 and n > 2, in the respective cases). 

I t  has been found that, if we increase the order of finite differences 
minimized, the effect on the basic function becomes less and less until a 
definite ascertainable limit is reached. It  has also been found that mini- 
mizing differences of shorter interval affects the basic function in some- 
what the same way as minimizing a higher order of differences. We come 
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tO the limiting case of a difference of short interval, of course, in minimiz- 
ing the mean square of an order of derivatives. For example, Karup's for- 
mula (which, as we have seen, minimizes the mean square of second deriva- 
fives) happens to be very close to the formula of R A I A  XXXIV,  25, 
which minimizes the mean square of third differences. 

As an illustration of some of these points, the general formula (four- 
point, correct to second differences) to minimize the mean square of sec- 
ond differences at an interval of 1fro is, in Everett  form: 

Vtl-~X ~--- X U n + I  - -  x(1 -- x)[(7m = + m)x + m + 7](14m ~ + 6m 

+ 28)-'6-~u~+~ + yu. -- y(1 -- y)[(7m2 + m)y 

+ m + 7](14m 2 + 6m -~ 28) -~u~ .  (12) 

As m approaches co, this becomes Karup's  formula. When m = 1, it is 
the ordinary third-difference formula. 

SPECIAL OPERATORS USED IN CONVERSION BETWEEN INTERPOLATION 

FORMULAS AND THEIR CHARACTERISTIC OPERATORS 

The procedure we shall use in passing from the characteristic operator 
to the actual formula (and vice versa) is based on the fact that every end- 
point formula can be expressed in Everet t  form, while every midpoint 
formula can be expressed in Steffensen form, which latter may be illus- 
trated by the case of Jenkins' reproducing fourth-difference formula, 

v,,_~/2+~ = u .  + ½(x ~ -- ¼)~u.+l/~ + ~6oX~(X -- ½)(13x -- 18)63u,,+~/= 

- -  ½ ( f  - -  ¼)6u~_~/2 - -  ~6oy3(y - -  ½)(13y - -  18)~u~_~/2. (13) 

I t  is assumed that this formula is used for interpolation in the interval 
between arguments n - ½ and n + ½, so that  0 < x < 1. The great 
majority of formulas we are interested in are of one of these two types. 
We shall develop special methods for dealing with those which are not. 

Any Everet t- type formula can be regarded as made up of a number of 
components of the form 

k ( x ~ u , + l  + y~2Su,) , (14) 

and, similarly, any Steffensen-type formula can be considered as made 
up of components of the form 

k(x~-i-'u,+,/~ - y~2J-~u~,_~/.,) . (15) 

If we define Q~ as the characteristic operator of the expression 

xlu.+, + y~u. , 
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and T~ as the characteristic operator of the expression 

XiUr,+l/2 --  ylUn_l/2 , 

then the expression (I4) corresponds to k6~iQi and the expression (15) cor- 
responds to k~2i-~T~. Even the leading term u, of the Steffensen form can 
be written as 

~ - l ~ + l / ~  - b'- - lun_l /~ ,  

corresponding to the operator ~-lT0. For example, the characteristic oper- 
ator of formula (13) can immediately be written down as 

G = ~ - ~ T o +  ~(½T2 - ~To) + v~3(13T-,,40 - °  __ ~ . .6T 4 4 9  A V ~ o T 3 )  . (16) 

On the other hand, formula (13) could readily be written down from the 
expression (16). Thus, an end-point or midpoint interpolation formula is 
practically interchangeable with the expression for its characteristic 
operator in terms of the Q's or T's. In this way, we shall find these special 
operators useful as steppingstones between interpolation formulas and 
their characteristic operators. 

Tables 4 and 5 following the main part  of the paper are designed to 
facilitate conversion of characteristic operators, in both directions, be- 
tween the expressions in terms of Q's and T's and the usual ones in terms 
of M, D, 6, and t~. For example, we could substitute for the operators in 
expression (16) their equivalents from Table 5 and obtain, after some re- 
duction, the expression (10) previously derived in Example 4. Converse- 
ly, we could eliminate D from the operator (10) by means of formula (7c) 
and multiply out, and finally replace each operator of the form M ~ or t~M i 
by the equivalent expression from Table 4. Mter  some simplification, we 
would obtain the expression (16). 19 

In actual practice, the algebra can usually be somewhat shortened by 
making use of the fact that  most formulas agree, in their first few terms, 
with the standard Everet t  or Steffensen formula. Plain central-difference 
interpolation to rth differences, represented by the characteristic opera- 
tor Cr, corresponds to Everett 's  or Steffensen's formula (depending on 
whether r is odd or even) terminating with (r - 1)th differences. For ex- 
ample, C5 corresponds to Everett 's  formula as far as fourth differences, 
and C, corresponds to Steffensen's formula taken to third differences. 
Expressions for the C's are given (in slightly different forms) in Tables 1 

'~ It may be remarked that the Everett and Steffensen forms have been chosen for 
this purpose, rather than other possible forms (such as Stifling and Bessel), not only be - 
cause of their well-known computational advantages, but also because the characteristic 
operators of their components can be more simply expressed in terms of M, fi, and ~, 
than those arising from the other forms. 
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and 5. Examples and suggested rules of procedure are given in the next 
two sections. 

In order to deal with the relatively rare case of a mixed end-point-mid- 
point formula, we shall need two more special types of operators. We shall 
denote by V, the characteristic operator of an adjustment term to an 
Everett- type formula, of the form 

Ix - ½1 'up ,  (17 )  

where up denotes the nearer of u~ and u~+l. Similarly, we shall denote by  
W~ the characteristic operator of an adjustment term to a Steffensen-type 
formula, of the form 

(x - ~) lx  - ½1'-1 uq, (18)  

where u~ denotes the nearer of un-x/~ and un+v~. In  Part  I I I  of Table 5, 
certain differences of the V's and W's are expressed in terms of M, 
D, and #. 

EXAMPLES OF CONVERSION BETWEEN INTERPOLATION FORMULAS 
AND THEIR CHARACTERISTIC OPERATORS 

We shall give some examples of conversion between interpolation for- 
mulas and their characteristic operators before suggesting rules of pro- 
cedure to be followed, in the belief that the latter will be more compre- 
hensible after the examples have been read. 

Example 7. Obtain the characteristic operator of formula (13). 

Soluliom The terms of this formula as far as first differences agree with 
the corresponding terms of the standard Steffensen formula. The latter 
formula taken to first differences is correct to second differences. There- 
fore, the characteristic operator for these terms is C2. 

By the definition of the T's the characteristic operator for the third- 
difference terms is 

1~ ~ T ~ ) .  ( ~ _ a T  5 _ 4 9  g-0- T4 -~- 

Combining these two results, we have: 

G = C2 + ~oo~*T5 _ ~-~4~'-* + 4 ~ , T s .  

Substitution from Table 5 of the equivalents for the various operators 
gives 

G = M 3 - ~ 2 M  + a X ~ o ~ - 2 ( 2 4 0 a m  6 - 240M s - 40~M~ - 2 ~ ' M )  

- -  {-~(24M 5 -- 24M ~ -- 2~2M) + ~o(12~M 4 -- 12M 8 -- 2~2M) 
= 78#~-2M6 - 78~-2M5 -- lxCbZoTM 5 + xZ~uM 4 . 

Using formula (7c), we obtain at once expression (10). 



438 POLYNOMIAL INTERPOLATION 

Example  8. Deduce Shovelton's formula from its characteristic oper- 
ator. 

Solution: As this end-point formula is correct to fourth differences, it 
will agree with the standard Everett  formula as far as the second-differ- 
ence terms. (If it agreed as far as the fourth-difference terms, it would be 
correct to fifth differences.) This much of the standard formula is correct 
to third differences, and the corresponding characteristic operator is C~. 
Subtracting from the expression (9) the expression for Ca from Table 1 
and applying formula (7a) gives 

G - C3 = M * ( v M  -- 1 -- ~ o  + x~_~,~ D + {O~) 

= ~ M  ~ - M '  - ~ 2 M '  + ~ v * 2 M ~  + { , ' M  ~- . 

Substituting the equivalent expressions from Table 4, we have 

a - c~ = V(~l~-~, - ~<2~ + ~ o )  = ~ , ( ~ ? ~  - 6Q~ + 5Q~). 

This corresponds to the Everett terms 

Adding these to the standard terms gives the Everett form of Shovelton's 
formula. 

Example  9. Obtain the characteristic operator of the formula: 

v~+~ = xu~+a -- ~x2~2u~+l + yu~ -- ~y2b2u~ + (x -- ½)~2up, (19) 

where u ,  denotes the nearer of u~ and u~.~. 

Solution: The first-degree terms agree with the standard Everett for- 
mula, and are correct to first differences. Thus, by the definitions of the 
Q's and V's, the characteristic operator is 

G = C1 - -~ ~O2 + ~ V : .  

Substituting the expressions for these operators from Table 5, we obtain 
the expression (11) of Example 6. 

Example  10. Obtain formula (19) in the form of a midpoint formula 
with an adjustment term. 

Solution: Examining in the light of Rule 4(a3 the operator (11) of Ex- 
ample 6, which corresponds to this formula, we observe that the term 2 M  s 

corresponds to a "midpoint" expression, while - -uM ~ represents an 
"end-point" expression. We should like, therefore, to find an adjustment 
term whose characteristic operator consists of - ~ M  3 plus terms repre- 
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senting midpoint expressions. The formula (19) could then be written as 
a midpoint formula plus this adjustment term. With this in mind, we look 
in the part of Table 5 which gives expressions for certain differences of the 
W's, since each of these expressions consists of a single end-point term 
combined with several midpoint terms. We find that the expression for 
~3W2 contains the term 4~M s. We write, therefore, 

a 4- ¼~aW2 = M3(1 - ~D2). 

Since formula (19) is correct to second differences, we now subtract 
the expression for C~ from Table 1 and obtain 

G + ¼~aW~ - C2 = 0 ,  
or, 

G = C = -  l~aW~. 

In view of the definitions of C2 and W~, formula (19) can, therefore, be 
written as 

- l ( x  - ½ ) I x  - ½ 1 ~ % .  

Example I1. Obtain, in the most convenient form, the interpolation 
formula whose characteristic operator is M 4 ( ~  -- ~tL 4- }5:). 

Solution: With the aid of Rule 1 and Table 2, it is found that the formu- 
la is correct to third differences. By Rule 4(b), this operator contains two 
end-point terms and one midpoint term. This suggests that it may be 
easier to express the corresponding interpolation formula as an end-point 
formula plus an adjustment term. We therefore look in Table 5 among 
the expressions for certain differences of the V's, each of which consists 
of one midpoint term together with several end-point terms. In this case, 
we see that we can eliminate the term --a~uM 4 by adding ~54Va. There- 
fore, 

a + ~ , v ~  = M'(1 + ~ - ~V~). 

Now subtracting the expression for Ca from Table 1, we obtain 

G 4- -~4Va -- Ca -- ~M4(& " - O2). 

Using formula (Ta), this reduces to 

1 ~2(M4 _ M ~) 

and substituting the equivalent expressions from Table 4 gives 

G 4 -  ~ 4 V 3  - C3 = 1 ~4~ 3 
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o r  

G = C3 + ~ 4 ( 2 ~  - ~VV ~.  

By the definitions of C~, Q3, and V~, the formula is, therefore, 

+ ~y(y~ - 1)~2u. + ~ y ~ ' u ~  - ~s ix - ½13 v u ~ .  (20) 

SUC-,O_,ESTED PROCEDIYRE IN CONVERSION B E T W E E N  I N T E R P O L A T I O N  

FORMULAS AND THEIR CHARACTERISTIC OPERATORS 

I. Conversion from Operator to Formula." 

I. (a) If the formula is an end-point formula correct to rth differences, 
subtract from the given operator the expression in Table 1 for C~ if r is 
odd, or C~-1 if r is even. 

(b) If the formula is a midpoint formula correct to rth differences, sub- 
tract from the given operator the expression in Table 1 for C~ if r is even, 
or C,_1 if r is odd. 

(c) If the formula is a mixed end-point-midpoint formula, pass at once 
to Step 5 below. 

2. Multiply out the remainder, and eliminate D's by means of formulas 
(7a) and (7c). 

3. In each term, substitute the equivalent expression from Table 4, 
and simplify. 

4. Write the Everett  or Steffensen expression corresponding to the 
operator subtracted in Step l(a) or l(b) and add further terms corre- 
sponding to the operator resulting from Step 3, in accordance with the 
definitions of the Q's and T's. 

5. (Applies only to mixed end-point-midpoint formulas.) 
(a) Ascertain which are the end-point and midpoint terms in the given 

operator. End-point terms contain a Stb:ling operator combined with an 
even power of M or a Bessel operator combined with an odd power of M; 
midpoint terms contain a Stifling operator combined with an odd power 
of M or a Bessel operator combined with an even power of M3 ° 

(b) Eliminate the midpoint terms by adding or subtracting appropriate 
multiples of one or more of the differences of the V operators in Part I I I  
of Table 5; or eliminate the end-point terms by subtracting appropriate 
multiples of one or more of the differences of the W operators found in the 
same place. 

20 See proof of Rule 4 in the appendix. 
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(c) Follow Steps 1-4 to find the formula corresponding to the remainder 
after Step (b), and add the adjustment term or terms corresponding to the 
operator or operators subtracted in Step (b). 

II. Conversion from Formula to Operator: (It is assumed that the formula 
is given in Everett or Steffensen form, possibly with an adjustment term 
of the form (17) or (18).) 

1. If the formula agrees, up to and including the rth-difference terms, 
with the standard Everett  or Steffensen formula, the characteristic opera- 
tor of the agreeing terms is C,+1. 

2. Write the characteristic operator of the remaining terms of the for- 
mula in terms of the Q's, T's, V's, and W's by means of the definitions of 
these operators, and add it to C,+1. 

3. In each term of the resulting operator substitute the equivalent ex- 
pression from Table 5, and simplify. 

4. If desired, use formulas (7a) and/or (7c) to express the result in 
factored form. 

COm~V~ATION O~ INTERPOLATION COEFFICIENTS 
FROM THE CHARACTERISTIC OPERATOR 

If a formula whose characteristic operator has been deduced by means 
of the rules previously given is to be used primarily for numerical calcula- 
tions, it may be preferred to deduce the interpolation coefficients directly 
from the characteristic operator, without actually obtaining the formula in 
algebraic form. These coefficients are, as previously explained, appropriate 
values of the basic function. In many instances, these values can be easily 
computed with the help of Table 6, which gives, for arguments at inter- 
vals of 0.1, values of the basic functions of a number of operators of the 
form ~2kMZ or ~2*MZ, which occur frequently as terms in the charac- 
teristic operators of known interpolation formulas. Upon multiplying out 
and applying formula (7a), many characteristic operators can be ex- 
pressed entirely in terms of the operators which appear in the headings of 
Table 6. Values of the basic function of the total operator are obtained, 
of course, by adding together the corresponding values of the basic func- 
tions of the individual terms. An example of the procedure is given below. 

As all the basic functions tabulated in Table 6 are composed of poly- 
nomial arcs, values for other arguments than those shown can be com- 
puted exactly by ordinary finite-difference interpolation to the appro- 
priate order of differences. In each case, the degree of the polynomial arcs 
is one less than the exponent 2~ of M. In making such an interpolation, care 

.1 This is a consequence of footnote 13, formula (7b), and Rule 3(a). 
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must be exercised, of course, to use tabular values all of which lie on the 
same arc. In this connection, it may be pointed out that the basic func- 
tions of "end-point" terms have their points of junction at integral argu- 
ments, while those of "midpoint" terms have them at arguments which 
are odd multiples of ½. As previously stated, end-point terms are those of 
the form ~2~M2' or #52kM~-l, while midpoint terms are of the form 22 
~2kM2~-1 or ~ekMel. 

A general method for determining other basic functions directly from 
their characteristic operators is given in the appendix, page 474. 

Example 12. Given u 0 = 4 3 ,  u 1 = 4 8 ,  u2 - -51 ,  u s = 4 9 ,  u4---50, 
m = 54, compute u2.s by Shovelton's formula, using only Table 6 and 
the characteristic operator (9). 

Solution: Denoting the basic function of the formula by L(x), we have, 
by equation (1), 

v2.3 = L(2.3)u0 + L(1.3)ul -b L(0.3)w2 -t- L(--0.7)us -b L ( -  1.7)u4 
-b L(--2.7)u5 . 

Multiplying out the expression (9) and using formula (Ta) gives 

The computation of the basic function for the six arguments required is 
shown in the accompanying table. Substituting the given values and the 

Argument: 2.3 1.3 0.3 --0.7 --1.7 --2.7 
Basic func- 

tion of: 
~M 5 0.0050 0. 1540 0.4362 0.3458 0.0588 0.0002 
-~62M4 - 0 . 0429  - 0 . 3 5 6 9  0.5813 0.0763 -0 .2544  - 0 . 0 0 3 4  
]5~#~2M3 0.0510 0. 0969 - 0 .  1896 --0. 1062 0. 1385 0. 0094 

G 0.0131 --0.1060 0.8279 0.3159 -0 .0571 0.0062 

coefficients from the table in the above expression for v2.a gives 50.66 as 
the interpolated value. 

For proof of both statements, see the proof of Rule 4 in the appendix. 



T A B L E  1 

Cl:[ARACTERIS'I_IC OPERATORS OF CERTAIN PUB- 

LISHED INTERPOLATION FORMULAS 

Year of 
Name or Originator Where Publi- 

of Formula* Published cation 

I. Reproducing Formulas 
Plain central-difference 

interpolation: 
to 1st differ- C1 = M 2 

e n c e s  

to 2nd differ- C2 = 
ences 

to 3rd differ- Ca = 

ences 

to 4th differ- C4 = 
ences 

to 5th differ- C5 = 
ences 

to 6th differ- C~ = 
ences 

to 7th differ- 
ences 

Characteristic 
Operator 

Sprague J I A  X X I I ,  280 1880 

Karup  T I C A  2nd, 83 1898 

Henderson T A S A  IX ,  217 1906 

Curve of Sines See footnotet  1907 

Buchanan J I A  X L I I ,  374 1908 

M3(1 -- ~D 2) 

M4(1 -- ~D ~) 

Shovelton J I A  X L V I I ,  287 1913 

Henderson T A S A  X X I I ,  191 1921 

Reilly (h = 2, R A I A  X l I I ,  21 1924 

k = 3) 
* Notations in parentheses following the name of an author employ the author's own symbolism to in- 

die.ate which formula is intended where several have been published on the same page, as m a table of 
formulas. 

"f Published in 1907 by Dr. John Tatham in the Suppltment to the Sixty-Fifth A~nual Report of the 
Reglstrar-Ge~,ra~ of Birthz, Deaths, and Marr.~gcs in Englar~ and. Wal_es: lg91-1900, Part I..However, the 
formula was also used in the construction otlife tables publisnea m 189o m the Supplement to the F=fty-rifth 
Annual Report of the Registrar-General of Births, Deaths, and Marriages in England and Wales, 18gl- 
1890, Part I.  P is a continuous operator of span 1 with the basra funetaon 

1 d ~ 
48 dt ~ { ( t2 --  ¼) ( t~ --  ~) sin ~rt] 

for--~ < t < ' t .  
4 4 3  

M~(I -- ~ D  ~ 

+rhD') 
Ms(1 -- ¼D ~ 
+ 

M7(1 - ~ D  2 

- 

C7 = M8(1 - ½D 2 
-[-- T - ~ D  4 

Ms(25M -- 24# + ¼~D) 

M S ( 3 M -  2t~) 

U ' ( 1  - ½8' +  uSD) 

M ' ( P  -- xzr2#2 + xsrc2~D) 

M4(30M ~ - 28#M 
- -  1 +282)  

Ms(#  --  {~tD + s ~zD~ / 

M ' ( 1  - + 

Ms[2940D-~(t~- M) 
-- 290M + 46/=] 



Name or Originator 
of Formula* 

Reilly (h = 2, 
k = 4) 

Jenkins, 5th dif- 
ference 

Jenkins, 4th dif- 
ference 

Jenkins, 2nd dif- 
ference 

Greville (67, ala 
--- - k )  

Greville (102) 

Greville (103) 

Greville (105) 

Michalup 
(MMT) 

Michalup 
(MMA) 

Michalup 
(MMC) 

Vaughan (12) 

TABLE 1--Continued 
Year of 

Where Publl- 
Publimhed cation 

RAIA XIV, 19 1925 

RAIA XV, 89 1926 

Characteristic 
Operator 

M~{4OOM- 1250D-~ 
[13~ -- 59M 
+ 552D-~(tt -- M)]} 

1 2 M4(-4t~M + 5 + ~ ) 

TASA XXXI,  24 

TASA XXXI,  31 

TASA XLV, 261 

1930 Ms[78D-~(#M- 1) 
- -  ~ M  2 + { ~ # M ]  

1930 M[12D-2(uM- 1) 
- -  M s] 

1944 M3(--~vM + ~ + ~ )  

TASA XLV, 264 1944 M[12D-~(u - M)] 

TASA XLV, 264 1944 M{6OD-2[M 
- 12D-2(z -- M)]} 

TASA XLV, 264 1944 Ma[120D-2(u - M) 
- -  9M] 

MVSV$ XLVII,  1947 Ms(Z~M - ~ %  
383 -- ~6~D + ~-~#D 2) 

MVSV~ XLVII,  1947 M~(~M -- .7~# + ~ D  
384 -- ~-6#D ~ + ~-~-(i6D 3) 

MVSV:~ XLVII,  1947 M~(a~si -- z~zv. 
384 + ~1 a--odD -- a-~ouD 2 

7 ~D~ +g~-6 J 

TSA VI, 435 1954 MS(14m 2 + On + 28) -t  
[6m(Tm + 1)M 
- -  28(m 2 -- 1)U 
- -  (m + 7)6D] 

Vaughan (19) TSA VI, 438 1954 Ms(2 - /~ )  

Greville (20) TSA VI, 440 1954 M4(~_~_t z _ _~ + {~2) 

II.  Smoothing Formulas 

Jenkins, 3rd dif- TASA XXVIII ,  1927 ~M ~ 
ference 200 

Jenkins, 5th dif- TASA XXVIII ,  1927 M4(1 -- ~ )  
ference 202 
* Notations in parentheses following the name of an author employ the author's own symbolism to in- 

die.ate which formula is intended where ~veral  have been published on the same page, as in a table of 
formulas. 

Mitteilungen der Vereinigung sclrazizerischet Vers~ckerungsmatkemaliket". 
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Name or Originator  
of Formula* 

Jenkins, 4th dif- 
ference 

Jenkins, 2nd dif- 
ference 

Reid and Dow 

Greville (69) 

Greville (70) 

Greville (73, ao4 

= -~-~o ) 
Greville (74) 

Greville (84) 

Greville (104) 

Greville (106) 

Greville (107) 

Greville (108) 

Greville (109) 

Greville (110) 

Greville (111) 

Vaughan (A) 

Vaughan (B) 

Vaughan (C) 

Michalup (M3) 

TABLE 1---Contim,ed 
Year  of 

Where Publi- 
Published cation 

TASA XXXI, 12 1930 

Character is t ic  
Operator  

4 7 5 M (~M - ~#) 

TASA XXXI, 30 1930 M s 

TFA XlV, 189 

TASA XLV, 261 

TASA XLV, 261 

TASA XLV, 261 

1933 M 4 ( 1  _ ~2 + bS') 

1944 M 4 ( #  - -  ~ D )  

1944 Ma(1 - ~2) 

1944 M'(1 + 2 ~ - -  ~#5D) 

TASA XLV, 261 1944 

TASA XLV, 262 1944 

TASA XLV 264 

TASA XLV 264 

TASA XLV 264 

TASA XLV 264 

TASA XLV 264 

TASA XLV 264 

TASA XLV 264 

JIA LXXII  491 

JIA LXXII,  491 

J i l l  LXXII, 491 

MVSV~. XLVII, 
377 

M~(# _ ¼#62) 

M4[--4#M + 5 + ½~2 
- -  72ao4(2vM- 2 
- V ~ ) I  

1944 m2[12D-e(# - 11//)] 

1944 #M 4 

1944 ma(1 + Iris) 
3 1 3  29~2~ 1944 M ( y # M - - ~ - - ~ - g ~ ,  

1944 m~(# + ]#a=) 
1944 M4(1 + ½a~ -- ~-#~O) 

1944 M4(8#M -- 7 -- -~) 

1946 M 4 ( - 2 z M  + 3 + ~2) 
1 2 1946 M4(2#M-- 1 - - ~ a )  

1946 M4(4#M -- 3 -- ~62) 

1947 M6(4M-- 3#) 

Michalup (M4) MVSVJ; XLVII, 1947 M4145D-2(#M -- 1) 
379 -- ~2-~-M 2] 

Michalup (M2) M V S V ,  XLVII, 1947 Ms(# -- ½6D) 
38O 

Michalup (M4A) MVSV* XLVII, 1947 M6(1 -- ¼D 2) 
381 

Michalup (3M4) MVSV~. XLVII, 1947 Ms[12D-e(# -- M)] 
402 

* Notations in parentheses following the name of an author empl.y the author's own symbolism to in- 
dicate which formula is intended where ~vcra l  have been published on the same page, as in a table of 
formulas. 

Mitteilungen der Vereinigung schweizerischer Versicheruugsmathematiker. 
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TABLE 2 

SYMBOLIC EXPANSIONS OF CERTAIN OPERATORS* IN POWERS OF D 

M = 1 + ~ D :  + ~-~-6o D~ 

+ a22~566 D6 + 

#M" = I + ~ D  °- + ~ o  D~ 

+ oV-~4o D~ + 
1 2 M -° = I + -y-~D + - 8 ~ S  ~ 

+ ~6:~-~D ~ + 

= 1 + ~D~ + v h D  ~ 
+ ~ D  ~ + 

= D + ~ D  ~ + ~ 9--~y6D ~ 

+ a ~ , ~ o  D~ + 

,~ = D + ~D ~ + ~ D  ~ 

~ o--o~S + 

52 = D 2 -~- ]-l~-D4 + ~-~o D~ + . . . 

#8 ~ = D  ° - + ~ D  ~-J'- ,~  D ~ 
- -  5 7 6 0  

* Negative t~wers of M are expandcd as far as D r-~ (the expOncnt of M being --r). Other operators 
arc expanded as far as D 7. 

M - 1  ~ 1 - . , . 

M - 2 =  1 - -  . . .  

M - ~ =  1 - ~ D  ~ + . . .  

M - t  = 1 - -  ~ D  2 2 V  . . . 

M -~ = 1 - -  ~ ¢ D  °- + ] - ~ D  ~ - -  . . . 

M - ~ =  1 - - ¼ D  ~ + ~ 6 D  ~ -  . .  

M -7 = 1 - ~ D  2 + ~--v~D * 
- ~ - - ~ D  ~ + . . .  

M -8 = 1 - -  ½ D  2 "]- i -~0  D* 

- -  ~-~0 D6 + • . . 

TABLE 3 

TRACES OF ]~OWERS AND :MEAN POWERS OF M 

Operator Trace Operator 

M 1 #M 

M 2 1 ~tM 2 

M 3 1 + ~ 2  ~ M  ~ 

M 4 1 + _~2 ,~M 4 

1 4 M ~ 1 + ~:~2 + ~ s _ ~  g M  5 

M ~ 1 + ~ + -r~o~ ~ ,uM s 

M 7 1 + 7 ~ 2  + .ql x4 g-y6--6~ # M  7 
1 ~ 

M s 1 + ~t~ °" + 4~o ~ + 5--~-6~ ~ 

T r a c e  

i n d e t e r m i n a t e  

1 + ¼8 2 

1 + ¼~- 

1 + ~a~ + ~ - ~  o~' + v ~ o  a~ 

1 + ~¢~  + ~ '  + ~4-~4~ ~ 

~M s 1 + 1 its2 ~:~ + ~--~d~* ~ 
..~ 5 4 7  t~fi _~ 1 ~8 

3 2 2 , 5 6 0  ~ ~ J  
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TABLE 4 

POWERS AND MEAN POWERS OF M IN TERMS OF SPECIAL OPERATORS 

u M - - -  

M s = 

t z M  ~ = 

M 4 = 

# M  ~ = 

# M  ~ = 

M s = 

t z M  ~ = 

M 10 

Part I, End-point Formulas 

~ o  

Q~ 

Q, + ¼~'O, 

O~ + ~(~-~ + ~ )  + ~oVQ~ 
Q, + ~ ( ~  + ~O~) + v ( & ~  + ~-~O~ + ~ )  + ~ - ~ %  

Q~ + ~(~ ,  + ~0~) + v(~o0~ + ~ + ~--Jz~) + ~-~Q7 

Q, + ~(~2, + ~ )  + v ( ~ ,  + ~-~ + ~Q-o~) + ~%o~,oO~ 
+ ~ - ~  + r ~  + ~ )  + ~ %  

Q~ + ~-~(~, + ~2~) + v ( ~  + ~-~ + ~ ~-~¢~) 
6 1 1 + ~ (~o.---:r~(?~ + ~t¢¢2~ + ~-*tvd2~ + ~ o ~ )  + ~ ~-~,s~o~ 

Part II. Midpoint Formulas 
M = 6-1To 

uM ~ = ~-ITo + ½~TI 

M 3 = ~-lTo + ½~T~ 

#M* = ~-~To + 5(~To + ½T~) + ] ~ T ~  

M~ = ~-~To + ~q½To + ½T~) + ~ T ,  

#M e = t~-lTo + ~(¼To + ½T2) + 6~(~--~oTo + ~T2 + ~2~T,) + ~-6o6bT5 

M' = 5-1To + ~(~To + ½T~) + ~3(3-~To + 2--~aTz + ~ T , )  + v~-~5ST, 

lzM s = ~i-XTo + ~(½To + ½T2) + ~3(~To + ~T~ + z-~4T,) + ~%5-~-6To 

+ ~--~or~ + ~--~7", + ~'oT~) + ~o,--~o ~T~ 

M~ = ~-lTo + ~(~To + ½T~) + ~(~7"o + ~;r'~ + ~T,)  
+ ~ ( ~ T o  + ~-~T~ + d-~T, + ~o7"~) + ~ ' ~  

3 7 + ~2½ + 2-~7T4) #M 'o = ~-lTo + ~(i~2To + ½T~) + 6 (~--4~To 
+ ~(~--~To + ~T~ + ~T,  + v~oT,) + ~ 7 ( ~ T o  
+ ~ Z ~ .  + ~ , ~ r ,  + ~--,~oT6 + ~ T ~ )  + ~ W ,  
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T AB L E  5 

SPECIAL OPERATORS IN TER~IS OF M,  ,~, U, AND D 

P a r t  I .  E n d - p o i n t  F o r m u l a s  

A .  S t a n d a r d  F o r m u l a s  

C t  = M 2 

C a  = M * - ~ Y ' M  2 

C~ = g s - -  ¼~2M4 "-J- 3-2~64M 2 

c~  = ~ - ~ + ~-~oa'a¢' - ~ - ~  
B .  A d d i t i o n a l  T e r m s  

Qo = 2 u M  

Q1 = M ~ 

~Qa = 

~ 4  = 

~Q~ = 

~Q7 = 

~SQs = 

4 g M  a - -  4 M  2 

6 M  4 - -  6 M  2 

4 8 g M  5 - -  4 8 M  4 - -  862MZ 

1 2 0 M  6 - 1 2 0 M  4 - 1 0 ~ 2 M  z 

1 4 4 0 # M  7 - -  1 4 4 0 M  6 - 2 4 0 ~ 2 M  4 - -  1 2 ~ 4 M 2  

5 0 4 0 M  8 - 5 0 4 0 M 6 -  4 2 0 6 2 M 4  - 1 4 6 4 M 2  

8 0 , 6 4 0 / z M  ~ - -  8 0 , 6 4 0 M  s - 1 3 , 4 4 0 ~ 2 M  6 - -  6 7 2 6 4 M  4 - 1666M2 

3 6 2 , 8 8 0 M T O  - 3 6 2 , 8 8 0 M  s - -  3 0 , 2 4 0 6 2 M ~  - -  1 0 0 8 6 4 M 4  

- 1866M~ 

P a r t  I I .  M i d p o i n t  F o r m u l a s  

A .  S t a n d a r d  F o r m u l a s  

C o  = M 

C ~  = M 3 - -  ~ 2 M  

C 4  M 5 .~ ~ ~r~ 

c ,  = M 7 - &a~M~ + ~ -~&~'M a - , - ~ I  

B .  A d d i t i o n a l  T e r m s  

T o  = ~ M  

~ T ~ =  2 g M  2 - 2 M  

~T2 = 2 M  3 - 2 M  

~ 3 T  3 = 1 2 # M  4 - -  1 2 M  ~ - -  2 ~ 2 M  

~ a T  4 = 2 4 M  ~ - -  2 4 M  a - -  2 ~ M  

~bT5 = 2 4 0 ~ t M  6 - -  2 4 0 M  b - 4 0 ~ M  a - 2 ~ * M  

4 4 8  
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P a r t  I I .  M i d p o i n t  F o r m u l a s - - C o n t i n u e d  

56T6 = 7 2 0 M  7 - -  7 2 0 M  5 - -  606ZM 3 - 2 5 4 M  

$7T 7 = 1 0 , 0 8 0 ~ M  s - -  1 0 , 0 8 0 M  7 - -  1680~2M~ - 8 4 ~ M  s - 2~6M 

~TT s = 4 0 , 3 2 0 M  9 -  4 0 , 3 2 0 M  7 -  33606~M ~ - 11264M a - -  26~M 

~0T~ = 7 2 5 , 7 6 0 t z M  lo - -  7 2 5 , 7 6 0 M  ~ - 1 2 0 , 9 6 0 8 ~ M 7 -  6 0 4 8 ~ 4 M  ~ 

- -  1445~M ~ - -  2 8 S M  

Vo 

62VI = 

~i2V~ = 

6*Va = 

~4V4 

68V 7 = 

~8V s = 

~Wo = 

~W1 = 

~3W~ = 

5aW~ = 

~ s W  4 = 

55W5 = 

~7W e = 

~7W 7 = 

~ g w  s = 

P a r t  I I I .  M i x e d  E n d - p o i n t - M i d p o i n t  F o r m u l a s  

M 

M 2 ( 2 #  - -  2) 

M 2 ( 2 M -  2) 

M4(12~t  - -  12 - -  ~ D  2) 

M 4 ( 2 4 M  - -  24  - -  D 2) 

MB(240/~ - -  240  - -  3 0 D  2 - -  ~ D  4) 

M s ( 7 2 0 M  - -  720  - 3 0 D  2 - -  ~ D  4) 

~ V  ) M 8 ( 1 0 , 0 8 0 ~ -  1 0 , 0 8 0 -  1 2 6 0 D  ~ - -  1 ° ~ D 4 - -  r 

M s ( 4 0 , 3 2 0 M  - -  4 0 , 3 2 0  - -  1 6 8 0 D  2 - -  21D 4 - -  ~ D  6) 

M ( 2 u  - 2) 

M ( M -  1) 
M 3 ( 4 #  - -  4 - -  ½D =) 

M S ( 6 M  - -  6 - -  ¼ D  2) 

M ~ ( 4 8 ~  - -  48  - -  6 D  2 - -  -~D 4) 

M s ( 1 2 0 M  - -  120 - 5 D  ~ - -  ~-~D 4) 

M 7 ( 1 4 4 0 # -  1 4 4 0 -  1 8 0 D :  - -  ~ D  4 -  ~ D  6) 

M T ( 5 0 4 0 M  - 5 0 4 0  - 2 1 0 D  2 - -  ~a~-D4 - -  ~-4D 6) 

M 9 ( 8 0 , 6 4 0 ~  - -  8 0 , 6 4 0  - 1 0 , 0 8 0 D  : -  2 1 0 D  4 - -  ¼ D  ~ - -  T ~ s D  8) 

4 4 9  



TABLE 6 

VALUES OF THE BASIC FUNCTION L(x) OF CERTAIN CONTINUOUS OPERATORS* 

OPI~RA'rOR 

Z 

0.0  
.1 
.2 
.3 
.4 

.5 
,6 
,7 
.8 
.9 

1 .0  
1.1 
1.2 
1.3 
1.4 

1.5 
1.6 
1.7 
1.8 
1.9 

2 .0  
2.1 
2.2 
2.3 
2 .4  

2 .5  
2•6 
2•7 
2 .8  
2 .9  

3 .0  
3.1 
3 .2  
3 .3  
3 . 4  

3.5 
3 .6  
3 .7  
3 .8  
3 .9  

4 .0  

.M* 

.550000000 

.5450 24166 
• 5303 73333 
.5068 22500 
.4755 46666 

.4380 20833 

.3959 20000 
,3510 19166 
• 3050 93333 
• 2598 17500 

.216666666 

.1768 17083 

.141080000  

.1099 17916 

.083493333 

.0617 18750 

.0443 06666 
• 0308 19583 
• 0207 20000 
• 0134 20416 

.0083 33333 

.0049 20750 

.0027 30666 

.0014 00583 

.0006 48000 

.0002 60416 
,0000 85333 
,0000 20250 
• 0000 02666 
.0000 00083 

.0000 00000 

#M s M' 8~M* 

.4583 33333 .66666 --1.00000 
• 4558 37500 •65716 -- .97166 
.448400000 .63066 -- ,89333 
.4361 70833 .59016 -- .77500 
.4194 00000 .53866 -- .62666 

.3984 37500 .47916 -- •45833 

.3737 33333 .41466 -- .28000 

.3458 37500 ,34816 -- .10166 

.3154 00000 .28266 .06666 

.2831 70833 •22116 .21500 

.250000000 .16666 •33333 

.2168 27083 •12150 •41416 

.1845 66666 .08533 .46000 

.1539 93750 .05716 •47583 

.1257 33333 .03600 .46666 

.1002 60416 .02083 •43750 

.077900000 .01066 •39333 
• 0588 27083 .00450 •33916 
.0430 66666 .00133 .28000 
.030493750 .00016 .22083 

• 0208 33333 
.013668750 
.0085 33333 
.0050 02083 
.0027 00000 

.0013 02083 

.0005 33333 
,0001 68750 
,0000 33333 
• 0000 02083 

.1300000000 

.00000 .16666 
• 12150 
• 08533 
.05716 
• 03600 

.02083 

.01066 
,00450 
.00133 
.00016 

.00000 

tDM'6 

2. 66666 
2. 57250 
2. 31333 
1. 92416 
1.44000 

.89583 

.32666 
- ,23250 
-- ,74666 
--1,18083 

--1.50000 
--1.67850 
--1.72800 
--1 ,66950 
--1 ,52400 

--1 .31250 
--1 .05600 
-- .77550 
- -  .49200 
- -  .22650 

.00000 

.17116 
•28933 
.36150 
,39466 

,39583 
.37200 
.33016 
.27733 
.22050 

• 16666 
• 12150 
• 08533 
.05716 
.03600 

.02083 

.01066 

.00450 

.00133 

.00016 

. 0 0 0 ~  

t , M ,  

• 5000 
• 4975 
• 4900 
.4775 
.4600 

.4375 

.4100 
• 3775 
•3400 
.2975 

• 2500 
• 2025 
.1600 
• 1225 
.0900 

.0625 

.0400 
•0225 
.0100 
.0025 

.0000 

* An italic final digit denotes infinite repetition of this digit• Only positive values of x are 
g(-x) = L(x). 

450  
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X 

# M M  t 

0 . 0  - . 5000  
• 1 - - , 4 9 5 0  

. 2  - . 4 8 0 0  
• 3 - - . 4 5 5 0  
. 4  - - . 4 2 0 0  

• 5 - - . 3 7 5 0  
. 6  - -  . 3200  
• 7 - - .  2550 
• 8 - - .  1800 
.9  --.0950 

1 . 0  . 0000  
1 .1  .0925  
1 . 2  . 1700  
I .  3 .2325  
1 . 4  . 2800  

1 . 5  •3125 
1 . 6  . 3300  
1• 7 .3325  
1 . 8  . 3200  
1 . 9  .2925  

2 . 0  . 2500  
2 . 1  .2025  
2.2 .1600 
2 . 3  .1225  
2 . 4  . 0 9 0 0  

2 . 5  .0625  
2 . 6  . 0 4 0 0  
2 , 7  . 0225  
2 . 8  . 0 1 0 0  
2 . 9  . 0025  

3 . 0  . 0000  

OPERATOR 

6 . 0  
5 . 0  
4 . 0  
3 . 0  
2 • 0  

1 . 0  
0 . 0  

- - 1 . 0  
- - 2 . 0  
- - 3 • 0  

- - 4 . 0  
- - 3 . 5  
- - 3 . 0  
- - 2 . 5  
- - 2 , 0  

- - 1 . 5  
- - 1 . 0  
- -  . 5  

. 0  

.5  

1 . 0  
. 9  
. 8  

. 7  

. 6  

. 5  
•4 
,3  
.2  
.1  

.0  

M i # M r  

• 5989  5833 .479  
• 5927 3333 . 476  
• 5743 5833 . 469  
• 5447 3333  , 4 5 6  
• 5053 5833 .439  

• 4583 3333 •416  
. 4 0 6 3  1666 •389 
• 3520 6666 . 358  
• 2979 8333 .323  
• 2460 6666 . 287  

• 1979 1666 . 2 5 0  
.1547  3333  •212  
.1173  1666 •176  
• 0860  6666 . 142  
. 0 6 0 9  8333  . 110  

. 0 4 1 6  6666 •083 
• 0273 3750 . 0 6 0  750 
• 0170  6666 .042  666 
• 01O0 0416  .028  583 
. 0 0 5 4  0000  •018 000  

. 0 0 2 6  0416  . 010  416 
• 0 0 1 0  6666 . 005  333  
. 0 0 0 3  3750  .002  
. 0 0 0 0  6666 . 000  
. 0 0 0 0  0416  . 0 0 0  

. 0 0 0 0  0000  . 0 0 0  

]ff'l 

166 .750  
666 .74O 
166 .710  
666 . 660  
166 .59O 

666 .5O0 
333  .405  
0 0 0  .320  
666 .245  
333  . 1 8 0  

000  . 1 2 5  

666 . 080  
333  .045  
000  .020 
666 .005  

333  . 0 0 0  

250  
666  
0 8 3  

0 0 0  

- 1 . 2 5 0  
- 1. 220  
- 1 •  130 
- -  . 9 8 0  
- -  . 770  

- . 500  
- . 220  

• 0 2 0  
• 220  
• 3 8 0  

. 5 0 0  
• 580  
• 620  
• 620  
•580  

. 5 0 0  
• 405 
• 320  
• 245  
• 180 

• 125 
• 080  
. 045  
• 0 2 0  

. 005  

, 0 0 0  

4 5 1  
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MATHEMATICAL APPENDIX 

DISTRIBUTION OPERATORS 

The term "distribution," as used by Schwartz for the case of a single 
variable, means, in essence, an operator of the form 

K + Jo + J1D + J2D 2 + . • . + J~D T, (2 1) 

where K is a continuous operator and the J ' s  are discrete operators. We 
shall therefore call such an operator a distribution operator. Such an oper- 
ator has already been encountered in equation (6a) of footnote 12. I t  is 
clear that the continuous operator, the discrete operator, and the differen- 
tial operator D ~ are all particular cases of the distribution operator. We 
shall say that a distribution operator H of the form (21) is oJfinite range 
if all arguments x corresponding to nonzero values of the basic function 
[(x) of K, and all arguments x whose negatives appear as exponents of E 
when the "J"  operators are expressed in the form (3) with nonzero coeffi- 
cients, are contained in a finite interval a < x _< b. We shall denote this 
interval by (a, b). The smallest interval having this property will be called 
the range of H. If (a, b) is the range of H, this implies that  either (I) E --~ 
occurs in the expression for one or more of the J ' s  or (2) any interval, 
however small, extending to the right of the argument a contains argu- 
ments for whichf(x) is different from zero. Of course, both statements may 
be true at the same time. Similar remarks apply to the upper end of the 
interval. Evidently, the span of H,  as defined in the main part  of the pa- 
per, is b - a. In this appendix, we shall not limit our attention exclusively 
to distribution operators of finite range. 

The basic function of the continuous term K of a distribution operator 
may have discontinuities. This discussion will be limited, however, to 
cases in which this function is piecewise continuous, and has piecewise 
continuous derivatives of all orders. We call a function piecewise con- 
tinuous when it has, in any finite interval, at  most a finite number of dis- 
continuities, and, further, all its discontinuities are " jump" discontinui- 
ties. We say that a function f(x) has a jump discontinuity at x = a if 
f(x) approaches a finite limit when x approaches a from above, and also 
when x approaches a from below, but the two limits are different. In such 
a case, we shall find it convenient to denote the respective limits by 
f(a + O) andf(a  -- 0). We shall call the difference, f (a  + 0) - f(a - 0), 
the jump of the functionf(x) at the point of discontinuity x -- a. We shall 
call a function piecewise analytic if it is piecewise continuous and has 
piecewise continuous derivatives of all orders. The curves of interpolated 
values produced by polynomial interpolation formulas applied centrally 
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in each interpolation interval over a number of intervals, and the basic 
functions of such formulas, are examples of piecewise analytic functions. 
Throughout this appendix, the basic functions of all continuous operators 
will be assumed, without explicit statement to that effect, to be piecewise 
analytic. 

A jump discontinuity in the basic function L(x) of an interpolation 
formula means that the interpolated value at corresponding points has 
dual values. For example, in plain central-difference interpolation to sec- 
ond differences, v~+1/2 can be calculated either from u~_l, u~, and u~+l or 
from u~, u~+~, and u~+~; and, unless the given values lie exactly on a 
polynomial curve of the second degree, the two values will differ. In the 
same way, a discontinuity in the L(x) function for an integral argument 
would leave us with dual values at the given points. In interpolation 
formulas of practical value, L(x) is continuous, and comes to zero at the 
ends. However, all polynomial interpolation formulas have discontinuities 
in some of the derivatives of the basic function. 

We shall also follow Schwartz in studying distribution operators 
through their effect on a test-function. By a test-function we shall mean 
any function $(x) having the following two properties: 

(1) There exist two finite real numbers a and ~ such that $(x) = 0 for 
x <  a a n d f o r x > 8 .  

(2) ¢(x) possesses at every point derivatives of all orders. 

In our investigations the test-function will serve only a purely formal 
purpose, and we shall not have occasion to make any actual calculations 
with particular test-functions. However, inasmuch as functions having 
the properties stated are somewhat unusual, it may be well to show that 
they actually exist. An example given by Schwartz is the function 
defined by 

0 for ]x I _>h,  

~b (x) = e-h'/(h'-~') for }xl < h .  

The convenience of the test-function arises from the fact that any dis- 
tribution operator can be applied to such a function. I t  should perhaps 
be pointed out, however, that most distribution operators can also be ap- 
plied (and we shall apply them) to a great many functions other than test- 
functions. When a distribution operator of finite range is applied to a 
test-function, it is fairly clear that the resulting function is also a test- 
function. Applying to a test-function a distribution operator of infinite 
range gives a function which has property (2), but, in general, does not 
have property (1) and thus fails to qualify as a test-function. 
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It  is clear that a distribution operator is a linear operator, In other 
words, we always have 

H[kd~(x)] = kHep(x) , (2 2a) 

H[~(x) + ~(x)] = Udp(x) + H~k(x) , (22b) 

where H is any distribution operator, k is a constant, and q~(x) and ~(x) 
are functions to which H can be applied. 

PRODUCTS OF DISTRIBUTION OPERATORS 

If t/1 is any distribution operator, and H2 is another distribution oper- 
ator such that, for any test-function •(x), the function f ( x ) =  
tt2[Hxdp(x)] is always defined, we shall call the entire operation leading 
from ¢(x) tof(x) the product ~3 of H2 and H1, and shall write 

f ( x )  = t i3$(x)  = 11.,[Hal(x)], 
or, symbolically, 

H~ = II~Hx. 

If at least one of the operators H1 and H~ is of finite range, their product is 
always defined. It  may not be defined if both are of infinite range. 

We are particularly interested in the form of the product D K ,  where K 
is a continuous operator whose basic functionf(/) has jump discontinuities. 
If (~(x) is a test-function, we have 

f° f2 K 4 ( x )  = f ( t ) 4 ( x - t ) d t =  / ( x -  s ) ~ , ( s ) d s ,  (23) 

writing s -- x -- t. L e t . . . ,  kl ,  to, t ~ , . . ,  denote the points of discon- 
tinuity of fQ), arranged in increasing order of magnitude. Then, 

Kch ( x )  = z, f z-'i f (x - s ) ,  (s) d s.  
~ z - - t i +  1 

Applying the usual rule for differentiation of an integral with variable 
limits of integration, we have 

DK¢~ (x )  = z~ f ~-*i f '  ( x  -- s) ch ( s )  d s 
~ z - - t i +  1 

+ :~  [ / ( t ,  + 0 )  ,~ (x  - t~) - / (t~+l - 0 )  4, ( x  - t~+l) ] 

---- s) ¢ (s )  d s + ~i [ f (ti + O) -- f ([i-- O) ] ck ( x - -  lz) . 

Symbolically, we may write, therefore, 

D K  = K '  + Z~ b, E --ti , (24) 

2, Schwartz also considers other types of product. He calls this kind "produit de 
composition." 
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where K '  denotes the continuous operator whose basic function is Jr(t) 
and b~ denotes the jump off(t) at the argument t~. 

Generalizing this result, l e t . . . ,  t_1, to, t l , . . ,  denote the arguments 
at which there is a discontinuity inf(t) or in any of its first r derivatives, 
and let b~ k) denote the jump of the kth derivativef(k)(t) at the argument t~. 
Then, by repeated application of formula (24) we obtain =4 

D~K = K(o + J_~ + J_~+,D + . . .  + J-1D'~ ' ,  (25) 
where 

.l_k = Zi b(~-')E -t~ , (26) 

and K(0 denotes the continuous operator whose basic function is fir)(t). 
In general, multiplication of distribution operators is commutative, 

associative, and distributive. In other words, we have: 

HIH~ = H2HI, 

HI(tI~H3) = (H~H2)H3, 

HI(H~ + H3) = H1H.. + HxH~. 

The distributive property is essentially a matter of definition, and follows 
from the relation (22b) if we define (HI + H2)C(x) to mean Hie(x) + 
H24~(x). I t  can be shown that the other two properties always hold if 
not more than one operator in any given product is of infinite range, ~ as 
will be the case in all applications to be made in this appendix. I f / /1  is a 
distribution operator of finite or infinite range and q~(x) is a test-function, 
F(x) = HN~(x) is of the form 

c o  r 

J-/cof (l) ¢ (X -- t) d t +  ~ ,  y.,a,j¢(i) (x  -- x , ) ,  (27) 
j~O 

wheref(t) is the basic function of the continuous term of//1. In the follow- 
ing deductions, it should be borne in mind that the limits of integration 
and the summation with respect to i in expression (27) are, in reality, 
finite, because of property (1) of the test-function ¢(x). By actual differ- 
entiation we find that 

F(k)(x) = H~h(k)(x), 

or, symbolically, DkH~ = H1D k. Also, it is easily verified that E~F(x) = 
F(x  + h) = Hl¢(x  + h), so that EhHt = H1E a. Thus, if J is any dis- 
crete operator of finite range, JH~ = HI J ,  making use of the distributive 
property and relation (22a). I t  follows that any operator of the form 
J D  ~, where J is of finite range, is commutative wi th/ /1  (since D*C~(x) is 

24 Equations (24) and (25) are due to Schwartz, op. cir., Tome I, pp. 37-38. 
~s This is proved by Schwurtz, op. cir., Tome II, p. 14. 
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also a test-function). Finally, if K is a continuous operator of finite range, 
with basic function g(s), it can be shown by integration with respect to s 
that KF(x) -- KH1~k(x) -~- lt~Kd~(x). In  view of the distributive prop- 
erty, it follows that any distribution operator H2 of finite range is com- 
mutative with Hr. 

I t  might have been supposed that  a more general type of operator than 
the form (21) would be obtained by taking as coefficients of the various 
powers of D sums of discrete and continuous operators. Formula (25), to- 
gether with the commutative property, shows that  this is not the case, 
and that  such an operator would reduce to a distribution operator. More- 
over, it is not difficult to see that the product of two continuous operators, 
or of a continuous and a discrete operator, when defined, is a continuous 
operator; while the product of two discrete operators, when defined, is a 
discrete operator. From these statements and equation (25) it follows 
that the product of any two distribution operators, when defined, is a 
distribution operator. If  both are of finite range, it is clear that the prod- 
uct is of finite range. 

We are now in a position to prove the associative property. By the 
definition of the product, (H2H3)4~(x)= H~H3¢(x), and therefore 
Ht(H~lta)ep(x) = H~tt~:t3¢(x).  Similarly, (H~H2)HaC(x) = H~H~Ha~(x), 
provided Ha is of finite range, so that H~ep(x) is a test-function. On the 
other hand, if H3 is of infinite range, (HIH~) is of finite range (since, 
by hypothesis, not more than one of the three operators is of infinite 
range), and we have, by the commutative property, (H1H2)H~¢(x) 

= H~(H1H2)¢(x) = H3tI1H2¢(x) = H1H3H~ck(x) = H1H~H3ep(x), since 
H2ep(x) is a test-function. 

I t  will be convenient to refer to the product DrH (where H is any 
distribution operator) as the rth derivaiive 2~ of H. If H is of finite range, 
it can be shown that the range of DrH is the same as that of H. We shall 
consider first the case r = 1. If H is of the form (21), we have 

D H  = D K  + Jolg + J1D °- + . . . + JrD ~'J , 

I t  is clearly sufficient to show that D K  has the same range as K. If  the 
range of K is (a, b), it is evident from equation (24) that the range of D K  

is contained in (a, b). Moreover, f ' ( t ) ,  the derivative of the basic func- 
tion f(t) of K, cannot be identically zero in an interval extending to the 
right of the argument a unless a discontinuity in f ( t )  occurs at t = a, for 
otherwise](/) would have to be identically zero in the same interval, con- 
t r a i t  to the definition of the range. Similar considerations apply to the 

26 This is essentially equivalent to Schwartz' definition of the rth derivative of a 
distribution for the case of one variable. 
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upper end of the interval. The extension to a derivative of any order is 
immediate. As an example, we note that  the range of M" is ( - r / 2 ,  r/2),  
since this is the range of 3" --- DrM ". 

ORDER OF A mSTRI~3T2TION OPE~TOR 

A distribution operator of the form (21), in which J,  is different from 
zero, will be called an operator of order r3 r In  particular, a discrete oper- 
ator, or a sum of a continuous and a discrete operator, is of order zero. 
I t  is clear that  the derivative of an operator of order r is of order r + 1. 
I t  will be convenient also to define an operator of negative order - - r  as 
one whose rth derivative is of order zero. Such an operator would be a 
continuous operator whose basic function and its first r - 2 derivatives 
are everywhere continuous, but  whose (r -- 1)th derivative has discon- 
tinuities. An operator of order - 1 is a continuous operator whose basic 
function has discontinuities. With this understanding, it is evident that,  
whatever may be the order of a distribution operator, multiplication by 
D" always increases the order by  r. This statement is somewhat general- 
ized in the following theorem: 

Theorem 1. If  H1 and tt2 are distribution operators of order rl and r~, 
respectively, the product HI//2, if it is defined, is of order rl + r~. 

This is obvious except when r~ and r~ are both negative. In  that  case, 
we have 

D-  (~,+~) H1//~ = (D--,,HO(17-~,FI~) , 

which is the product of two operators of order zero and therefore is of order 
zero. Hence, by  the definition of negative order, H1H~ is of order rl + rv 

The following theorem will be useful later. 

Theorem 2. If  K is a continuous operator with basic functionf(t) a n d / /  
is a distribution operator such that  H K  is a continuous operator, and at 
least one of the operators H and K is of finite range, then the basic func- 
tion of H K  is Hf(t). 

If  H is of positive order r, it follows from Theorem 1 and from the fact 
that  H K  is a continuous operator (and therefore of order not exceeding 
- 1) tha t  K is of order not exceeding - r --  1. In  other words, f(t) has no 
discontinuities in its derivatives of order 0, 1 , . . . ,  r - 1. I t  follows from 
equations (25) and (26) that  DiK = K(O for i -- 1 ,  2 ,  . . . , r .  Recalling 
from equation (23) that  

Kck(x) = o J ( x - -  s) c ~ ( s ) d s ,  

27 The notion of the order of a distribution operator is due to Schwartz, op. cir., Tome 
I, p. 25. 
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where ~(x) is any test-function, it is evident that we can obtain 
D~K~(x) = KCO~(x) (for i = 1, 2, . . . , r) by merely replacing f (x  -- s) 
in the integrand by its ith derivative. If H is of zero or negative order, of 
course no differentiation is involved. Moreover, if the range of nonzero 
values of ~(s) is (~, fl), the limits of integration can be changed to a and ft. 
If  either K or H is of finite range, it follows that all integrations and sum- 
mations involved in the calculation of HK~(x )  for a particular value of x 
are, in reality, over a finite interval: therefore the order of operations can 
be reversed. In  the case of a summation, this is a consequence of the ele- 
mentary fact that the integral of a sum of functions is the sum of their 
integrals. In the case of an integration, it follows from the piecewise con- 
tinuity of all functions involved in the integrand. Consequently, we can 
obtain H K ¢ ( x )  by operating under the integral sign with H on f ( x  -- s). 
This gives 

HK4~(x )  = [ t I f ( x - s ) ] 4 ~ ( s ) d s ,  

which implies, in view of equation (23), that IIf(t) is the basic function 
of H K .  

POLX~OmAL OPERATORS 

A continuous operator whose basic function is a polynomial of degree q 
will be called a polynomial operator of degree q. Clearly, such an operator is 
of infinite range. The continuous operator whose basic function is identi- 
cally zero, which reduces every test-function to zero, will be considered a 
special case of a polynomial operator, and will be called the zero operator. 
I t  will be represented by the ordinary zero symbol, as the context will 
always show whether the zero operator or the number zero is intended. 

If  H is a distribution operator such that  DqH = O, where q is a posi- 
tive integer, it is easily seen that H must be a polynomial operator of de- 
gree at  most q - I. First, we point out that  H is necessarily a continuous 
operator, for otherwise DqH would not be a continuous operator. Letf( t)  
denote the basic function o f / / .  Then, by Theorem 2, Dqf(t) = 0. This 
shows that  f(O is a polynomial of degree at most q - 1. I t  follows that 
two distribution operators//1 and H ,  which have the same rth derivative 
differ by a polynomial operator of degree q -  1 or less, for we have 
D~(H1 -- H2) --- O. Thus, a distribution operator H of finite range is com- 
pletely determined by its rth derivative. 

I t  is easily seen that the product of a polynomial operator P of degree q 
with any distribution operator H of finite range is another polynomial 
operator of degree at most q. The product certainly exists since one factor 
is of finite range. Moreover, 

Dq+IHP = HD~+~P = O, 

showing that H P  is a polynomial operator of degree at most q. 
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For brevity, we shall refer to a discrete operator which is the trace of a 
polynomial operator of degree q as a polynomial trace of degree q. We shall 
also say that one distribution operator annihilates another if their prod- 
uct is the zero operator. We shall need the following theorem. 

Theorem 3. A distribution operator H of finite range annihilates every 
polynomial trace of degree q or less if and only if it is of the form ~q+lH', 
where H '  is a distribution operator of finite range. 

If  t(P) is a polynomial trace of degree q or less, evidently 

~+lH't(P) = It'~+lt(p) = o .  

To prove the converse, we shall consider first an operator R, which is 
either a continuous or discrete operator of finite range and annihilates 
every polynomial trace of degree q or less. If R is continuous, let f(x) de- 
note its basic function. I f  it is discrete and of the form ~,ia~E-% we de- 
fine a "basic function" f(x) equal to a, when x = x~ and equal to zero for 
all values of x not equal to any x~. We now define 

¢,(x) = ~ ,  f ( x - n - ½ ) ,  
n ~ O  

where the infinite upper limit is used for algebraic convenience. Evidently 

r , ( x )  = f ( x ) .  (28)  

I f  (a, b) is the range of R, we see that [l(x) = 0 for x < a + ½. For 
x > b - ½, we have 

f~(x) = ~ ¢ ~ x - n - . ' . )  
t l = - - c o  

Now, let P0 denote the polynomial operator of degree zero whose basic 
function is identically 1, and letfo(X) denote the basic function (in quotes, 
if R is discrete) of the product Rt(P0). Then, by Theorem 2 if R is con- 
tinuous, or by symbolic multiplication if R is discrete, we have 

co  

to(x) = " ~  r l - - n ) .  

Thus, fdx) -- fo(x - ½) for x > b - ½. But, since q >_ O, t(Po) is anni- 
hilated by R, and therefore fo(x) is identically zero. Hence f~(x) = 0 for 
x > b - ½ .  

Moreover, equation (28) shows that  in the continuous case fi(x) is 
piecewise analytic, for, if it were not, either by reason of having other 
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than jump discontinuities or an infinite number of discontinuities in a 
finite interval, such irregularities necessarily would occur also in f(x). 

Now let R1 denote the operator  (of finite range) whose basic function 
(in quotes, if R is discrete) isfl(x).  Then, by  Theorem 2 in the continuous 
case, or by  symbolic multiplication in the discrete case, 

~R1 = R .  

If  t(P) is any polynomial trace of degree q or less, 

Rt(P) = 0 = RI6t(P). 

But, since 6t(P) = E--I~2t(E~/~SP), and since any polynomial is the first 
difference of a polynomial of the next higher degree, we conclude tha t  R1 
annihilates every polynomial trace of degree q - 1 or less. 

By  repeated application of this result we eventually find tha t  

R = ~q+lR', 

where R '  is a continuous or discrete operator according as R is continuous 
or discrete, and is of finite range. 

Finally, if B is a distribution operator of the form (21), a polynomial 
trace is annihilated by  H only if it is annihilated separately by  the con- 
tinuous term K and by  each discrete " J "  operator. Therefore,  if H is of 
finite range, it is of the form 6~+~H', w h e r e / / '  is a distribution operator 
of finite range. 

API"LICATION TO INTERPOI~ATION rOP,~.mAS 

If  Ua, U~+~ . . . .  , U~+N are a set of given values on which interpolation is 
to be performed, we shall call the discrete operator 

a + N  

U = ~ u,E-" 
n ~ a  

the characteristic operator of the given values. Formula (1) defines a piece- 
wise analytic function v, if we adopt  the convention ~s tha t  u ,  = 0 for 
n < a and for n > a + N. This function v, may  be  considered as the 
basic function of a continuous operator K, which we shall call the charac- 
teristic operator of the interpolated values. If  G denotes the characteristic 
operator of the interpolation formula, it follows from equations (I) and 
(5) and Theorem 2 tha t  

GU = K ,  (29)  

~s This, of course, is not a practical assumption, and is made only for algebraic con- 
venience. In this paper, our interest is only in the main part of the v~ curve, which 
is unaffected by this assumption. 
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or, in o ther  words, the  character is t ic  operator  of the  given values multi-  
plied by  the  character is t ic  operator  of the interpolat ion formula gives the 
character is t ic  operator  of the interpolated values2 9 

MAINTENANCE OF DEGREE 

I t  follows from equation (29) tha t  a continuously defined interpolation 
formula is correct  to r th  differences if and  only if its characterist ic  opera- 
tor  G satisfies the equation 

Ct(P) = P ,  (30)  

for every polynomial  operator  P of degree r or less. I t  will be convenient 
to consider the somewhat  weaker requirement to the effect that ,  for every 
such polynomial  operator  P ,  

Gt(~') = Q_, 

where Q is a polynomial  operator,  bu t  not  necessarily identical  with P .  A 
continuous operator  which satisfies this weaker condition will be said to 
mainta in  3° the  degree r. In  justif ication of this  terminology,  we point  
out  tha t  

~r+,Q = ~r+~Gt(P ) = G~,+lt(p) = O, 

showing tha t  if Q is a polynomial  operator,  i ts  degree does not  exceed 
tha t  of P.  

Therefore, if G mainta ins  the degree r and P is a polynomial  operator  
of degree r or less, 

D'+JGt(P) = D"+IQ = O,  

which shows tha t  the operator  Dr+'G annihilates all polynomial  traces of 
degree r or less. I f  G is of finite range, we have, therefore, by  Theorem 3, 

D~+'G = ~+'H,  

,9 These definitions and this relationship are, of course, strictly analogous to those 
relating to the characteristic functions employed by Schoenberg in connection with 
smoothing formulas. 

~0 This concept is due to Schoenberg, who uses, however, the word "preserve" rather 
than "maintain." One reason for using a slightly different terminology is the fact that 
our concept differs in certain details from his. His definition requires that Q be of the 
same degree as P, and that it differ from P by a polynomial operator of lower degree. 
This implies, as he points out, that the operator G preserves the leading term of a poly- 
nomial of degree r or less. We wish to include certain operators (such as ~kM~) which 
actually reduce the degree. Moreover, our definition has the advantage, from our stand- 
point, that any linear combination of operators which maintain the degree r is an opera- 
tor which maintains the degree r. Operators which preserve the degree, according to 
Schoenberg's definition, do not have this property. 
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where H is a distribution operator of finite range. Since G is a continuous 
operator, and therefore of order not exceeding --1, while ~+1 is of order 
zero, it follows from Theorem 1 that H is of order not exceeding r. 

Now, M~+IH is also of finite range, and 

D,.+xm,.+l H ~_ ~,+t H = D,'+IG. 

Since a distribution operator of finite range is completely determined by 
its (r + 1)th derivative, we have, therefore, G = M~1H. On the other 
hand, if G = M'+IH and P is a polynomial operator of degree r or less, 

I~+IGt(P) = H~"+II(p) = O, 

and G maintains the degree r. We have shown, therefore, that a continuous 
operator G of finite range maintains the degree r if and only if condition 
(a) of Rule 1 is satisfied. 

In connection with discrete interpolation, it has been shown ( T S A  I, 
349) that  an operator which maintains the degree r, when applied to 
values of a polynomial of degree r or less, gives the same result whether 
applied as an interpolation formula or as a graduation formula. The con- 
tinuous analogue of this observation is provided by the following theorem. 

Theorem 4. A continuous operator G of finite range maintains the degree 
r if and only if Gt(P) = GP for every polynomial operator P of degree r 
or less. 

If G is of finite range, it has already been shown that GP is a poly- 
nomial operator. Thus, Gt(P), if equal to GP, is a polynomial operator, 
and therefore G maintains the degree r. 

To prove the converse, let us suppose that G maintains the degree r. 
This implies that Gt(P) = Q, a polynomial operator of degree r or less. 
Now, the basic function of Q, being a polynomial, is completely deter- 
mined by its values for integral arguments. However, a little reflection 
will convince the reader that, in view of Theorem 2, these are identical 
with the values for the same integral arguments of the basic function 
of Pt(G), which evidently is also a polynomial operator of degree r or less. 
Therefore, 

GI(P) = Q = Pt (G) .  (31) 

Moreover, replacing P by EhP, which is a polynomial operator of the 
same degree, 

Gt(Ehp) = EhPI(G) = EhQ, 
o r  

GE -ht(EhP) = Q. 

Let](x) ,  p(x), and g(x) denote the basic functions of G, P, and Q, respec- 
tively. Then, by Theorem 2, 

E -ht(EhP)f(x)  = g(x) ,  
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o r  

• p ( n + h )  f ( x - - n - - h )  = g ( x ) .  

Integrating both sides with respect to h between the limits 0 and 1 and 
rearranging the left member gives 

f _ : p ( y )  f ( x - - y ) d y = g ( x ) ,  

or, in other words, 
t 7 ( x )  = g(~-). 

I t  follows from Theorem 2 that g(x) is the basic function of GP. In other 
words, 

GP = Q = Gt(P), 

as required b y  the theorem. 

We shall say that a distribution operator H is correct to rth differences if, 
for every polynomial operator P of degree r or less, H P --- P. I t  follows 
from this definition, equation (30), and Theorem 4 that  a continuously 
defined interpolation formula of finite span is correct to rth differences if 
and only if its characteristic operator G maintains the degree r and is also 
correct to rth differences. 

S Y M B O L I C  E X P A N S I O N S  I N  P O W E R S  OF D 

Using the symbolic expansion 

E - t =  e -*D= 1 - - t D + ½ f - D  ~ - - . . . ,  (32) 

any continuous or discrete operator of finite range, and therefore any dis- 
tribution operator of finite range, can be expanded symbolically in a series 
of powers of D with numerical coefficients. In the case of a continuous 
operator K with basic function f(t), the coefficient of D n (for h > 0) in 
its symbolic expansion is 

(---h~)" f~thf  (t) dt (33) 
-- -- "~ -¢o  * 

In the symbolic expansion of the discrete operator 

J = ~ c i E - q ,  (34) 
the coefficient of D h is 

- -  -~c~t~. (35) 

The first few terms of the symbolic expansions in powers of D of a num- 
ber of continuous and discrete operators are given in Table 2. 
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These expansions can be considered valid only when applied to poly- 
nomials, since, for other functions, the resulting infinite series usually 
do not converge. In the case of polynomials, however, the expansion (32) 
is clearly valid, since it amounts to expanding the polynomial in a Taylor 
series, which, in this case, terminates after a finite number of terms. 
Therefore, the symbolic expansion in powers of D of any distribution 
operator of finite range, when applied to a polynomial of any degree, gives 
the same result as the operator itself. It  is evident, therefore, that a dis- 
tribution operator of finite range is correct to rth differences if and only if 
its symbolic expansion is of the form 1 + k D  "+~ + . . . .  The following 
two theorems will be needed. 

Theorem 5. If H~ and//~ are distribution operators of finite range, the 
symbolic expansion of their product in powers of D is identical with the 
product of their symbolic expansions. 

For, if//1 and/ /2  are applied in succession to any polynomial, the result 
is the same as that of applying their symbolic expansions in succession 
(since the result of the first application is again a polynomial), which, in 
turn, is clearly the same as would be obtained by applying the product of 
their symbolic expansions. This product, then, must be identical with the 
symbolic expansion of the product of the operators, since two different 
symbolic expansions could not give the same result for all polynomials. 

Theorem 6. A distribution operator / t  of finite range can be expressed in 
the form D~//~, where//~ is a distribution operator of finite range, if and 
only if the symbolic expansion of H lacks powers of D less than q. The 
operator//q is unique. 

If it is given t h a t / / =  D~tt~, where Hq is of finite range, it follows at 
once from Theorem 5 that the symbolic expansion o f / / l acks  powers less 
than q. 

To prove the converse, we shall consider first the case q = 1. Let 

/ /  = Ix- + Jo  + J~D + . . .  + J r D  r , (36) 

where K has the basic functionf(t) and J0 is of the form (34), and suppose 
that the symbolic expansion of H in powers of D lacks powers less than q. 
Now, let 

H1 = K1 + J1 + J2D + . . . + J rD  r-t  , 

where the basic function of K~ is 

[ l ( l )  = f ( s ) d s + ~ _  4 c , .  
ti<t 
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I t  is clear thatfi(t)  has a jump discontinuity of jump c, at each argument 
t, and has, for all other arguments, the derivative f(t). I t  follows from 
equation (24) that DH,  -- H. 

We shall now show that  H1 is of finite range. I t  is clearly sufficient to 
show that K1 is of finite range. Let  (a, b) be the range of H. Evidently, 
fl(t) -- 0 for t < a. For t > b, f~(t) is constant and equal to 

f ~ y  ( s) d s  + ~ c ~ .  
oo  

But, by formulas (33) and (35), this is precisely the negative of the term 
free of D in the symbolic expansion of H, which, by hypothesis, is equal 
to zero. Therefore, H~ is of finite range. 

Moreover, since the symbolic expansion of H lacks all powers less than 
q of D, by Theorem 5, the expansion of Ht lacks all powers less than 
q -- 1. Applying a second time the case q = 1, we find that there exists a 
distribution operator H2 of finite range, such that  DH2 = H~, and its 
symbolic expansion lacks all powers less than q -- 2 of D, and so on. By 
repeated application of this result, we eventually conclude that there is a 
distribution operator H~ of finite range, such that DqHq = H. The unique- 
ness of Hq follows from the fact that  a distribution operator of finite range 
is completely determined by its qth derivative. 

When the conditions of Theorem 6 are satisfied, we may without am- 
biguity write D-~H to denote the unique operator defined by the theo- 
rem. The symbolic equation D-k~ k --- M k in formula (Tb) is an example. 
In such cases, it will sometimes be convenient to multiply out such a 
product into an expression containing various negative powers of D, even 
though some individual terms may not represent uniquely determined 
operators. For example, uD -2 - ~D -~ will mean D-2(u - M), since the 
symbolic expansion of # -- M lacks powers of D less than 2. 

com, oslrE I'O~YNOMIAL OPERATORS 

We shall define a composite polynomial operator as one whose basic 
function is given, in successive intervals, by different polynomials, like 
the basic function of a polynomial interpolation formula. The definition 
does not require, however, that the transitions from one polynomial to 
another shall occur at unit intervals, or even at any regular intervals. The 
degree of a composite polynomial operator is the maximum degree occur- 
ring in any of the polynomials used to define its basic function. If P is a 
composite polynomial operator of degree q, it is clear that  Dc+'P, when ex- 
pressed in the form (25), lacks the continuous term, and we have 

D~+'P = J-¢-I + J-qD + . . . + J_ID q . 
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If  P is of finite range, it is completely determined by its (q + l ) th  deriv- 
ative, and we may write, in accordance with the remarks following the 
proof of Theorem 6, 

P = J_ ID  --1 + J_~D -~ + . . . + J_q_lD -¢--1 . (37) 

I t  follows from Theorem 6 that  the symbolic expansion in powers of D of 
the right member of equation (37) is free from negative powers of D. 

This formula provides a means of obtaining the characteristic operator 
corresponding to a given basic function. We take as an illustration the 
basic function L ( x )  of Karup ' s  formula, as given by  the expressions (2). 
Differentiating these expressions successively, we obtain the data in the 
following table: 

- 2  
- 1  

0. 
1 
X.. 

L(x) L'(x) L"(x-O) L"(x+0) 

0 0 --1 
½ 2 4 
0 --5 --5 

-½ 4 2 
0 - 1  0 

L'"(x-O) 

0 
3 

- 9  
9 

- 3  

L'"(x+ O) 

3 
- 9  

9 
- 3  

0 

From this table we compute the jumps of the second and third derivatives 
as follows: 

- 2 .  - 1  3 
- 1 .  2 --12 

O. 0 18 
1. - 2  -12  
2. I 3 

By formula (26), we compute that  J -3  = - 2 , , 8  a and J_ ,  -- 384. By for- 
mula (37) we have 

P = - 2 # M D  -a + 3a*D --4 - 3M 4 - 2#M a = Ma(3M - 2#) .  

If  a distribution operator H of order r can be expressed in the form 

t I  = J ~ D  z + J ~ I D  TM + . . . + J , D ' ,  (38)  

where J ,  is different from zero, we shall say that  it is of r a n k  1. For ex- 
ample, M" = 6"D "-r is of rank and order - r .  I f  l is positive or zero, it is 
clear that  the form (38) is identical with the form (36) and t h a t / / l a c k s  
the continuous term K. If  l is a negative integer, this implies, in view of 
equation (37), tha t  K is a composite polynomial operator of degree 
- - l  -- 1. On the other hand, it is evident tha t  any distribution operator 
having a composite polynomial operator as its continuous term K can be 
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expressed in the form (38). The following theorem is an immediate conse- 
quence of the definition of rank. 

Theorem 7. I f  H1 and H~ are distribution operators of finite range and of 
rank ll and l~, respectively, their product  is of rank ll + 12. 

PROOt: OF THE RULES 

Proof  of Rule  1. I t  has been shown tha t  a continuously defined interpo- 
lation formula is correct  to r th  differences if and only if its characteristic 
operator G maintains the degree r and is correct to r th differences. I t  has 
also been pointed out  tha t  maintenance of the degree r is equivalent to 
condition (a) of Rule 1, while correctness of G to r th differences is equiva- 
lent to the requirement tha t  its symbolic expansion in powers of D be of 
the form 1 + k D  ~+1 + . . . .  I t  remains only to show, therefore, that  the 
lat ter  condition is equivalent to condition (b) of Rule 1. Without  going 
into the interpretat ion of a negat ive power of M ,  it will suffice to say that  
by  the symbolic expansion of M ~-1  we mean merely the unique power 
series in D whose product  with the symbolic expansion of M ~+1 is identi- 
cally 1. I t  follows f rom Theorem 5 tha t  the symbolic expansion of G is the 
product of the symbolic expansions of M ~+1 and H.  Therefore, the terms 
in the expansion of H up to and including the one containing D* are 
uniquely determined b y  the requirement tha t  the symbolic expansion 
of G be of the form 1 + kD '+I + . . . , and are not affected by  the coeffi- 
cients of D ~+1 and higher powers in tha t  expansion. Thus,  they must  agree 
with the corresponding terms in the expansion of M --~-~. This completes 
the proof. 

Proof  of  Rule  2. I f  (a, b) is the range of G, it follows from the remarks 
made earlier concerning the range of a derivat ive tha t  the range of 
L ) ~ G  = ~+~H is also (a, b). I t  is then fairly clear tha t  the range of 
H is 3~ 

3~ If (a, ~) is the range of H, and if any of the J ' s  in the expression for H contain 
terms involving E -~ and E-a, this is obvious. If E "-~ does not appear, then it must be 
true that any interval, however small, extending to the right of the argument a con- 
tains arguments for which the basic function f(t) of K, the continuous part of H, is dif- 
ferent from zero. Moreover, in a sufficiently small interval to the right of the argument 

r + l  

the basic function of ~r+~K reduces to 

( - - 1 ) ' + l f (  t - r + 2  1 ) :  

thus any such interval contains nonzero values of this basic function. Similar consid- 
erations apply at the upper end of the range. 

This exemplifies a general theorem to the effect that if the ranges of two distribu- 
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If S denotes the span, b -- a, of G and h is the span of H, we have, at  
once, s = h + r + 1. If  s is an integer, formula (1) shows that  it is the 
number of terms in the linear compound form of the formula, and it is 
clear tha t  h is an integer. This proves Rule 2. If  h = n + f ,  where n is an 
integer a n d f  a proper fraction, then s = n + r + 1 + f ,  and formula (1) 
shows tha t  the number of terms is n + r + 1 for some arguments  and 
n + r + 2 for others. This proves footnote 10. 

Proof  o f  Rule  3. I t  follows from the definition of rank and from equation 
(37) that,  if a continuously defined interpolation formula of finite span is 
of degree q, the operator K of equation (29) is of rank - q  -- 1. I n  view of 
Theorem 7, this is the rank of G, since the discrete operator U is of rank 
zero. Since M ~+1 =/t~+lD -~-1 is of rank - r  -- 1, it follows from Rule l(a) 
that  H is of rank - q  + r. Similarly, if the order of contact of successive 
arcs is always at least p, this implies tha t  the order of the operator K in 
equation (29) is at  most  p 2. Since the discrete operator U is of order 
zero, Theorem 1 shows that  the characteristic operator G is of order at 
most p 2. Since M ~+1 is of order - r -  1, it follows that  H is of 
order at  most  r p 1. 

On the other hand, if H is of the form (6), it is, by  definition, of rank 
- q  + r and order r - p - 1, which implies that  G, and therefore the 
operator K of equation (29), is of rank - q  - 1 and order p 2. I t  
follows tha t  the formula is of degree q and that  its successive interpolating 
arcs always have order of contact  at  least p. This proves Rule 3(a), in- 
cluding footnote 12. 

If the formula is not  a polynomial interpolation formula and p > r, it 
is still true that  H is of order at  most  r p 1. However, only for a 
polynomial interpolation formula can H be expressed in the form (6) and 
the order determined by  inspection of the subscripts of the J ' s ,  when 
p > r. For other formulas, the order may be ascertained by  successive 
differentiation of the basic function to determine the number of continu- 
ous derivatives. 

For any polynomial interpolation formula, G is a composite polynomial 
operator, and can be expressed in the form (37). Since it is of order 
- p  - 2, it takes the form 

G = J_q_lD-~-I + J_qD-q + . . . + J _ p _ . ~ - r - ~ .  

tion operators/11 and//2 are (a~, bt) and (az, b2), respectively, the range of their product 
is (a~ + a2, b~ + b2). It is plain enough that the range of//~ H2 cannot extend beyond 
that indicated. To prove rigorously that it can never be smaller is somewhat difficult, 
and is not necessary for the purposes of this paper. 
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But this is just what we obtain by taking r = - 1 in equation (6). This 
proves footnote 13. 

I t  is obvious from the definitions of rank and order of a distribution 
operator that the rank can never exceed the order. Since the rank of H is 
- q +  r and its order is at most r -  p - 1, we have r p 1 > 
--q + r, which gives q > p + 1. Moreover, the rank of H cannot be 
positive, for then the symbolic expansion of H, and therefore of G, in 
powers of D alone would lack the term free of D, and the latter expansion 
could not be of the form 1 + kD "+1 + . . . .  Thus, the rank of H is at 
most zero. Since the rank of H is - q  + r, this gives at once q >_ r. 
This completes the proof of Rule 3(b). 

Since H is of the form (38), its continuous part K is a composite poly- 
nomial operator, and can be expressed in the form (37). The remark im- 
mediately following the latter equation establishes Rule 3(c). 

Proof of Rule 4. Study of formula (1) shows that the curve of interpo- 
lated values produced by a polynomial interpolation formula can change 
from one polynomial to another at the argument z only if a similar change 
in the basic function L(x) occurs at an argument which differs from z by 
an integer. It  follows that, for an end-point formula, these "points of 
junction" of L(x) occur only at integral arguments, while, for a mid- 
point formula, they occur only at arguments which are odd multiples of ½. 
Now, these points of junction are precisely the arguments at which dis- 
continuities eventually appear in some of the derivatives when L(x) is 
successively differentiated. Further, it follows from formulas (25) and (26) 
that they are the negatives of the exponents of E appearing in the ] ' s  after 
G has been differentiated successively until the continuous operator in the 
right member of formula (25) has disappeared. 

We note also that a Stirling operator has only integers as exponents of 
E when it is expressed in the form (26), while a Bessel operator has only 
odd multiples of ½ as exponents when expressed in this form. Finally, we 
observe that multiplying a Stifling or Bessel operator by an even power 
of ~ gives the same kind of operator as before multiplication, while 
multiplication by an odd power of ~ changes a Stirling to a Bessel opera- 
tor and vice versa. Since D~'~M r+* = ~'+~, all parts of Rule 4 follow at 
once from these remarks. 

I t  will be noted that condition (b) of Rule 1 has not been used in this 
proof. Therefore, it applies to any operator of the form M'+~H, whether 
correct to rth differences or not. This proves the statement made in 
Step 5(a) of the suggested procedure for obtaining a formula from its 
characteristic operator. 
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Proof of Rule 5. I t  was previously pointed out that  a symmetrical in- 
terpolation formula is precisely one whose basic function is an even func- 
tion: that is, L(--x)  = L(x). I t  is clear that the derivative of an even func- 
tion is an odd function (that is, a function/(x) such tha t f ( - -x)  = - f ( x ) ) ,  
and vice versa. We shall call a discrete operator symmetric if the coeffi- 
cients of E t and E--* are always equal; skew-symmetric, if such coefficients 
are always negatives of each other. Further, we shall call a distribution 
operator H symmetric if, when it is expressed in the form (36), the basic 
function of K is an even function and the J ' s  are symmetric or skew-sym- 
metric according as they are coefficients of even or odd powers of D 
(counting D o as an even power). If  the basic function of K is an odd 
function and the J ' s  are symmetric or skew-symmetric according as they 
are coefficients of odd or even powers of D, we shall call H skew-symmetric. 
In view of these definitions, the general properties of distribution oper- 
ators, and equation (24), it is not difficult to verify that the product of two 
symmetric or two skew-symmetric distribution operators is symmetric, 
while the product of a symmetric and a skew-symmetric distribution 
operator is skew-symmetric. In particular, both the operators D ~+1 and 
~-1 are symmetric or skew-symmetric according as r is odd or even, and 
this is true also of D~IG if the interpolation formula is symmetrical. Since 
D ' + ~  -- g+~H, it is clear that  H must be a symmetric distribution opera- 
tor. Finally, we remark that a discrete operator which is expressed as a 
Stifling operator or a Bessel operator, or a sum of both, is symmetric or 
skew-symmetric precisely wben it contains, respectively, only even or only 
odd powers of 8. This completes the proof of Rule 5, 

Proof of Rule 6. By definition, the trace of an interpolation formula is a 
discrete operator involving only integral powers of E. By means of Stir- 
ling's formula, which can be expressed symbolically as 

E ~= l + x ~ 5 + ½ x 2 ~  ~ + ] x ( x  2 -  1)uS 3 + . . . ,  (39) 

any such operator can be expressed as a Stirling operator, since, for any 
integral value of x, this series terminates after a finite number of terms. If  
the formula is correct to rth differences, Gt(P) = P for any polynomial 
operator P of degree r or less. However, by  equation (31), this implies 
that  Pt(G) = P. But this can be true for all polynomial operators of de- 
gree r or less only if t(G), when expressed as a Stirling operator, is of the 
form 1 + k3 ~+1 + . . . .  If  the formula is also symmetrical, E ~ and E - "  
have the same coefficient, say a~, in t(G). Since the coefficients of odd 
powers of ~ in equation (39) are odd functions of x, these terms will cancel 
in the sum a~E ~ + a , E  -~. This proves Rule 6(a). 

In a symmetrical formula, L ( - x )  = L(x), and therefore the range of G 
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is of the form (--b, b), and s = 2b. I f  this is odd, the integral arguments 
falling in the interval of nonzero values of L(x) are those from 

s - - 1  s - - 1  
to - - - -  

2 2 ' 

inclusive. Thus, the span of t(G) is at  most s -- 1. If s is even, then at most 
the integral arguments from --s/2 to s/2, inclusive, lie within or at the ex- 
tremities of the interval of nonzero values. However, if the formula has 
order of contact at least zero, L(x) is free from discontinuities and L(b) 
= L(-b) = 0. Thus the integral arguments corresponding to nonzero 
values of L(x) are at most those from 

s - - 2  s - - 2  
to - - - - -  

2 2 ' 

inclusive, and the span of t(G) is at most s -- 2. This completes the proof 
of Rule 6. 

Proof of Rule 7. If f(x) is the basic function of K and F(x) the basic 
function of 6~iK, we have, by Theorem 2, F(x) = 62~f(x). Thus, by the 
definition of the trace, 

t(6~iK) = ~ [62i] (n) ] E--~. 

Expressing fi~(n) in terms of the ordinatesf(n) and rearranging terms in 
the summation gives 

t(62iK) = ~ f (n) 3~iE -*= ~2it(K). 

The second equation in Rule 7 is merely another way of stating the 
same result. Since t(62iK) must contain the factor 6 2i, we obtain t(K) by 
removing this factor. This is how 6 -2i in the second equation is to be in- 
terpreted. Thus, when negative powers of 6 appear, as in Examples 4 
and 5, their coefficients must vanish. 

Rule 8 follows at once from the definition of the trace. 
Proof of formulas (7). Formula (Ta) follows from the definition of M 

and the elementary properties of distribution operators. Formula (7b) has 
been given previously as an example of the application of Theorem 6. 
Formula (7c) is to be accepted only with certain qualifications. If H is a 
distribution operator such that  D-kH has a unique interpretation in ac- 
cordance with Theorem 6, then 

D--kH = ~kMkH. 
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In other words, if H~ is a distribution operator of finite range such that 
D~Hk -- H, then clearly ~kHk = MkH. Moreover, Hk is the only distri- 
bution operator of finite range having this property. For if H~ were an- 
other operator of finite range such that 8kH~ = MkH,  we should have 

Dk(MkH~) = Dk(MkH~) = M k H .  

Since a distribution operator of finite range is completely determined by 
its kth derivative, this implies that MkH~ = MkHk or Mk(H;  - Hk) = O. 
Multiplication by D ~ then gives 6k(H~ -- Hk) = 0. This cannot be true 
if H~ - HA is any nonzero operator of finite range. 

SPECIAL PROPERTIES O17 TILE OPERATOR M k 

Schoenberg (op. cit., p. 68) has given an explicit expression for the basic 
function of the operator M k. It will be noted that, in the discrete case, an 
expression for the coefficients of the different powers of E in [m] k can be 
obtained from the multinomial theorem, since Ira] = E-("-I)/2(I + E + 

+ ... + E~--x), and the basic function of M k can be deduced there- 
from by taking the limit of the kth power of this expression. It can, 
however, be established directly by making use of a function which 
Schoenberg denotes by x~_, defined by 

{:k for x_>O 

x~_ = for x < 0 . 

I t  will be seen that, for k >_ 0, an indefinite integral of x~ is x ~ l / ( k  + 1). 
We shall prove by induction the formula 

1 
L k ( x )  = ( k - -  1)!  ~ - 1 ,  (40) 

where Lk(x) denotes the basic function of M k. I t  is evident from the defi- 
nition of M that its basic function is 

{ ;  for , x l < ½ ,  

L~(x) = for [xl > ½ .  

Clearly, equation (40) for k = 1 gives the same result. Now, if equation 
(40) is true for k = j, we have, by Theorem 2, 

1 f 1/2 LS+i (x) = MLs ( x) = ( j - -  1) [d-zl2 ~i ( x + l) i+-ldt 

(.i 1)!  ~'-Z~ 

1 I 1 
( j -  1)! ~;L -~ -/.j_,i~= j--[ 8i+lx~. 
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I t  is evident from equation (40) that Lk(x) is a composite function 
made up of polynomial arcs (a different polynomial in each unit interval 
between successive integral arguments if k is even, or between successive 
odd multiples of ½ if k is odd) of degree k - 1 and (for k > 2) having 
k -- 2 continuous derivatives. Its (k - 1)th derivative is a step-func- 
tion having discontinuities at unit intervals. However, without reference 
to formula (40), these properties could have been deduced from the de- 
gree and order of M k and the fact that its (k -- 1)th derivative is M~ v-~. 

The properties of M are analogous to those of [rn]. The coefficients of 
successive powers of E in Ira] k are values of a composite function made 
up of successive sets of m values, each set lying on a polynomial of de- 
gree k -  1. These successive sets "interlock" when k > 2, and the 
(k -- 1)th finite differences, taken in sets of m, lie on a step-function. 
For M ~ these properties are translated into the continuous analogues. 

Another useful property of the operator M k concerns its expansion in 
the form of an infinite Stifling or Bessel operator. By means of the ex- 
pansion (39), we can obtain a symbolic Stifling expansion of any con- 
tinuous operaor K of finite span, analogous to its symbolic expansion in 
powers of D. Similarly, using the symbolic expansion 

E • = ~ + x~ + ½(x~ - I ) ~  ~ + ~x(x~ - I)~ 3 + . . . ,  

derived from Bessel's formula, we can obtain a Bessel expansion of K. 
These expansions have similar properties to those of the symbolic expan- 
sions in powers of D. When applied to any polynomial, they must give the 
same result as the operator K itself. Now, if K maintains the degree r, it 
follows from Theorem 4 and formula (31) that Pt(K) --- K P  for every 
polynomial operator P of degree r or less. Therefore, the trace of K and 
the symbolic Stirling expansion of K give identical results when applied 
to any polynomial of degree r or less. Since both are Stirling operators, 
this can be the case only if they agree up to and including the term con- 
taining 3". On the other hand, E-I/2t(E1/2K) is a Bessel operator which we 
may call the pseudotrace of K. In case K is the characteristic operator of 
an interpolation formula, it indicates the interpolated value produced by 
the formula for arguments midway between the given values. Replacing 
G by E~/~K in equation (31) and applying Theorem 4 gives PE--1/~t(EI/2K) 
= K P  for every polynomial operator P of degree r or less. Thus, the pseu- 
dotrace of K and its symbolic Bessel expansion must agree up to and in- 
cluding the term in 5". 

Now, the operator M" is symmetric (see proof of Rule 5) ~ maintains the 
degree r - 1, and is of span r, so that, by Rule 7, the span of its trace 
does not exceed r - 1, and, by similar reasoning, the span of its pseudo- 
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trace (for r > 1) does not exceed r - 1. Thus, the trace and pseudotrace, 
when expressed as Stirling and Bessel operators, respectively, do not con- 
tain differences beyond the ( r -  1)th. They are therefore completely 
characterized as the terms up to and including ~-1 of the symbolic Stifling 
and Bessel expansions. 82 Finally, it is fairly obvious that the trace of #M" 
is obtained by multiplying the pseudotrace of M r by #. The product can 
then be expressed as a Stirling operator by means of the substitution 
#~ = 1 + [62. The traces given in Table 3 were obtained in the man- 
ner described. 

DETERMINATION OF THE BASIC FUNCTION OF A 
GIVEN CONTINUOUS OPEI~ATOR 

Rule l(a) and equation (37) show that  the characteristic operator of 
any polynomial interpolation formula can be expressed in terms of posi- 
tive powers of M, positive and negative powers of D, and discrete opera- 
tors. Upon multiplying the expression out, all positive powers of D can 
be eliminated by means of formula (7a). All terms not containing nega- 
tive powers of D will then be of the form J M  ~, where J is a discrete oper- 
ator. Now, it follows from Theorem 2 and equation (40) that  the basic 
function of such a term is 

1 
(k -- 1) ! f6kx~--l" (41) 

By means of formula (7c), the negative powers of D can be replaced by 
negative powers of 6. Some of the latter may cancel out, but  some will 
usually remain. I t  will be found, however, that the terms containing nega- 
tive powers of 6, taken collectively, correspond to a uniquely determined 
basic function of finite range. 

This is best explained by an example. We shall take as an illustration 
the operator D-2(~ - M), which appears in several instances as a term in 
the characteristic operators shown in Table 1. By formula (7c), this may 
be written as 6-2(#M ~ -- MS). Therefore, equation (41) gives 

1 2 L ( x )  = 6 - 2 ( ~ x +  - ½6"x~_) = vx+  - # x + .  

For x > ½, the last expression is equivalent to tax - ½~x 2 = x - x = 0, 
and it also vanishes for x < - ½  by virtue of the definition of x+. There- 
fore, any nonzero values of this function are confined to the interval 
--½ < x < ½. In this interval, 

L(x) = ½(x + ½) - ½(x + ½)~ = - ½ ( x  2 - i ) .  

a This was first pointed out by Schoenberg, op. ¢it., p. 120. 
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RECURRENCE RELATIONS FOR THE SPECIAL OPERATORS 

I t  will be recalled that  the special operator Q~ corresponds to the ex- 
pression 

xlu.+~ + y~u, 

in an Everet t - type formula. Bearing in mind that  this expression occurs 
in a formula for vn+~, the right member  of formula (1) for this particular 
case would be 

L(x -- 1)u~+l + L(x)un. 

Comparison of the two expressions gives: 

L ( x  - 1) = x ' ,  Z ( x )  = (1 - x ) ' ,  

since y = 1 -- x. As x is restricted to the interval 0 < x < 1, this gives 
for L(x) the expressions 

0 for x < -- 1 

( l + x )  ~ for --1 < x < 0  

( l - - x )  i for 0 < x <  1 

0 for x > 1.  

A similar analysis for the operator T~ gives the basic function 

0 for x < - 1  

( l + x )  ~ for - l < x < 0  

- ( l - x )  i for 0 < x <  1 

0 for x > 1 .  

Application of formula (24) to these two operators gives, for i >__ 1, the 
equations 

DQ, = iT,_1, DT, = i Q ~ l -  2 ,  (42)  

while DQo = E - E -1 = 2 ~ ,  and DTo = ~. Therefore, Qo = 2v~D -1 --- 
2vM, and To = ~2D-t -- ~M. Operating with M and dividing by i on both 
sides of both equations (42), replacing i by  i + 1, and making use of the 
fact that  M = b'-~To, we have 

1 
MTI = ~ ~Q¢+1, 

and 

MQi -- ~ (2 ~-lTo + ~Ti+l).  

By successive application of these two relations, starting with M = ~-lTo 
and/zM = ~Qo, all the expressions in Table 4 are easily obtained. 
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On the other hand, multiplying both sides of both equations (42) by 
8i-~M, we obtain: 

~iQ~ = iM(~i-~T~_~), ~iT~ = iM(~i-~Q~_~) - 2~i--~M. 

The expressions in Parts IB and IIB of Table 5 are easily obtained by re- 
peated application of these two relations, starting with Q0 = 2gM and 
To = ~M. 

In a similar manner, we find that 

while that of W~ is 

the basic function of V~ is 

0 for x < -½ 

( ½ + x )  i for - - ½ < x < O  

(½-- x) i for O < x < ½  

0 for x > ½, 

0 for x < --~ 

( ½ + x ) '  for - - ½ < x < O  

--(½ -- x) ~ for 0 < x < ½ 

0 for x > ½, 

(43) 

(44) 

Again, application of formula (24) gives, for i _ 1, 

DV~ = i W ¢ - l ,  DW~ = iVi -1  - -  (½)~-1. 

Multiplying both sides of both equations by 3i-lM, we obtain 

8iV~ = i M ( ~ J - l W ~ t )  , ~ W ~  = i M ( S i - i V ~ a )  --  ( ~ ) H ~ i - ~ M .  (45) 

Moreover, it is evident from the expressions (43) that V0 = M, while it 
follows from expressions (44) and formula (24) that  D W o  = 2u - 2, or 
8W0 = M ( 2 g -  2). From these expressions for V0 and 6W0, the re- 
maining entries in Part I I I  of Table 5 are easily obtained by repeated ap- 
plication of equations (45). 



DISCUSSION OF PRECEDING PAPER 

KINGSLAND CAM.P: 

I t  is well to have this monumental analytic monograph permanently 
on record in our Transactions even if its difficult nature prevents mastery 
or frequent reference by most of us. A helpful additional schedule, whether 
compiled by the authors or by some student, would be one showing all 
the formulas of Table 1 in directly usable working form together with 
brief comments on their individual characteristics and, if possible, on some 
of the types of functions they work best with. The practical user will then 
most probably familiarize himself with the few particular formulas that 
operate dependably well on the widest variety of functions he encounters, 
more especially on functions not of polynomial form. 

Along with such a schedule, it is likely that practical workers would 
welcome a simple numerical index, if our research specialists would con- 
trive one, for rating the suitability of the convenient polynomial inter- 
polation formulas to use on nonpolynomial functions. I t  must be evident 
that smoothness as measured by the standard deviation in the third or 
other difference order, and fidelity when measured in similar inbred fash- 
ion-measured,  that is, by other polynomials--are no criteria of a formu- 
la's suitability for interpolating precisely computed financial functions or 
verified accurate experimental data. I t  may well be, of course, that these 
indexes serve very well for rating formulas that  are designed to adjust 
and partially graduate data in five-year age groups, or population studies 
with their inevitable age misstatements. 

For the present, the best test of a reproducing formula is the practical 
one: try it on trigonometric or other mathematical curves for which miss- 
ing values are readily supplied. Such functions are considered as de facto 
smooth, yet they frequently present difference-series, within even short 
intervals, that reproducing formulas considered to have unsatisfactory 
"smoothness" will work better on than do the formulas more generally 
approved nowadays. 

There may be more than one reason why (see the authors' "General 
Observations Concerning the Rules") "in the earlier work on smooth- 
junction interpolation so much emphasis was placed on formulas of mini- 
mum degree." The earlier workers were more inclined to rate their formu- 
las by success on nonpolynomial functions because they wanted general- 
duty processes and because presently accepted criteria had not been de- 

477 
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vised or at least had not gained wide acceptance. Also, we nowadays work 
with machines for which it is easy to use the formulas in quasi-Lagrangian 
expressions and refer to such different ones as Sprague's, Henderson's, and 
Shovelton's, for example, as all being "six-point" formulas. Thus we re- 
gard them as equally easy to work, although in the old days of hand-pow- 
ered machines Henderson's was the easiest because then the chief part 
of the work was proceeding from one value to the next within an interval, 
which involved fewer product-sums at each step if the osculating arcs were 
of lower degree. 

Nevertheless, the present tendency to relegate, say, Henderson's for- 
mula to "historical interest only" (Wolfenden, Population Statistics and 
Their Compilation, p. 140) is probably a mistake: experiments and obser- 
vation provide other series than some mathematical functions, that ex- 
hibit rapidly steepening curves. On such data, neither Sprague's formula 
with its capacity for reproducing so improbable a curve in nature as a 
fourth-order polynomial, nor Shovelton's with its feature of satisfying the 
accepted smoothness test, will work anywhere nearly as well as Hender- 
son's. In short, for a given order of continuity, exact or approximate, a 
formula of minimum degree is more dependably accurate on a nonpoly- 
nomial function. Accuracy can be quite as desirable a feature as "smooth- 
ness" or as fidelity to a high-order polynomial. I tried to point this out 
years ago in a paper (TASA XXXVIII ,  16) and once or twice thereafter 
in discussions. 

Systematic bivariate interpolation is not often required in our work, 
but when it is required it is troublesome enough to justify more attention 
than it has so far received in actuarial journals. Not  impossibly several 
other readers were anticipating, when the subject of this paper was an- 
nounced, that it might include a solution. I t  may stimulate research, and 
possibly even extension and generalization of the techniques of Messrs. 
Greville and Vaughan, to reason out here, even if in elementary manner, 
what may be the simplest genuine bivariate process. 

Picturing bivariate data in the usual fashion as a forest of regularly 
spaced ordinates u,, v rising above the plane u = 0, we require that an 
element of surface shall join the tops of the four ordinates at the corners 
of each square in such a way as to blend acceptably with the similar ele- 
ments of surface for the four squares at its sides and also the four that 
touch its comers. 

Now, in univariate interpolation, a binomial of the third order is the 
simplest that will satisfy two pivotal points together with a prescribed 
first derivative at each of them--four conditions that in Karup's oscula- 
tory (perhaps, rather, tangential) formula are determined by the four piv- 
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orals to which the interval is central. Then a bivariate process of compa- 
rable rank may logically be expected to determine all necessary conditions 
for a square element of surface from the sixteen to which that element is 
central, as in the formula to be deduced below. Meanwhile, we may ob- 
serve that merely applying Karup's formula in one direction along all the 
rows of the given array and thereafter operating in the same fashion down 
all the columns to complete the job (or vice versa) would also determine 
each element of surface by the sixteen pivotals to which it is central, but 
in most unsatisfactory fashion; ff derived that way, almost never will the 
peculiar sixth-order surface (that has neither independent variable to a 
higher order than the third) keep reasonably near to the unknown true 
surface that we wish to approximate. Even as a univariate process 
Karup's formula gives unsatisfactory results with many functions, and of 
course the errors will be compounded if the results are used as a base for 
cross-interpolation. (Obviously, smoothing formulas that involve gradua- 
tion and do not satisfy the given pivotals are still more unsatisfactory ff 
we want accuracy.) 

I t  will be better to construct our bivariate formula out of lmivariate 
expressions that leave the derivatives to be determined, such as: 

t ( 1 - - 3 f 2 + 2 f a )  u ~ + f ( 1 - - J ) 2 D u x  (1) U z + f  = + (3J~-2J3)U,+l-J2(1 - f )  Du,+x," 

Replacing Dux and Du~+l by u~u, and u~ux+l respectively, and rearrang- 
ing, gives Karup's formula; but as mentioned, we must find derivatives 
more nearly appropriate to the surface. If we seek a polynomial surface 
of small area U~, v centered at each bivariate pivotal, say u0, 0 for example, 
we find that no order of such surface can be fitted symmetrically about a 
central pivotal on a rectangular pattern without distorting assumptions. 
For instance, a second-order surface involves six constants; it cannot real- 
ly fit either a five-pivotal cross or a nine-pivotal square array. But we can 
prescribe a second-order surface that minimizes the squares of its devia- 
tions from such a nine-pivotal array. Suppose that by U~, ~ we designate 
such a surface centered at (0, O) with the equation 

X 

w,, ~= {%, o--~ ~ u 0 ,  o} + ~ ( u 0 . - , + % ,  0+u0, +2) 

+Y ~ ( u  ~, o+uo, o+u+x, o) + x Y ~ ( ~ u o ,  o) (2) 

+-~ ~(Uo, -,+%, 0+%. +~) + ~(u_~, 0+u0, 0+u+~, 0) " 
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Then its partial derivatives at (x, y) = (0, 0) are: 

0 
a--x Uo, ° =  - ~  (uo, _l+Uo,  o+Uo. +~) (3) 

0 Uo t , Oy , ° =  ~ # ~ ( u - 1  0 + % ,  o+U+l ,  o) (4) 

0 2 (  02 )  
OxOy = a;-Ox U°, °=  ~ z  (V~vu°, °) - (5) 

These derivatives will probably approach those of the unknown true sur- 
face more nearly than if surface U., v passed exactly through any selected 
pivotals, since such restriction would probably obscure any furling tend- 
ency there might be in the true surface. Note that if the true surface 
should happen to be either of the second order or a plane, the resulting 
zero values of the corresponding difference orders would make Uz, v re- 
produce that second-order surface or plane exactly. 

Substituting into formula (1) the partial first derivatives of formulas 
(3) and (4) enables construction of a lattice-work of interpolated values 
u~+1, ~ and uz. ~-~ that  interconnects all the pivotals except those at the 
very edges of the given array. The open square areas within the lattice may 
be completed in whichever direction is preferable, but for correct results 
by this method we must first supply by interpolation the several series of 
correct partial first derivatives at the new junction points for these sec- 
ondary interpolations. Assuming that these are across the several u~-1, v 
series, then we must derive the several corresponding derivative series: 

0 vx+,, 9-v l--Or ---°v ) 
O---y v=  Oy *, v +  (3ff--2ff) k0y x+x, u Oy x, v 

(6) 
02 02 

+ / ( 1  - / )  2 ~_6~u ' _ / 2  (1 - / )  -b--x~ U~+~,. 

The results will then be identically the same as if done across the several 
uz, v+. series with similarly prepared derivatives 

_o v 
0X x, u+O" 

Obviously all this adds up to a great deal of work on anything else than 
controlled-sequence equipment, and for such equipment it is simpler to 
schedule the sets of sixteen multipliers each, for expressing each interpo- 
lated result within a lattice-square (i.e., element of surface) as a product- 
sum involving the sixteen nearest pivotals. 
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Ordinarily the results within each lattice-square would form a sixth- 
order surface of the kind previously described, but in the improbable 
event of the entire body of data forming either a second-order surface or 
a plane, the entire mosaic of results would reproduce that  surface or plane 
exactly. To this extent the method satisfies a fidelity test somewhat cor- 
responding to those for Sprague's and Karup's  univariate formulas, that 
would reproduce any series that  happened to be a polynomial up to the 
fourth or the second order respectively. I t  should be mentioned, in passing, 
that  Karup's  formula applied both ways across the array would also 
produce such a surface and meet such a test; but ordinarily it would not 
conform so well to any other true surface. 

Programming, of course, would depend on the particular equipment 
available, but with an electronic calculator having a good "memory" by 
present standards it is easy to visualize (1) systematic storage of the given 
pivotals into an adequate section of addresses reserved for that purpose, 
(2) storage of the schedule of multipliers described above into another 
section, and (3) storing into a third section the instructions for accumu- 
lating the necessary product-sums, for punching each total (i.e., interpo- 
lated result) into a card or printing it in place on a sheet, and for then pro- 
ceeding to work the next result, ad infinitum. Thus the results, usually too 
numerous for any machine's "memory,"  would be released as soon as 
produced. 

So far, no provision has been made for marginal areas of the array that 
would correspond, of course, to end-intervals in univariate series. I f  it is 
important to fill them in, and impossible to obtain outside pivotals other- 
wise, such pivotals may  be extrapolated for by a preliminary controlled- 
sequence program applied to the array of given pivotals systematically 
stored as suggested. Perhaps the thought will be clearer from a diagram 
that  assigns each given pivotal u~, u to an address within the rectangle 
01, O1 to co - 1, w -- 1 and leaves room in columns x -- O0 and x = % 
and rows y = O0 and y = w, for the pivotals to be extrapolated and 
stored into position for use in the interpolation program previously 
outlined. 

0o, O0 01, O0 . . . .  o~--1, O0 ~, O0 
00, O1 [-01, O1 . . . .  ~ ,1 ,  OV-- I ~, Ol 

J oo,~-a L01,~-1 . . . . .  -11~-1 E~,W-1 
O0, w 01, w . . . .  ~ - l , w  ~,w 

Higher-order surfaces may be reasoned out in similar fashion, perhaps 
by better reasoning technique, but such surfaces need not be based on 
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square arrays: third-order U,, u surfaces, determined for each pivotal by 
the compact group (not square) of thirteen that include it, should furnish 
all the derivatives necessary for twenty-four point-elements of surface 
that blend to the second order. 

HnRWOOD I~OSSER: 

Not too many years ago, one of the authors expressed himself as feeling 
"like one who has just written the epitaph of osculatory interpolation. ''~ 
But it has turned out to be a lively corpse. 

Both authors are to be highly congratulated on a tremendous piece of 
work. The monumental quality of this paper will probably be more ap- 
parent to physicists and astronomers than to most actuaries. I t  is re- 
get table  that none of the former are likely to submit discussions. Very 
few of the latter will. The average actuary is apt to say: "Interpolation 
formulas? Don' t  need any; I 've got one." 

But the point is that the authors are not peddling a new interpolation 
formula. They are offering us criteria for selecting or developing a formula 
that will be appropriate to the particular circumstances. Mr. Beers ~ stated 
the earlier situation very neatly when he said: "The literature of interpo- 
lation contains many formulas but few critical comparisons of their re- 
spective results." Messrs. Greville and Vaughan have now given us the 
means to make such comparisons. Their elegant use of symbolic operators, 
once it is thoroughly understood, materially shortens the process. 

For most readers, the heart of the paper lies in the "Rules," in the 
"Computation of Interpolation Coefficients" and in the examples illus- 
trating their application. As a test of the pedagogy of the authors, I set 
myself the task of actually working some of their examples before looking 
at their solutions--which is standard procedure for actuarial students. I 
will not say how many wrong answers I obtained; but I did get some right 
answers. Hence I may state that their expository talents have been sub- 
jected to a stern test and not found wanting. Interpolation is not usually 
considered an easy subject, once you get beyond straight-line methods. 

While doing this work, I set out, for my own c o n v e n i e n c e ,  the data in 
Chart I. This is included here with the thought that it might focus some 
attention on the number of attributes to be considered in choosing a for- 
mula for interpolation. In addition to the characteristics expressed nu- 
merically, formulas may be either ordinary or modified (reproducing or 
smoothing), and end-point or midpoint. 

If a "modified" formula is being considered, a very practical question 

I T A S A  XLVI, 98. 
2 R A I A  XXXIII, 245. 
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is the amount of smoothing incorporated into the formula. Considerable 
information is obtained from the "trace" of the formula. The authors have 
not dwelt upon this, probably because the subject is well covered in 
earlier papers. ~ 

I t  pleases me to note that  s is defined as the "number of terms in the 
linear compound form." This is more readily understandable than the 
equivalent expression in one of Dr. Greville's earlier papers: 4 "The high- 
est order of differences involved (explicitly or implicitly)." But I am not 
so sure that an increase in clarity results from substituting "correct to 
rth differences" for "degree of reproduction." The former phrase is of long 
standing--and also of long misunderstanding. The students I have taught 
usually found it easier to comprehend the concept that  a formula would 

CHART 1 

Span of H . . . . . . . . . . . . . .  
Order of contact . . . . . . . . .  
Degree of formula . . . . . . .  
Degree of reproduction.. 
Number of terms used... 

E ~ P L E  

1 2 

i - i - -  F- 
I 2 
i s 

6 
I 

3 

6 

4 5 
Tr ia l  

2 
1 
3 

--1 
2 

Final  

reproduce all polynomials up to and including the rth degree. Also, the 
classification, in Table 1, into reproducing formulas and smoothing for- 
mulas would seem to argue in favor of "degree of reproduction" as the 
definition of r. 

On Example 5, a remark or two is in order. Following Rule 3(a), foot- 
note 13, we take r -- --1. Presumably, the interpretation of this is that  
the formula would not even reproduce a constant function. That  is, such 
a formula, used to interpolate between values, all on a straight line paral- 
lel to the x-axis, would produce interpolated values not on that line. This 
is inconsistent with common sense. However, when we reach the final re- 
sult, we find, by inspecting it, that the span of H is only one. (Since the 
symbol D denotes differentiation, we may ignore it in determining the 
span.) Then, by reapplying Rule 2, we find that r is actually zero, as the 
authors note. 

The purpose of these "tangential" comments is to emphasize that  

3 Cf. TASA X_LV, 224-225 and 230-232; also TASA XLVI, 95--96. 
* TASA XLV, 211. 
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r = --1 is simply a trial value. I t  is my belief that this would never be 
the final value in any formula intended for actual use. If this be correct, 
why not start with r = 0 in such cases? 

Actuarial readers who attempt to look up the "standard Steffensen for- 
mula" by that name may encounter difficulty. Steffensen himself, in his 
Interpolation, 5 calls it Everett 's second formula. I t  also appears by that  
name in Freeman3 To convert Freeman's form to that implied by the 
authors, add n to all subscripts, replace p by x and q by y, and make the 
substitution & = ~E 1/2. 

The actuarial profession, at least, owes a substantial debt of gratitude 
to Messrs. GreviUe and Vaughan for this paper. If I have seemed critical 
about some minor points, I plead the excuse of hoping to increase the 
understanding of it, that there may be wider awareness of this debt, and 
greater use of their gift. 

(AUTHORS' REVIEW OF DISCUSSION) 

T. N. E. GIREVILLE AND HUBERT VAUGHAN: 

We wish to thank both Mr. Camp and Mr. Rosser for their constructive 
and illuminating discussions. We are particularly interested in Mr. 
Camp's investigation of bivariate interpolation, as it clearly indicates a 
possible extension of the methods of the paper which had not occurred to 
us. A process of bivariate interpolation like those described by Mr. Camp 
is represented by a basic function which is a function of two variables, 
.f(x, y). This is represented geometrically by a bell-shaped surface having 
a maximum at the origin and eventually merging into the xy-plane in all 
directions from the origin. When separate interpolations are performed in 
the two directions successively, as in the first process mentioned by Mr. 
Camp, the basic function is a product of two univariate functions: 
.f(x, y) = f~(x).f2(y). Similarly, the characteristic function is a product of 
two univariate characteristic functions. Thus, in Mr. Camp's example, 
it is 

M ~ M ~ ( 3 M , -  2u , ) (3M~-  2u~). 

I t  will be seen that this is merely the product of the univariate charac- 
teristic functions of Karup's formula for interpolation in the two direc- 
tions. 

The methods of this paper can also be applied to Mr. Camp's second 
process. Thus, the characteristic function of the interpolated values pro- 
duced by his formula (1) is 

12MD-2(~ - M ) U  + D-l[12D--'(~M - 1) -- 2M2]W, (1) 

5 p. 31, formula (28). 6 Mathematics for Actuarial Students, Vol. II, p. 67. 
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where U is the characteristic function of the given values, and W is the 
characteristic function of the assumed values of the derivatives at the 
pivotal points. Mr. Camp's formula (3) may be written in the form 

0 
--Ox U ° , ° = / ~ * ( l + l ~ 2 )  u ° , ~  ~ 0" 

Substituting this expression for W and 1 for U in our formula (1) and 
simplifying gives, for the characteristic function of the interpolation proc- 
ess to obtain the values of u~4. v, 

m~(3U, -- 2g~)(1 + {~) -- 4MD~ ~(v, -- Mx)~ • (2) 

Similarly, applying our formula (1) to the interpolation of the first 
partial derivatives with respect to y, using as "given values" and "given 
derivatives" the values produced by Mr. Camp's formulas (4) and (5), we 
obtain, for the characteristic formula of this interpolation process, 

12M D~ ~ (t~ -- M~) V *~ + O'~ x [12D~ -2 (tzM~-- 1) -- 2M~]/~*./2~, 

which reduces to 
M~(2/~, -- M,) l~v .  (3) 

Finally, using the analogue of our formula (1) for interpolation in the 
y-direction, taking the results of our formulas (2) and (3) as representing 
the given values and given derivatives, we have, for the characteristic 
function of the entire interpolation process, 

1 2 [M~ (3M~-  2#,) (1 + ~dSu) -- 4MD-~ 2 (#~--Mx) ~] 

X [12MD~-2(I&-M~)] + M ~ ( 2 ~ z - - M ~ ) # ~ D ~  x 

X [12D~ 2 Cl~Mv- 1) - 2M~] 
o r  

- -  48M~q//v (M~O~-2nt-M~O[ ~) (#~-- M~) (tzv-- M~) . 

Knowing the characteristic function for the process would, we believe, 
facilitate the computation of the 16 sets of multipliers mentioned by Mr. 
Camp to be applied to the 16 pivotals in the 4 X 4 square array surround- 
ing the square in which interpolation is being performed. As Mr. Camp 
mentions, both processes have the property that if the true surface should 
happen to be of the second degree or a plane, it will be exactly reproduced. 



486 POLYNOMIAL INTERPOLATION 

However, there is an interesting difference between the two. The "double 
Karup" process will reproduce any bivariate polynomial in which neither 
variable separately occurs to a degree greater than two (for example, 
x2y2). The second process, on the other hand, will reproduce only functions 
of the second degree in both variables taken together, such as x2+  
2xy - 3y ~. 

We are inclined to agree with Mr. Camp that the last word has not been 
said on appropriate criteria for rating interpolation formulas. We would 
suggest that in judging the effectiveness of particular types of formulas it 
may be well to keep in mind the purpose for which they are intended. For 
example, if the only need for interpolation were that of providing finer 
subdivisions in tables of known mathematical functions, interpolation 
formulas designed specifically to secure smooth junction would never have 
been proposed. For this purpose, there is no question that plain finite-dif- 
ference interpolation is generally more accurate and provides a closer esti- 
mate of the error involved. The kinds of formulas mainly dealt with ha the 
paper were intended for use with empirical functions not believed to fol- 
low any mathematical law, or for which the law, if any, is complicated and 
not evident from examination of the data. A typical example, of course, is 
that of population data in 5-year age groups which Mr. Camp cites. To 
illustrate how the intended application enters into the choice of a formula, 
it may be pointed out that a sine curve would be considered perfectly 
smooth from the mathematician's point of view, but one is inclined to be 
suspicious of curves of somewhat similar form which are sometimes en- 
countered when mortality rates are computed from population data. 

We are not sure that  the distinction between polynomial and non- 
polynomial functions is as sharp as Mr. Camp seems to believe. In fact, 
a well-known theorem of Weierstrass states that under very general con- 
ditions a continuous function can be expressed as the limit of a sequence of 
polynomials. According to our investigations, the formula of Henderson 
mentioned in Mr. Camp's fifth paragraph is a very close approximation 
to the ordinary fifth-difference formula and could be used for convenience 
in cases where the latter was suitable. If the ordinary fifth-difference for- 
mula were unsatisfactory in a particular case, the same would normally 
apply to this formula of Henderson. 

With reference to a question of terminology raised by Mr. Rosser, the 
substitution of the expression "correct to rth differences" for "degree of 
reproduction" was intended to avoid possible confusion between the con- 
cepts of reproduction of a stipulated degree of polynomial and reproduc- 
tion of the given values. People sometimes seem to have difficulty in un- 
derstanding how a formula can, for example, reproduce a third-degree 



DISCUSSION 487 

polynomial when the given values are values of such a polynomial, and 
yet fail to reproduce the given values at all when they are not of this 
nature. We admit, however, Mr. Rosser's point that  the expression we 
have chosen is liable to misunderstanding. We also agree with him that 
formulas with r -- - 1  are not very practical and that one may as well 
start  with r = 0. Our Example 5 was not really intended to be practical 
but was given as an illustration of an unusual situation to which the 
rules might sometime have to be applied. 

Milne-Thomson z has applied the name "Steffensen's formula" to the 
one so designated in our paper. We are inclined to think that Steffensen 
was the first to give this formula in print and that  he referred to it as 
"Everet t 's  second formula" because of its obvious analogy to Everet t 's  
formula, and without any intention of suggesting that  Everett  was its real 
originator. 

z The Calculus of Finite Differences, p. 74. 


