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INTRODUCTION 

T 
HE basic idea in this paper follows from the observation that, in 
calculations involving the distribution of total claims in a risk- 
theory setting, several authors have found it desirable to approxi- 

mate a risk-theoretic distribution by  use of the incomplete gamma func- 
tion. In a recent paper, D. K. Bartlett  [1] evaluated an excess loss ratio 
premium by use of a gamma distribution whose first and second moments 
agreed with those of the risk-theoretic loss distribution. Professor D. A. 
Jones, in his discussion of the Bartlett  paper, pointed out that a trans- 
lated gamma distribution allowed one to make the approximate distribu- 
tion agree with the risk-theoretic distribution as far as the first three mo- 
ments are concerned. The method presented in this paper allows one to 
make as many moments of the approximate distribution as desired agree 
with those of the risk-theoretic loss distribution. 

In Section I of this paper, the formulas for an expansion of a proba- 
bility density function as a sum of gamma densities will be developed. 
The formulas presented will allow one to make the first five moments 
agree, but  the method is easily extended to include more moments. In 
Section II, the result of Section I is adapted so as to be of use in a risk- 
theoretic setting. Formulas are developed for the probability distribution 
function and for the stop-loss or excess loss ratio premium. In Section III ,  
two sample calculations are made: the first will be an example given by  
Cram~r for which exact values are known, and the second will be the 
Bartlett  example. Finally, in Section IV, a peculiarity in the result for 
the Bartlett  example will lead to a criteria for a "best" stop-loss level. 
Net  premiums for two such coverages will then be presented. An appen- 
dix to the paper shows another characterization of the type of approxi- 
mation developed in Section I, and several remarks are made regarding 
the accuracy of the approximation. 

I .  METHOD OF E X P A N S I O N  

The idea for this expansion is based on the Gram-Charlier series which 
is described in Mood [6, p. 118]. In the Gram-Charlier series, a density 
function is expanded in terms of the normal density and its derivatives. 
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126 EXPANSION OF PROBABILITY DENSITY FUNCTIONS 

The polynomials which multiply [1/~/(2r)] exp {--x2/2} are the Hermite 
polynomials described in some detail in ~ackson [4, p. 176]. They are 
known to be orthogonal on the entire real axis with respect to the weight 
function exp {--x2/2}. 

Consider the Laguerre polynomials given by 

d" 
L~ ") ( x )  = ( -- 1 )" x t - " e  z - - (  x"+"- le  - z )  

d x  n 

The form of the Laguerre polynomials involves a slight change in no- 
tation from that usually used and is tied in with the form of the gamma 
density used in this paper: 

X ~-1 e ~z 
f ( x )  = r ( ~ )  " 

One advantage of this form of the gamma density as opposed to 
Xa e--x 

g ( x ) =  .---T- 

i s  that the mean and variance of a random variable with the densityf(x) 
are both . .  This change seemed to cut down the length of the formulas 
in the paper slightly. The first six of these polynomials as defined above 
are shown below: 

z~' (x)  = 1,  
/;~")(.) = . - . ,  

£.~°'(x) = ~ -  2( .  + 1)~ + ( .  + 1 ) . ,  

L~")(x) = x " - -  3(e + 2)x ~ + 3( .  + 2)(. + 1)x-- ( .  + 2)(.  + 1 ) . ,  

L(,")(x) = x '  --  4( .  + 3)x" + 6( .  + 3)(a + 2)x ~ -- 4(a + 3)(a + 2) 
(1) 

x ( .  + 1)x + (,~ + 3)(. + 2)(. + 1.)., 
L~")(x) = x 5 -- 5(a + 4)x' + 10(. + 4)(a + 3)x" -- 10(. + 4)( .  + 3) 

X ( .  + 2)x ~ + 5(.  + 4)(.  + 3)( .  + 2) 

X ( .  + 1)x-- ( .  + 4)(.  + 3)(.  + 2) 

x (. + 1).. 
The pattern of these polynomials is clear at this point. Further, these 

polynomials are known [4, p. 184] to be orthogonal on the positive real 
axis with respect to the weight function 

Xa-- 1 e--~ 

r ( . )  " 
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T h i s  m e a n s  t h a t  

1 / ' ~  -1 -, (")(z)L~)(z)dz 0 if ~ n  P ( a )  z" e L .  = , m . 

F u r t h e r m o r e ,  /o 1 z~_le_.[L(.)(z)]2dz=nW(a+n) 
r ( a )  r ( a )  

Therefore, if we assume that a given density function f(x) may be writ- 
ten as 

xa--le--z 
f ( x )  = F - ~ a )  [ A o L ( 0 " ) ( x ) + A t L ~ ' ) ( x ) + A 2 L ~ ) ( x ) + . . . ] ,  

we mayuse  the above orthogonality conditions to determine the A,. For 

co ~ f o ~  ~ - l  e - z  
/ f(z)L(")(z)dz Jo -~(-~-) [ AoL(f)(z) + AtL~*)(z) 

+ . . .  ] L~ (') (z) dz 
n !F(a+n)  

= A n  
r ( ~ )  ' 

as all other terms equal zero. Therefore, 

/o 
F ( a )  f (z)L(.)(z)dz" A,= ntr( e-t-n ) 

Now let us assume that we have a nonnegative valued random variable 
Y with a sufficient number of moments. Further, let us define a second 
random variable X by X -- BY, where ~ is chosen so that the mean of 
X equals the variance of X. We then pick a equal to the common value 
of the mean and variance of X and evaluate the various constants A,, 
where we assume for the purposes of developing these formulas that X 
has a density functionf(x). 

Ao= z ")(z)dz= z)dz= l , 

1 ~ 1 

since a is the mean of X. 

r ( a )  / ~  
A2 = 2 ! r - ~ - ~  2 ) /(~.)L~")(z)dz, 

r ( ~ )  / - '  
- 2 t r ( . + 2 )  f ( z ) [ z ~ - - 2 ( a + l ) z + ( a + l ) a ] d z - - O '  
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from the fact that = is the mean and variance of X. Similarly, 

r ( a )  
A3= 3!F(e_t_ 3) ( ~ 3 -  2 a ) ,  

r(=) 
A4= 4 !F(a -} -4 )  (~4--  12~3--3a~q - 18a ) ,  

and 
r ( ~ )  

A s -  5 l P ( a - k 5 )  [ ~ s - 2 0 ~ * -  ( 1 0 a - -  120)#3- l -60a  ~ -  1 4 4 a ] ,  
I 

where ~, is the nth moment about the mean of the random variable X. 
Therefore, the approximate density, a partial sum of the series 

Xa- - I  6 - - x  
1~ (a-------~[ 1 -b AsL(,°)(x) q- A,L(,°)(x) q- AsL~')(x) + . . . ] ,  (2) 

may be used to evaluate details of the distribution of X and hence corre- 
sponding details for Y. 

The interesting point of the above formulas is that the A,  may be 
calculated from one's knowledge of the moments of X even though the 
exact form of f(x) is unknown. This situation is particularly applicable 
to calculations on the distribution of the amount of claims paid by an 
insurance company. The true distribution of claims paid is unknown. 
However, there are several models of the insurance company, two of 
which are the collective-risk model and the individual-risk model, and 
it is possible to evaluate moments of the distribution of claims paid under 
these two models. Obtaining numerically exact results even of the models 
themselves is extremely difficult [2, p. 184] except in a few special cases. 
The method proposed here is a method of approximating the distribution 
of the claims in the model and thus attempts to do what the Esscher ap- 
proximation does. The exact distribution of the claims in a model is 
what is called a risk-theoretic loss distribution in other parts of this 
paper. 

II .  ]~ORMULAS ]~OR THE DISTRIBUTION ]~UNCTION AND 
THE STOP-LOSS I 'REM~ 

We now apply the expansion (2) developed in Section I to obtain 
formulas for the distribution function and for stop-loss premiums. For 
simplicity, we shall adopt the following notation: 

A=~8--2a 
3! ' 

B = ~* -- 12~8 - -  3 a 2 - ~  - 18a 
41 ' ( 3 )  

C= ~ s - - 2 0 ~ , -  ( 1 0 a -  1 2 0 ) ~ 3 - k 6 0 a  ~ -  144a 
51 
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Then, if we take four terms in the partial sum, the approximation (2) 
may be written as 

x " - l e - ' [  r ( a )  L~"~(x)+B r ( a )  
Y-(~-) L I + A  r ( a + 3 )  r ( a + 4 )  L~*°~(x) 

(4)  

+Cr(e+5)  
If we now substitute the actual polynomials (1) for L,!")(x), we obtain 

X a - l e  -~: " X a e - z  r (a-------~(1 - A + B - C )  ¢ i ' ( a +  1) (3A -- 4 B +  5C) 

X ~+1 e - z  x a+2 e - z  
-~ ( - - 3 A + 6 B - - I O C ) +  (A--4B+IOC) (5)  

r ( ~ + 2 )  r ( a + 3 )  

X ~+3 e - z  x a+4 i~-z 
-~ r ( e + 4 ) ( B - - 5 C ) - t  r ( e + 5 )  ( c ) ,  

which is just the sum of six gamma densities. In general, if it is desired 
to have the approximate distribution agree with the risk-theoretic dis- 
tribution for n moments (n > 2), the sum of n + 1 gamma densities 
is required. We may thus approximate the distribution function 

F(x) = / ' f ( z ) d z  

by 

F(z) - r(x, a)(1 - A + B - -  C) + r(x, a + 1)(3A -- 4B + 5C) 

+ I'(x, a + 2)(--3A + 6B -- 10C) 

+ r(x, a + 3)(A -- 4B + 10C) (6)  

+ r(x, a + 4)(B -- 5C) + r(,, ~ + s ) (c ) ,  

where r(x, a) is the incomplete gamma distribution function given by 

1 f z , ,_ te_ ,dz"  r ( . ,  = r c a )  .,o 

Values of this function have been tabulated by Pearson [8] and Salvosa [9]. 
Integration by parts shows that 

X a e --~ 
r ( x ,  a + l )  = r ( x ,  a )  

r ( a + l )  " 

By use of this, we arrive, after a long calculation, at an alternate expres- 
sion for F(x). I t  is 
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[. x_~C~ - 2x~+~e-" x.+~e-" ] 
F ( x ) - r ( x ' a ) - - A L r ( a + l )  r ( ~ + 2 )  ~'1~.'-'(~3-)J 

[ x~e -~ 3x~+le-~ 3x~+2e-~ x~+ae-~ ] 
+BLF(~--~]) r(~+2) ÷ r (a+3)  I ; ( - ~ 4 - ) J  

[ x~e -* 4x ,+ le - ,  6x~+2e-X 4x,+%-,  x~+4e-= ] 
- - C L r ( ~ - - + ] )  r ( a + 2 )  ~ r ( ~ + 3 )  r ( a + 4 )  b r ( a + 5 ) J "  

(7) 

In this form the close relationship between the proposed approximation 
method and that implied by the Bartlett method is revealed. Essentially 
Bartlett worked with the first term on the right-hand side of formula (7). 

The problem actually discussed in Bartlett's paper is the evalua- 
tion of the stop-loss or excess loss ratio premium, given by 

f° II(x) = ( z -x ) f ( , . )dz .  

Starting again from the approximation (4) for the density and using the 
integration-by-parts argument above, we obtain after a long calculation 
that 

I I ( x )  - a[  1 - - F ( x ,  a-b 1) ] --x[ 1 - - F ( x ,  a) ] 

x a + l e _  z Xa+2C--z 

- -  A L F ( - ~ a ~ 2 )  F-(~- '+5)]  

x~+le_" 2x~+2e-z x.+Se-,  
+ B L ~ G ¥ ~ - )  r ( ~ + 3 )  t r ~ : ~ - ) ]  

[ x~+le -" 3x.+2e-,  3x~+Ze - ,  x.+%-~ ] 
- C L r ~ T 2 - )  r (~+3)  t r ( ~ + 4 )  r ( a + 5 )  " 

(8) 

The first two terms, a[1 - I'(x, a "b 1)] -- x[1 -- r(x, a)], are those used 
by Bartlett. Another convenient form for these two terms is 

axle-* ( x - a ) [ 1 - r ( x ,  a)] .  (9) 
r ( a + l )  

HI. TWO EXAMPLES 

In the following two examples, we shall use the above approximation 
method to evaluate details of certain risk-theoretic distributions. In 
both cases the model is from collective-risk theory, and we shall assume 
that the number of claims is given by a Poisson distribution. In other 
words, given that the expected number of claims equals t, the probability 
that n claims occur equals ~T'/n[.  The assumptions on a population 
which lead to the Poisson distribution for the number of claims are given 
by Kahn [5, p. 414]. Further, let ~, be the nth moment about the origin 
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of the distribution of the claim amount,  given that  a claim has occurred. 
Then, the moments  about  the mean, ~lt, of the distribution of total claims, 
given that  the expected number of claims is t, are as follows: 

#Z = /~2t , 

~a = ~ , t ,  ( 1 0  ) 

u4 = ~4t + 3 ~ ] t  2 , 

u6 = ~st  + l O . a 2 . a 3 t  2 . 

A derivation of the first four moments  is given by  Bart let t  [1, p. 451], 
and the fifth moment  m a y  be derived in the same manner. 

TABLE 1 

VALUES OF 10 i FQ~) 

0 
4 
8 

12 
16 
20 
24 
28 
32 
36 
40 

Exact 
x i Value 

0 0 
2 342 
4 6,039 
6 25,385 
8 '53,540 

10 77,387 
12 91,172 
14 97,150 
16 99,218 
18 99,814 
20 99,961 

2dMo- 
ment 

Gamma 

0 
110 

5,110 
25,589 
54,687 
77,990 
91,054 
96,839 
99,000 
99,711 
99,922 

3d Mo- 
ment 

Gamma 

0 
144 

5,683 
26,048 
54,067 
77,146 
90,763 
96,974 
99,231 
99,878 

100,009 

4th Mo- 
men t 

Gamma 

0 
183 

6,086 
25,861 
53,362 
77,032 
91,120 
97,263 
99,306 
99,840 
99,955 

5th Mo- 
ment 

Gamma 

0 
216 

6,255 
25,518 
53,166 
77,324 
91,338 
97,234 
99,204 
99,782 
99,944 

Edgeworth 
Expansion 

--64 
264 

6,165 
25,375 
53,526 
77,373 
91,241 
97,134 
99,160 
99,991 

100,010 

Esscher 
Approxi- 
mation 

0 
341 

6,033 
25,370 
53,526 
77,376 
91,168 
97,150 
99,218 
99,814 
99,960 

A. An Example from Cram~r [3] 

Let  the distribution function for the amount  of the claim, given that  
a claim has occurred, be 1 --  e--u. I t  is easy to verify tha t  ~ = n!. 
Fur ther  assume that  the expected number of claims, t, is 16. Then  the 
moments  of the distribution of total claim amount,  Y, m a y  be calculated 
by  use of formula (10). They  are found to be 

= 16, #2 = 32, ua = 96, t~4 = 3,456, t~5 = 32,640. 

The  scaling necessary to make the mean equal to variance is one-halL 
Mte r  this scaling the moments  of X are 

= 8, u 2 =  8, u 8 =  12, m =  2 1 6 , # n =  1,020. 

Applying formula (3), we see the constants to be used in the approxima- 
tion a r e a =  8, A = - - ] , B =  1, C =  --1.1. 

Table 1 shows values of F(y) for various values of y. The  "exact  value" 
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figures are adapted from some in Cram~r [3, p. 42], as are those for the 
two approximation methods. One is a four-term Edgeworth expansion 
based on the normal distribution and its derivatives, and the other is an 
Esscher approximation using as the approximating distribution another 
four-term Edgeworth expansion. Both of these methods are described in 
some detail by  Cram~r [3, pp. 31-40]. The remaining figures give the 
results of the approximation method that  we are considering correct to 
2, 3, 4, and 5 moments. 

If we compare the results, we see the gamma approximations are not 
particularly good near the mean, 8, of the scaled variable X. In fact, the 
correction term corresponding to the fifth-moment correction, the C 
term, is still quite large near the mean. However, the gamma approxima- 
tions appear superior to the Edgeworth expansion near the tails of the 
distribution. The Esscher approximation is much more accurate but  also 
much more difficult to apply. 

B. A n Example from Bartlett 

This example from Bartlett  [1] is for a health insurance coverage where 
the claim amount is proportional to the number of days of disability. 
From a table in the Bartlet t  paper, one can evaluate the moments of the 
distribution of the number of days of disability. 

~x = 31.35211, ~, = 1,861.705, /h = 139,531.08, 

/q = 11,453,147.7, ~5 = 979,479,188. 

The distribution of the number of claims is assumed to be Poisson, with 
the expected number of claims equal to 14.63. Application of the formu- 
las (10), therefore, gives us the following moments of the total claim 
amount Y measured in days. 

-- 458.68, U2 -- 27,237, U3 = 2,041,300, 

U4 = 2,393,100,000, u5 -- 570,320,000,000. 

The scaling necessary to make the mean equal the variance is X = 
Y/59.381. After making this adjustment, the moments of X are 

# = 7.7244, #2 = 7.7244, u8 = 9.7491, 

~ 4 - -  192.4737, tJ5 = 772.4700, 

and the constants of the approximation are 

a = 7.7244, A -- --0.950, B = 1.480, C - -  --1.604.  

To calculate the stop-loss premium assodated with 120 per cent of the 
pure-risk premium, we evaluate formula (8) with a = 7.7244 and x = 
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1.2= = 9.2693. The accompanying tabulation gives the stop-loss premi- 
um correct to various numbers of moments. 

Number of Stop-Loss Stop-Loss 
Moments Premium Premium 

II(x) Scaled to 1 z 

2 . . . . . . . . . . . . .  O. 55429 32 . 91  
3 . . . . . . . . . . . . . .  56163 3 3 . 3 5  
4 . . . . . . . . . . . . . .  54111 3 2 . 1 3  
5 . . . . . . . . . . . . .  0 .53632  3 1 . 8 5  

The figure 32.91 compares with the 32.24 figure which Bartlett  ob- 
tained by linearly interpolating between figures corresponding to a -- 5 
and a -- 10 to get the figure for = -- 7.7244. The figures presented here 
are based on the tables by Salvosa [9], where in effect the values of = are 
closer together. 

The most interesting feature of this example is the fact that improving 
the approximation by  making calculations correct to the third moment 
increases the stop-loss premium. In this particular example, the third 
moment of the gamma distribution fitted by use of the first two moments 
of the risk-theoretic distribution is 2= = 15.4488, and the third-moment 
correction is made to reduce this third moment to 9.7491. In other words, 
the adjustment for the third moment is made to reduce the skewness of 
the approximation, and making this change still increases the stop-loss 
premium. An answer to this apparent paradox is made in Section IV. 

IV.  SOMME C~BEST'~ STOP-LOSS R E I N S U R A N C E  AGREEMENTS 

I t  was noted in Section I I I  that, in one case at least, an adjustment to 
reduce skewness increases a stop-loss premium. To see that this is not a 
peculiarity of the approximation method used, assume that the density 
function for claims is the gamma density [1/r(a)]~-~e -~, which has mean 
and variance equal to =. The stop-loss premium for claims in excess of the 
mean is given by  formula (9) to be =a+le-~/I'(= -k 1). For the normal den- 
sity with mean = and variance =, the stop-loss premium for claims in ex- 
cess of the mean is x/(=/2~r). But it is known [7, p. 528] that r (=  -b 1) -- 
=! > (=/e)%/(2~r=) for = -- 1, 2, 3, . . . .  Therefore, the stop-loss premi- 
um is greater under the normal density (unskewed) than it is under the 
gamma density, which is skewed positively. 

If we examine the third-m0ment correction in the formula (8) for the 
stop-loss premium, we notice that this term may be written as 

x~+le-~ ( x )  
A r ( = + 2 )  1 - - = + 2  



134 EXPANSION OF PROBABILITY DENSITY FUNCTIONS 

Thus for x < a q- 2, the stop-loss premium is increased when - A  = 
( 2 a -  #3)/3! is positive, that  is, when the third moment of X is less 
than 2a. However, if the stop-loss level is chosen to be x = a q- 2; then 
the third-moment correction is equal to zero. In  that  case, the fourth- 
moment  correction in the formula (8) for the stop-loss premium would be 

xa+'e--X [ 2X X' 1 
q - B ~ - ~ - - ~ ]  1--a_}_----~Jr ( a - k 2 ) ( a + 3 )  ' 

which, when x = a -t- 2 is substituted, becomes 

- -B (a + 2 )a+~e-(~+*) 
r ( a + 4 )  

In both cases examined in Section I I I ,  this quanti ty was negative. Simi- 
larly, the fifth-moment-correction term at  x = a -b 2 in formula (8) may  
be reduced to 

-b 4C ( a dr 2 )~+~e -('+2) 
r ( a + 5 )  ' 

which was also negative in both examples. This suggests then that  we 
should use the stop-loss level of x = ~ -b 2 and base the premium on only 
the first two moments. There would be no third-moment correction, and 
our two examples suggest the fourth- and fifth-moment corrections are 
usually negative. 

Now let us assume that  we are studying some group or small insurance 
company and have set up an appropriate collective-risk or individual-risk 
model for it. Let  us assume that  a is the expected amount of claims of 
this group under our model and that  • is the standard deviation of the 
amount of claims. Then a ~ is the variance, and  the required scaling is 
found by  setting /~/z = /~9., so that  /5 = /~/~2. Therefore, a = /~a = 
~/~,  so that  the stop-loss level of a n u 2 -- g2/o~ q- 2 for the scaled 
variable. Thus, the stop-loss level for the original unscaled variable is 

"b 2¢~/#. Tl~e stop-loss premium for the scaled variable is by  formula (8) 
equ~ to 

I I ( ~ +  2)  = a [ 1  - r ( a + 2 ,  a + l )  ] - ( a + 2 ) [ 1  - r ( a + 2 ,  a) ], 

which is a function of a alone.. But  a is equal to a~/~, so II(a q- 2)/a 
may be looked on as a function of ~/a.  Since 100 II(a q- 2)/a is the stop- 
loss premium as percentage of the expected claims of the scaled variable 
and is equal to the same ratio for the original unscaled variable, we may  
tabulate the stop-loss premium for this coverage in the quite simple 
manner shown in Table 2. 

In  what sense is this a "best"  stop-loss reinsurance agreement? Pri- 
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marily because only two moments,  the mean and variance of expected 
total claims, mus t  be calculated for any  group or reinsured company to 
calculate the stop-loss premium. Wide variation in the skewness of the 
distribution of total claims makes no difference in the stop-loss premium 
calculated b y  an approximation correct through three moments.  Whether  
such a three-moment approximation is generally conservative is problem- 
a t ica l - - i t  was conservative in the two examples in Section I I I .  

This stop-loss reinsurance scheme was designed from considerations 
arising from the expansion described in Section I. I f  a Gram-Charlier 
expansion is made and the development of Sections I and I I  followed 
through, it m a y  be shown that  the stop-loss premium has a zero third- 
moment  correction term only if the stop-loss level is the expected claims. 

TABLE 2 

PREMIUM FOR STOP-LOSs COVERAGE 
EXCESS CLAIMS OVER. + 2a2//~ 
PREMIUM AS PERCENTAGE OF 

P r e m i u m  as  P r e m i u m  as  
,r/~ Percentage of ~ ~r/j, Percentage of 

D.00 . . . .  
.05 . . . .  
.10 . . . .  
.15 . . . .  
.20 . . . .  
.25 . . . .  

D.30 . . . .  

o.oo0% 
1.758 
3.092 
4.076 
4. 777 
5. 257 
5. 565 

0.35 . . . . . . . .  
0.40 . . . . . . . .  
O. 45 . . . . . . . .  
0.50 . . . . . . . .  
0.55 . . . . . . . .  
0. 7071 . . . . . .  
1.00 . . . . . . .  

5. 746% 
5.832 
5.852 
5.825 
5. 768 
5.494 
4.979 

For  this case, the stop-loss premium was found to be ¢/v'(27r),  as indi- 
cated at the beginning of this section. 

The author would like to take this oppor tuni ty  to thank Professors 
C. J. Nesbit t  and D. A. Jones, who have read various drafts of this paper 
and have made m a n y  helpful suggestions. 

APPENDIX 

I t  is known [4, p. 27] that, in an expansion of a suitable function in a Fourier 
series, the resulting partial sum at any stage is a trigonometric polynomial 
which minimizes a certain integral. A similar statement can be made about the 
expansion developed in Section I. 

Assume a is given. We then form the integral 

1 r (z s~-te-" ~ -  "12 / ) e , .  
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G measures the error .between f(x) and an approximating density, which is a 
gamma density times a polynomial. G is formed by squaring this error, multi- 
plying by a weight function F(a)/x~'-le -z for each x, and then integrating. For 
tt > 1, this has the effect of strongly weighting the errors a t  both tails of the 
distribution. For a < 1, the weight function has small effect near x = 0 but  
strongly ~;eights error for large values of x. An at tempt is then made to select 
the B,  so that  G is minimized. I t  proves convenient in this calculation to change 
the polynomial 

n 

into the form 

k ~ 0  

which is again a polynomial of degree at  most equal to n. To effect the minimiza- 
tion, we take the partial derivatives OG/OAk and set them equal to zero. But 
aG/OAI, -- 0 implies 

/ ~ f  (zlL(,, ) f~°z~-le-* --2 (z)dz.4- 2 A, J ° ~ ( - ~  [L (k ' ) ( z ) ]2dz=  0 ,  

where again use is made of the orthogonality of the Laguerre polynomials rela- 
tive to the weight function x"-le-~/r(a). This shows that  A ,  should be chosen 
so that  

/ ~°/(z)L(k")(z)dz r ( e )  
Ak= _ _ -= / f(z)L(k~)(z)dz. 

/ ~ ( l : ) ' [ L ( k , ) ( z )  ]2d z k ! r ( ~ + k )  

In the sense of the error integral G, adding an additional term improves the 
approximation as A,~-I correctly chosen gives a lower value to the integral 
than the choice of A~-I -- 0. Unfortunately, no estimates are known to the 
author as to bounds on the error in the approximation using this criteria or 
some other. However, the form of the weight function, low near the mean, 
suggests that  the approximation is less accurate in that range, and the example 
by Cram~r studied in Section I I I ,  A, bears this out. 
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DISCUSSION OF PRECEDING PAPER 

PAUL ~ARKHA~ KAHN: 

Mr. Bowers' paper represents a very fine contribution to the analysis of 
claims distributions and the approximations to them using standard func- 
tions. Recently this subject has received considerable attention, a notable 
example of which is the Bohman-Esscher report based on the work of a 
Swedish committee of actuaries. 

One stimulus to the use of the gamma distribution in these investiga- 
tions is its relative simplicity compared with the Esscher approximation, 
which, though complicated, gives good results, as shown in Table 1 of Mr. 
Bowers' paper. The purpose of this discussion is to call attention to a very 
recent paper by two Finnish actuaries ("Approximations of the General- 
ised Poisson Function," by Lauri Kauppi and Pertti  Ojantakanen), pre- 
sented to the 1966 ASTIN Colloquium. Kauppi and Ojantakanen give a 
simple formula for the amount of claims corresponding to a given prob- 
ability level, and this formula produces results that agree very well with 
the Esscher approximation. 

One note of caution, however, should be made concerning any of these 
approximations. I t  seems unreasonable to look for accuracy beyond a few 
significant figures, especially when calculating levels of security. 

WlLLIA~ D. BERO: 

I wish to congratulate Mr. Bowers on his well-written paper. The stu- 
dent of mathematical statistics will find it a pleasure to read, especially as 
an introduction to the mathematical aspects of collective risk theory. His 
presentation of the sum of the gamma functions is elegant and illuminat- 
ing. 

Because of the central importance of the expression (9), the insight 
gained from what I shall call a quadrature interpretation is useful. By 
writing 1/r(~) for ~/r(a + 1), the first term, which is the first approxi- 
mation to the stop-loss net premium, is more readily seen as the area of 
the rectangle whose length is x and whose height is the ordinate of the 
density function at x (x is the scaled-down claim amount). The next ap- 
proximation reduces this by an amount represented by the area of the 
rectangle whose length is the excess of x over its expected value a and 
whose height is the fraction represented by the area of the tail of the 
p.d.f, beyond the value x. The quadrature interpretation helps one to 
visualize the effect of a variation in x on the stop-loss net premium. 
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I trust that the author will catch the typographical error in the galley 
proof that uses lower case y's for capital I/'s in the heading of Table 1. 
The same slip with x is not material. 

B. GEORGE ISEN: 

Actually the process of fitting a smooth curve to a sample does not add any- 
thing to our information about f(x) that is not contained in the sample. The 
fitted curve may, in fact, give one an entirely misleading impression of the real 
density function. 1 

I t  has been interesting and enlightening to follow the recent incursions 
made into the hazy never-never land of stop-loss reinsurance. This prob- 
lem area, and the methods which have been proposed to establish a "sci- 
ence-proves" solution, are related to many other important problems to 
the actuary, including among them the establishment of contingency re- 
serves, the chance of ruin, the establishment of retention limits for life 
insurance policies, and certain problems related to group insurance policies 
and their experience rating. 

Mr. Herbert Feay 2 has certainly made the members of the Society in- 
debted to him "for his courage, talent, and industry "8 in this field. After 
Mr. Feay thoroughly classified various approaches to reinsurance, its pur- 
poses, and some general considerations, he proceeded into the misty bog in 
the section entitled "Determination of Premiums." This section of the 
paper evoked many other suggested pathways through the murk and 
elicited much erudite, though critical, discussion (which, if not critical, is 
probably not constructive). I hesitate to add my discussion of Mr. 
Bowers' ably written and informative paper to the long list of writings 
stimulated by Mr. Feay's paper, including those most important papers 
by Dr. Paul Markham Kahn 4 and Mr. Dwight K. Bartlett. s 

However, the line of papers seems to be bearing down on one basic 
problem: What is the true underlying nature of the risk, how may it best 
be expressed mathematically, and how may this "mathematic" be applied 
in day-to-day work? (This is, in reality, only one basic problem, analyzed 
into its fundamental parts, much as the atom, which is the basis of all 
matter, may be analyzed into its fundamental parts, etc.) Mr. Feay 

t Mood, Introduction to the Theory of Statistics (New York: McGraw-Hill Book Co., 
Inc., 1950), p. 120. 

1 Herbert L. Feay, "Introduction to Nonproportional Reinsurance," TSA, XII, 22. 
8 Irving Rosenthal, in his discussion of Feay's paper, TSA, XII, 54. 
* "An Introduction to Collective Risk Theory and Its Application to Stop-Loss 

Reinsurance," TSA, XIV, 400. 
5 "Excess Ratio Distribution in Risk Theory," TSA, XVII, 435. 
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seemed interested in establishing the basic, simple mathematical frame- 
work of his subject e and then, justifying the use of the normal distribution, 
proceeded to calculate some illustrative premiums. As I intimated above, 
the discussions then went on to challenge the use of the normal distribu- 
tion as the basic underlying function describing the true density of the 
claim distribution. I t  is not necessary to mention each discussant sepa- 
rately, but  it may be of help to partially and hastily (and probably badly) 
outline the alternative roads to Oz (all varying in their shades of yellow, 
but  all leading, brick by brick, through that country, strange, uncharted, 
and inhabited only by tin woodmen and straw scarecrows). 

The methods which have been suggested include the direct application 
of collective risk theory (with the use of the Esscher approximation), 
Monte Carlo techniques, the substitution of the Poisson formula for the 
normal distribution, and such, thereby stamping Mr. Feay as misguided 
in the shade of the bricks on his road. 

To save the day, Dr. Kahn ~ gave us a summary of the weapons devel- 
oped and used by our European brethren (seriously, his and Mr. Feay's 
papers led this poor actuary to the sources so valuably accumulated in the 
rich bibliographies of their papers), and again Mr. Feay's normal dis- 
tribution came under attack as being abnormal. Dr. Kahn's pathway is 
tortuous and narrow, and only the most adroit at compound-Poisson 
processes may follow in safety. 

Mr. Bartlett  s ventured into the mire, indicating the importance of find- 
ing a path and an easy one---like a gamma density function 9 of the type 
found in chapter vi of Mood. x° Fitting the first two moments of the actual 
distribution of claim amounts to those moments of the density function 
would of necessity determine the value of the parameters of the function 
and excess ratio probabilities, and, hence, stop-loss premiums could be 
determined. Mr. Bartlett  has not let us travel easily, but, as with the pre- 
vious scholarly papers of Feay and Kahn, his introduces new concepts 
which can be evaluated with only the closest attention. The road seems to 
be narrowing. But, again, out of the discussions can be heard the pleas for  

= f'-",o,. 
TOp. cir. " Op. dr. 

° f ( x ) =  at +~ 

x < O  

to op. dr., p. l l 2 .  
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the use of the logarithmico-normal distribution, the Pareto distribution, 
the T-gamma (with three parameters, and hence the use of three mo- 
ments) for use as the "secondary" distribution, and weakly, but  deter- 
minedly, the path opened by a spin of the roulette wheel is again offered 
for consideration (Monte Carlo and his random numbers). I t  seems to 
have been settled that the Poisson distribution leads to the right distribu- 
tion of the number of claims (except for Mr. Jackson's minor dissent in 
his discussion of Mr. Bartlett 's paper), n 

Mr. Bowers now invites us to follow along yet  another path. He de- 
scribes very accurately and lucidly the land to which he leads us. He takes 
advantage of Mr. Bartlett 's lead of the use of the gamma function for the 
density function in question but  tends to increase our confidence by in- 
voking the use of more than two or three moments, this being possible 
through the use of an expansion similar to the Gram-Charlier series, except 
that the Laguerre polynomials are used as weight functions (this making 
the solutions neat by their being orthogonal polynomials) in the place of 
the Hermite polynomials used in the Gram-Charlier series. Mr. Bowers 
must be congratulated for his thorough analysis and his offer of yet an- 
other path to the Emerald City. 

In Table i of Mr. Bowers' paper a comparison is made of various ap- 
proximations to an exact value resulting from an explicit function. The 
Esscher approximation seems to yield the closest values to the exact val- 
ues, while fifth-moment gamma is certainly not as reliable an estimate to 
the values in this table. However, it is possible that the fifth-moment 
gamma function may be justified on other grounds, though it seems that 
the mathematical work involved in applying the fifth-moment gamma 
function is approaching that needed to complete the approximation by 
means of Esscher functions. 

As I stand at the edge of this land fraught with dangers, preparing to 
reach the goal--that  city of which only the Wizard of Oz himself knows 
the location--I see before me the beckoning of many paths: all are yellow 
and all are brick, but  I am at a loss, for my instruction to follow the 
yellow brick road has guided me to indecision. 

I t  seems that the literature is clear as to what price must be paid when 
a road is to be selected: ~ In life insurance mathematics, the secret path- 
way was sought by men of the stature of Gompertz and Makeham. Today, 
no actuary pretends that these mathematical functions for the force of 
mortality are anything but techniques of graduation. In the graduation of 
our most recent mortality table for use in valuation, these were abandoned 

n Paul H. Jackson, TSA, XII, 459. 
'~ Mood, op. cir., p. 120. 
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for, as we all know, the use of ~'enkins' fifth-difference modified osculatory 
interpolation formula for most of the range of ages in the table. At the 
upper ages, where the data are scarce, artificial methods were used to 
close off the table. 

Mr. Paul Jackson, in his discussion of Kahn's paper, 13 illustrates the pos- 
sibility of a growing and confusing number of roads to the goal. But he also 
brings forward a point which should be enlarged upon. The fitting of these 
many frequency functions depends on the data involved. Of necessity the 
data are most plentiful at or near the mean of these distributions of actual 
claim amounts, but  there is a paucity of data at the extreme or tail, and 
here precisely is that magic city that we are trying to reach--the under- 
lying, basic, inherent density function at the tail of the distribution. The 
problem of evaluating the " t rue"  tail by comparison of a density to the 
actual data has limited reliability. 

The Monte Carlo technique has been advanced, but  this technique still 
relies on a basic underlying probability being associated with various 
claim amounts, and the analysis of hypothetical samples exposed for a 
large number of hypothetical time periods, with the occurrence of large 
amounts being estimated therefrom and probably being small in number 
at any rate (that is, duplicating the paucity of data in the tail). Because 
of my limited knowledge of this area, it seems to me that to apply the 
Monte Carlo technique to, say, a group of lives, requires that ages, prob- 
abilities conforming to those ages, and amounts conforming to those lives 
must be selected and then the results of the simulation analyzed. Here the 
road is not only a different shade of yellow but has many side lanes in sight 
even before we enter upon it. 

The problem, which seems to be losing its disguise, is not what the 
underlying function is but rather what is a good graduation formula for 
the data observed, so that the stop-loss premiums (or other related func- 
tions) calculated therefrom may be adequate, equitable, consistent, and 
competitive. The more parameters added to a graduation formula, the 
closer we expect the curve to fit to the data. Hence, adding moments and 
using the "method of moments" (if you will) may give a better fit to the 
observed data, but  does it predict the nature of the tail any better when 
the data there are so sparse? (Of course, if the basic function does not 
describe the data closely, then added parameters may cause greater devia- 
tion from the observed, this being true where parameters are contained in 
the terms of a series which itself diverges or converges very slowly.) 

Before turning to a conclusion, I would like to review the assumption 
underlying the Poisson distribution as being representative of the prob- 

ta TSA,  XIV, pp. 443-44. 
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ability of the number of claims incurred. Using standard actuarial nota- 
tion, the probability that (x) dies (or becomes hospitalized or disabled) 
before age x -5 h is hq~. Also, let hp~ = 1 -- hq~. Then the probability that 
(x) survives to x -5 kh and dies before age x + (k -5 1)h is khp~' hq~+kh. 
If it is assumed that 0 _< h _< 1 and k is an integer such that 0 _< kh < 1, 

then ~hp,'hq~+kh represents the probability that (x) dies before x -5  1, 
and exactly between x -5 kh and x -5 (k -5 1)h. Usually an assumption of 
uniform distribution of deaths is made. This results in the following: 

khp~'hqz+kh = l~ lz+kh 

_ k hl~+l + ( 1 --  k h)l~ --  ( l - -  k h --  h)l~ --  ( k + 1 ) hl~+x 
~X 

h ( l , - l ~ + l )  

= h . q ~ .  

Hence, under this assumption the probability that (x) dies in any small 
part, h, of the year of age is the same as for death in any other part of 
duration h in that same year. However, the probability of death in a small 
part  of the year, h, if (x) has lived part  of the year, increases throughout 
the year, and this without regard to the size of h. That  is: 

hqt~-kh < hq~-(~+l)h, 
if 

h" q~< khq~+(k+X)h, 

h " q_.___2~ h" q~ < p,+kh ' 

or 
p~+~h < 1,  

which it is in ordinary meaning of probability. 
Hence, the assumption that the probability of a claim in a short period 

of time is independent of what happened prior to that time (at least re- 
specting life insurance) is not true, even using the assumption of uniform 
distribution of claims. (It is obvious where the UDC is not used, because 
/z~, the force of mortality, is not considered constant with respect to time 
in any case respecting life contingencies of mortality or morbidity.) How- 
ever, where the probability of occurrence in that period is very small and 
the number exposed to the hazard very large, the Poisson is an excellent 
approximation to the true probability related to the number of claims. A 
small number exposed, as in small groups, challenges the accuracy of using 
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the Poisson distribution. I regret that I have not carried forward these 
thoughts to the point of calculations and comparisons due to lack of time. 
Mr. Jackson had touched on this problem from another point of view 14 
but  had not referred to the fact that claims have to be not only inde- 
pendent of each other but also of the time of their occurrence, in order for 
the Poisson distribution to be exactly representative. 

I have digressed sufficiently from making a decision regarding the path 
to take. In attempting to choose wisely, I have re-examined many basic 
texts in statistics. Wolfenden's text 16 directed to the problems of actuaries 
in curve fitting, graduation, and statistics, indicates on page 64 that varia- 
tions in the Gram-Charlier series are available for use with data that are 
very skewed. The normal functions may be replaced by the Poisson ex- 
ponential as the generating function giving rise to the Poisson-Charlier 
series. Also, the Gram-Charlier series may be used with the logarithmico- 
normal as the generating function. 1" 

In conclusion then, Dorothy was much more successful in reaching the 
Emerald City than I, for she had only one yellow road to choose. I am still 
looking for the road with the right shade of yellow. Perhaps we can look 
forward to added papers on this subject, where these many functions and 
Monte Carlo techniques will be applied to actual data derived from the 
sources under study, such as hospitalization claims under group insurance 
contracts or results of actual reinsurance treaties. Perhaps each problem 
requires a unique road of its own. 

(AUTHOR'S REVIEW OF DISCUSSION) 

NEWTON L. BOWERS, JR. : 

I wish to thank Dr. Kahn, Dr. Berg, and Mr. Isen for their discussions 
of my paper. Their discussions bring up some of the problems of risk the- 
ory and a new solution to one of these problems. 

Dr. Kahn in his discussion draws attention to a new paper by Kauppi 
and Ojantakanen i presented at the 1966 ASTIN Colloquium. The paper 
describes a method of using the standard normal distribution to approxi- 
mate closely the well-known Esscher approximation. The technique in- 
volves a simple change of variable which takes account of the third 
moment. I highly recommend this paper to the interested reader. 

Dr. Berg brings up a point about a typographical error which I would 
call a difference in notational preference. I use capital letters, Y, to indi- 

u IMd., p. 442. 
'~ Hugh H. Wolfenden, The Fundamental Principles of Mathemalicd.Statistics (The 

Actuarial Society of America, 1942). 
16 lb/d., p. 312. 
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cate the random variable and small letters, y, to indicate numerical values 
that the random variable assumes. While this notation is not universal, 
it has been used in several recently published textbooks. 

Dr. Berg also shows a quadrature interpretation of the stop-loss net 
premium where the distribution of total claim amount is assumed to be a 
gamma distribution. A general interpretation of this type is possible. 
Looking at the integral for the stop-loss net premium, we see 

I I ( x ) = f ,  (y-x)y(y)dy=ff~ [(y-.)-(x--t~)]f(y)dy 

=f,  (y--•)f(y)dy--(x--•)[1--F(x)]. 

If the gamma density f(y) = 1/p(a)e-vy,-I is substituted, the integral 
term may ble evaluated as xf(x), as Dr. Berg has pointed out. If f(y) is 
instead the standard normal density, the integral term may be shown to 
equal simply f(x). 

Mr. Isen's comments raise some interesting questions, and I will answer 
them by giving my view of risk theory and by restating what I consider 
to be the place of my paper. 

As I see it, there are two problems in risk theory. The first problem is 
to construct the probability model. There are two main classes of models. 
The first type, the collective model, divides the problem of calculating the 
distribution of total claim amounts into two stages. First a distribution of 
the number of claims is calculated. Certain assumptions, outlined in Dr. 
Kahn's paper, lead one to a Poisson distribution for the number of claims. 
Mr. Isen discusses these assumptions but  seems to object to the station- 
arity assumption for the collective model on the basis of an analysis per- 
taining to an individual life. In any case, I agree with him that the Poisson 
assumptions seem inappropriate for small groups. Other actuaries have 
noted that in certain branches of the insurance industry the negative bi- 
nomial distribution seems to fit the number of claims much more closely. 
The negative binomial distribution can, in fact, be obtained on theoretical 
grounds under the assumption that the Poisson parameter itself is a ran- 
dom variable with a gamma distribution. 

The second part of the construction of the collective model is to obtain 
a probability distribution on the amount of a single claim. This is a prob- 
lem which seems to me to be quite difficult and one which must be faced 
in casualty, health, and disability coverages. In these fields of insurance a 
statistical analysis of the distribution of individual claim sizes would be 
necessary. This analysis is then used to construct the so-called secondary 
distribution, the form of which is often assumed to be log-normal or 
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Pareto or gamma. I t  is possible in some of the so-called distribution-free 
methods to assume nothing about the distribution of individual claims but 
simply to use the data on claims to evaluate moments. I f  the data are 
sparse, the sample may give misleading results as to the distribution of 
large claim amounts. 

The second model in general use is the individual model. The total claim 
amount is viewed as the sum of the claims on the various individual lives 
in the portfolio. The distribution of total claim amounts is the distribution 
of a sum of a fixed number of independent random variables. For life 
insurance where the amount of claim is, in general, fixed given the time of 
claim, this individual approach appears to be the preferred one. 

Once the model is constructed, the second problem comes into play. 
How does one use the model to evaluate probabilities and expectations? 
I t  is virtually impossible to evaluate these probabilities directly because of 
difficulties in evaluating convolutions of functions. 

There are several solutions to this second problem. One of the most 
popular methods at present is to use Monte Carlo techniques of simula- 
tion. If  a large number of simulations are used, details of the distribution 
can be evaluated. Modern computers make such a scheme quite feasible. 

Another method is to use the probability model to evaluate moments of 
the distribution of total claim amounts. A standard curve is then fitted to 
these moments and used to evaluate probabilities. Since the normal dis- 
tribution and the gamma distribution are two parameter families of dis- 
tributions, the values of these parameters may  be chosen so that  the mean 
and variance of the approximating probability curve are equal to those of 
the underlying model. I f  the third moment  is known, the Pearson Type I I I  
curve may be used. Bohman and Esscher have shown that  this last dis- 
tribution gives much better results than the normal distribution for details 
of the tails of the distribution. The Gram-Charller series and the Edge- 
worth series both allow one to use even more additional information in the 
form of knowledge of additional moments to improve the approximating 
density. The series suggested in my paper is like the Gram-Charlier series 
in that  it makes use of additional moments. However, the underlying dis- 
tribution used in generating the series is the gamma distribution rather 
than the normal distribution, and the results of the Bohman-Esscher 
paper suggested to me that  this gamma series might give better results. 

Another solution to the problem of evaluating various probability 
statements is by the use of the Esscher approximation. This involves 
evaluating moments of a special distribution function containing a multi- 
plicative factor e ~x. I t  is a little unhandy to deal with, but it does give good 
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results. Furthermore, the paper mentioned by Dr. Kahn shows a very 
good and very easy approximation to the Esscher method, which does not 
involve the evaluation of moments of the special distribution function. 

Again I would like to thank those who took the time to prepare discus- 
sions of my paper and to allow me to indicate where I feel it fits into risk 
theory. 


