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ABSTRACT 

Most mathematical problems requiring a numerical solution can be 
formulated in either an explicit or an implicit form. The first expresses 
the unknown as an explicit function of problem parameters; that is, the 
unknown appears alone on the left-hand side of an equation. The second 
formulation expresses the unknown as the root of a (usually) nonlinear 
equation. Very often, the implicit approach is simpler to arrive at but 
requires far more .arithmetical computation to solve the equation. The 
recent dramatic increase in the speed of electronic computation now 
makes the implicit method quite attractive. The method is applied to 
several problems of actuarial interest. 

T 
HE high-speed electronic computer has produced more than the 
great enhancement of the speed of standard computational meth- 
ods of problem-solving: it has introduced new methods and made 

old ones obsolete. Certainly no one who owns a pocket-size electronic 
calculator with trigonometric functions wants to know how to use inter- 
polation formulas when he needs the sine or cosine of an angle which lies 
between tabulated values of a trigonometric table. On a larger scale, 
certain scientific problems are now solved numerically by the solution of 
linear systems of several hundred equations ("implicit" methods), where 
"explicit" methods had been applied laboriously with less satisfactory 
results. 

Actuarial problems are being solved on high-speed electronic computers, 
but very often methods of solution based on commutation functions and 
standard compound interest notation fail to let the computer do as much 
of the work as it should. In many problems it is relatively easy to express 
the solution implicitly--that is, to write an equation in the unknown-- 
and then solve the equation for the unknown analytically or numerically. 
We shall consider the equations generated by the recursive relations which 
arise in life contingencies and compound interest problems. Four examples 
will be considered--two compound interest problems and two life con- 
tingencies problems. 
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I.  LOAN AMORTIZATION W I T H  STEP-RATE AMOUNTS OF PRINCIPAL 1 

Given is a loan to be amortized by a series of n level payments. The 
loan balance is segmented, with each segment having a different rate of 
interest. For example, the interest rate may be 1½ per cent per month on 
the first $1,000 of outstanding balance and 1 per cent per month on the 
excess over $1,000. An explicit solution to this problem for the general 
m-segment case by Stephen G. Kellison appears in ARCH,  1973.5. The 
implicit solution, obtained from a recursive definition, is 

lo = L ,  (1) 

ls+l=Is-[P-i(/s)] ,  j = 0 , 1 , . . . , n - 1 ,  (2) 
1. = 0 ,  (3) 

where 

L =  

n - -  

ls = 

i(t,) = 

P =  

The 
ls. For 

Amount of original loan; 

Number of payments; 

Amount outstanding after j th  payment; 

Interest due at j th  payment; 

Level payment (to be found). 

function i(li) defines the interest due on the outstanding amount 
the previous numerical illustration, 

i(ls) = 0.015/s for l~ < 1,000 ; 

i(l~) = 15 + 0.01(/~- 1,000) for ls > 1,000. 

In general, define i(Is) to be any arbitrary function of ls, the outstand- 
ing balance. Equations (1)-(3) then define a nonlinear equation in P 
which easily can be solved numerically for P (the Appendix gives a 
general numerical procedure for solving nonlinear equations in one un- 
known). 

I I .  THE RETIREMENT INCOME POLICY 

According to Jordan [2], "the policy can be regarded as a combination 

of a pure endowment of 1 + k due at the retirement age and a term in- 

surance up to that age providing a death benefit equal to I or the total 

cash value on the policy, whichever is greater." If x is the age at issue and 

x -l- n the retirement age, the amount of the pure endowment, 1 + k, is 

equal to the present value at age x + n of the annuity to be provided at 

that age. The derivation of the net premium P, payable for n years, is 

complicated by the fact that the total cash value is a function of P, 
which is not known in advance. However, the analysis can be simplified 

l This example first appeared in ARCH (Actuarial Research Clearing House [Ann 
Arbor, Mich.]), 1974.1. 



RECURSIVE DEFINITIONS OF ACTUARIAL F~CTIONS 55 

greatly by using a recursive formula connecting the successive yearly 
cash values instead of the method in Jordan which derives P explicitly 
using commutation functions. The recursive formula resembles those 
found in Jordan on pages 106-7. Assume that yearly cash values are equal 
to net level premium reserves. 

0V, = 0 ,  (4) 

Z = [(iV. + P)(1 + i) --  q~+t]/p,+t, t = 0, 1 , . . . ,  n -- 1, (5) 

t+IV, = Z for Z _< 1 , (6) 

t+IV, = ( t V .  + P)(1 + i) for Z > 1, (7) 

.v~ = 1 + k ,  (8) 

where 

P = Net yearly premium ; 

iV, = tth-year terminal reserve; 

P~t  = Probability that an individual aged x + t survives 1 year; 

q~-t = 1 --  P,~.t; 

i = Yearly interest rate .  

Again, we have a nonlinear equation in an unknown (P) ,  the desired 
yearly premium. The equation defined by formulas (4)-(8) is easily 
solved numerically for P. Jordan's a, the last value of t for which cash 
value is less than or equal to 1, is not required. 

Before proceeding to the next example, one should note that a major 
advantage of the recursive approach is that it permits a "dynamic" 
definition of the problem. One can proceed from month to month, or year 
to year, with the problem definition dependent on the state of one or 
more variables at the current time period. In the first example the formula 
for the interest rate is a function of the outstanding loan amount. In the 
second example the formula for the (t + 1)st terminal reserve depends on 
a function of the tth terminal reserve. 

III. A BOND PROBLEM 

The following problem appears as Example 8.3 (p. 1 ~ )  of Donald [1]: 
" A  bond of 1250 is redeemable at 105% by 25 equal installments of cap- 
ital, the first due 6 years hence. Interest, which is payable half-yearly, 
is at 4½% in the first year after purchase, and thereMter decreases by 
~:t6% each year. What price should be paid to yield 4% per annum con- 
vertible half-yearly?" 

The solution using standard compound interest techniques takes just 
over One page in Donald. While this problem does not have the "dynamic" 
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definition of the first two examples, the changing interest rate makes the 
recursive formulation quite natural. Let 

Vo = R ,  (9) 

K0 = 1,250, (10) 

Z = 1.02Vi -- ½K~(0.045 -- 0.0Ira/40),  (11) 

Vi+l Z 52.50 
% 

for j  + 1 > 12 a n d j  + 1 an even integer (12) 
K~'+t = Kj -- 50.00J -- 

Vi+~ = Z \ 
(13) / K~.+I = Ki 

for j +  1 < 12or j +  l an odd integer , 

j = 0 , 1 , . . . , 5 9 ,  

m = [j/2] (greatest integer in j / 2 )  , 

K60 = 0 ,  (14) 

where 

Vi = Purchaser's investment after j t h  half-yearly period ; 

K~. = Nominal outstanding loan after j t h  half-yearly period ; 

R = Purchase price of bond to yield 4 per cent yearly, convertible half- 
yearly (to be found).  

Equations (9)-(14) define a nonlinear equation in R, giving an answer 
R = 1,327.43, correct to 6 significant figures. 

IV. Mimmr~ CASH VAZUES 

According to Jordan [2], 

[The computed minimum cash values] are defined by law to be adjusted 
premium surrender values computed on a prescribed mortality and interest 
basis with the extra initial expense E 1 derived from the following formula 
(based on a level insurance amount of $1000) : 

(a) 40~o of the adjusted premium for the policy, but the amount not to 
exceed $16; plus 

(b) 25% of the adjusted premium for the policy or of the adjusted premium 
for an otherwise similar ordinary life policy, whichever is less, but the 
amount not to exceed $10; plus 

(c) $20. 

Suppose it is desired to compute the ordinary life adjusted premium p,a 
for age x. The amount available for cash value is p,a _ E 1 for the first 
year, and p,a for all subsequent years. As noted in Jordan, the computa- 
tion is complicated by the fact that  E t is a function of p,a. With a re- 
cursive definition, however, p,a can be quickly defined implicitly. 

oV~ -- 0 ,  

E t = 0.65 min (p,a, 0.04) + 0.02, 
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1V, = [(oV, + p.a _ E')(1 + i) -- q , ] /p . ,  

,+tV, - [(,V, + P~)(1 + i) - qz+t l /p~ , ,  t = 1, 2 , . . . ,  o - x - 1 ,  

(~..,v, + P~,)(1 + i) = 1, 

where 

iV .  = tth-year terminal reserve ; 

p. = Probability that  an individual aged x survives 1 year ; 

q , =  1 - - p , ;  

o = Smallest x such that p~ = 0 ; 

i = yearly rate of interest ; 

P~ = Renewal net premium (to be found). 

The numerical solution of the above equation for P~ now follows routine- 
ly. 

Two important things may be noted concerning the recursive solutions 
to the four examples. First, the recursive approach is the "natural"  
solution. The growth and decay of terminal reserves or outstanding loan 
amount are easy to follow from period to period, while the conventional 
solution using commutation functions and compound interest notation 
is often tortuous and contrived. Both methods, of course, are mathe- 
matically exact. Second, the recursive method requires much more 
computation than does the conventional method and, normally, should 
not be considered unless the analyst has access to a computer. Other- 
wise, conventional methods should be used. In any event, present-day 
technology requires that  the computing facilities available become part 
of the solution, not merely an appended footnote. 

APPENDIX 

There are many ways to solve numerically a nonlinear equation in one 
unknown, f(x) = 0. The author of this paper prefers the method detailed 
below, for the following reasons: (1) I t  does not require the computation (or 
existence) of the derivative of f(x).  (2) It  is very reliable; in particular, the 
method always converges if f (x) is continuous, but continuity is not a necessary 
condition. (3) It  is easy to program for a computer. 

The method is that of "interval halving" and is based on a theorem due to 
Bolzano which states that, if there exist numbers a and b such that f(a) < O, 
f(b) > 0, and f (x)  is continuous for x between a and b, then there exists a 
number c between a and b such that f(c) = 0. The estimate of c is (a 4- b)/2. 
We can then set up the iterative scheme 

m+l = ½(xi + xi-q) , i = 1, 2 , . . . ,  
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where x~ and X~_l are chosen so that  f(x~) and f(xi_l) have opposite signs. The 
iteration terminates when If(x~)l is less than some preassigned tolerance. This 
method is not particularly fast, but its nearly unfailing reliability makes it 
preferable to more sophisticated schemes. The author believes that  the small 
amount of computer time saved by more quickly convergent algorithms is 
dissipated the first time that one has to trace through a computer memory 
dump to find out why the algorithm failed. A suggested FORTRAN program 
follows: 

C PLOW AND PHIGH ARE CHOSEN SO THAT •(PLOW) AND 
F(PHIGH) HAVE OPPOSITE SIGNS. 
50 PNEW = (PLOW-F PHIGH)/2  

F N -  F(PNEW) 
IF (ABS(FN) -- EPS) 40,40,30 

C EPS IS THE CONVERGENCE TOLERANCE 
30 IF (FN,F(PLOW)) 10,40,20 
10 PHIGH -- PNEW 

GO TO 50 
20 PLOW -- PNEW 

GO TO 50 
C ACCEPT PNEW AS THE ROOT OF F(X) - - 0  

40 . . . . . . . . . . . . .  

In order to start the iterative algorithm, we need two values, x0 and xl, 
such that  f(xo) and f(xl) have opposite signs or, equivalently, x0 < c < xl, 
where c is the desired root off(x) = 0. Of course, it is desirable to choose x0 and 
x~ as close to c as possible, since the iteration will then converge more quickly. 
With the recent advances in the speed of computer arithmetic, however, even 
outlandishly conservative guesses for x0 and xx waste very little time. For 
example, less than one second of computer time was needed for 6-digit accuracy 
on all four examples with the guesses shown in the accompanying tabulation 

Example I xo 
I . . . . . . . .  0.0 10,000.0 
II . . . . . . .  0.0 1.0 
III . . . . . .  0.0 10,000.0 
IV . . . . . . .  0.0 1.0 

for xo and xl. A Digital Equipment Corporation PDP-6 computer was used for 
all examples. 
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DISCUSSION OF PRECEDING PAPER 

T. N. E. GREVILLE:  

I would like to applaud this paper, which has substantial mathematical 
content but is nevertheless very practical and useful. The approach of 
solving complicated problems by defining the unknown quantity recur- 
sively and using the computer to solve the resulting nonlinear equation 
makes a great deal of sense. 

The main purpose of this discussion is to make a case for using the 
time-honored regula falsi (or "method of false position") as an option 
alongside the interval-halving method in seeking the solution of the equa- 
tion. As I see it, this has two advantages: (1) in most cases the regula falsi 
will converge faster (although I fully agree with the author that rapidity 
of convergence is not the paramount consideration);(2) the regula falsi 
will provide certain information the user might like to have that would 
not be available if the interval-halving method were used alone. 

The regula falsi uses linear interpolation between preceding estimates 
to arrive at the next estimate. It  is based on the iterative scheme 

x, l / (x,)  - x,/(x,_0 / (x , )  ( x , -  x,_,) 
x,+x = f(x,) -- /(x,-x) = x i  - -  f ( x i )  - -  f(x,-a) 

Clearly this will "blow up" if the denominator is too small. The interval- 
halving method can never blow up because there is no division (except 
by 2); this is its great virtue. 

Now, if the denominator of the regula falsi is very small (or even zero), 
this suggests that either (1) the f ( x )  curve is almost horizontal in the in- 
terval or (2) the f ( x )  curve undulates in the interval. I think the first 
condition is much more likely to occur in actuarial problems. 

If thef(x) curve is almost horizontal, the determination of the required 
root c is very rough, because If(x) l is less than the prescribed tolerance 
for every x in a sizable neighborhood of c. There is not much the user can 
do about this, but he may want to know that the condition exists. In this 
case the interval-halving method will give an answer very quickly but 
will give no warning that the determination is rough. 

If the curve undulates, f ( x )  may well have more than one zero in the 
interval, and this, too, the user may wish to know. He may want the 
smallest (or the largest) zero and may need to exercise some care that 
the one desired is the one obtained. 

My proposal, then, is to start out with the regula falsi but to switch 
to interval halving (with an appropriate message printed out) in case 
the going gets rough. A suggested FORTm~N program is as follows: 
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C PLOW AND PHIGH ARE CHOSEN SO THAT F(PLOW) AND 
F(PHIGH) HAVE OPPOSITE SIGNS 
60 DEN = F(PHIGH) - F(PLOW) 

IF (ABS(DEN)- EPS2) 70,70,80 

C IF DENOMINATOR IS TOO SMALL WE SWITCH TO 
INTERVAL HALVING 
70 P R I N T  MESSAGE 

C MESSAGE INFORMS USER THAT PROGRAM IS SWITCHING 
TO INTERNAL HALVING 

PNEW = (PLOW + PHIGH)/2  
GO TO 90 

80 PNEW = P H I G H  - (PHIGH -- PLOW) ,F (PHIGH) /  
(F(PHIGH) - F(PLOW)) 
90 FN = F(PNEW) 

IF ( A B S ( F N )  - -  EPS) 40,40,30 
C EPS IS THE CONVERGENCE TOLERANCE 

30 IF (FN,F(PLOW)) 10,40,20 
10 PHIGH = PNEW 

GO TO 60 
20 PLOW = PNEW 

GO TO 60 
C ACCEPT PNEW AS THE ROOT OF F(X) = 0 

40 . . . . . . . . .  

The  au thor  of the paper  has suggested to me tha t  the second algebraic 
form of the regula falsi, which is the one embodied in s t a t emen t  80 of 

the program, often gives be t te r  accuracy on a digital computer  because 
of the vagaries of f loat ing-point  ar i thmetic .  

Note  how this combinat ion  procedure is l ikely to work out  in differ- 
ent  cases. 

1. In well-behaved cases the regula falsi will be used exclusively. 
2. When the denominator of the regula falsi becomes small because the / (x)  

curve is almost horizontal, the program will switch permanently to interval 
halving. An answer of doubtful accuracy will be produced, and the user 
will be warned. 

3. When the denominator of the regula falsi becomes small because the curve 
undulates, the program is likely to oscillate between the regula falsi and in- 
terval halving. An answer will be obtained, which may be accurately de- 
termined, but if there is more than one zero of/(x) ,  it is a matter of luck 
which zero will be indicated, in the absence of intervention by the user. 

Both  the regula falsi and interval  halving are discussed on page 1179 

of K. Rektorys  (ed.), Survey of Applicable Mathematics (Cambridge, 
Mass. : M I T  Press, 1969). 
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STEPHEN G. KELLISON: 

Mr. Seligman's excellent paper shows that many standard actuarial 
problems can be solved by an implicit or iterative method as well as by 
the more traditional explicit or analytical method. The paper is quite 
timely not only because of the greater computer capacity in existence 
today, which makes the implicit approach a practical technique for the 
solution of such problems, but also because of a basic change in the 
mathematical training which actuaries receive today. 

In 1971 the Society of Actuaries Education and Examinations Com- 
mittee eliminated the subject of finite differences from the examination 
syllabus and replaced it with numerical analysis. This paper utilizes two 
basic concepts from numerical analysis which were not previously on 
the syllabus. 

The first of these is iteration, which can be characterized as a systematic 
refinement of the age-old technique of successive approximation. Mr. 
Seligman's paper utilizes the Bolzano algorithm, which is one of the 
standard iteration methods covered in numerical analysis. The current 
examination syllabus presents this algorithm and also several other stand- 
ard algorithms, such as the method of successive substitutions, successive 
inverse interpolation, and the rapidly converging Newton-Raphson meth- 
od, as well as some variations. The advantages and disadvantages of 
these methods are explored, including the rate of convergence and the 
complexity of the computation involved. 

The second concept involved is that of a recursion formula, which 
relates successive functional values at finite intervals. As Mr. Seligman's 
paper illustrates, many standard actuarial problems can be expressed as 
recursion formulas. In numerical analysis a finite analogue to a differen- 
tial equation is considered and is termed a "difference equation." Since 
differences can be broken down into combinations of functional values 
at finite intervals, it is immediately seen that a difference equation c a n  

also be viewed as a recursion formula. The current examination syllabus 
contains a systematic treatment of the solution of difference equations. 

Mr. Seligman is to be congratulated on presenting a paper which is not 
only of significance in the solution of frequently encountered actuarial 
problems but is also quite timely in the education of actuaries. 

QUINTIN J. MALTBY: 

I hope that this paper will help dispel any lingering fears that non- 
analytic solutions to compound interest, life contingency, and like prob- 
lems are somehow not quite proper. I have been involved for some years 
in solving the unknown-yield problem and hope that the following corn- 
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ments will provide a proper expansion upon the concepts in the paper 
and also be of value to those faced with the realities of this particular 
problem in practice. 

The recursive relation for a fixed-interest bond or mortgage is 

V, = Vt_t(1 + i) - P , ,  
where 

V, - Value at the end of period t; 

Pt = Total  payment  due at the end of period t; 

i = Per period yield factor; 

n = Number  of periods; 

the object of the game is to find an i that  causes Vn to equal zero. 
The related analytic equation is well expressed as a polynomial in v 

equated to zero, namely, 

P , r "  + P,_lv "-1 + . . . + Ply  - -  Vo = O .  

When V0 > 0, Pt > 0 for all t, and i > 0, the functions are all very 
well behaved in the sense that  the solution (however obtained) to the 
equation in r has a single real root and the dollars-and-cents V, obtained 
from the recursive relation is a monotone nondecreasing function of i. The 
naval  gunnery technique of interval halving as described in the appendix 
to the paper has worked very well for us under the above circumstances. 

As soon as some of the restrictive conditions are lifted, however, the 
road to a solution becomes more tortuous. In actual practice I have al- 
lowed the Pt amounts to be negative (to represent additional mortgage 
advances re tax bill payments)  and allowed the yield factor to go nega- 
tive (re real returns during inflation). Under these relaxed conditions we 
are dealing analytically with a polynomial whose left-to-right graph may  
start  either very high or very low, may  have one or more maximum and/or  
minimum,  and finally becomes monotone increasing. If more than one 
real solution exists, it is the highest such solution that  we need in practice. 

The following procedure was devised to solve for i under relaxed con- 
ditions. Some trial and error was involved before the final version was 
attained. It  is presented only as verbal logic because the computer logic 
involves a great many  assembler language statements. The assumptions 
and definitions are stated in step 1, and the logic itself starts at step 2. 

1. (a) V(i)  is the result of n iterations of the recursive formula mentioned 
above. 

(b) f is a fraction, 0 < f < 1. In practice I am using f = 0.8. 
(c) d is the least possible effective increment that can be made to i. In 

other words, it is 1 in the lowest-order digit of the variable. 
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(d) All i 's studied are in the range - 1  < i < + 1. 
(e) Whenever a variable value is "moved,"  its related function value is 

moved along with it. 
(f) The variable values dealt with are H, HW, L, LW, and S. These refer 

to high bracket value, high working value, low bracket value, low work- 
ing value, and saved valued, respectively. 

(g) A switch is set up to tell us whether we are "on a negative slope" or 
"not  on a negative slope." 

2. Initial extreme values of L and H are set up, - 0 . 9 9 9 . . .  and + 0 . 9 9 9 . . . ,  
respectively (i.e., as - 1  + d and 1 - d ) .  V ( H )  is found and defeat con- 
ceded forthwith if V(H) is not greater than zero. V(L) is also found. The 
switch is set to say "not  on negative slope," L is moved to LW, and H is 
moved to HW. The purpose of steps 3-9 is to find the lowest value of H that  
produces V(H) > 0, with all higher values of H also producing V(H) > O. 

3. (a) i is set up to be the lower of (1 - f ) L W  + f H W  and HW -- d. 
(b) If i = HW - d = LW, we route to step 8 below. 
(c) A value V(i) is computed. 
(d) If V(i) > V(HW), we route to step 5 below to handle the negative- 

slope condition. 
4. Here we have V(i) < V(HW). The logic always routes to step 3 above 

after the appropriate operation a or b or c has been completed. 
(a) If V(i) < O, i is moved to L and LW and the switch is reset to say "not  

on a negative slope." 
(b) If V(i) = O, i is moved to LW only. 
(c) If V(i) > O, HW is moved to H and then i is moved to HW. 

5. Here we find ourselves on a negative slope from step 3 (d) above. 
(a) i is moved to LW. 
(b) If  the switch says "not  on a negative slope," it is changed to the new 

truth and i is moved to S to save this point of negative-slope detection. 
6. From this point we try to find the slope at  HW and then react accordingly. 

(a) i is set up to be the lower of (1 - f ) L W  + f H W  and H W  - d. 
(b) If i - H W  - d = LW, we route to step 7 below. 
(c) A value V(i) is computed. 
(d) If V(i) > V(HW), we route to step 7 below. 
(e) If V(i) < V(HW), we have found some positive slope and thus go to 

step 4 above to look after things. 
(f)  If V(i) = V(HW), i is moved to HW and we reloop to 6(a) just above 

to try again. 
7. At this point we know that  the slope at  HW is negative, when related to 

a just lower variable value of i. First H W  is moved to LW, and then H is 
moved to HW. Then we reloop to step 3 above to see whether we can detect 
a minimum in the new working range below zero. 

8. At this point the range LW to H W  being studied via step 3 has dosed up. 
(a) t l W  is moved to H. 
(b) If  V(LW) < 0, we route to the final operations of step 13 below. 
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(c) If V(LW) = O, L is moved to LW and we route to step 10 below. 
(d) If V(LW) > 0, we route to step 9 just below. 

9. Here we have studied a portion of the curve with a negative slope and found 
no crossing of the origin. Thus it can be safely ignored. 
(a) If V(L) > O, defeat is conceded. 
(b) If V(L) < O, L is moved to LW, S is moved to H and HW, the switch 

is set to say "not on a negative slope," and we loop back to step 3 above. 
10. At this point we have found our desired H-value and now wish to find the 

highest L which is less than H and which gives a value V(L) < O. 
11. (a) i is set up to be the lower of (1 - f ) L W  + f H W  and H W  - d. 

(b) If i = H W  - d = LW, we route to step 12 below. 
(c) A value V(i) is computed. 
(d) If V(i) = O, i is moved to I tW and we reloop to 11 (a) just above. 
(e) If V(i) ~ 0, i is moved to LW and we reloop to 11 (a) just above. 

12. If V(LW) >- O, we concede defeat. 
13. At this point we have bracketing values of LW and H. A best-solution 

value for i is determined as the mean of LW and H. If any rounding of 
this value is needed, it is toward the value giving the V(LW) or V(tt) that 
is closest to zero, with V(tt) getting the nod on equals. 

L E S T E R  R. MC C R A C K E N :  

Mr. Seligman is to be commended for his excellent demonstrations of 
the successive iteration technique for solving nonlinear equations. Per- 
haps the portion of the appendix which points out that  the iteration 
should terminate when the absolute value of the function is smaller than 
some given delta should be underlined in red. I am sure that  many  hours 
of computer time have been wasted by "programmers" at tempting to 
iterate to a tolerance of exactly zero, which was beyond the accuracy 
limit of either the computer or the equation itself. 

The recursive approach is not a universal solution, however. While 
this approach will generate a theoretically correct number for Example 
IV (minimum cash values), this result may not be identical with the 
published value. (This is because 1958 CSO Derived Values is based on 
precisely 10-digit Nx and Mx values, with all calculations performed on 
a machine which would be treated like a ten-bank calculator.) Although 
the recursive program's results will differ only by pennies from the pub- 
lished values, they may  be unacceptable for ratebook purposes, since 
these values might be rejected by the state insurance departments be- 
cause they do not match the published amounts. 

An additional caveat is needed: be sure that  f (x)  is actually continuous 
rather than only apparently so. In 1968 a number  of letters appeared in 
The Actuary demonstrating pseudocontinuous equations with multiple 
roots. I quote in part  from a letter from Daniel S. Harris, published in 
September, 1968: 
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Sam's transactions were all in one share of Stock X as follows: 

12/31/54: Price of Stock X -- $1,000.00; Sam buys. 
12/31/65: Price of Stock X = $3,180.00; Sam sells. 
12/31/55: Price of Stock X = $3,370.70; Trend of stock looks very good; Sam 

buys. 
12/31/67: Price of Stock X -- $1,190.91; Looks as if bottom is dropping out; 

Sam panics; Sam sells. 
Sam figures his yield: 

1,000 + 3,370.70v ~ = 3,180~ + 1,190.91v 8 . 

Multiplying by (1 + i)3/1,000 and transposing, 

(1 + i) 8 -- 3.180(1 + i) ~ + 3.3707(1 + i) -- 1.19091 = 0.  

Factoring and solving, 

[(1 + i ) -  1.05][(1 + i ) -  1.06][(1 + i ) -  1 .07] -  0 .  

Thus i = 5, 6, or 7 per cent. 
Sam's broker is still trying to explain to him that these things can happen 

when there is an adjustment in the market. 

The reader can observe that there is an obvious discontinuity in this 
example between December 31, 1965, and December 3 I, 1966, since Sam 
was out of the market. 

Unfortunately, there is a practical extension to the problem set forth 
in the Harris letter. If you were asked to calculate the effective yield of 
a portion of an investment fund (including unrealized capital gains and 
losses) over a market such as that experienced from 1971 through the 
first quarter of 1975, the equation might either (1) not converge at all 
or (2) converge only if the iterative fund values were allowed to stray 
outside their normal domain at intermediate points. I t  would seem that 
the proper procedure would be to calculate yields for several intervals 
where the performance was fairly stable and then compute a geometric 
mean of the 1 + i values calculated.) 

Despite the above-mentioned possibilities for error in application of 
the technique, the recursive approach is a valuable weapon in the actu- 
ary's arsenal. In fact, it may be the only conceptually easy approach 
when the formulas are complex and the limiting con~tions themselves 
are recursive. 

THOMAS P. T I E R N E Y :  

Mr. Seligman has written a very fine paper and one which raises quite 
topically the question as to how an actuary in 1975 should go about solv- 
ing computer-based problems (and those that are not automated but 
ought to be). The answer, as shown by his four examples, will usually 
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be to adopt an approach that  minimizes human effort and transfers as 
much work as possible to the computer. Translated into machine specifi- 
cations, this means that  the problem-solver should be striving to ex- 
press a problem solution in its simplest possible form. Although it is true 
that  this approach usually will result in an increase in machine computa- 
tion costs, it is also true that  it should result in a sizable decrease in overall 
costs. This is true because simplicity-based increases in computer pro- 
duction expenses are almost always more than offset by concomitant de- 
creases in machine testing and personnel costs. Production costs typically 
run at less than 20 per cent of a total research and development budget, 
and experience has shown that  simplification efforts aimed at the re- 
maining 80 per cent usually have the larger payoff, 

Unfortunately, this emphasis on conceptual simplicity is not as much 
a part  of today's data-processing world as it should be. Undoubtedly, part  
of the reason for this is that  the machine costs are much more noticeable 
and measurable and so they tend to be the focus of our efficiency efforts. 
However, there are two other reasons which are probably just as signifi- 
cant:  

1. The automating of manual procedures.--This is related to Mr. Seligman's 
comments about " m e t h o d s . . .  [that] fail to let the computer do as much of 
the work as it should," and it refers to the structuring of a computer process 
in a pattern which parallels very closely the corresponding manual process. 
This almost always turns out to be a very bad approach, since men and com- 
puters differ in that what is easy for one is usually quite difficult for the other 
and vice versa. The machines should complement rather than emulate the 
analyst. There are literally millions of examples of this tendency to make the 
machine act like a man, and they include such things as performing annual 
recursive accumulations with tricky once-a-year modal adjustments when a 
monthly accumulation would have been simpler, and the use of complicated 
commutation functions that are dripping with prescripts, postscripts, subscripts, 
and the like, when a simple summation would have been much more appro- 
priate. The villain in these cases is occasionally the lazy analyst who doesn't 
feel like making a proper design effort, but more often than not it is just an 
unawareness of what these big, underworked data-crunching machines can 
really do. 

2. The so.called programmer ego problem.--"Programmer ego" is a term which 
began to appear in data-processing literature a few years ago; it refers to the 
tendency of systems designers to "hotdog" it, or to be tricky, confusing, and 
intricate in their formulation of problem solutions. Now, while this fanciness 
may show off one's skills and provide in a perverted sort of a way that all- 
important ego gratification, it is almost always counterproductive in the long 
run. The actuarial student should take particular note, lest he be misled by 
the earlier examinations into thinking that the conceptually brilliant solution 
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requiring only minimal computation is always the preferred way. Of course, in 
an examination environment it usually is, but there the goal is the testing of 
one's aptitude and skills and not the solution of problems per se. Back in the 
real world the preferred solution oftentimes will mean much more of a brute- 
force approach. 

The science of computer systems design is still in its infancy (it is about 
where engineering was in the pyramid days), but it is developing very 
rapidly, and today's actuary has to keep pace. He will have to learn a 
lot more about computer capacity, which should not be too difficult, and 
he will have to approach the machines more humbly. 

MATT B. T U C K E R  ." 

The choice of subjects for this paper is a very interesting one. The re- 
cursive approach to the solution of actuarial problems is a very powerful 
and flexible tool. These comments should further reinforce those at- 
tributes. 

Recursive functions in actuarial literature are actually fairly old. One 
of the most familiar is Hoskins' asset share formula. The use of recursive 
expressions for calculations was not widespread in earlier years because 
of the laborious computations that were necessary to arrive at a solution. 
In many cases simplifying assumptions were made so that an explicit 
solution was found, thereby reducing the computational requirements. 
The advent of computers provided us with a tool that  removed the com- 
putational difficulties. We did not recognize this very quickly. We were 
accustomed to commutation function expressions (which were devised 
to ease computations by hand) and oftentimes applied our old thinking 
to computer applications. I first encountered the recursive approach to 
actuarial problems in a system developed by IBM around 1960: '62CFO 
(an administrative maintenance system for life insurance policies--"con- 
solidated functions ordinary") included some programs to calculate re- 
serves and minimum cash values for the valuation and nonforfeiture cal- 
culation portion of that system. I believe the idea of recursive formulas 
was suggested by Karl Manchester, who was helping with the actuarial 
aspects of that system. The calculation programs used the interval-halv- 
ing approach to solve for premiums and reserves. 

Since that time I have used this approach fairly extensively. Some 
improvements can be made in the speed of convergence over the interval- 
halving approach, but the improvements are less reliable. The use of an 
approach called "regnla falsi" improves the speed, but care must be 
taken in using this approach. I have used other approaches for specific 
problems or programs (approximate annuities to compute the "next pre- 
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mium guess"). The two following problems, which were solved using re- 
cursive functions on a computer, indicate some of the power of the recur- 
sive approach: (1) A plan of insurance in which the death benefit is re- 
turn of cash value plus $1,000 for the first twenty years, with a level 
death benefit after twenty years of $1,000 plus the twentieth-year cash 
value. Cash values and reserves were computed for this plan. (2) A retire- 
ment income policy where the death benefit after the a year was not 
equal to the reserves or cash values. This was a continuous functions case 
where the immediate payment of claims caused a death cost above the 
return of cash value. There are many other actuarial problems that readily 
lend themselves to recursive approaches (graded reserves and cash values, 
varying interest rates). 

I have encountered some technical problems that might be noted: 

1. The q,-lz-dz problem. In order to reproduce published premiums (which were 
computed using commutation functions), a qz must be calculated to a larger 
number of decimal places than is published. This is needed because d,/lz 
(unfounded) ¢ q~. Commutation functions cause d~/l~ to be used in calcu- 
lations. 

2. If floating-point numbers are not used, then great care must be taken in the 
size of numbers used. This was a significant problem on older computers. 

3. Improved convergence becomes a problem when more complex examples are 
involved. For example: to calculate a plan with minimum cash values for 
five years, graded to Commissioners Reserve Valuation Method reserves 
at fifteen years and graded to net level reserves at twenty years, requires 
the computation of (1) adjusted premium for whole life, (2) renewal premi- 
um for FPT on a twenty-payment life, (3) minimum cash values for the 
plan, (4) CRVM reserves for the plan, (5) net level reserves for the plan, 
and (6) graded values for the periods (a) fifth through fifteenth year and 
(b) fifteenth through twentieth year. Each of the above requires complete 
iterations for solution and probably five-decimal accuracy in the premiums. 

I foresee a tremendous expansion of this approach in the future. The 
following are just two items for future application: (1) cases in which the 
recursive expression involves variables that may be stochastic in nature 
and (2) solutions to problems in which the concern is not only for a mean 
expected value but also for variance analysis. The power and flexibility 
of recursive functions as applied to actuarial science will become more ap- 
parent in the future. 

(AUTHOR'S REVIEW OF DISCUSSION) 

EDWARD J. SE~.IGMAN: 

I thank Dr. Greville, Professor Kellison, and Messrs. Maltby, Mc- 
Cracken, Tierney, and Tucker for their discussions of my paper. 
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Dr. Greville's alternate scheme for solving the equation f(x) = 0 by 
starting with regula falsi, and switching to half-interval in case f(x) is 
nearly horizontal near the root, is a very effective one. When I began 
the computations appearing in my paper, I used regula falsi to solve the 
equations. I encountered the problem of a nearly horizontal f(x) in one 
of the examples and immediately switched to the slower but always re- 
liable half-interval method. In retrospect, Dr. Greville's combination 
would have retained the faster convergence of regula falsi with no sacri- 
fice of reliability. 

I also wish to thank Dr. Greville for calling my attention to an error 
which appeared in the galley proof version of my paper. 

With respect to Mr. McCracken's discussion, the existence of multiple 
rates of return is due not to a discontinuity in f(x) but rather to the fact 
that multiple rates of return do, in fact, exist. This phenomenon has been 
documented in the literature. 1 I believe that a method for calculating 
a unique figure of merit for the performance of an investment over any 
period is needed, although Mr. McCracken's suggested procedure is too 
dependent on subjective considerations. 

1 See William H. Jean, "On Multiple Rates of Return," Journal of Finance, March, 
1968, and Seymour Kaplan, "A Note on a Method for Precisely Determining the 
Uniqueness or Nonuniqueness of the Internal Rate of Return for a Proposed Invest- 
ment," Journal of Industrial Engineering, January-February, 1965. 




