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ABSTRACT 

Bayesian statistics provide a coherent method for combining prior in- 
formation and current observations. The parameters of actuarial models 
usually have been estimated by an informal amalgamation of recent anp 
past results. Graduation provides examples of alternative methods of 
utilizing information from several sources to estimate parameters. The 
Bayesian graduation method of Kimeldorf and Jones is reviewed, and 
suggestions for managing four technical problems in their method are 
developed. 

I .  BAYESIAN STATISTICS 

I 
N 1965 Jones [5] introduced the members of the Society of Actuaries 

to Bayesian statistics. Perhaps the introduction was unnecessary. 
Actuaries had already developed a number of specific techniques for 

modifying the results obtained from recent observations to produce a 
blend with past and ancillary results for the purpose of making business 
decisions. Examples of such blending processes include graduation, for 
smoothing and adjusting results observed from decremental processes, 
and credibility theory, for modifying premiums as claim experience is ob- 
tained. A completely different function for which the same type of blend- 
ing process has been suggested is the valuation of pension fund assets. 
For example, Jackson and Hamilton [4] discuss briefly the same type of 
blending when they suggest using some type of average of market and 
cost values for the purpose of valuing pension fund assets. Actually, 
Bayesian statistics provide a coherent method for performing the amal- 
gamation of prior experience and current results that is a characteristic 
of many actuarial procedures. 

This paper deals with certain technical problems in applying the Bayes- 
ian approach to graduation. Therefore, it seems wise to review initially 
the salient elements of Bayesian statistics as stated by Jones. The most 
important of these elements is the broader range of application of the 
probability concept permitted in Bayesian statistics. Classical statisti- 
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clans have tended to define probability as a long-term relative frequency 
and to be reluctant to measure on a probability scale uncertainty about 
matters of fact. Bayesians have adopted a personal definition of prob- 
ability. This definition permits, even requires, the assignment of numbers 
that satisfy the axioms of probability, not only to events for which rela- 
tive frequency is a sensible concept but also to propositions about states 
of the world that are not known with certainty. For those phenomena 
for which relative frequency data are available, each school of thought 
would assign roughly the same probability. The split comes in the way 
in which prior knowledge enters an investigation. To the classical statisti- 
cian, prior knowledge may suggest a model and an experiment. To a 
Bayesian, prior information must also be used in the form of a probability 
distribution to summarize the degree of certainty that exists about the 
parameters of the selected model. This past information may be very 
meager, but to skip this step is to ignore possibly useful data. 

Bayes's theorem is a relatively simple consequence of the axioms of 
probability and the definition of conditional probability. Therefore, the 
theorem is accepted by all statisticians. However, it is more important 
for Bayesian statisticians, for it provides a learning machine. That is, 
Bayes's theorem is an engine by which prior information, quantified as 
a distribution of probability, is combined with recent experimental or ob- 
servational results. The output is a posterior distribution that summarizes 
in a consistent fashion all information available to the decision maker 
about the parameters under study. 

Additional descriptions of the Bayesian approach, with specific insur- 
ance examples, may be found in papers on credibility by Mayerson [7] 
and on premiums by Hickman and Miller [3]. 

II. GRADUATION 

The traditional model for individual life insurance premiums requires 
estimates of a set of mortality, interest, and expense parameters. In fixing 
these parameters, the conventional actuarial wisdom is that a study of 
recent experience is insufficient. Instead, recent experience must be modi- 
fied following examination of past experience and ancillary information, 
and adjusted in recognition of the risk created by uncertainty about fu- 
ture parameter values. Although the language is somewhat different, this 
statement is amenable to a Bayesian interpretation. Within Bayesian 
statistics, also, parameters are viewed as being uncertain; however, this 
approach requires the quantification of the uncertainty in the form of 
a prior probability distribution. Bayes's theorem is used to create a pos- 
terior distribution by combining the prior distribution with the distribu- 
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tion used to summarize current results. The posterior distribution may 
be used explicitly to introduce margins, with probability interpretations, 
into the selection of insurance premium parameters. 

The process of combining past information and recent observations 
has been most highly developed within actuarial science in the estimation 
of mortality parameters. Observed mortality probabilities often exhibit 
irregularities that we tend to attribute to small sample size and errors. 
These observed mortality probabilities may also lack the margins needed 
for the conservative management of an insurance enterprise. The process 
of reducing the irregularities and introducing rational margins is the con- 
struction-of-tables process. I t  is important to observe that, even in this 
broad description of the process, the identification of an irregularity is 
itself an application of prior knowledge about mortality. If each set of 
mortality data is to stand alone, there is little justification for graduation 
as part of the construction-of-tables process. 

The prior information about mortality is most frequently some notion 
about smoothness. Prior information about smoothness is used in the 
selection of a graduation method and, within the method, in the selection 
of a particular model. Information about the level of mortality probabili- 
ties is also used in graduation methods employing a standard table, such 
as methods based on the graduation of ratios of actual to expected mor- 
tality. Information on mortality levels is used directly in the Kimeldorf 
and Jones version of Bayesian graduation [6]. 

Thus we find no dispute about the importance of prior information 
in the justification and implementation of the graduation process. Any 
controversy concerns the extent of the use of prior information and the 
form in which it is summarized. 

I lL BAYESIAN GRADUATION 

The first section of Jones's 1965 paper [5] traces the history of the dif- 
ference equation method of graduation. I t  is indicated that E. T. Whit- 
taker's motivation in developing this method was to produce a "most 
probable" set of graduated values. In adopting this goal, Whittaker 
acknowledged that he was following the lead of George King. 

In his development, Whittaker used two key attributes of the Bayesian 
approach to statistics. First, Whittaker was willing to view the quantities 
being estimated as random variables rather than fixed parameters. Sec- 
ond, he explicitly used Bayes's theorem to combine prior information 
about smoothness with the results from recent observations. 

Kimeldorf and Jones [6] presented a thorough development of a modern 
theory of Bayesian graduation. They included a numerical example and 



10 NOTES ON BAYESIAN GRADUATION 

a primer on the multivariate statistical ideas needed to appreciate the 
steps in the development. Before turning to some suggestions for extend- 
ing the usefulness of the method, we will review the steps in performing 
Bayesian graduation. We will use the notation of the Kimeldorf and 
Jones paper. 

The initial step is to formulate a prior distribution for W, the vector 
of variables (parameters in the traditional model) for which a smooth 
estimate is sought. 1 The prior distribution is to summarize all information 
about W except that contained in a vector of recent observations. The 
vector of observed values will be denoted by U. Kimeldorf and Jones re- 
strict the prior distribution of W to the multinormal class. This is done 
for two reasons. First, a multinormal prior distribution combines with 
a multinormal distribution of observations to produce, by way of Bayes's 
theorem, a multinormal posterior distribution. This is the conjugate dis- 
tribution idea of Bayesian analysis. Second, a prior multinormal distribu- 
tion may be easier to specify because its parameters have interpretations 
that are familiar to students of basic statistics. Kimeldorf and Jones denote 
the two matrices that define the prior multinormal distribution by m, the 
mean vector, and A, the covariance matrix. 

The second step is to specify a distribution for the observed data, the 
sampling distribution. The data are assumed to come from a mortality 
study. Kimeldorf and Jones make the conventional assumption of inde- 
pendent binomial distributions for the mortality process within each age 
or duration cell group. Then, noting a standard limiting distribution re- 
sult with respect to the proportion of deaths in a binomial mortality 
process with a large number of observed lives, they adopt a muhinormal 
distribution for U, the vector of observed mortality rates. That  is, if 
W = w is known, it is assumed that U will be normally distributed, with 
the multivariate parameters needed to specify the distribution given 
by w, the mean vector, and B, the covariance matrix. Because of the 
assumed mutual independence among the elements of U, B is a diagonal 
matrix. If a closed group is studied, that is, the survivors from one group 
are studied in succeeding years, the assumption that the elements of U 
are mutually independent is false. For this type of study, B will not be a 
diagonal matrix. I t  is not critical to the development in the sequel that B 
be a diagonal matrix, although the computation would be simplified if 
it were. 

The third and final step is to examine the posterior distribution of W, 
given the observations U--- u. For the distribution assumptions made 

l Boldface symbols will denote matrices. 
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by Kimeldorf and Jones, the posterior distribution is multinormal with 
mean vector (A -l + B-I)(B-lu + A-ira) and covariance matrix (A -t + 
B-l) -1. They elect to report the mean vector, which is also the mode (the 
most probable value), of the posterior distribution as the set of graduat- 
ed values. 

IV. PROBLEMS AND OBJECTIVES 

The most persistent impediment to the application of Bayesian methods 
is the difficulty that arises in specifying a prior distribution. Kimeldorf 
and Jones manage this problem by using conjugate multinormal distri- 
butions for the prior and the sampling distributions. The)' devote Sec- 
tion II of their paper to defining classes of matrices from which the co- 
variance matrix of the prior distribution might be conveniently selected. 
Their goal is to define a class of covariance matrices that provides a com- 
promise between compelling the graduator to specify a great many param- 
eters, of which he may have limited understanding, and constraining 
his ability to represent significant aspects of the prior information. Our 
first objective will be to provide another type of assistance in the specifi- 
cation of a prior covariance matrix. This assistance will require the speci- 
fication of more easily interpreted parameters. 

Bayes's theorem provides a consistent method for combining prior and 
recent observations about the variables of interest. For many purposes, 
it is helpful to have an index of the degree of precision of the information 
supplied from these two sources. Our second objective will be to suggest 
an index to help a graduator measure the mix of the precision of the prior 
and observational information that he is concocting. 

Following the path of Whittaker and King, Kimeldorf and Jones sought 
"most probable" values of the quantities being graduated. Consequently 
they report the mean vector, which is also the mode, of the posterior 
multinormal distribution as the vector of graduated values. Other aspects 
of the posterior distribution are ignored. A modified goal would be to 
seek a vector of graduated values which has a specified probability of not 
understating each mortality probability. The posterior distribution of W 
may be used to make such probability statements. If the posterior dis- 
tribution is to be used to make probability statements, the degree of 
approximation of the multinormal distribution becomes of more concern. 
Our third objective will be to improve the accuracy of the posterior prob- 
ability statements. 

A fourth objective is related to a minor but perplexing problem faced 
by Kimeldorf and Jones. We adopt a binomial model for the mortality 
process. The observed rates are U, = Oi/Ei, i = 1, 2 , . . . ,  ~o. Using 
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actuarial notation, 0~ is the random number of deaths and Ei  is the ex- 
posed to risk in terms of number of lives in exposure class i. If ~[/ '/] = w~, 
and E;  is "large," it is known that  (Ui  --  wi) [wi(1 -- w , ) / E i l  -v~ has 
an approximate standard normal distribution. As pointed out previously, 
this suggests using a muhinormal distribution for U, given w. The goal 
of the analysis is the posterior distribution of W, given u. Unfortunately, 
the elements of w appear not only in the mean vector of U but also in 
the variance of each element of U. This is inconvenient for the Bayesian 
analysis of W. Kimeldorf and Jones suggest replacing { [ w i ( 1 -  w i ) /  
Ei}V~} 2 by {[m,(1 -- mi)/E,]ll2} 2, i = 1, 2 , . . .  , w, along the principal 
diagonal of the covariance matrix B of the distribution of U, given w. 
Recall that  g[Wd = mi,  using the prior distribution, so the suggestion 
seems reasonable. However, our fourth objective will be to provide an- 
other solution to this problem. 

V. THE TRANSFORMATION 

The following theorem [12, sec. 5el will help achieve our four objectives. 

THEOREM. I f  ~¥, i3 a sequence of statistics such that nlt2(X,, - #) has 

a l imiting normal distribution with mean zero and variance a ~, then for  
any continuously differentiable function t the l imit ing distribution of 
nl/2[t(X,) - t(g)] is  normal with meap, zero and z'ariance ~2[t'(~)]2. 

In our application, U~ = O,./Ei, and each E~/2(U~ -- w~), i = 1, 2, 
. . . ,  ~0, has a limiting normal distribution with mean zero and vari- 
ance wi(1 - wi) .  If t(Ui) = arc sin UI/2, then E~/2(arc sin f-~/2 _ arc sin 
ll'~/2), i --- 1, 2 , . . .  , o~, has a limiting normal distribution with mean 
zero and variance ~. The variance-stabilizing property of the arc sine 
transformation is important  in the sequel. Therefore, we will present 
the details here. 

Var [E~/2(arc sin U~ 12 --  arc sin [V~I~)] 

= wi(1 -- wi)[(arc sin w~t2)'] ~- 

= wi(1 -- wi)[(1 - w,)-l/~w71/2/2]~ 

_ _  1 

Consequently, applying the arc sine transformation to the elements of U 
produces a random vector t(U) --- {arc sin ('~/2}. This vector will have an 
approximate multinormal distribution with mean vector t(u) = {arc sin 
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w~ j2 } and a diagonal covariance matrix t(B) with elements 1/4Ei along the 
principal diagonal. ~ 

Novick, Lewis, and Jackson [I1] also examine the Bayesian analysis 
of the results from observing a binomial process using the arc sine trans- 
formation. However, their goal and the methods they use to achieve it 
are very different from ours. 

VI. THE PRIOR DISTRIBUTION 

Our plan is to perform Bayesian graduation on the transformed vector 
of observations t(U) in order to achieve the four goals outlined in Sec- 
tion IV. Consequently, the prior distribution for t(W) will have to be in 
terms of a metric corresponding to that used for the observations. 

In  actuarial graduation there is usually a fairly obvious choice for 
~[W] = m, the mean vector of the prior distribution in the original met- 
ric. Therefore, it is natural to set g[t(W)] = {arc sin m~/2} = t(m). I t  
is also plausible for the graduator to conceive that his prior information 
about W has been derived from actual or perhaps hypothetical past ob- 
servations of the mortali ty process. As a result of the variance-stabilizing 
property of the arc sine transformation, the graduator does not need to 
specify a variance for each t(IVi). Instead, he needs only to fix the actual 
or hypothetical size of the past sample, to be denoted by n~, i = 1, 2, 
• . . , w, which will be associated with the values of the elements of t(W). 

Kimeldorf and Jones point out that  the correlation matrix defining the 
interrelations among the variables Wi is the principal mechanism for 
defining the smoothness inherent in past knowledge. The remaining 
question is the impact of the transformation on correlation coefficients 
formulated in the original metric. 

Ryder [13] considers this question. We let X = R1/nl, where RI has a 
binomial distribution with parameters nx and ~n, and let t(x) = arc sin x ~j2. 
Using Taylor series expansions, it is easy to show, confirming results 
stated earlier, that  

lim ~[t(X)] = tOO, 

and 
lira Var [n~/~/(X)] = ¼. 
nl--~cv 

If  the random variable Y has a binomial distribution with parameters n2 
and 7r2 and a coefficient of correlation r with X, we obtain, using Taylor  

2 In this paper we will be doing Bayesian analysis by transforming both the observa- 
tions (U) and the random parameters of interest (W). In order to avoid a profusion of 
notation, a matrix in the new metric, in which the analysis is per/ormed, will be denoted 
by a boldface t operating on the corresponding matrix in the original metric. 
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series expansions once more, 

l i r a  a [ t ( x ) t ( v )  - ~ [ t ( X ) l s [ t ( Y ) ] l  = , .  

,,~® ,,-~® {Var [t(X)] Var  It(Y)]} 1/' 

In summary ,  we are asking the graduator  to fix his prior distribution 
of W by picking the mean vector m and a set of equivalent past sample 
or exposure sizes n~, i = 1, 2 , . . .  , ~. The graduator  must also specify 
a correlation matrix reflecting his prior information concerning the inter- 
relations, that  is, the smoothness of W. The prior information is thought 
of as coming from past  mortal i ty  observations with an approximate 
mult inormal distribution, with the degree of approximation improving 
with the size of past  samples. If we subject the prior distribution to the 
arc sine transformation, the theorem of Section V and the demonstrat ion 
concerning the correlation coefficient lead us to note that  t(W) has an 
approximate  normal distribution with mean vector t(m) and covariance 
matrix t(A) = r,. ./_t(,,,,',~t~t kr~3/~kl~irv j]  ) " 

In the interest of brevity,  the details of several of the developments 
in this section have been omitted, so it seems wise to present the follow- 
ing observations: 

1. The method developed by Kimeldorf and Jones asks the graduator to specify 
a multinorma| prior distribution for the vector W by fixing the mean vector 
m and the covariance matrix A. 

2. The arc sine transformation of the random variables is approximately linear 
in the neighborhood of the mean vector. 

3. With large prior sample sizes, the distribution of W will be concentrated 
near the mean. 

4. An approximate linear transformation of W, t(W), will produce an approxi- 
mate multinormal distribution in the new metric with mean vector t(m) and 
covariance matrix t(A) = {riH4(n~n~)V2}. 

VII.  CORRELATION" MATRICES 

In their example, Kimeldorf  and Jones used a correlation matrix R of 
the form {rl ~-il}. They had previously shown that,  when combined with 
positive standard deviations, the result is an admissible (positive definite) 
covariance matrix. This class of correlation matrices will play a role in 

the sequel. 
The same class of correlation matrices has appeared in several recent 

actuarial discussions. In particular,  it was used by Shut [14] in the context 
of credibility theory. Shur shows that,  for 'a  k X k correlation matrix of 
the form {rl ~-il}, the determinant  of the matrix is (1 - r2) ~-~. 

In their numerical example, Kimeldorf and  Jones selected a large posi- 
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tive value (0.942809) for r. They reasoned that, given certain informa- 
tion about a single mortality probability, the prior distribution for 
neighboring probabilities, conditioned on this information, will become 
significantly less diffuse. 

This reasoning has appeal except at young ages. Especially among men, 
monotone smoothness is not a characteristic of mortality probabilities 
below age 35. See the graphs of mortality probabilities contained in 
Myers' paper "United States Life Tables for 1969-71" [9] to support this 
statement. These graphs illustrate the hump that seems to characterize 
the mortality of young adult males. Consequently, for these ages, it would 
seem inappropriate to expect a high positive correlation among adjacent 
mortality probabilities. Apparently the random accident hazard domi- 
nates the smoother impact of aging. At young ages, knowledge of one 
mortality probability may not reduce the variance of the conditional 
prior distributions of neighboring mortality probabilities. 

For this reason, we suggest prior correlation matrices of the form 

o-- (0' o), 
where R = {rli-il} and I is the identity matrix with dimensions chosen 
to correspond to the number of age intervals where monotone smooth- 
ness is not a characteristic of the prior information. Within the interval 
of ages where the prior distribution has zero correlations, a rather simple 
result for the mean of the transformed posterior distribution may be ob- 
tained, if the observations are also mutually independent. Under these 
conditions 

~ [ t ( V ~ ) ]  = n~t(u~) + n~t(m~) 
n~ + n '  i =  1, 2,  . . . ,  o~ - -  k . 

Not only does this formula resemble traditional credibility formulas, but 
it also resembles formulas for graduation with respect to standard tables. 

This suggestion illustrates how admissible matrices may be combined 
to produce a more appropriate prior covariance matrix. The key point 
is that the prior covariance matrix should not be arbitrarily chosen but 
should reflect a serious study of past experience. 

VIII ,  PRECISION MEASURES 

Graduation is a multidimensional process. Whether or not Bayesian 
methods are formally used, the process involves combining a vector of 
observation u with multidimensional prior information. Indeed, without 
prior information, smoothing is an unjustified process. 
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I t  is natural to seek a one-dimensional measure of degree of precision 
of each of the inputs to the process, Clearly there are various ways to 
measure the precision of a multidimensional array of data. In the case 
of Bayesian graduation using conjugate multinormal distributions, it is 
suggested that the determinants of the inverses of the covariance ma- 
trices of the prior distribution and the distribution of the observations 
are tractable and meaningful measures of the precision of the information 
entering the graduation process from the two sources. 

In a certain general sense, if one views the covariance matrix as de- 
scribing the dispersion of a distribution, then the inverse of the covari- 
ance matrix is a reasonable measure of the precision or concentration of 
the distribution. The precision matrix B - t  describes the degree of con- 
centration of the vector of observations of a mortality process. The pre- 
cision matrix A -1 describes the degree of precision of prior information 
about the mortality process. 

There are, of course, several ways of measuring a matrix. In the design 
of experiments, one frequently chosen goal is to maximize the determinant 
of the precision matrix. The determinant of the covariance matrix (the 
inverse of the precision matrix) is called the generalized variance of the 
distribution. Additional insights will be gained by observing that the 
determinant of the precision matrix is inversely proportional to the 
square of the volume of the ellipsoid of concentration of a multinormal 
distribution. The volume of the ellipsoid of concentration [2, p. 301] is 
a traditional measure of the degree of concentration of a probability 
density within a multinormal distribution. A distribution with a smaller 
volume of the ellipsoid of concentration (larger determinant of the pre- 
cision matrix) may be viewed as being more concentrated than the dis- 
tribution with which it is compared. 

For the specific covariance matrices considered, the computation of 
the determinant of the precision matrix is easy. We will denote the de- 
terminant of the inverse of matrix A by det A-k Then, in general, for 

2 2 covariance matrix A, det A -t  = (ala~ . . . a~)-l(det R) -1, where R is the 
correlation matrix. As noted in Section VII, if R = {rl~-Jl}, det R = 
(1 -- r2) ~-~. If the correlation matrix is given by D, as displayed in Sec- 
tion VII,  det D--- (1 --r2) ~-1, where k < o~ is the dimension of the 
square matrix R. 

The precision index for the transformed observations, assuming mutual 
independence among the numbers of deaths in the groups under stud)', 
will be 

co 

det t ( B )  - l  = 4~IIE,. 
1 
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The ratio h = {det [t(A)-l]/det [t(B)-t]} ~t~ may be used to summarize 
the relative precision of the two inputs to the graduation process. If 
1 < h, the precision of prior information is greater than that of the data. 
if 1 > h, the precision of the data is greater. 

For example, if t(A) = {rli-it/4(nPin~) ~/2} and t(B) is a diagonal ma- 
trix with diagonal elements 1/4E~, we have 

k = {det [ t (A)-q/det  [t(B)-']}u2 

= n ' / t ~  1 - r2) "-~ . 

The interpretation of h has much in common with the conventional in- 
terpretation of h in Whittaker-Henderson difference equation gradua- 
tions. That is, h measures the relative importance of fit and smoothness. 
A small value of h is associated with greater stress on fit; a large value of 
h means emphasis on smoothness. 

In fact, in Whittaker's development [15, p. 306], the constant h in the 
loss function F + hS (fit + h.smoothness) is sometimes interpreted as 
the ratio of (i) the precision of the normal distribution that measures 
the certainty of smoothness (S) to (ii) the assumed common precision 
of the observations. The descriptive number h defined in this section is 
an obvious generalization, but we have chosen not to work in terms of 
squared units. 

The gain in precision from the prior state to the posterior state (after 
the observations) may be summarized by the ratio 

{det [t(A)-I + t(B)-~]/det [t(A)-~]}112. 

IX. REPORa'INC RESULTS 

In the transformed metric, the posterior distribution of t(W), given 
t(u), is multinormal with mean vector t (v)= [t(A)-~+ t(B)-t]-t X 
[t(B)-lt(u) + t(A)-tt(rn)] and covariance matrix [t(A) -t + t(B)-l] -1. To 
restore the mean vector to the original metric, form v = {(sin [t(v0])~}. 
Kimeldorf and Jones suggest reporting the posterior mean, in the original 
metric, as the set of graduated values. 

However, an interesting alternative is available. The arc sine transfor- 
mation has the effect of stabilizing the variance of the elements of U. The 
transformation has the additional feature that it improves the accuracy 
of the normal approximation. This feature of the transformation, and 
additional modification of it to improve the approximation still further, 
was developed by Anscombe [1]. In general, we can expect the normal 
approximation in the transformed metric to be more accurate than the 
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normal approximation to the untransformed observations. Wc do not 
want to overemphasize this point. For the sample sizes typical of actuarial 
studies, large sample theory usually provides ample justification for the 
multinormal assumption. 

A warning is required. If the number of deaths in a mortality investi- 
gation is small, the arc sine transformation introduces a distortion in the 
range of probability values. A commonsensc rule is to limit the use of the 
arc sine transformation to experience cell groups with five or more deaths. 

Smoothed mortality probability estimates are used in many business 
decision problems. Therefore, there may be reason to report "safe" gradu- 
ated values rather than mean or modal values. The posterior distribution 
combines all available information about the variables being estimated. 
Each variable t(Wi) has a posterior distribution that is approximately 
normal, with a mean that may be obtained from the mean vector and a 
variance from the principal diagonal of the posterior covariancc matrix. 
Thus it would be possible to produce a set of graduated values v~ such 
that P[/(Wi) </(v,.)] = P[W~<vi l= p; i =  I, 2 , . . . , c o .  For safety 
purposes, p might be 0.75 in our mortality example. Such a choice might 
perhaps be directly relevant to the situation where the mortality proba- 
bilities are to be used in fixing group term life premiums. Because of the 
manv uses of mortality probabilities, and the differing degrees of con- 
servatism that may be appropriate, it is important to report the posterior 
distribution of the mortality probabilities at the conclusion of a study. 

X. EXAMPLE 

As the title of the paper suggests, the purpose is to augment the work 
of Kimeldorf and Jones. Thus the abbreviated numerical example will 
be in the same style as in the earlier paper. It  should be clear that the 
example is designed to illustrate the ideas developed in this paper rather 
than to extend Bayesian graduation. 

A. Prior Distribution 

The mean vector is taken from the 1955-60 Male Select Basic Tables 
[I0]. The equivalent past sample sizes, n',., i = I, 2, . . . , 13, are shown 
in Table 1. The correlation matrix is of the form of matrix D of Sec- 
tion V, where I has dimension 4 X 4 and the correlation matrix R = 
[0.9428091 i-il}. This is the same value of r used by Kimeldorf and Jones. 

B. Observations 
The data are for policies issued in 1954 to standard medically examined 

male lives, observed during the eighth policy 5"ear (between policy anni- 
versaries in 1961 and 1962) [81. The data were adjusted by decreasing 
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TABLE l 

M O R T A L I T Y  E X A M P L E  

19 

1 . . . . . . . . .  

2 . . . . . . . . .  

3 . . . . . . . . .  

4 . . . . . . . . .  

5 . . . . . . . . .  

6 . . . . . . . . .  

7 . . . . . . . . .  

8 . . . . . . . . .  

9 . . . . . . . . .  

10 . . . . . . . .  
1l . . . . . . . .  
12 . . . . . . . .  
13 . . . . . . . .  

Age  a t  

I s sue  

10--14 
15-19 
20-24 
25-29 
30-34 
35-39 
40-44 
45-49 
50--54 
55-59 
60-64 
65-69 
70 and over 

E i X 1 0 - ~  

51.071 
102.352 
278.026 
729.655 
998.975 
919.910 
698.755 
422.317 
214.521 
93.843 
30.619 

7.528 
0.686 

ui X 10a 

1.68 
0.73 
1.07 
1.20 
1.44 
3.07 
5.37 
8.41 

14.45 
15.75 
19.63 
20.46 
71.42 

miXlO ~ 

----;77-( 
1.o7 / 
0.90 
1.05 
1.72 
2.94 
4.86 
7.66 

12.10 
17.10 
22.70 
31.51 
65.60 

n'i ~ X l O ~  

2,000 1.15 
2,000 0.92 
3,000 0.99 
4,000 1.16 
5,000 1.69 
5,000 3.01 
5,000 5.05 
5,000 7.97 
5,000 12.49 
4,000 17.46 
3,000 23.05 
2,00C 31.91 
2,00C 66.14 

each exposure by a factor of one-tenth. The data were chosen from the 
same era as were those of Kimeldorf and Jones. Therefore, it is assumed 
that the equivalent average amount  used in computing the variance of 
observed morta l i ty  probabili ty is $7,500. 

C. Graduated Values 

The graduated values were derived by applying the inverse arc sine 
transformation to the posterior mean vector in the transformed metric. 

D. Relative Precision 

, ,  , 

h = 00 1 --  0.942809~) s = 896,875 

E. Discussion 

The principal point  in the example is that monotone smoothness is not 
a characteristic of mortal i ty experience of young males. Covariance ma- 
trices of a type like matrix D in Section V are useful in preventing over- 
smoothing. In  constructing this example, various sets of past sample sizes 
and values of r were used. The chi-square statistic was computed to mea- 
sure fit, and the sum of third differences squared was computed to measure 
smoothness. This was done not to accept or reject the graduation but  to 
gain insight into the influence of changes in the parameters of the prior 
distribution. As expected, large values of r produce greater smoothness, 
and small values of n~, i = 1, 2, . . . , ~o, tend to produce better fit. 

As was indicated in the discussion of the examples in the Kimeldorf 

and Jones paper, there is a time element in our prior knowledge that  has 
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not been captured in the prior distribution used in this example. That  is, 
our knowledge of mortality probabilities in the eighth policy year con- 
sists of (1) information about the level of smoothness of mortality proba- 
bilities as a function of age within the eighth policy year and (2) informa- 
tion about the level of smoothness of mortality probabilities in the eighth 
policy year with respect to those in the seventh and ninth policy years. 
In addition, there is correlation among the observed mortality probabili- 
ties in successive durations. 

What is needed is a grid of estimates of select mortality probabilities 
rather than a vector of smoothed estimates for a single policy year. This 
is an important problem that has not been solved satisfactorily by any 
of the traditional approaches to graduation. Within the Bayesian frame- 
work, the problem will probably be approached with very large models 
and with a partitioned prior covariance matrix built up of blocks, each of 
which will be admissible and each selected to capture an aspect of prior 
knowledge. 

XI. $LrMMAR Y 

We have met the four objectives listed in Section IV as follows: 

I. By operating in a new metric, that is, by transforming the observations 
and the prior distribution by application of the arc sine transformation, the 
graduator does not have to specify individual variances for the prior distribu- 
tion. Instead, more easily interpreted past sample sizes are specified. 

2. The determinants of the precision matrices of the prior distribution and 
the sampling distribution of the observations provide convenient measures of 
the precision of the inputs of the graduation process. 

3. Because the multinormal distribution should be a better approximation 
in the transformed metric, the reporting of "safe" graduated values with posteri- 
or probability measures of the degree of safety becomes more feasible. 

4. The use of the arc sine transformation eliminates the necessity to approxi- 
mate the variance of each observed mortality rate in the sampling distribution. 

In addition to these specific results, a continuing theme of the paper 
has been the necessity" to look at the data carefully to avoid the arbitrary' 
selection of a prior distribution. In particular, we found that imposing 
smoothness on the mortality experience of young makes by wav of the 
prior distribution may be avoided easily. 
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DISCUSSION OF P R E C E D I N G  PAPER 

DONALD A. JONES:  

Professors Hickman and Miller have taken a giant step in the direction 
of applying Bayesian graduation in the real world. The use of the arc 
sine transformation and the development of the measure of relative 
precision should be especially helpful in applications. 

I find their suggested form for the prior correlation matrix to be at 
odds with my prior distribution for mortality rates. The stochastic 
independence of mortality rates at the young ages would imply that the 
variance of the marginal prior for a single rate is equal to the variance of 
the conditional prior for the single rate, given the values of the two 
adjacent rates. This is not a property of my prior. Thus I need one of 
two things: either some positive correlation at the younger ages or some 
more general information about male mortality so that I can hold a prior 
distribution in the future that will exhibit the required independence. 

Positive correlation at the younger ages can be incorporated by the 
adoption of an appropriate member of the class of admissible matrices 
defined by formula (27) in the Kimeldorf and Jones paper referenced by 
the authors. That  formula is 

i - 1  

a;i = H r ~  for i < j  
k=l 

= 1 for i ~ y ,  

assuming p = 1 and symmetry to save printing costs. 
The authors' suggested form falls in this class by setting the first 

ri's equal to zero and the balance equal to a constant r. If  the hump in 
male mortality rates requires a smaller positive correlation at younger 
ages, then the first r~'s could be set equal to a small positive constant--  
smaller than the one at older ages. 

Another possibility in this direction would be to use covariance 
matrices that correspond to the measures of roughness involving higher- 
order differences. Kimeldorf developed the general scheme of these in 
his dissertation at the University of Michigan (see reference to Kimeldorf 
and Jones paper). 

I hope that the authors will have the resources to include in their 
response some graduated rates based on other prior covariance matrices 
for the example in their excellent paper. 

23 
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STUART A. 

Professors Hickman and Miller 
practical touches to the method of 
is now provided with an excellent 
crucial quantities, the parameters 
introducing a variance-stabilizing 

KLUG2~fAN: 

are to be thanked for adding some 
Bayesian graduation. The graduator 
set of guidelines for selecting those 
defining the prior distribution. By 
transformation, the graduator can 

transform easily his prior notions of fit, smoothness, and shape into a 
working formula. 

I would like to take issue with the authors' interpretation of one of the 
parameters, r, the correlation coefficient. They note correctly that 
decreasing r will improve the fidelity of the graduation to the observed 
rates (as evidenced by the role of r in the measure of relative precision). 
However, increasing r does not ensure increased smoothness of the 
posterior means; it merely indicates that greater reliance is being placed 
on the prior distribution. It  might be more appropriate to call r a shape 
parameter, since values close to 1 tend to transfer the shape of the prior 
to the posterior. In the example used in the paper, if r = 0.942809 is used 
at all thirteen age groups, the first four posterior means (X 10 a) are 
1.06, 1.13, 0.95, and 1.10. They are not much smoother than the rates in 
Table 1 of the paper, but the dip is now in the third age group, as it was 
in the prior. Even though monotone smoothness is not a characteristic of 
these rates, a moderately high correlation is still reasonable; if one rate 
is increased, the others are likely to follow. 

One way to allow the graduation parameters to account for differing 
mortality characteristics at younger ages would be to select a prior corre- 
lation matrix of the form 

D _ ( R ,  S )  
S t R~ ' 

where R , =  Ir~ ~-il} is k X k ,  and R~= {r~ ~-il} is ( n - - k )  X ( n - - k ) .  
To make the resulting covariance matrix admissible, the S-matrix could 
have -1"~-i+°"~'~i-°'~)-2 as its ijth element. Admissibility. follows from the 
fact that D is a member of class a2 of Kimeldorf and Jones (TSA, XIX, 
81). By selecting r, < r2, allowance can be made for the more erratic 
behavior of rates at the younger ages. 

As a final note, Stephen Portnoy in a letter to the American Statistician 
(XXX[ [No. 1], 54) remarks that the identity 2 arc sin V'p = arc sin 
(2p - 1) -Jr- v/2 can be used to simplify the calculations in stabilizing 
the variance. The function t(p)= arc sin ( 2 p -  1) will achieve the 
desired results, the only difference being that the variance is 1 instead 
of ~. 
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THOMAS G. K A B E L E :  

I believe that Hickman and Miller have made a significant contribu- 
tion to the actuarial literature with their presentation of the arc sine 
statistical distribution to smooth the ungraduated values, and with 
their presentation of a varying smoothness criterion to apply to different 
parts of the mortality curve. These devices were discussed in terms of 
the Bayesian form of graduation, but they are in fact applicable to other 
types of graduation. Before giving more specific comments, I will outline 
the general theory of Whittaker-Henderson graduation, of which the 
Kimeldorf-Jones or Bayesian form is a special case [I0]. 

Whiltaker-Henderson Graduation 

In a 1957 paper [5], and in his discussion of the Kimeldorf-Jones paper 
[7], Greville defined the general Whittaker-Henderson method. In this 
method the graduator is given a vector u = ( u ~ , . . . ,  u,,) of ungraduated 
values and seeks to find a vector v = (v~, . . . , v,) of graduated values 
that minimizes the quadratic form 

(v - u ) 'E(v  - u) + v ' Z v ,  (1) 

where the prime denotes a matrix transpose and where E is a positive- 
definite matrix and Z a positive-semidefinite matrix. The matrix E is 
invertible or nonsingular, but the matrix Z may be singular. The first 
term in expression (1) measures the fit or "fidelity" of the graduated 
values, and the second term measures the roughness. The solution that 
minimizes expression (1) is 

v = (F. + Z ) - ~ E u ,  (2) 

and the proof is given in Greville's study note for Part 5 of the Society 
of Actuaries examinations. 

In our Transactions I have found three specific forms of the Whittaker- 
Henderson method. In the classical form, which was first considered by 
Whittaker in 1919 (see the Dover reprint of [15], p. 303), the matrix E 
is diagonal with positive entries, and Z = hK'K,  where h is a constant 
and K is a rectangular matrix such that, for every vector w, Kw = A, w. 

Here zX" w is a column vector with entries (zX" w t , . . .  , ~ w,_,) ,  and z is 
usually 2, 3, or 4. 

In 1950 and 1955 the classical form was generalized to what we shall 
call the "Camp form" after its inventor [2]. In the Camp form the 
matrices E and Z are defined as in the classical form, but K is defined so 
that 

( K v ) ,  = s~(A, v,) - ( a ,  v~+~) (i  = 1 , . . . ,  n - 1 ) ,  
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where the s~'s are "shape constants." Camp used his new form to graduate 
the 1951 Group Annuity Mortali ty Table. He took z =- 1 and let si -- c, 
where c is the Makeham constant obtained by a preliminary graphic 
Makeham graduation. In  his discussion of the Kimeldorf-Jones paper, 
Greville used the Camp form with z = 0 and s~ = 1.5 [7]. 

In 1967 Kimeldorf and Jones presented a third form of the Whittaker- 
Henderson method, which we shall call "Kimeldorf 's  form" rather than 
"Bayesian graduation," the term used in the 1967 paper. The authors 
first transformed the ungraduated values u by subtracting a vector m of 
"prior means." They then graduated u - m. Their Z-matrix, however, 
was taken to be a positive-definite matrix rather than the singular 
matrix used in both the classical and Camp forms. The matrix Z was 
tridiagonal: 

2 2 
Z ,  = 1 -- ri+lr~ 

(1 r' ,+x)(1 , 2 ' - - r ~ ) p ,  

Z i _ l .  i ~ Z l , i +  1 ~ - - l ' i  

p ¢ i + l ( 1  --  ~+1) ' 

Zi~ = 0 i f j  # i - -  1, i , i +  1 ,  

and ([1% p. 81) 
i - !  

Z~ a = P,Ps I X  rk (i < j )  
k = l  

= p~ (~ = j )  

i - 1  

= P,Pi I I  rk (i > j ) .  
k=j  

Here the pi's are the "prior standard deviations," and the r~'s (i = 1, 
• . . , n - i) are the "prior adjacent correlations." For convenience we 
define r0 = r, = 0. In their paper Kimeldorf and Jones ([10], p. 89) defined 

ri = 0.942809, Pi = 0.01415x/m,. 

In  Hickman and Miller's notation, A = Z -~ and B -- E -~. The above 
definition of Z is a slight generalization of the class a2 matrix defined 
in the Kimeldorf-Jones paper and was given by Halmstad ([8], pp. 23-25). 

Statistical Justification 

Whittaker and Kimeldorf both justify their graduation formulas by 
using statistical arguments, and Kimeldorf's argument is practically 
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identical with the earlier one by Whittaker (see [15], pp. 304-6; [I0], 
pp. 70-71; [91, pp. 34-36). 

Both authors start with Bayes's theorem, which may be written as 

Prob [w < W <  w + a t U =  u] 

Prob[w < W < w + a] Prob [U = u l w <  W < w + a] 

Prob [U -- u] 

where U is the random vector of observed rates, W is the random vector 

of " t rue"  rates, u is a particular observation of U, and a is a constant. 
Both authors define the graduated values to be the vector w = v that 

maximizes the left-hand side. Both authors assume that 

P r o b [ U =  u [ w <  W <  w +  a ] =  k a " e x p ( - - f ) ,  

where F = (u -- w ) ' E ( u  -- w) and k is a constant. Both authors assume 
that Prob [w < W < w + ~] can be represented in the form 

k,"  exp ( - V S ) .  

The only difference is in the definition of S. Whittaker defines S as 
w ' K ' K w ,  whereas Kimeldorf defines it as (w -- m ) ' Z ( w  - m),  where Z is 
defined as above. The matrix K ' K  used by Whittaker is singular (i.e., 
not invertible), and the statistical distribution of the random variable 
W is called a singular normal distribution (see [3], p. 287). 

Comments  
TERMINOLOGY 

Since all forms of Whittaker-Henderson graduations can be justified 
using Bayes's theorem, I do not believe we should use the term "Bayesian 
graduation" for only one of them. Thus I suggest that the form of 
graduation presented in Kimeldorf's Ph.D. thesis and his 1967 paper be 
called "Kimeldorf's form." 

! believe that terminology is important. For example, in a recent 
article [12], Ryder criticized all Bayesian methods, using as an example 
the lack of smoothness of the graduation in Kimeldorf's paper. I do not 
believe, however, that Mr. Ryder would be willing to condemn all 
Whittaker-Henderson graduations even though all are equally "Bayesian." 

SIMILARITY OF KIMELDORF'S FORM WITH THE CLASSICAL 

As remarked by Kimeldorf and Jones ([10], pp. 74-75), Kimeldorf's 
form of the Whittaker-Henderson method is very similar to the classical 
form applied to u -  m with perfect smoothness, meaning that first 
differences are zero or, equivalently, that v -- m is a constant. This 
particular version of the classical Whittaker-Henderson method seems 
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to me to be a very mediocre choice because it constrains the graduated 
values v to lie parallel to the "prior means," and it may overgraduate 
the ends of the table. Kimeldorf's form, however, may not be even as 
good as the classical form. In fact, since the matrix g in Kimeldorf's form 
is invertible, the "smoothness" term ( v -  m)'Z(v - m) equals zero if 
and only if v = m (see [7]). 

Let us suppose that the number of terms to be graduated is n = 4 and 
that the p~'s and r;'s in Kimeldorf's form are constant. Then the Z- 
matrix for Kimeldorf's form and the matrix K'K  for the classical form are 

p*(1 - : )  

KJK = 

Z = 

1 

~ r  

0 

0 

1 

{-i 

~ r  

1 + r  2 

~ r  

0 

- 1  0 

2 - I  

- I  2 

0 - 1  

0 

- - r  

1 + r  ~ 

- - r  

0 

0 

- 1  

1 

i r 

The coefficient 1/pz(1 - - r  2) for the Z-matrix can be regarded as the 
smoothing constant h. If  r -- 0.942809, as suggested by Kimeldorf and 
Jones, then we see that the above matrices are practically identical. 

CREDIBILITY FORMULAS 

Both Kimeldorf and Jones ([10], p. 71) and Hickman and Miller 
(Sec. VII)  imply that Kimeldod's form of the Whittaker-Henderson 
method is a generalized credibility formula because the graduated values 
v can be written in the form 

v = ( z  + ~)-'(Eu + Zm),  

that is, v is the "weighted average" of u and m. However, for the Hick- 
man and Miller example, excluding the first four values, about half the 
entries in the product matrix Zm are negative (see Table 1). Professor 
Hickman assures me that there is nothing inherently wrong with this, 
but I have an uneasy feeling about using negative weights. 

POSSIBLE IMPROVEMENTS IN KIMELDORF'S FORM 

I agree with comments Professor Hickman made to me over the phone 
that Kimeldorf's form is interesting theoretically, but in its present form 
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it  is of l imited pract ical  use. I would like to suggest some possible im- 
provements .  First ,  I believe tha t  if we are aiming for a generalized 
credibi l i ty-smoothing formula, we should choose the matrices Z and E 
to have the same form. Ei ther  both  should be diagonal with posi t ive 
entries, or else both should be "smoothing matr ices"  of the  type  used in 
the classical Whi t taker -Henderson method.  Tha t  is, both g and Z should 
be of the form (D + S)-ID, where D is diagonal with posit ive entries 
and S = hKJK. 

TABLE 1 

I N T E R M E D I A T E  VALUES IN K I M E L D O R F  G R A D U A T I O N  

APPLIED TO ARC S I N E  T R A N S F O R M E D  V A L U E S  

1 . . . . . . . . . .  
2 . . . . . . . . . .  
3 . . . . . . . . . .  
4 . . . . . . . . . .  
5 . . . . . . . . . .  
6 . . . . . . . . . .  

7 . . . . . . . . . .  

8 . . . . . . . . . .  

9 . . . . . . . . . .  

10 . . . . . . . . .  
11 . . . . . . . . .  
12 . . . . . . . . .  
13 . . . . . . . . .  

Zi~ X 10-z 

8 
8 

12 
16 

180 
340 
340 
34O 
34O 
272 
204 
136 
72 

Z~.i+t X 10-3 

0 
0 
0 
0 

- 169.706 
-169.706 
-169.706 
-169.706 
-151.789 
-117.575 
- 83.138 
- 67.882 

XXXX 

Ell X 10-3 

2. 724 
5.460 

14.818 
38.916 
53. 280 
49. 060 
37. 268 
22. 524 
/1.440 
5.004 
1.632 
0.400 
0.036 

(Wtu) i t  

112 
148 
485 

1,348 
2,022 
2,720 
2,733 
2,068 
1,379 

630 
230 
58 
10 

( Z t m ) q  

252 
262 
360 
519 

--1,739 
-- 436 
- -  356 
-- 750 

2,698 
1,158 

597 
-5,886 

6,535 

Second, we could el iminate most  of the negative entries in the product  
matr ix  Zra by reducing the adjacent  correlat ions from about  0.9 to, say, 
0.6. The  la t te r  figure is closer to the  posterior  values of the adjacent  
correlations (see Table  2). 

Third,  we could mul t ip ly  the  mat r ix  Z in Kimeldorf ' s  form by a 
smoothing constant .  In  fact, this is essentially what  Hickman and 
Miller did with their  i l lustrat ive data .  They  mult ipl ied Z by 10 or, 
equivalent ly,  divided E by  10. I believe tha t  for most  Whi t t aker -Hender -  
son graduat ions  a reasonable value of the smoothing constant  is from 1 
to 15 t imes the average value of E~/Zi~. 

Four th ,  instead of restr ict ing Z to be t r idiagonal  (which limits its 
smoothing power), we could define Z to have 5, 7, or 9 nonzero diagonals.  
I f  we wanted  7 nonzero diagonals,  we could define 

Z = 0.01I + K ' K ,  

where Kw = ,'~ w. 



T A B L E  2 

G R A D U A T I O N  OF ARC S I N E  T R A N S F O R M E D  VALUES 

If). 
11. 
12. 
13. 

tvl 

• I133890 
• 030407  
• 0 3 1 5 0 4  
• 0 3 3 9 9 6  
. 0 4 1 1 2 2  
• 0 5 4 8 5 7  
• 0 7 1 1 8 5  
• I189385 
. 1 1 1 0 9 3  
• 13251)7 
• 152396  
• 179594 
• 2 6 0 0 8 9  

POSTERIOR VALUES 

P~ 

• 0 0 9 6 5 7  
• 0 0 8 6 2 0  
• ( X ) 6 1 0 5  

. 0 0 4 2 6 7  
• 0 0 2 8 0 3  
• 0 0 2 5 9 8  
• O02704 
• 0 0 3 0 0 2  
• 003397  
• 0 0 4 2 6 3  
• 0 0 5 4 5 5  
• 0 0 7 2 8 0  

. 007807  

. 000000  
• 0 0 ( 0 0 0  
. 0 0 0 0 0 0  
• t ) O 0 0 0 0  

•674184  
• 664960  
• 700829  
.751057  
• 798054  
• 833691 
• 859961 
• 8 7 8 7 7 0  
• 0 0 0 ( h ' ~ )  

UNGRADUATED 
VALUES 

lul 

. 040999  
. 0 2 7 0 2 2  
. 0 3 2 7 1 7  
A ~ 4 6 4 8  
•037956  
•055436  
•073346  
A ~ 1 8 3 5  
. 1 2 0 5 0 0  
•125831 
. 1 4 0 5 7 0  
•143531 
•270533  

WEmUTS 

E ,  

2 , 7 2 4  
5 , 4 5 9  

1 4 , 8 2 8  
3 8 , 9 1 5  
5 3 , 2 7 9  
4 9 , 0 6 2  
3 7 , 2 6 7  
2 2 , 5 2 4  
1 1 , 4 4 1  

5 , 0 0 5  
1 , 6 3 3  

4 0 l  
37 

lml 

. 0 3 1 4 6 9  

.032717  

.03fK~05 

.0,32409 

. 041485  

. 054248  
. 0 6 9 7 7 0  
. 0 8 7 6 3 4  
.110223  
. 131143  
.151241 
. 1 7 8 4 5 6  
.259011  

A PRIORI VALUES 

. 0 1 1 1 8 0  

. 0 1 1 1 8 0  
• 0 ¢ ~ )  1 2 9  

• 0 0 7 9 0 6  
• ( ~ ) 7 0 7 1  

• ( ~ 1 7 0 7 1  

• (X17071 
.007071 
• 007071 
• 0 0 7 9 0 6  
.(FO�129 
. 0 1 1 1 8 0  
. 0 1 1 1 8 0  

. 0 0 0 0 0 0  

. 0 0 0 0 0 0  

. 0 0 0 0 0 0  

. 0 0 0 0 0 0  
• 9 4 2 8 0 9  
• 9 4 2 8 0 9  
• 9 4 2 8 0 9  
• 9 4 2 8 0 9  
• 9 4 2 8 0 9  
• 9 4 2 8 0 9  
• 9 4 2 8 0 9  
. 9 4 2 8 0 9  
. 0 0 0 0 0 0  
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INTERPOLATION 

One advantage of Kimeldorf's method is that it allows us to interpolate 
for a missing value. Since Z is invertible in Kimeldorf's form, we can 
allow the weight matrix E to be positive semidefinite by inserting a zero 
in the diagonal where there is no ungraduated value. (I found this fact 
mentioned in some of David Halmstad's notes.) One can also do "Whit- 
taker-Henderson interpolation" using splines as described in Greville's 
book ([6], p. 19). 

PURPOSE OF GRADUATION 

In Section IV, Hickman and Miller report that "following the path of 
Whittaker and King, Kimeldolf and Jones sought 'most probable' 
values of the quantities being graduated." I t  is true that the two pairs of 
authors both sought most probable values, but I believe the emphasis 
was entirely different. The emphasis of King and Whittaker was on 
smoothing. They believed that the true values could be obtained from the 
ungraduated values by eliminating, as Whittaker puts it ([15], p. 303), 
the "irregularities due to accidental causes." The complete title of the 
chapter on graduation in Whittaker and Robinson is "Graduation, or 
the Smoothing of Data." On the other hand, Kimeldorf and Jones's 
paper emphasizes adjusting the level of mortality by using "prior means." 

USE OF STANDARD TABLES 

In Section II of their paper Hickman and Miller say that "information 
about the level [emphasis added] of mortality probabilities is also used 
in graduation methods employing a standard table, such as methods 
based on the graduation of ratios of actual to expected mortality." 
Actually, the mortality ratios are used to specify the shape of the curve, 
not the level. If we multiply all the standard values by a constant c, 
the graduated ratios will be 1/c times the former values, and we will still 
get the same graduated values. 

The United States Life Tables use a standard table to compute the 
5q, values from the 5m, values. But again the standard table is used to 
calculate a shape parameter g rather than to specify the level of mortality. 
The formula for 5qx is 

5 5rex 
~q~= l + g  5m~' 

where g is calculated by replacing the 5q~ and 5m~ on both sides by values 
from the standard table (see Sirken's paper [13] or 5piegelman's outline 
of it in [14], p. 134). 

Benjamin and Haycocks in their book define a graduation method 
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based on two standard tables ([1], pp. 309-11). They define the graduated 
values by 

= b c~) v, aqC, 1~ + q, , 

where q{l~ and q{~) are the standard table values and the constants a and 
b are found by equating the moments of v, and the ungraduated values 
u,. Again the standard tables are used to specify the shape of the gradu- 
ated values, not the level. Thus, if we multiply both the standard table 
values q(l~ and q(2~ by 2, the constants a and b are reduced by one-half 
and the graduated values remain unchanged. 

In calculating insurance premiums, I believe it is better to try to 
predict the shape of the mortality curve rather than the level. If the 
shape is wrong we may overcharge some and undercharge others, but if 
the level is wrong we may overcharge everyone or undercharge everyone. 

Of course, if the original data are sparse, the actuary may have to 
estimate the level of mortality by using a "credibility formula," where 
the estimated mortality values are a weighted average of the crude and 
the standard table values. 

N U M E R I C A L  E X A M P L E S  

In Tables 1 and 2, I list some intermediate values calculated in my 
attempt to reproduce the graduated values in the preprint of Hickman 
and Miller's paper. I ran into some minor difficulties. First, I found out 
by a letter from Professor Hickman that the diagonal elements of E had 
been divided by 10. Second, I believe they used a "canned" FORTRAN 
subroutine to calculate the inverse of I + E--1Z = E--~(E + Z), and this 
subroutine works only for symmetric matrices. The matrix I + E--~Z is 
not symmetric. Of course these minor inconsistencies in no way flaw the 
conclusions of the paper, since the data are merely illustrative. 

In Table 3, I illustrate seven different Whittaker-Henderson gradua- 
tions of the ungraduated values, the third being the graduation used by 
Hickman and Miller (with the discrepancies noted above). I excluded the 
first four values from the graduation in order to be consistent with the 
paper, which calculated these values as weighted averages of the crude 
and standard table values (called "prior mean"). 

In the graduations in columns 1 and 2 of Table 3, I used the formulas 
suggested by Kimeldorf and Jones [10]. In the first graduation I used the 
prior means given by Hickman and Miller, while in the second I multi- 
plied the prior means by ½. As one can see from Table 2, both graduations 
produced results almost equal to the ungraduated values. Although 
Kimeldorf's form is supposed to allow the graduator to predict the level 



TABLE 3 

C O M P A R I S O N  OF V A RI O U S W H I T T A K E R - H E N D E R S O N  G R A D U A T I O N S  

5 . . . . . . . .  
6 . . . . . . . .  
7 . . . . . . . .  
8 . . . . . . . .  
9 . . . . . . . .  
10 . . . . . . .  
11 . . . . . . .  
12 . . . . . . .  
13 . . . . . . .  

Kimeldorf  with 
No Trans format ion  

(1) 

1.441 
3.07 
5.37 
8.413 

14.42 
15.79 
19.51 
22.22 
59,38 

(2) 

1.441 
3.07 
5.37 
8.414 

14.42 
15.78 
19.52 
22.14 
51.66 

GRADUATIONS ] DATA 

Kimeldorf  with 
iArc Sine Trans format ion  

(3) (4) 

1.69 1.892 
3.006 3.037 
5,059 4.71 
7.968 6,86 

12.49 9.84 
17.46 13,33 
23.05 17,32 
31.91 23,83 
66.13 43.29 

Classical 
wi th  F i r s t  
Differences 

Zero 
(5) 

1.72 
2.94 
4. 862 
7.663 

12.1 
17.1 
22.7 
31.51 
65.6 

Camp 

(6) 

1.684 
3. 046 
5. 128 
8.096 

12.77 
18.0 
23.88 
33.14 
68.99 

Classical 
with Second 
Differences 

Zero 
(7) 

1.519 
2. 973 
5.312 
8. 545 

13.04 
16,44 
19.61 
26.53 
62.61 

Ungraduated 
(u~ X 10~) 

(8) 

1,44 
3.07 
5.37 
8.41 

14.45 
15,75 
19.63 
20.46 
71.42 

Prior  Means  
(m~ X 10 a) 

(9) 

1.72 
2.94 
4.86 
7.66 

12.10 
17.10 
22.70 
31.51 
65.60 
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of mortality rates, the graduated values were not changed very much by 
multiplying the prior means by ½. 

In the graduations in columns 3 and 4, I used the arc sine transforma- 
tion. For the fourth graduation I multiplied the prior means by ½, which 
in this case produced a significant change in the graduated values. 
The third graduation seems to me to be "smoother" than those in 
column 1 or colunm 2, but the graduated values are too close to the 
prior means. 

In the graduation in column 5, I used the classical form of the Whit- 
taker-Henderson method with the weights in the E-matrix chosen so 
that the quotients E~,./Z,,. would be equal to the corresponding quotients 
of the graduation in column 3. Perfect smoothness was defined to mean 
that first differences are zero. The graduated values were virtually 
identical with the prior means, that is, the classical graduation repro- 
duced the prior means better than the Kimeldorf graduation. This is in 
spite of the fact that for Kimeldorf graduations perfect smoothness 
means that the graduated values are equal to the prior means. This 
strange result leads me to believe that the invertibility of the Z-matrix 
is not as important as one would think. 

In the sixth graduation I used the Camp form with perfect smoothness, 
meaning that 

( s l u ,  - u ~ + , )  ~ = 0 
i=1  

where s~ = m~+i/m~. In the last graduation I used the classical form 
applied to the ratios udmi, with perfect smoothness meaning that 
second differences are zero. The results of the sixth and seventh gradua- 
tions were smoother than those of the first and second and had a better 
fit than those of the third. 

The greater smoothness of the graduation in column 7 of Table 3 
could be due to the Z-matrix having five nonzero diagonals rather than 
three. The Z-matrix of the Camp graduations, however, is only tridiago- 
hal, and the results are fairly smooth. I believe that the Camp form 
should be given more prominence in our literature as a unique form of 
the Whittaker-Henderson method. The old distinction (before Greville 
wrote his Part 5 stud), note for the Society of Actuaries) between 
Whittaker-Henderson A and B should be played down. 

TRANSFORMATIONS OF T H E  U N G R A D U A T E D  VALUES 

In their 1967 paper Kimeldorf and Jones transformed the ungraduated 
values by subtracting the prior means. In the present paper Hickman 
and Miller employ the arc sine transformation. I believe that transforma- 
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tions can be quite valuable, and I am happy to see them emphasized in 
the present paper. I hope that the next CSO, CSG, or annuity valuation 
table is graduated using a transformation. 

I believe that  transformations should be chosen so as to increase the 
smoothness, where smoothness is defined by the graduation method 
itself. Thus, if one -~vere using the classical Whittaker-Henderson method 
with perfect smoothness meaning that second differences are zero, then 
the transformed values should lie almost on a straight line. The logarith- 
mic transformation used by King, 

u~ = log (0.1 + q~) 

(see [I1], p. 58), is particularly good. In fact, above age 40, the mortality 
curve for the 1958 CSO Table is almost a straight line when drawn on 
logarithmic paper. 

Instead of graduating mortality ratios qJq%, the Lidstone transfor- 
mation, 

u~ = l o g  (p~/p~) 
can be used (see [1], p. 308). 

The arc sine transformation, 

u, = arc sin q~2, 

does indeed smooth the ungraduated values. The smoothing has little 
to do with the arc sine function (which acts like the identity operator 
near the origin) but depends on the square-root function. In fact, the 
square-root curve has the same general shape as the logarithmic function 
used by King. The arc sine distribution function is used to find the 
probability of the number of times the lead could change in coin-tossing 
games (see [4], chap. 3). 

VARIABLE SMOOTHING CRITERION 

Hickman and Miller have furnished what I believe is the first example 
of the use of a variable smoothing criterion. In their graduation, the first 
four rows of the "smoothness term" ( v -  m ) ' Z ( v -  m) are zero if 
v - m = 0, while the other rows are approximately zero if the first 
differences of v -- m are zero. Further generalizations are possible. Thus 
one could employ the classical Whittaker-Henderson form with perfect 
smoothness meaning that fourth differences are zero for the first few 
values and that third differences are zero for the other values. 

Miscellaneous Remarks 

I noticed that the last value in Hickman and Miller's data did not 
seem to fit the pattern of the other ungraduated values. I believe this 
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may be caused by the Society of Actuaries' method of collecting the data. 
The Society collects all data in the five-year age groups 30-34, 35-39, 
40-44, and so on. In place of this rigid method, I believe that the Society 
should ask companies to report data in a format corresponding to their 
own underwriting breakpoints. For example, my company, Manhattan 
Life, and many other companies use 0-30, 31-35, 36-40, and so on, as 
age groups for underwriting classification. Data with different break- 
points can be graduated easily using splines, or the data can be adjusted 
to the Society's pattern by using ratios (as is currently done in combining 
age-nearest- and age-last-birthday data). 

With regard to graduating select mortality tables, the Social Security 
Administration has just published an Actuarial Report in which the 
Whittaker-Henderson method was modified to handle select data (Bayo, 
F., and Wilkin, J. C., Actuarial Sludy No. 74, 1977, DHEW Publication 
No. (SSA) 77-11521). The paper "Modified 1965-70 Select and Ultimate 
Basic Tables" in these Transactions by O. David Green III  gives another 
method of graduating select data. 
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APPENDIX 

I list in Exhibit I the APL computer programs that I ran on Manhattan Life's 
minicomputer to perform the various Whittaker-Henderson graduations. One 
advantage of APL is that commonly used actuarial functions such as matrix 
inverse ([+]) are built in and one does not have to resort to "canned" FORTRAN 
subroutine packages. In printing Table 3, I interchanged the ~2 and v3 calcu- 
lated by the program MAIN. The formulas in the program WHKIMEL for the 
posterior adjacent correlations and standard deviations come from some notes 
by David Halmstad for the Scientific Time Sharing Corporation. 
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S T E V E N  F.  ~'l~C K A Y :  

I would like to discuss the problem of graduating a grid of estimates of 
select probabilities, mentioned by Drs. Hickman and Miller near the end 
of their paper. We at the Social Security Administration faced this 
problem when graduating disability termination rates. Our solution was 
to use a Whittaker-Henderson type B graduation that smoothed in two 
directions at once. Since a Whittaker-Henderson type B merely minimizes 
a function of smoothness and fit, the generalization to a grid of probabili- 
ties only amounts to adding another term to the function to be minimized. 
Complications arise in the computations involved, but we were aided 
greatly by the Part 5 study notes on graduation written by Dr. T. N. E. 
Greville. 

The procedure is outlined in the appendix to Experience of Disabled- 
Worker Benefits under OASDI, 1965-74 by F. R. Bayo and J. C. Wilkin 
(Actuarial Study No. 74) and may be obtained by writing to: Office of 
the Actuary, Social Security Administration, 6401 Security Boulevard, 
Baltimore, Maryland 21235. A listing of the computer program is also 
available. I would be interested in any comments anyone may have on 
the graduation procedure. 

FIARWOOD R O S S E R  : 

This reviewer is supposed to be an expert on graduation; at least, he 
has served as consultant to the Part 5 examination committee on this 
subject for over ten years. Bayesian graduation involves statistical 
techniques, which is made quite clear in some of the earlier papers. For 
example, the paper by Kimeldorf and Jones (ref. [6] in the paper under 
discussion) states at its outset: "The graduation problem is stated in the 
context of multivariate statistical estimation and analyzed according to 
Bayesian procedures." 

Faye Albert, the chairman of the current Part 5 committee, also 
agrees. Speaking for the committee as a whole, and making recommenda- 
tions to the general officers of the Education Committee, she wrote 
recently: "Consideration of Bayesian graduation should be included in 
the syllabus, but this depends on Bayesian statistics being covered." 
Just in passing, most, if not all, of the Education and Examination 
part committees use the Bayesian approach in setting pass marks. 

Many years ago, another Education and Examination committee, 
with the aid of a syllabus change and a congressional investigation, gave 
me a permanent inferiority complex on the subject of statistics. The 
paper by Kimeldorf and Jones did nothing to alleviate that complex 
(although I found the courage to offer a discussion of it), nor does the 
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current paper by Hickman and Miller. Understandably, therefore, I will 
refrain from comment on the more technical aspects of it. 

Up to this point, these remarks have been directed toward essentially 
background information. Looking at the paper itself, and considering the 
possibility that some or all of the material in the paper might ultimately 
find its way into the syllabus, one is compelled to suggest that some 
clarification would be required first. For example, in the abstract of the 
paper, it is stated that "suggestions for managing four technical problems 
in their method are developed." Are these four "technical problems" the 
same as the four "objectives" discussed in Sections IV and XI of the 
paper? Also, are these four, whatever they are, illustrated in Table 1? If 
either answer is "yes," then I--and perhaps quite a few other actuaries-- 
would require several more readings, without further assistance, before 
we could "go and do likewise" in an actual situation. Dr. Hickman, in 
discussing the earlier paper, characterized one section as "a primer on 
the mathematics needed to use the new approach." The current paper, 
in my view, is no primer. 

Along similar lines, perhaps the greatest weakness of the paper is in 
the area of numerical examples, as to both quantity and documentation. 
For a paper as technical as this, a single example seems rather sparse, 
especially when several proposals are made. By documentation I mean 
such things as column headings and sources of information. The authors 
are, I am afraid, guilty of insularity, and of assuming a restricted reader- 
ship. These two are not completely identical. Their Table 1 assumes that 
readers know that the u column means ungraduated values, and the v 
column graduated ones. This may not be fully obvious to British and 
European readers and could be clarified by proper labeling. The fact that 
papers on graduation, among other subjects, are read on both sides of 
the Atlantic should be obvious from the phrase "Whittaker-Henderson 
graduation process." Also, papers in the Transactions are not read only 
by actuaries, just as actuaries read nonactuarial publications as well. 
Better labeling in Table I would have helped such other readers also. 
For all readers, some of the intermediate calculations supporting Table 1 
might be of value. 

At this point, one is inclined to ask whether or not certain precautions, 
suggested in connection with the earlier paper by Kimeldorf and Jones, 
have been taken here. This reviewer asked how the traditional approach 
of testing the results of a graduation before accepting it could be satisfied 
under Bayesian graduation. The authors suggested, in reply, a rather 
involved technical procedure. It  is not clear whether or not this has been 
carried out in connection with Table 1. 
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There may be some implied lessons here for the Committee on Papers. 
Television programs are regularly subjected to surveys to ascertain 
percentages of viewership. Readers of public periodicals such as news- 
papers and magazines vote by way of newsstand purchases and new or 
renewal subscriptiojas. The recipients of the Transactions, however, are 
largely a captive group; very few people who are not Society members 
subscribe. A number of institutions subscribe, but they are not readers 
as such. 

I t  thus might be worthwhile for the Society to conduct periodic 
surveys on readership. The number of members who submit written 
discussions of papers is, of course, readily ascertainable. (In the old days, 
there were also those offering oral discussions of papers.) I t  might be 
interesting to ex~plore for selected published papers such questions as 
these: 

1. Did you read the entire paper? 
2. Did you merely skim it? 
3. Did you wait for the discussions to appear before looking at it? (I am 

frequently in this category). 
4. Did you ignore it altogether? 
5. Did you find in it some practical applications to your own work? 
6. Would you like to see this on the examination syllabus, either in its original 

form or after adaptation, perhaps in a study note? 
7. Would you recommend it for a triennial prize, if it is eligible? 
8. Would you like to see more papers on this subject? 
9. Would you like to see other papers of this type (historical, explanatory, 

technical, polemic, etc.)? 
10. Is the Transactions the most appropriate forum for this paper? 
11. Was the paper 

a) Too long? 
b) Too short? 
c) Too technical? 
d) Too elementary? 
e) Badly organized? 
f) Other? (Explain.) 

The tabulation of the results could be furnished privately to the authors. 
Perhaps, with identification suppressed, the results could be published. 
This might give some guidance to the Committee on Papers and also to 
potential authors of future papers. 

In  conclusion, this is an excellent paper on balance, although it is 
technically somewhat difficult. The subject would seem to be in the 
mainstream of actuarial trends that  are developing, and the authors are 
to be congratulated on an admirable contribution to actuarial knowledge. 



46 NOTES ON BAYESIAN GRADUATION 

(AUTHORS' REVIEW Oil' DISCUSSION) 
JAMES C. HICKMAN AND R O B E R T  B. M I L L E R :  

We are grateful to Dr. Kabe|e for pointing out an error in some of 
the graduated values reported in Table 1 of the preprint of this paper. 
The error has been corrected in the final version. The corrected values 
are somewhat smoother than those that appeared in the preprint. 

Our reply to the discussions will be organized under topic headings. 

1. The Hump 

Jones, Klugman, and Kabele each comment on the problem of using 
a correlation matrix from the class at of the Kimeldorf-Jones paper when 
the nature of the prior information is different for various sections of the 
vector of observed values to be graduated. This problem becomes especially 
pressing when male mortality data are being graduated. The hump in 
young adult ages appears to be a significant aspect of the mortality data, 
yet a thoughtless graduation may remove this feature. We join Jones and 
Klugman in stating that complete independence among adjacent proba- 
bilities, even at young male ages, is not a property of our prior knowledge 
about mortality probabilities. However, because we had not made an 
intensive study of mortality patterns at these ages, we had real difficulty 
in specifying the form of the dependence. The approach taken in the 
paper was designed to show that we recognize the problem of the hump 
and to suggest that a partitioned prior covariance matrix might be used 
to, in Dr. Kabele's words, "vary the smoothing criteria." 

Each of the discussants who touch on this point makes a valuable 
suggestion. Dr. Jones suggests that the correlation matrix be selected 
from the class of matrices denoted by a2 in the Kimeldorf-Jones paper. 
Dr. Klugman's suggestion is closely related. He shows how to use a 
special member of the class of matrices a2. Unfortunately, we have not 
gained enough experience with members of this class to permit us to 
make any practical suggestions for their use. 

2. Bivariate Graduation 

At about the time the preprint of this paper appeared, we saw Actuarial 
Study No. 74, published by the Office of the Actuary, Social Security 
Administration. We found that the technical appendix by Steven F. 
McKay and John C. Wilkin contained a development of a two-dimension- 
al Whittaker type B graduation formula that had much in common with 
our tentative ideas for graduating select mortality or demographic data 
organized in a Lexis diagram. Our goal is somewhat different from that 
of McKay and Wilkin. In addition to smoothing, we hope to extend our 
model to make projections with associated probability statements. We 
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thank Mr. McKay for indicating to the readers of this paper the interest- 
ing work on graduation going on in the Office of the Actuary. 

3. Terminology 

Dr. Kabele reminds us that E. T. Whittaker provided a Bayesian 
motivation for the graduation method that bears his name. I t  is regret- 
table that his original development is not well known. At least to Whit- 
taker, there was no mystery about the interpretation of k in F + kS; it 
was the ratio of two variances. We agree that Bayesian graduation 
includes much more than the particular methods illustrated in the 
Kimeldorf-Jones paper. 

Dr. Klugman suggests that the parameter r, the basic parameter if the 
correlation matrix is selected from class a, of the Kimeldorf-Jones 
paper, should not be interpreted solely as a smoothness parameter. 
Rather, it also measures the weight attached to the vector of prior means, 
which may or may not be smooth. We agree, and would point out that 
the index h in our paper, which measures the relative precision of the 
two inputs into the graduation process, is extremely sensitive to the 
choice of the parameter r when the prior correlation matrix belongs to 
the class al of matrices of the Kimeldorf-Jones paper. In the narrative 
we placed too much stress on the smoothing properties of r. 

4. Standard Tables 

Dr. Kabele chides us gently for asserting that graduation using 
standard tables involves the use of information about the level of mor- 
tality from the standard table. He displays an example from the construc- 
tion of abridged tables using demographic data in which information 
from the standard table is used only to perform an approximate in- 
tegration. 

Our statement was probably too sweeping. Nevertheless, we expect 
that the difficulty may be largely semantic. One of the uses of standard 
tables we had in mind involves minimizing 

S(O) = ~ W~[MR. -- f (x ,  O)] ~ , 

where W. is a set of positive weights, MR.  is a set of mortality ratios, 
and f(x,O) is a prescribed function of x which depends on a vector of 
parameters O. For example, if f(x, O) is a polynomial 

Oo + O~x + . . .  + O,,x", 

the graduated values will be given by 

q~( o + O,x + + O,~x '~) 
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In this expression, ~o, ~1, • • • , ~m denote weighted least-squares estimates 
of the parameters as determined from the data. Thus, both the "level" 
q[Oo, the "slope" q[~lxl, and the other characteristics of the graduated 
sequence are in part determined by the standard table. 

Dr. Kabele's remark about the effect of multiplying the standard table 
by a constant is correct. However, it seems that this transformation 
might be called a change in scale rather than a change of level. 

5. Transformations 
Transformations are powerful statistical tools. By their judicious use 

the range of application of standard statistical models may be expanded. 
As Dr. Kabele points out, the logarithmic transformation has a long 
history as a device for reducing the variability of mortality data. Mor- 
tality ratios, loss ratios, and pure premiums (losses divided by ex'posure 
units) are other examples of routine uses of transformations in actuarial 
work. 

Dr. Kabele remarks very perceptively that the most important aspect 
of the transformation used in the paper is the square-root operation 
performed on the original data. I t  is well known that for small values of 
q, the Poisson distribution rather than the binomial distribution may be 
used to model the mortality process. The square-root transformation is 
used to stabilize the variance of Poisson-distributed data in much the 
same fashion as the arc sine transformation is used with binomial data. 
(See the paper by Anscombe cited in ref. [1] in the paper for a develop- 
ment of this statement.) Consequently, one would expect essentially 
identical results for most mortality data using the square-root and the 
arc sine transformations. We elected to develop the arc sine transforma- 
tion, combined with the Bayesian analysis of mortality data with a 
binomial distribution, because of the greater familiarity of members of 
the Society of Actuaries with these topics. We could have illustrated 
equally well our ideas on the use of transformations in the Bayesian 
analysis of data by using Poisson-distributed general insurance claim 
data coupled with the square-root transformation. (See R. B. Miller and 
J. C. Hickman, "A P1ior Distribution Arising in Risk Theory," ARCH, 
1973, No. 4.) 

6. Technical Papers 
We must accept Mr. Rosser's criticism of the exposition in this paper. 

It  was intended as a supplement to the Kimeldorf-Jones paper, and it 
was not planned that it should be self-contained. 

Mr. Rosser also suggests that technical and professional journals 
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engage in more market research. We cannot argue against an organiza- 
tion's being sensitive to its members' interests and needs. However, to 
restrict scientific publications in any way to those topics of current inter- 
est to practitioners of the science would almost guarantee the intellectual 
death of the field of activity. 

7. Credibility 
Dr. Kabele reminds us of the similarity between graduation formulas 

and credibility formulas. This observation provides a theme that can 
unify many of the procedures used in actuarial science. 

Dr. Kabele goes on to suggest a class of matrices that might be used in 
a generalized approach to credibility and smoothing. Because of the 
embryonic state of the art of specifying covariance matrices, all sugges- 
tions for helping with this perplexing task are welcome. Since the actuary 
selects matrix A (Hickman-Miller notation) or Z -~ (Kabele's notation), 
the suggested class of matrices might be very useful in carrying out this 
task. However, matrix B (Hickman-Miller notation) or E --1 (Kabele's 
notation) is restricted by the nature of the process being observed and the 
design of the experiment for observing the process. Therefore, it seems 
that the actuary's freedom in specifying a matrix B is not complete. For 
example, consider the situation where several years of observation are 
used in a mortality investigation and the survivors of one age are ob- 
served at the next age. I t  is clear that, because of dependence among 
observed mortality probabilities, the covariance matrix B will no longer 
be diagonal and might not fall into the proposed class. 

The discussions by Jones, Kabele, Klugman, McKay, and Rosser are 
very provocative. They contain ideas and suggestions that deserve much 
more comment than is appropriate for a discussion. We thank them for 
contributing to actuarial science in this fashion. 




