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ABSTRACT

We study the applications of the integer functions, ceiling and floor, to
life contingencies. Various actuarial formulas are derived by applying a
theorem of the mean value type for integrals and uniform distribution of
deaths assumptions.

I. INTRODUCTION

The simplest version of the Euler-Maclaurin summation formula is
WA + A1) + A2) +... + Rk - 1) + %Lflh
£ x
= Lf(t)dt + J; (t = [t] - Yf'(pdr,

where f is a continuously differentiable function on the interval [0, k]
({61, formula [3.7.22]; [1], Theorem 7.13). The symbol |7 denotes the
greatest integer less than or equal to r. The function ¢ — {¢] is periodic
and sawtooth-shaped.

In this paper we shall show that the integer functions and periodic
functions arise naturally in the study of life contingencies. Approximation
formulas will be elegantly derived by assuming that deaths are distributed
uniformly throughout each year of age or, less restrictively, throughout
each month of age.

Notation. Let Z, Z+, R, and R+ denote the set of integers, positive
integers, real numbers, and positive real numbers, respectively.

II. CEILING AND FLOOR

For 1 ¢ R, let | 1] denote the greatest integer less than or equal to 7 and
let [] denote the least integer greater than or equal to ¢ ([18), p. 37). Dr.
K. E. Iverson, the originator of APL., calls them the floor and ceiling of
t, respectively. In the mathematical literature, the more commonly used
symbol for ] is [¢].
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If 7 ¢ Z, then |z] = [r]; otherwise, [t] + 1 = [r]. Since Z is a set of
measure zero, |¢| + 1 = [7] almost everywhere. Thus, if [¢] appears in
the integrand of a Riemann integral, replacing it with [t] — 1 will not
change the value of the integral.

For m € R+, the graph of | mt}/m or [m!}/m, as a function of 1, resembles
an infinite flight of stairs, with step size 1/m, at an inclination of 45 degrees.
As m tends to infinity, | mt}/m tends to ¢ from below and [mt|/m tends to
t from above.

Definitions. For s € R+, define

Mrmods =1t — s{tls], r€R;
and

(i)tpads = s[tls] —t, t€R.

The quantity 7 mod s is the (nonnegative) remainder when ¢ is divided
by s, and ¢ pad s is the least nonnegative addition to ¢ so that the result
is divisible by 5. The term mod, short for modulo, is standard mathematical
terminology. In coining the term pad, 1 am borrowing from computer
science, in which the term padding means the adding of blanks or non-
significant characters to the end of a block or record in order to bring it
up to a certain fixed size ([3]; [31], p. 30).

Note that t mod s = 0 if and only if t/s € Z and if and only if ¢ pad s
= 0. If this is not the case, then rmod s + rpads = s.

Although we shall not need these results, it is interesting to know that
for ¢ ¢ Z, the Fourier series

Vo — > sin Qmin/mj  and Y2 + D, sin Qmid/mj
J=1 j=1

converge to t mod 1 and ¢ pad 1, respectively (see [1], p. 338, No. 11.18a).

1. ANNUITIES-CERTAIN
Let me Z+, k € R+, and k mod 1/m = 0. Then

k
sg = L (1 + pumilmdy

and

‘
P = L (1 + ifm¥imdy
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For the integral
k
L (1 + iydt = 5g,

s§” and 5% are lower and upper Riemann sums.
Since | ~y] = -[yland |j + y} = j + |y) forj € Z, we also have

k
sg = L (1 + r-Tmimdy
and

X
5§ = L (1 + Df-Lmdmdy

Multiplying the equations above by v*, we obtain

k k
m o __ k ~ | mt}im - L [me)m
asj J(; v dt plmiimd
and

k k
d%"" = L vk~|’m1]/md[ = L ylmiimdy

Remarks. Since [(—m)t]/(—=m) = |mt]/m, we have the relation af ™
= @ff’. The formulas aff’ = (1 — v/t and @’ = (1 — v9)/d" immediately
imply that /- = ¢, This equation can be derived directly. Recall that
l+i=0+f/mymand 1 — d = (1 — d™/m)=. Writing 1 + { =
f1 + d"/(—m)l-~, we see that i-m = dim,

For the remainder of this section, assume k£ mod 1/m # 0. Question:
How should ajj”, etc., be defined? One way is to define ajj” by the value
of the integral

k
f vr milim dt ,
0

that is,

af’ = afmgm + (k mod Um)ylmim
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This definition is the same as the one given by Hart ([14], pp. 104, 285;
also see [23], p. 581). Similarly,

" = drmmm — (k pad Um)vlmkim

Another way to define aff” is by the formula

af’ = (1 — Wi,

This is the approach suggested by Donald ([7], sec. 4.18) and Kellison
([17], sec. 3.6).

It is easy to check that under either definition, — aff” is a convex function
in 7. Thus, in both cases, we can apply Jensen’s inequality to obtain @, <
az1 ([16], p. 175). See Gerber and Jones (discussion in [22], p. 25).

In order to avoid confusion later, different notation will be used for the
second definition. Following Rasor and Greville in {23] and Zwinggi ([32],
p. 21), we define

&P = (1 — viyfiew
and
' = [(1 + o = 1)/im .

Motivated by Nesbitt ([19], p. 137; [23], p. 583), we define
agt = (1 — wWldm

1V, IMMEDIATE APPLICATIONS IN LIFE CONTINGENCIES

For a life aged x, consider the length of time until death as a continuous
random variable, and denote it by T. The cumulative distribution function
for T is g4, t = 0, and the probability density function is

d
T = P B vr =0,

For the rest of this paper, x will denote a fixed age; instead of writing
L. e . dt, we shall always write d 4. The interest rate is assumed to be
constant.
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Let us illustrate how the integer functions can be applied in life con-
tingencies:

1. Insurance

A,(\'”')

E(vrmﬂ/m) = f vfml]/mdrqr .
o .
(I™A) = E@T mT)/m) .

3
(DA)! gz = L [k ~ tWVidqg, (keZ)

= [lwv 1 - rviag,
= (k + DAlg — (A)lg .

2. Life Annuities
Starting with Jordan’s definition of a, ([16], p. 40), we have

a, = J; mExdt = L P ViYdt

= - 5‘” 1]
J:Zo (L:m a’,q,)v dt
y =% 1=s]
= 1]
Lo U’*" 1% dt)dsq‘

= J; amd g, = Elagp) .
Using the relation ai = (1 — vi7})/i, we immediately obtain
a, =[1 -0+ DAY

([16], formula [3.12]; [29], p. 241; [26], sec. 4.5).
Similarly,

J; [mr_]/mErdt

E(@= = (1 — A™)/dm  ([16], p. 78, No. 8).

dim
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3. Premium Refund Benefit ([25], p. 605)

APRm/P(A,)

EV drsagm)
E[Vvi(1 — v7 eed vm))/5
E(T — vimTimy/g = (A, — A™)/3 .

il

4A. Complete Life Annuities
There are several nonequivalent definitions for a complete life annuity
Jom)
ar‘(i‘) It was suggested by Rasor and Greville in [23] that
ar = E(dR)
El(1 — vD)/iom] = (1 ~ A .

Il

Another way to express this definition is

am — am = E0T8 )
EQTI(L + §T-tmmim — 1)/im)
Apidom — AJim (23], p. 578) .

(ii) The definition given by Spurgeon ([28], chap. 9) and Jordan ([16],
sec. 7.4) is

aw — a = Evi(T mod 1/m)]
EWVIT — [mT)m + Um)]

(I4), — ™A), + A/m ([16], formula [7.11)).

(iii) A third definition is ¢ = E(af’). Thus,
qm — gm = Ely=Tm(T mod 1/m)] ([19], p. 154, 111)
=AY — (™A™ + Arim .

4B. Apportionable Annuities-due

In analogy to the three definitions above, we shall give three definitions
for an apportionable annuity-due, di.
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(i) Following Nesbitt (discussion in [23], p. 583; discussion in {19], pp.
137, 153), we define

dm = E@gh = (1 — A)d™ .
Equivalently,

E(l’rd%;‘)

(A, — Ar)dm™  ([25], p. 608, eq. [5]) .

a’&m) - d&m}

It

(ii) In [19], Lauer proposed that

dam — gt = Evi(T pad 1/m)]
= (I™A), — (IA), .

(iii) Cain (discussion in [19], p. 141) suggested the third definition:

dm — am = Evlmtm(T pad 1/m)]

= (1 + PlUmAD — (AN

This definition is equivalent to @ = E(G@g).

Remarks. The formulas for definitions (i1) and (iii) involve increasing
insurance functions, which will be discussed in Section VIII. Lauer has
summarized the six definitions in [19] (p. 154, Table 1). In Section VI, we
shall point out that the six expressions in his Table 1 are exact under the
mild assumption of a uniform distribution of deaths throughout each 1/m
year of age.

Rosser (discussion in [19], p. 149) and Isen (discussion in [19], p. I51)
observed that under definitions (ii),

am — g o= (1 — AX)/m = da,/m .

Lauer ([19], p. 156) noted that these equations also hold under definitions
(i). It was also pointed out ([23], pp. 576, 583) that under definitions (i),

l‘(mb&({m) —_ Sd‘ = d(n)a"in) s m, n € Z+ .
Thus, under definitions (i), we have

g = (1 + Dimagm ;
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this equation is also true under definitions (iii) but false under definitions
(i).

5. Stationary Population

We now illustrate the use of the integer functions in solving stationary
population problems:

[4], page 35, No. 7: The number of people now living who die before their next
birthday.

Solution:

vex [ er=ly]ox x -
J: (J: l\-+:ll_\-+:df>d)’ = J(‘) (1\ - [f\1)dy = TO - El Ij .
j=

=0 =0

[4], page 89, No. 1(d): The number who will die before their 15th birthday out
of the people having either an [Ith, 12th, 13th or 14th birthday in a calendar
yearis 4d,, + 3d,; + 2d,, + d,,.

Solution: Counting all the deaths that occur during and also after that
particular calendar year, we get

y=14 y+ =15
J,:-:m (Jyu:M l”’u"”dt)dy

14
= J’IO (’m —hdy = by + by + 1y + 4y — 4l

[4], page 90, No. 4(b): How many years do the people who have any birthday
from 20th to 29th inclusive during 1966 live from that birthday until December
31, 19752

Solution:

v=29 [ =10
[:19 (‘[‘*':M [\-udl')dy

29 29
= J:g Tty — Toi0)dy = 2 T, — Yy + Y.

j=20
V. PERIODIC FUNCTIONS

Let h be a locally integrable function defined on R. Define the ‘‘average

value” of h as
4
avg (h) = lim (f . h(z)dt)/2§ .
== \J-
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Let & be a periodic function and @ # 0 be a period of A, that is,
hit + o) = h(1), for all ¢; then, clearly,

avg (h) = [Lu h(t)dt]/a .

For m, n € Z+, the function [mt|/m — [nt]in is periodic. Since
1
L [mtm dt = (m + 1)2m ,

avg ([mf/m — [ntl/n) = (n — m)2mn. Hence [mt]/m is approximately
equal to [nt]/n — (m — n)/2mn. Several approximation formulas given by
Jordan ([16], sec. 3.5) follow immediately from this observation:

(I'™A), = E0VT[mT)/m)
= ETT) — (m — D2ml}
(A), — [(m — D2m]A, ([16], formula [3.27]) .

Il

(Jom A)x

Il

ETmTVm)
(TA), - [(m — D2mlA, ([16], formula [3.28]) .

A

(JA), = E(v'T)
EW((T] ~ )] = (IA), — 24, ({16], formula (3.31)) .

I

It has been pointed out in [9] that although Jordan's formula (3.27) in
[16] is exact under the uniform distribution of deaths assumption (UDD),
formula (3.28) is not. This difference can be explained by the following
simple theorem for integrating the product of a periodic function and a
step function.

AVERAGE VALUE THEOREM. Let h be a periodic function. Let I be
the union of a set of disjoint intervals, the length of each interval
being an integral multiple of the fundamental period of h. Let g be
a linear combination of the characteristic functions of the intervals
of 1. If the functions are integrable, then

j_, h(t)g(n)dt =avg (h) J-_, g(ndr .
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The characteristic function of a set S, xj, is defined by x4x) = 1if x €
S, and xs(x) = 0 otherwise ([1], definition 10.41).

We call this result the average value theorem because of its similarity
to the mean value theorem for integrals. Its proof is obvious, and the
condition that the intervals be disjoint is not necessary.

Let us demonstrate that Jordan’s formula (3.27) in [16] is exact under
UDD:

UA)q — (I™A) 4 = f (1] = [melmpld g,

k
J; ([1) = [mVmn' |, q, dt - UDD

It

&
avg (1] — [mt)/m) J; Vi g, dt " average value theorem

il

{(m — 1)2mlAlg .

The exact expression for (/A), under UDD will be derived later (Sec.
VII, case 1, n = x). For an example showing that Jordan’s formula (3.28)
in [16] is not exact under UDD see [9]. -

Assume UDD. It is easy to derive the formula Al g = s%ﬁ”’Al_n by general
reasoning. Now,

(m)

k k
(A)}ﬂ = J; V[md/md gx = £ meﬂ/m U“q,x' dt
k
= J; (1 + DiA-Tm¥mpld g)dr .

Applying the average value theorem and comparing, we see that
avg [(1 + DiN-Tmm] = o

A generalization of this result will be needed later:

Lemma 1. Let m, n € Z+ and n mod m = 0. Then
(i) avg [(1 + i)(mz]xmA{m]/n] = jimffm ;
(ii) avg (vfmr]/m—!'n/'l/n) = d™/dm .

Proof of ti). Since 1/m mod 1/n = 0,
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I'm
L.HS. = mJ; (1 + j)I/Mvhﬂ/ndt

m(l + )'malfly = msi

mi(l + v — 1)/im = R.H.S.

Proof of (ii). L.H.S. = mdf; = R.H.S.
There is an interesting way to relate (i) to (ii). It was shown in Section
II that == = d. Set t = | — 7; then

[mtlm = [ntlin = —[[(=m}x(=m) = [(—n)xJ(—m)] .

Since (1 + /)~ = v, we see that (i) and (ii) would imply each other.
Setting t = 1 — 7 again, we obtain

[mt)im — [ntl/n = —(mr)/m — |nt|/n);
thus we have

CoroLLARY 1. Let m, n € Z* and n mod m = 0. Then
(i) avg (vimilm—lujny = jimfjon -
(i) avg (1 + plmdm=lainy = dom/gm

VI. UNIFORM DISTRIBUTION OF DEATHS

With the notation developed in this paper, the assumption that deaths
are distributed uniformly throughout each year of age can be expressed
as

L, = (tpad Dl + (tmod Dy, (€R —Z .

A generalization of this assumption is that deaths are distsibuted uniformly
throughout each 1/m year of age, for some m € R+, that is,

(Um)l.., = (tpad Vm)l, . pmeym + (¢mod Um)l 1y, mtE€R — Z+ .

Let us abbreviate this generalization as UDD(m). Under UDD(m) the
differential d g, becomes (m . jmg. dt), for mt € R+ — Z~. It is clear
that if m > 1, UDD(m) is a less restrictive assumption than the usual one,
which is UDD(1).
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It has been pointed out by Gerber and Jones ([11]; [12]) that under
UDD(1) the random variables LTJ and (7 mod 1) are independent; thus
|T) and ((mT)/m — | T)) are also independent. This observation follows
easily from the average value theorem.

COROLLARY 2. For m € Z+, let h be a periodic function such that
h(t + 1/m) = h(t), t € R*. Assuming UDD(m), we have

[ hf((mt)im)d q. = avg (h) [ f({mt]im)d q. .

Proof. Set g(t) = f(lmt|lm)m |mymimg,. and apply the average value
theorem.

Recall the six definitions for complete annuities and apportionable an-
nuities-due discussed earlier (Sec. 1V, 4). Lauer ([19], p. 154, Table 1) has
given an expression for each definition exact under UDD(1). In fact, his
six formulas are exact under UDD(m). Note that under UDD (m),

l.("”A((m) = SA‘ N
For instance, according to definition (jii) in Section IV, 4A,
am — a™ = E™"(T mod 1/m))

= A{™ avg (t mod 1/m) " Corollary 2
= A/2m .

If we consider definition (ii) in Section IV, 4B (Lauer’s original definition
on p. 14 of [19]), then

a';m) — d’{‘m)

ElvI(T pad 1/m)]

EImTim(1 + §)7 ead vm(T pad 1/m)]
= Amavg [(1 + i)y e bm (¢ pad 1/m)]

d
= A'(‘””— avg [(1 + i)l pad l/m]

dd

— A(m'i (im/3) .~ Lemma 1(i)
x da

= A (i/8)(1/d™ — 1/8) - Lemma 2

= A,(l/d™ — 1/8) ([19], p. 15, eq. [7]) .
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Lemma 2 is given in Section VIII.
VII. FAMILY INCOME BENEFIT

Following Jordan ([16}, sec. 7.6), we let F, denote the net single pre-
mium for an n-year family income benefit issued at age x and providing
an annual income of | payable monthly commencing on the date of death
and continuing for the balance of the n-year period. Then, with m = 12,

Il

n
¢ sl d
o vam(n~1) /ml rqr

I:L vi(l — vfm(n—n]/m)d’q‘:l/d(m)
(A;ﬂ - J; yi+n=lmijim d,q")/d(m) .

Assuming UDD(m) and applying Corollary 2 and Corollary 1(ii), we have

an

il

JO (1 + l')|_m1j/m—,d,qt = (dtm)/d(ac)) o -
Thus, Jordan’s formula (7.25) in [16],
an = A)lr:ﬂ/d(m il n‘]x/a s

is exact under UDD(m).
In the case of two interest rates, a rate i before death and a rate i’ after
death, we have

n
&P — o p(m)
nF; t= L va min-1 /mldtq.r

I:Alﬂ — v’nJ{: (VI/V’L""J/M)d,qx]/d’(m) .

Now put v' = v/v', thatis, 1 + " = (1 + /(1 + i'). Then, by assuming
UDD(m) and applying Corollary 2 and Corollary 1(ii) again, we have

n
= f yi- (_mlj/m(v"LmlJr’m d q )
o x

= (d™/B)(1 + M)mATE = R + i)-vmAly
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Thus, under UDD(m),

JFE = Alfd' v — (v i) AT
Assuming UDD(1), we have
FE = (if5d" ™ALy ~ (IS AT
Jordan’s formula (7.24) in [16] follows immediately from the relation
frfirompton = dumf"mgim

VHI. INCREASING INSURANCE

By assuming UDD(1), we wish to express
(03] y
(ImA)Ng = J; viiielmelimd g,  (m, n, k € Z*)

in terms of more standard actuarial symbols. To simplify writing, we set
k = =. Since k appears only as the upper limit of the integral, it will be
trivial to transform the formulas for kK = = to those for k& < =,

First consider m = n (cf. [9], p. 11)

d
I(nnA m = . — A(,'")
( ) ek

il

- d% [(i/i™A ] - UDD(1)

(il IA), = (Vd — Hd"™MA] .

The next result justifies the last step above.
LEMMA 2. d(it/ien/dd = (/i) (1/d — 1/de) .

Proof. Consider d[log (i/i™))/d8. Since 1 + {/m = e¥, d(i")/dd
= ¢¥ Hence d(log ¢™)/dd = 1/d™.

Recalling the relation i~™ = ¢ derived earlier, we immediately have

%(d‘"’/d""') = (d™ldm)(1im — 1/im)
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When m # n, we follow Gerber and Jones {12] in considering only the
two cases where n mod m = 0 and m mod n = 0.
Case 1: (1/m) mod (1/n) = 0.

(I(m)A)f(n) = E(vfnﬂ/nrmT.I/m)
= El(1 + iirmim =ty T /m))
— (i(rn)/"(n))(l(m)A)f‘MJ )

by assuming UDD(m) and applying Corollary 2 and Lemma 1(i). Thus,
under UDD(1),

ImAYD = (ilim)(HA), ~ (I/d — 1/d™A) .

Case 2: (1/n) mod (1/m) = 0. Assuming UDD(n) and applying Corollary
2, we have

(I7A) — I™A)Y = El(nTVn — [mT)mpin7im]
= avg ([aT}n — [mT)VmAP
= [(m — n)2mnlA® .
Thus, under UDD(1),
(JmA)yr = ((liM{A), — [1/d — Ud™ + (m — n)2mnlA,} .

The formulas above are equivalent to those derived by Gerber and Jones
[12).

The increasing insurance formulas exact under UDD(I) can also be
derived by ‘‘general reasoning.’”” It is easy to come up with the formula

(A), = sn(lA), — (DA, .

By considering the area bounded by the graphs [1] and [mf}/m, we can
write

U™AY = SFUA), — (D™S)E—mA., .
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If, instead, we consider the area bounded by the graphs | 7] and [mt]/m,
then

UmA)™ = sil-’""[([A)x - Ab+ (I‘M’S)ﬁ")Ax .

The case 1 formula can be reasoned similarly:

i

UmAY = SRUA), — (D™5)HEmA,

sSFIUA), — A + I™s)FA, .

i

The case 2 formula is a little tricky. Subtracting from the area bounded
by the graphs 7] and [nf]/n the area bounded by the graphs [ns]/n and
[mt)/m, we have

UmAY = {FUIA), — Al + A")FA} ~ [(m — n)2mnlsHA, .

IX. LIFE ANNUITIES

Various actuarial writers (Dowling [8], sec. 41; Davis [5], p. 19; Mereu
[21], p. 89; Scher [24], p. 374; Charlton [24], p. 378; LeClair [24], p. 385;
and Gerber and Jones [11]) have derived expressions exact under UDD(1)
for a life annuity payable m times per year. The simplest approach was
given by Butcher ([21], p. 108):

am = (1 — AmM/idm™ = [1 — {li™A)d™
then the substitution of 1 — dd, for A, immediately yields
am = (idi, — i + imyimdm

This method was also used in [12] and [27].
The last equation can also be derived directly. Consider the identity

.(m)

e = (1 + ,’)fﬂ%mﬂMddm — (1 + HN-ImTlm 4 1]/dm .

Taking expected values and applying Corollary 2 and Lemma 1(1), we
obtain

@ = [(difimyd, — (i) + 1do .
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Formulas for temporary life annuities can be developed with the identity
ach o= dam — . dae, .
Thus
A = lidd.m — G — i) = E)imd™ .
Another way to derive formulas for temporary life annuities is by means

of the minimum operation. Fora, b € R*, let a /\ b denote the minimum
ofaand b. Let m ¢ Z~, n € R+, and n mod 1/m = 0; then

A= Eldrsmmm) = - - - -
Remarks.
W) [m(T N m))m = (mTYm) A n.
(i) A% = E(@/mawimy  (cf. [29], sec. §) .

Form, n,j, k € Z*, nmod m = Q0 andj < k, increasing annuity formulas
exact under UDD(1) can be developed by means of the identities

Ia)y = a7 — A RYd» ()
and
AN, = (A5 + j E. Al
Also see [12], page 45.
When m = nand j = £, then (%) can be easily verified. Differentiating
the equation
ATy = 1~ dma

with respect to &, we have

— ('A%

vl/ma"L’_% + d(m)([(mia)‘x’:"hm
—d‘,':"f] + d(m)([(m)d)“':"ﬁ .
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To prove () for the general case, consider the annuity-certain formula
(I$'F = (@§' — pyvad» ,

where 1/m mod 1/n = 0, p mod l/m = 0, g mod l/n = 0, and p < q.
(Such a formula can be elegantly derived by means of diagrams; see (20].)
Setting p = [m(T N\ j)Ym and g = [n(T N k))/n and taking expected
values, we obtain (x). This proof is a refinement of the technique discussed
in [10].

X. MATHEMATICAL SYMBOLISM

A common complaint concerning actuarial mathematics is the vast num-
ber and variety of its symbols. Since we are introducing more symbols
here, we feel obliged to justify this by concluding our paper with some
highlights on the effective use of symbols in mathematics.

The most important invention in the history of science is the system
of Hindu-Arabic numerals. Although Fibonacci (Leonardo of Pisa), the
greatest mathematician of the Middle Ages, published his Liber abaci in
1202, even in the sixteenth century only brilliant university graduates
were expected to be able to master long division. (In order to cling to
Roman numerals, some European countrics passed laws forbidding cal-
culations by “‘algorism.’) A. N. Whitehead [30] wrote:

By relieving the brain of all unnecessary work, a good notation sets it free to
concentrate on more advanced problems, and in effect increases the mental power
of the race. . . . Our modern power of easy reckoning with decimal fractions is
the almost miraculous result of the gradual discovery of a perfect notation. . . .
Symbolism represents an analysis of the ideas of the subject and an almost pictorial
representation of their relations to each other. . . . By the aid of symbolism. we
can make transitions in reasoning almost mechanically by the eye, which otherwise
would call into play the higher faculties of the brain.

The most important mathematical discovery in the past three hundred
years is the calculus. It was independently discovered by Newton, whose

. . . .ody
fluxion is denoted by ¥, and Leibniz, whose notation is —. There was
dy

a long and bitter dispute over priority. Let us quote E. T. Bell ([2], p.
114): **The upshot of it all was that the obstinate British practically rotted
mathematically for all of a century after Newton's death, while the more
progressive Swiss and French, following the lead of Leibniz. and devel-
oping his incomparably better way of merely writing the calculus, per-
fected the subject and made it the simple, easily applied implement of
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research that Newton’s immediate successors should have had the honor
of making it.”” The emphasis on the word writing is Bell’s, not ours.

Bertrand Russell suggested: ‘A good notation has a subtlety and
suggestiveness which at times make it seem almost like a live teacher.”
This we found to be very true as we developed this paper. Furthermore,
when we integrate by parts an integrand involving integer functions, we
are immediately faced with a Stieltjes integral. Thus we are led to an
interesting investigation of the applications of the Stieltjes integral in life
contingencies. Since, in this paper, we wish to keep the mathematics
elementary, we shall report the Stieltjes integral results separately.

For readers interested in the symbolism of mathematics we recommend
Whitehead ([30], chap. 5), Hammersley in {13], and Iverson (ACM Turing
Award Lecture [15]).
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DISCUSSION OF PRECEDING PAPER

C. J. NESBITT:

The author is to be congratulated for his brilliant application of integer
functions to the systematic derivation of many of the formulas of actuarial
mathematics, ranging from the very simple to the very complex. In doing
so, he has partially bridged the gap between fully continuous and fully
discrete functions by displaying the latter by integrals with integrands
specified by integer functions.

The new textbook that is under preparation contains some elements of
these concepts but does not develop them as systematically and as thor-
oughly as the presentation here. We do adhere consistently to what the
author calls the UDD(1) assumption, obtaining such formulas as

(21}

a" = a(myd, - B(m) = a5’d, — BmA, , (1

where a(m) = si'dy’ and B(m) = (sff' ~ 1)/d"’. These formulas for
d'™ agree with those given by the author at the beginning of Section IX.
It is important to observe how well such formulas work out in relation to
net annual premiums and reserves, in particular, how PY” and ,V{" relate
to P, and ,V,. We found that the most useful premium relation was the
obvious one,

P = P (djamy 2)
and that by use of (2) and the right-hand member of (1) we can show that
Yoo =1 + B(m)Py] V. . 3)

This is to be compared with the traditional formula,

Vim = (1 L= le:’”) V..
2m

On the basis of the UDD{(m) assumption, the author indicates that

ilm)ALW) —_ aA‘ i
591
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By substituting 1 — dd for A", and 1 — 84, for A,, and solving for
awm, one obtains

a'(‘nn = (B:a\ 4 — 8)/,‘(:::»‘1"”,) . (4)

For m a positive integer, UDD(1) implies UDD(n). Hence, under UDD(1),
formula (4) holds. This also follows from formula (1),

Additional difficulties appear when one considers @ and A¢7. These
can be obviated by assuming uniform distribution of termination of the
joint life status, but this is different from assuming uniform distribution
of death for the individual lives.

These are but a few scattered comments in appreciation of a paper
remarkably rich in new concepts. We shall likely hear more of some of
them, including [f], ¢ pad s, and UDD(m).

A. D. WILKIE:

I am very pleased to see Mr. Shiu’s use of the terms floor, ceiling, meod,
and pad to assist in the definition of actuarial functions. However, some
principles can be used in the construction of an actuariai notation that
would assist in choosing between alternative versions of some of the
functions.

First, annuities and assurances are contracts that promise to pay spec-
ified sums at specified times subject to defined conditions. The symbols
a and A should be used to denote the expected present values of such
contracts, and the details of the contract should be clear from the notation.
The symbols are more than just mathematical functions of a given set of
paramcters.

Second, it is convenient if an annuity value « at a zero rate of interest
has the same value as the corresponding expectation of life ¢.

Third, it is convenient to be able to use a term-certain #{ in place of a
life (x) with consistency. The term-certain ‘‘expires’ in exactly # years.
This is the justification for using the joint life functions a 7 and A, 5 in
place of ,a, and LA, + E,.

Fourth, it is consistent if ¢ — @ and ¢ — a as m — x.

Now since a, = Elag), itis consistent to set ug = Elagp) = agm, and,
similarly, aff’ = a7, with no additional fractional payment. If it is now
January 1, 1982, and we have promised to pay £100 on each January 1
commencing in 1983 until 5.5 years have expired, the last payment we
shaill make is £100 on January 1. 1987. We have made no promise to pay
£50 on July 1, 1987.
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o)

Similarly, we should choose dg = dmy and @’ = %, S0 g =
dz. The ““life’” 35], born January 1, 1982, dies July 1, 1987, so it is still
alive on January 1, 1987, and six payments are made, from 1982 through
1987.

We can then write a, = E(an). using this new definition of ax; similarly,
d, = E(dg), and also a, = E(ap) as usual,

A complete life annuity contract & usually (always?) actually provides
a payment of T mod 1/m on the death of (x) at time 7. The only appropriate
definition of 4™ is therefore Shiu’s definition (ii), used by Spurgeon and
Jordan, viz.:

am = a + E[vT(T mod 1/m)] .
It is then consistent to define 43" as the present value of an annuity
payable at the rate of 1/m for |mk| payments, with a final k mod l/m
payable at time k. This results in

(b

a7 = agpm + (k mod Umvt .

This is equal to none of the definitions of a§f” or 4§’ given by Shiu, but
it does allow one to set ¢ = E(dR’), consistent with Rasor and Greville
but with both symbols having different meanings!

It is helpful to be clear what payments would be made under an ap-
portionable annuity-due. What may be intended by al't, say, is a payment
of 1 at the start of each complete year of life of (x), with a final payment
of T mod 1 at the start of the final fractional year of (x)s life. How one
is supposed to be able to pay this I don't know, but it is at least clearly
defined in retrospect. The only consistent definition of this is Shiu’s def-
inition (ii):

atrt = gtm — E[vl»7i(T pad 1im)] .

A more realistic definition is a payment of 1 at the start of each year
of life (x) and a refund of T pad 1 on the death of (x) at 7. We then have
Shiu’s definition (ii):

am = am — EvHT pad l/m)] .

For consistency again we should define either

ag' = dag’ — vism(k pad 1/m)
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or

a(_rln) - a(_""’ — v‘(k pad l/m) )

respectively, where in each case iz"ﬁ” = am, as defined above.

Why should we not use the symbol a‘"” instead of d{"? Or would this
1mply a final additional payment of T mod 1/m? Perhaps we should keep
a""’ for this and use a‘"" for the apportlonable annuny-due Both converge
to a, as m — x, At zero interest, e = ¢ = ¢ = &, but e""’ =
é, +1/m.

The definition of ajf” chosen by Shiu and Hart, viz.,

af’ = amgm + (k mod Vmyi=v= |

at least indicates that a final payment of Xk mod 1/m is made at time
l'mk'l/m. The definition chosen by Donald and by Kellison, that is,
aq’ = (1 — w/in, denoted 45’ by Shiu, does not correspond to any
uniquely defined set of payments at specific times and in my view should
be avoided.

The use of a term-certain 7] to replace a life (x) allows some interesting
notations that have not been widely used. Thus an n-year family income
benefit issued at age x and providing an annual income of | payable
monthly at the end of each policy month for n years but not while (x) is
still alive (thus making the same number of payments as Shiu’s and Jor-
dan’s contract, but on average half a month later) can be denoted by

(m) — (nt) {rm)

doyn) = & — 45,

comparable to the reversionary annuity to (y) after the death of (x):

{rm)
x|y

a;, = am™m — ay .

The family income benefit described by Shiu, and denoted by Jordan
.F ., has to have the rather cumbersome symbol a‘,’(%, which indicates that
payments are made at intervals of 1/m counting from the death of (x), the
first being payable on the death of (x), the last shortly before the expiry

of n years. If there is a final fractional payment to be made at the end of

! )

the n years, we get the top-heavy symbol a'7, where the order in which
the *‘coiffure™ is superimposed may or may not be of significance.
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A term-certain is also useful, though seldom used, for an annuity guar-
anteed for n years and life thereafter, viz., ai’3.

A notation used by King (Life Contingencies, 1887), but neglected since
his time, is a,,,, 2 reversionary annuity payable after the death of (x) to
a nominated life who is then aged y. Clearly we do not know at the present
time who (v) is. He is perhaps (x)’s successor in office.

Analogously, we can write a,,;, for an annuity that commences on the
death of (x) and is payable for n years certain thereafter, being paid on
the policy anniversary. Its value is A dx. If it were paid on the anniversary
of the death of (x), it would be denoted 4,,;;,, with the value A,a;,.

If we use 7] as a life, we must be careful about Shiu’s implication (top
of p. 572) that we can ignore the case where (x) dies in exactly an integral
number of years, that is, T € Z. If n is integral, or n mod 1/m = 0, then
n] will “*expire’” exactly when a payment may be due. I assume that if a
life annuitant dies on a payment date, he receives the payment if the
annuity is “‘in arrears’’ (a'~’) but not if it is *‘in advance”’ (d'"”). Actual
life offices may adhere to this practice, or may be more generous. But it
allows the definitions of a; and dx, to be as expected.

British government securities provide a practical example of yet another
type of annuity-certain for an irregular period. Each of these pays interest
on defined half-yearly payment dates and is redeemable on one such date;
but each is usually issued on a date that is not a payment date, and the
first interest payment is for a fractional amount corresponding to the first
fractional period. Such an mthly annuity for & years has the value

vi(f + af’),

where f = kmod l/m and n = [mk|/m, so k = n + f.1don’t know what
symbol to give this. Would 4% do, indicating that the apportionment is
initial, not final?

Such an annuity-certain has no practical life annuity equivalent. One
could write ¢i = E(af) but one cannot actually agree to make payments
on the preanniversaries of the death of (x), commencing with a suitable
first fractional payment, without more prescience than an insurer de-
serves!

(AUTHOR’S REVIEW OF DISCUSSION)
ELIAS S. W. SHIU:

I would like to thank Dr. Nesbitt and Mr. Wilkie for their discussions.
Their remarks add considerably to the paper’s perspective.
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Dr. Nesbitt’s equation (3) is an elegant formula, and the following is a
useful reformulation: Let r and n be two positive integers and t < n; then

under UDD(1)
sYem( ) — =V( ) = B(m) P ).V;:F-] > (1)

“‘where the sets of parentheses have been left blank to indicate that the
benefit involved is unspecified, emphasizing that the relationship exhibited
is independent of the particular benefit’” (Scher {4], p. 614).

Equation (1) is derived in the same way as Dr. Nesbitt’s equation (3):
it follows from

L) = @Bfd z) P7C)

and
i = d(ﬁ”d‘.ﬂ - B(m)Al,ﬂ ., keZ-+. )

To prove (2), consider the identity

L(m)

Ao = (d&-_-]\'T/\k'] + P — pImadiim )/ ghom)

Taking expectations, we have

!

a(:’% = (d@iT:ﬂ -+ A"ﬂ — A‘:}\_‘)/d(ml

tm)

C.l‘(‘*-’,")d‘ﬂ + (A,I,ﬂ - Al:n)/d("n .

I

By UDD(1),

Al = Wi™Aly .
Thus

C‘i('n;")] — (‘i%”(‘i‘ﬂ + A:r‘[l — (I-/i(m))]/(fm)

[

i)

ana.gq — B(m)A:n .

1)

Mr. Wilkie has provided a comprehensive discussion on the definitions
of annuity symbols. However, 1 cannot quite agree that the definition

ag' = (1 — vl . ke€R", @
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should be avoided. This definition is mathematically elegant, and it is
consistent with formulas such as

1 1
a\rrln) = vAs;TI[n) , (’i‘{“i” - (1‘("1)/‘1("!) a(ﬁn) , —_ I’(H) +

(1) {er) ?

[/ hal ST
and so on.
[t is interesting to note that Todhunter ([5], chap. 3, art. 16) gave two

definitions for ai7’; he suggested that formula (3) be used “‘for purposes
of theory,”” while *‘in practice”

ag’ = agm + (k. mod U/mp* .

With the electronic computer, yesterday’s theory can become today’s
practice. Formulas such as (3) can be evaluated readily using a pocket
calculator with an exponentiation key.

In the rest of this review we shall expand on Mr. Wilkie’s remarks that
a term-certain n| be used in place of a life (x). For a positive number n,
let us define

and
da =1 - pa.

Following Jordan ([3], formulas [9.1) and [9.2]), we have

Py = P2 PA s

and
Iq.t:ﬂ = 1 - lpv:m .

Applying the method of Stieltjes integration, we obtain

Aw:ﬁ] = J' V'd,q‘ﬂ
o

(cf. 1), p. 223; [2), p. 2).
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By Jordan’s formula (11.1),

i = f,xpmd.\qx

(4]

thn

= dgq,
Q
= t‘xuqv
fqvl’ b t < n
= {,,q‘ s t=n.
Thus
Al = L vid g5 -
Similarly,
Gem = .L P.dgn
{0 , t<n
- llp\ * ¢ = n ;
and

A-x:;'] = f vrdqu:;‘] *

V]

Unlike ,q.5. the contingent probability 4.5 as a function in 7 is not a
cumulative distribution function. However, it has interesting applications.
Consider the following problem (3], p. 266, No. 9):

Find the value of an annuity of $1.00 per annum payable to (3). the first payment
to be made at the end of the rth year succeeding the year in which (x) dies,
provided (x) dies within »n years, the annuity to be void if (x) lives beyond » years.

Solution:

Z /q‘l-ﬂ;wEx = /E\»E i va»/
i1 i1
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ES (1 - ,.p)E.,
j=1

rE\'(av [ Aoy [ - np\ n(a\ +r) .
The symbol

Al )

denotes the net single premium for an insurance of 1 payable immediately
at the death of (z), provided that the status (a) fails before (z) (Jordan [3],
p. 233). If the subscript o denotes the compound status (l;), then (4) is
the net single premium for an insurance of 1 payable immediately at the
death of (z), provided that (x) dies within n years and before (z). By
Jordan's formula (11.31), expression (4) becomes

=

xﬂ ! =A. — LA
J:‘ v Iq,r:;'d1q3 A:‘ ﬁ‘ v I"'npx‘d!q: (5)

= A: - A-_l‘;] - np\ ll!A: .

On the other hand., if a denotes the status (x:x]), then (4) is the net single
premium for an insurance of 1 payable immediately at the death of (z)
provided that (x) dies within n years and before (z), or that both (x) and
(z) survive for n years. Applying Jordan's formula (11.31) again, we have

A?:.\‘:m = J:) V! 'q'“md’q"
= Az - L v ,p.~;7|d:q: (6)
= A( - A'I\;l-l

(cf. (3], p. 235, first paragraph). Let us illustrate the application of formulas
(5) and (6) with a question from the 1970 Part 4 Examination ([6], p. 56,
No. 1):

A family policy is issued on the lives of a man age 40, his wife age 35 and their
son age 15. At issue, the policy provides $10,000 of whole life insurance on the
man. $2,500 of endowment insurance on his wife which matures at her age 60,
and $1.000 of term insurance on the son which expires at his age 25.

At the moment the first benefit (death or endowment) is paid under the policy,
the amount payable under any other insurance and/or endowment benefit then in
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force is doubled. At the moment the second benefit (death or endowment) is paid
under the policy, the amount payable under any other benefit then in force becomes
three times the original amount.

It all death benefits are payable at the moment of death, find the part of the net

single premium for the policy which applies to the life insurance benefit on the
man only. Express your answer in terms of pure endowments. probability symbols
and continuous insurances payable at the first death.

Solution:

N.S.P. = 10,000(A,, + A3, + A2.),

where the subscript s = (,\.757) and the subscript w = (y5.59) .

Since
A_:;):.\' = Aw - AA‘():IS:TB] — 1wPis 10|A40
and
Aai):il = AAO - A:o::os;E] s
we have

N.S.P. = 10’000(3A4o - 10E40:15 A.so - A¢:):15:T6] - A-;lo.-,sﬁ;i?]) .

In conclusion, I wish to thank Dr. Nesbitt and Mr. Wilkie again for

their interest in the paper and their stimulating discussions.

(4
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