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I N T E G E R  F U N C T I O N S  A N D  L I F E  C O N T I N G E N C I E S  

ELIAS S. W. SHIU 

ABSTRACT 

We study the applications of the integer functions, ceiling and floor, to 
life contingencies. Various actuarial formulas are derived by applying a 
theorem of the mean value type for integrals and uniform distribution of 
deaths assumptions. 

I. I N T R O D U C T I O N  

The simplest version of the Euler-Maclaurin summation formula is 

'/2f10) + f ( l )  + f(2)  + . . .  + f ( k  - l )  + 'Aflk)  

= f ( t ) d t  + (t - It] - ' A ) f ' ( t ) d t ,  

where f is a continuously differentiable function on the interval [0, k] 
([6], formula [3.7.22]; [1], Theorem 7.13). The symbol LtJ denotes the 
greatest integer less than or equal to t. The function t - ltJ is periodic 
and sawtooth-shaped. 

In this paper we shall show that the integer functions and periodic 
functions arise naturally in the study of life contingencies. Approximation 
formulas will be elegantly derived by assuming that deaths are distributed 
uniformly throughout each year of age or, less restrictively, throughout 
each month of age. 

N o t a t i o n .  Let Z, Z ÷, R, and R ÷ denote the set of integers, positive 
integers, real numbers, and positive real numbers, respectively. 

II. C E I L I N G  AND F L O O R  

For t ~ R,  let LtJ denote the greatest integer less than or equal to t and 
let It] denote the least integer greater than or equal to t ([18], p. 37). Dr. 
K. E. Iverson, the originator of APL, calls them t h e f l o o r  and ce i l i ng  of 
t, respectively. In the mathematical literature, the more commonly used 
symbol for LtJ is It]. 
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I f  t E Z ,  then  [.tj = I l l ;  o the rwise ,  LtJ + 1 = It] .  Since Z is a set  o f  
m e a s u r e  zero ,  ~tJ + 1 = [t] a lmos t  e v e r y w h e r e .  Thus ,  i f~tJ  appea r s  in 
the in tegrand of  a R i emann  integral ,  replacing it with It] - 1 will not 
change  the value of  the integral .  

For  m E R +, the graph  o f  LmtJ /m  or  [mt] /m,  as a funct ion  o f  t, r e sembles  
an infinite flight o f  stairs ,  wi th  s tep size l /m ,  at an incl inat ion of  45 degrees .  
As  m tends  to infinity, LmtJ /m  tends  to t f rom be low and [ m t l / m  tends to 
t f r om above .  

D e f i n i t i o n s .  For  s E R ÷ ,  define 

and 

(i) t m o d  s = t - sLt/s J , t E R ; 

(ii) t pad  s = sit~s] - t , t E R . 

The  quant i ty  t mod  s is the (nonnegat ive)  r e m a i n d e r  when  t is d iv ided 
by  s, and t pad  s is the least  nonnega t ive  addi t ion to t so that  the result  
is divisible by  s. The  t e rm m o d ,  shor t  for  modulo ,  is s tandard  ma themat i ca l  
te rminology.  In coining the t e rm  pad ,  I am b o r r o w i n g  f rom c o m p u t e r  
sc ience ,  in which  the t e rm p a d d i n g  means  the adding of  b lanks  or  non- 
significant cha rac te r s  to the end o f  a block or  r ecord  in o rder  to bring it 
up to a cer ta in  fixed size ([3]; [31], p. 30). 

No te  that  t m o d  s = 0 if and only  if t/s E Z and if and only if t pad s 
= 0. I f  this is not the case ,  then t mod  s + t pad  s = s. 

Al though we  shall not need  these  results ,  it is in teres t ing to know that  
for  t ~ Z ,  the Four ier  ser ies  

)A - ~ sin (2rrjt)/rrj and I/z + ~ sin (2~rjt)/'rrj 
j ~ l  j= l  

conve rge  to t mod  l and t pad  1, r espec t ive ly  (see [1], p. 338, No.  I I. 18a). 

Ill. ANNUITIES-CERTAIN 

L e t m  E Z ÷ , k  E R * , a n d k m o d  l / m  = O. T h e n  

and 

fo k s~"' = (1 + i)~"¢"dt 

fo k ~ '  = (I + i);~'l/~dt . 
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For the integral 

fo k ( l  + i ) 'd t  = S r l ,  

sh "~ and ~h" are lower  and upper  Riemann sums. 
Since L-YJ  = - [Y]  and [j + yJ = j + [yJ f o r j  ~ Z ,  we also have  

and 

fo k s h  "~ = (1 + i) k-r"'l~mdt 

~k 

s~"' = jo (l + i )k-Lm'Y~dt .  

Multiplying the equa t ions  above  by v ~, we obtain 

fo a~  ~ = vk-L,, ,y, ,dt  = vr,,,1/,,dt 

and 

f0k i i~ mJ = v ~-r"'l/mdt = vL"'Y"dt  . 

R e m a r k s .  Since [ ( - m ) t ] / ( - m )  = [ m t J / m ,  we have the relat ion (,/~.]-m) 
= d/h "~. The  formulas  a~q m~ = (1 - Vk)/i ~"~ and//~"~ = (1 - vk)/d ~"~ immedia te ly  
imply that i ~-"~ = d ~"~. This equat ion  can be der ived  directly.  Recall  that  
1 + i = (1 + i~mTrn) " and 1 - d = (1 - d~"~/m) m. Writing 1 + i = 
[1 + d ~ m ~ / ( - m ) ] - " ,  we see that  i ~-"~ = d ~'°~. 

For  the r emainder  o f  this sect ion,  a ssume k mod l / m  ~ O. Q u e s t i o n :  
H o w  should a~ m~, e tc . ,  be  def ined? One way is to define a~ "~ by the value 
of  the integral 

fo k vr"~'l/"dt , 

that  is, 

alto) (m) 
= at~--~T~ + (k mod 1/m)vF,.kT/,..  
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This definition is the same as the one given by Hart  ([14], pp. 104, 285; 
also see [23], p. 581). Similarly, 

d~m,= / i ~ ' ~  -- (k pad 1 /m)vLmkY , . .  

Another  way to define ah "~ is by the formula 

ah "~= (1 - vk)/P " '  . 

This is the approach suggested by Donald (17], sec. 4.18) and Kellison 
([17], sec. 3.6). 

It is easy to check that under either definition, - a~l "~ is a convex  function 
in t. Thus,  in both cases,  we can apply Jensen ' s  inequality to obtain a~ ~< 
a ~  ([16], p. 175). See Gerber  and Jones  (discussion in [22], p. 25). 

In order  to avoid confusion later, different notation will be used for the 
second definition. Following Rasor  and Greville in [23] and Zwinggi ([32], 
p. 21), we define 

and 

~ " '  = (1 - vk)/i  "> 

~ " =  [(I + i) k - 1 ] / i " ' .  

Motivated by Nesbit t  ([19], p. 137; [23], p. 583), we define 

6~,,/ = (1 - vk ) /d  ' ' '  . 

IV. IMMEDIATE APPLICATIONS IN LIFE CONTINGENCIES 

For  a life aged x, consider the length of time until death as a continuous 
random variable,  and denote it by T. The cumulative distribution function 
for T is ,q,, t ~ 0, and the probabili ty density function is 

d 
d t  'q '  = ' p '  ~x . . . .  t ~ 0 .  

For the rest o f  this paper, x will denote a fixed age; instead of  writing 
,p~ ~t~+,dt, we shall always write d ,q,. The interest rate is assumed to be 
constant.  
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Let us illustrate how the integer functions can be applied in life con- 
tingencies: 

I. I n s u r a n c e  

~0 ~ 
A~,.~ = E(vrmTl~r.) = vrm,1/m d '7 r'-/.r • 

(l~m~A)~-, = E ( v r , r l / . ~ m T ] / m ) .  

(DA)~:~ = [k - t l vr ' ld~L.  (k E Z +) 

= (k  + 1 - [ t l ) v r ' I d , q ,  

= (k + I)AI:~ - ( I A ) I : ~ .  

2. L i f e  A n n u i t i e s  

S t a r t i n g  w i t h  J o r d a n ' s  d e f i n i t i o n  o f  a~ ([16],  p .  40),  w e  h a v e  

ax = f,lE~ d t =  r,~P~ vF,?dt 

= d q,. v r' t 
=o =bl ' 

vr'ldt d~q~ 
=0 \Jt~O 

= a'fi '~d,q, = E(aLr---~). 

U s i n g  the  r e l a t i o n  aL-7]l = (1 - vLrJ)/i, w e  i m m e d i a t e l y  o b t a i n  

ax = [1 - (1 + i)A~]/i 

([16], f o r m u l a  [3.121; [291, p .  241; [261, s ec .  4 .5) .  
S i m i l a r l y ,  

= E ( a ~ )  = (1 - a ' ~ ' ) / d  '~' ([16], p.  78, N o .  8). 
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3. P r e m i u m  R e f u n d  B e n e f i t  ([25], p. 605) 

AfR.m/p(A.,) = EO, T c - ~ )  

= E[vr(l _ v r p.d JJ")]/8 

= E ( v  r - Vr~rl/m)/8 = (fi~, --  A ! " ' ) / 8 .  

4A. C o m p l e t e  L i f e  A n n u i t i e s  

There are several nonequivalent  definitions for a complete life annuity 

(i) It was suggested by Rasor and Greville in [23] that 

d~-) = E(~h ~,) 

= E[(I - v r ) / i ' " l  = (1 - A . ) / i " ' .  

Another way to express this definition is 

= E{vT[(I + i )*-Lmr~/ , . - - l} / i '""}  

= A~m'/d ~"~ - A~/ i  ' ~  ([23], p. 578).  

(ii) The definition given by Spurgeon ([28], chap, 9) and Jordan ([16], 
sec. 7.4) is 

d~ "~ - a!7 '  = E [ v r ( T  rood l/m)] 

= E [ v r ( T -  I m T ] / m  + 1/m)] 

= ( ] A L  - ( f "~A)~  + A J m  ([16], formula [7.11]). 

(iii) A third definition is d~") = E(a~"'). Thus, 

~m~ _ a~,.) = E[vrr .r l / , . (T  rood l/m)] (119], p. 154, III) 

= (iA)~m~ - (I..)A)~,,) + A ~ , . ~ / m .  

4B. A p p o r t i o n a b l e  A n n u i t i e s - d u e  

In analogy to the three definitions above, we shall give three definitions 
for an apportionable annuity-due,//~mL 
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(i) Following Nesbitt (discussion in [23], p. 583; discussion in [19], pp. 
137, 153), we define 

~ ' )  = E(dh ")) = (1 - A x ) / d  (m' . 

Equivalently, 

i i " )  - gi! ") = E ( v r d ~ )  x 

= ( A ,  - a~x~"')/d ~''' ([25], p. 608, eq. [5]).  

(ii) In [19], Lauer  proposed that 

d!~') - ii~") = E [ v r ( T  pad I/m)] 

= ( / " 'AL - ( i A L .  

(iii) Cain (discussion in [19], p. 141) suggested the third definition: 

di~ ") - gi~ m) = E [ v L " T J / " ( T  pad l/m)] 

• I / m  ( m )  ( m )  = (1 + 0 [ ( t  A L  - (iA)~')] . 

This definition is equivalent to//(,") = E(~")). 
R e m a r k s .  The formulas for definitions (ii) and (iii) involve increasing 

insurance functions, which will be discussed in Section VIII. Lauer  has 
summarized the six definitions in [19] (p. 154, Table 1). In Section VI, we 
shall point out that the six expressions in his Table I are exact under the 
mild assumption of  a uniform distribution of  deaths throughout each I / m  

year of  age. 
Rosser (discussion in [19], p. 149) and lsen (discussion in [19], p. 151) 

observed that under definitions OiL 

d~") - ~") = (I - A ~ ) l m  = 5 d i m .  

Lauer ([19], p. 156) noted that these equations also hold under definitions 
(i). It was also pointed out ([23], pp. 576, 583) that under definitions (i), 

i ( " ) ~  ~) = 8& = d(')ii~ ") , m ,  n E Z + . 

Thus, under definitions (i), we have 

~") = (1 + i)'~'~a~ ; 
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this equation is also true under  definitions (iii) but false under definitions 
OiL 

5. S ta t i onary  P o p u l a t i o n  

We now illustrate the use of  the integer functions in solving stationary 
population problems: 

[4], page 35, No. 7: The number of people now living who die before their next 
birthday. 

Solution: 

) l ,÷,~x,+dt dy = (1, - lr,.])dy = To - ~,_ 1i. 
= 0  " " " j = l  

[4], page 89, No. l(d): The number who will die before their 15th birthday out 
of the people having either an llth, 12th, 13th or 14th birthday in a calendar 
year is 4d~4 + 3d~3 + 2d~2 + dH. 

Solution: Counting all the deaths that occur  during and also after  that 
particular calendar year, we get 

f" = 0 (It'! - l ,Ody = I ,  + 1,2 + 113 + 114 - 41~5. 

[4], page 90, No. 4(b): How many years do the people who have any birthday 
from 20th to 29th inclusive during 1966 live from that birthday until December 
31, 1975? 

Solution: 

,29 iV,0  
f,. = 19 \J,'*,~ b'7 

j ,29 29 

,9 (Tb3 T,,+,o)dy = ~ T ~ -  
j =  2 0  

Y 2 9  "Jr" Y 3 9  o 

V. PERIODIC FUNCTIONS 

Let  h be a locally integrable function defined on R. Define the "average 
value" of h as 

a u g ( h ) =  l i m ( f  I ~ _ ~  ~ h ( t ) d t ) / 2 ~ .  
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Let h be a periodic function and a :~ 0 be a period of h, that is, 
h(t + et) = h(t), for all t; then, clearly, 

For m, n ~ Z +, the function fmt l /m  - [nt]/n is periodic. Since 

J [mtl /m dt  = (m + l)/2m , 

avg (Fmt]/m - [nt]/n) = (n - m)/2mn.  Hence [mt]/m is approximately 
equal to ~ntq/n - (m - n)/2mn. Several approximation formulas given by 
Jordan ([16], sec. 3.5) follow immediately from this observation: 

(l~m~A)x = E(vrrq[mT]lm) 

- E{v~r][[T] - (m - l)/2m]} 

= ( I A ) ~ -  [(m - l)/2m]A~ 

(I~mLA)~ = E(vr[mT]/m) 

- (Ifi,), - [(m - l)/2m]fi,, 

([16], formula [3.27]). 

([16], formula [3.28]) . 

(iA)x = E(vrT) 

- E[vr([T] - V2)I = ( IAL  - I/2Ax ([16], formula [3.31]). 

It has been pointed out in [9] that although Jordan's  formula (3.27) in 
[16] is exact under the uniform distribution of deaths assumption (UDD), 
formula (3.28) is not. This difference can be explained by the following 
simple theorem for integrating the product of  a periodic function and a 
step function. 

AVERAGE VALUE THEOREM. L e t  h be a periodic  func t ion .  L e t  I be 
the union o f  a set  o f  disjoint intervals, the length o f  each interval 
being an integral mult iple  o f  the f u n d a m e n t a l  per iod  o f  h. Le t  g be 
a linear combinat ion  o f  the characteristic func t ions  o f  the intervals 
o f  I. I f  the func t ions  are integrable, then 

f~  h(t)g(t)dt  = avg (h) f~_~ g(t)dt  . 



580 INTEGER F U N C T I O N S  A N D  L I F E  C O N T I N G E N C I E S  

The character is t ic  funct ion of  a set S, Xs, is defined by Xs(X) = I if x E 
S, and ×s(x) = 0 o therwise  ([1], definition 10.41). 

We call this result  the average  value t heo rem because  o f  its similarity 
to the mean  value theorem for  integrals. Its p roof  is obv ious ,  and the 
condit ion that  the intervals  be disjoint is not  necessary.  

Let  us demons t r a t e  that  J o r d a n ' s  fo rmula  (3.27) in [16] is exact  under  
UDD:  

f~ 
( IA ) I~  - q ~ " A ) ' -  = Jo - • , x:~l (r t ] [mt]/m)vr '~d/- l ,  

= (It] - r m t ] l m )  v~'? L,jrqx dt  "" U D D  

Io = avg  (It? - [rnt]/m) vr,1 ~,jlqx dt "." average  value theorem 

= [(m - l ) / 2 m l A L n .  

The exac t  express ion  for  (lcm~A)x under  U D D  will be der ived later (Sec. 
VII1, case  1, n = ~c). For  an example  showing that J o r d a n ' s  fo rmula  (3.28) 
in [161 is not  exact  under  U D D  see [91. 

A s s u m e  UDD.  It is easy  to derive the formula  A}:'~ = s,~"'A~:~ by general 
reasoning.  Now,  

A)I:~ = vr,,,1/,,d ,q~ = v~"'lJ" vjlq~ dt  

£' 
= (1 + i)r'l-r'-'l/m(vr'l ~,j~q~)dt. 

Applying  the average  value t heo rem and compar ing,  we see that 

avg [(1 + i)r,l-r,-,~--] = s~ m, " 

A general izat ion o f  this result will be needed later: 

LEMMa 1. L e t  m ,  n E Z *  a n d  n mod m = 0. T h e n  

(i) avg [(1 + i)f,.,1.,m-r.,1,.] = i~Vi,., ; 

(ii) avg (V ;mt]/m-~nt]ln) ~" d~"~/a~ "~ . 

P r o o f  o f ( i ) .  Since 1/m mod 1/n = O, 
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fo /m L . H . S .  = rn (I + i)J/"-F"'7~"dt 

= m(1 + i)'/"a~/~-~q~ = ms~/~q~ 

= m[ ( l  + i) '/" - l] / i  ~"~ = R . H . S .  
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P r o o f  o f  (ii). L . H . S .  '~" = m a  R = R . H . S .  
T h e r e  is an  i n t e r e s t i n g  w a y  to re la te  (i) to (ii). It was  s h o w n  in S e c t i o n  

II that  i ~ "~ = d ' ' L  Set  t = I - "r; t h e n  

F m t ] / m  - Fnt]/n = - I f ( -  m ) - r ] / ( -  m) - F ( -  n ) ' r ] / ( -  n)] . 

S ince  (1 + i) -~ = v, w e  see  tha t  (i) a n d  (ii) w o u l d  i m p l y  each  o ther .  

Se t t ing  t = I - r aga in ,  we  o b t a i n  

r m t ] / m  - Fnt]/n = - ( [ m , J / m  - LnTJ/n) ; 

t hus  we  h a v e  

COROLLARY 1. L e t  m ,  n E Z + a n d  n rood rn = 0. T h e n  

(i) a v g  (vLr~d/", L"'J/") = i~"~/i~"~ ; 

(ii) av g  ((I + i)L,,,J/-,-L-,J/,) = d~,,~/d,~ . 

VI, UNIFORM DISTRIBUTION OF DEATHS 

With  the  n o t a t i o n  d e v e l o p e d  in th is  pape r ,  the  a s s u m p t i o n  that  d e a t h s  
are  d i s t r i b u t e d  u n i f o r m l y  t h r o u g h o u t  e a c h  y e a r  o f  age  c a n  be  e x p r e s s e d  
a s  

Ix+, = (t pad  l)lx+L, j + (t m o d  l)lx÷r,1 , t E R + - Z ÷ . 

A g e n e r a l i z a t i o n  o f  th is  a s s u m p t i o n  is tha t  d e a t h s  a re  d i s t r i b u t e d  u n i f o r m l y  
t h r o u g h o u t  e a c h  l / m  y e a r  o f  age ,  fo r  s o m e  m E R +, tha t  is, 

( l lm) l~+,  = ( t p a d  1~re)Ix. Lind/m + ( t m o d  l lm)l,+r,, ,1/, , ,  m t  E R + - Z + .  

L e t  us  a b b r e v i a t e  th is  g e n e r a l i z a t i o n  as  U D D ( m ) .  U n d e r  U D D ( m )  t he  

d i f fe ren t ia l  d ,qx b e c o m e s  ( m  Lm,j/,,I,,,,q, d t ) ,  for  m t  E R + - Z *. I t  is c l e a r  
tha t  if m > 1, U D D ( m )  is a less  r e s t r i c t i ve  a s s u m p t i o n  t h a n  the  usua l  o n e ,  
w h i c h  is U D D ( I ) .  
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It has been pointed out by Gerber and Jones ([11]; [12]) that under 
UDD(1) the random variables [.TJ and (T rood 1) are independent; thus 
[TJ and ( [mTq/m - LTJ) are also independent. This observation follows 
easily from the average value theorem. 

COROLLARY 2. For  m ~ Z +, let h be  a per iod ic  f u n c t i o n  such  that  
h(t  + 1/m) = h(t) ,  t ~ R +. A s s u m i n g  U D D ( m ) ,  we  h a v e  

: h ( t ) f (LmtJ /m)d ,qx  = avg (h) f f ( ~ m t J / r n ) d , q , .  

Proo f .  Set g(t)  = f ( l m t J / m ) m  :,ymj,l,,q.~, and apply the average value 
theorem. 

Recall the six definitions for complete annuities and apportionable an- 
nuities-due discussed earlier (Sec. IV, 4). Lauer ([19], p. 154, Table I) has 
given an expression for each definition exact under UDD(I). In fact, his 
six formulas are exact under UDD(m). Note that under UDD (m), 

t A~ 8 f l , .  

For instance, according to definition (iii) in Section IV, 4A, 

~:"~ - a]m' = E[vFmrl"(T rood l/m)] 

= A~ "~ avg (t mod l /m)  

= A ~ ' / 2 m .  

" Corollary 2 

If we consider definition (ii) in Section IV, 4B (Lauer's original definition 
on p. 14 of [19]), then 

//~,,, _ / / ~ , . ~  = E[v~(T pad l/m)] 

E[vF,,r~:m(l + i)T p,d ~/,,(Tpa d l/m)] 

A~ "~ avg [(1 + i)' p~d ~,,, (t pad l/m)] 

d 
= a~"'~-g avg [(1 + i)' p,d ,/,,] 

d 
= A!:,_dg (?m~/~) "" Lemrna l(i) 

= A~"' (?"~/B)(1/d ~"~ - !/~) "." Lemma 2 

= A~(1/d ~"' - I /B)  ([19], p. 15, eq. [7]). 
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Lemma 2 is given in Section VIII. 

Vll. FAMILY INCOME BENEFIT 

Following Jordan ([16], sec. 7.6), we let ,,F, denote the net single pre- 
mium for an n-year family income benefit issued at age x and providing 
an annual income of  1 payable monthly commencing on the date of  death 
and continuing for the balance of  the n-year period. Then, with m = 12, 

, ,F x ..(m) = v ' a ~  d , q ,  

Assuming UDD(m) and applying Corollary 2 and Corollary l(ii), we have 

fo n ilLmeY"-'d n = ( d ~ ' / d  ~)) .q~ . (1 + . ,  _,.,, 

Thus, Jordan's  formula (7.25) in [16], 

. F .  = Ate:rid '"' - v" . q . / 8 ,  

is exact under UDD(m). 
In the case of  two interest rates, a rate i before death and a rate i' after 

death, we have 

f[ ~i&i '  _~_ ut  
n-  x , q x  

Now put v" = v /v ' ,  that is, 1 + i" = (1 + i)/(1 + i'). Then,  by assuming 
UDD(m) and applying Corollary 2 and Corollary l(ii) again, we have 

fo" (v'/v'~"'Y") d ,q.  

~0 n 1 tv it im = v '  L"'~'- (v  L- ~ d,q,) 

= (d ' ' ) /~) ( l  + i ) . , , 1 1 :  ~ = (?"TB)(I + i')-~J"A'~ "m' 
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Thus, under  UDD(m),  

,,-<F/a/' = A'<:,, i - /d'" '  - - ( i / " ' l " t  18t " ' '~ )A l<:.- I' ' ' ', 

Assuming UDD(I) ,  we have 

.F', ~c = ( i / b d ' " ) A  )~:~ - ( v ' " i ' i ' - " /b i ' "" ' i " ' "" )A  T,:~ . 

Jordan ' s  formula (7.24) in [16] follows immediately f rom the relation 

i..l/i,~,.q,,.,,i = d~,,,>/d,~.,~d,,~,.~. 

VI I I ,  INCREASING INSURANCE 

By assuming UDD(I) ,  we wish to  express  

f (I~'A)I<:~J = vr . '~ /"[mt] /m d , q ,  (rn,  n ,  k ~ Z +) 

in terms of  more standard actuarial  symbols.  To simplify writing, we set 
k = ~. Since k appears  only as the upper  limit of the integral, it will be 
trivial to t ransform the formulas  for k = oc to those for k < ~, 

First consider m = n (cf. [9], p. 11) 

d 
( I , " ' A )  . . . . . . . .  A <,-~ x 

d8 

d 
- [(ili~m')Ax] " -UDD(1)  

d8 

= ( i / i " ' ) [ ( 1 A L  - ( l i d -  l l d , " , ) A . ] .  

The next result justifies the last step above.  

LEMMA 2. d(i<">li'm>)ld8 = ( i<" ' l i " ' ) ( l ld  ' ' ,  - l / d ' " ) .  

P r o o f .  Consider d[Iog ( i ' °@m')] ldS .  Since 1 + i 'm' lm = e ~ " ,  dO'mOld8 

= e ~/m. Hence d(log i 'mO/d8 = 1 /d  'm'. 

Recalling the relation i' " '  = d " '  derived earlier, we immediately have 

d 
d--g ( c ~ " ' l ~ " O  = ( d " l d ' " ' ) ( l l i  I ' l  - 1 / i ' " )  . 
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When rn :# n, we follow Gerber  and Jones [12] in considering only the 
two cases where n mod m = 0 and rn rood n = 0. 

C a s e  1: (l /m) mod (I/n) = 0. 

(I("'A)!g' = E(v~"~l /"[mT]/m) 

= E[(I + i ) ! ' r l / " - r"r l " (vr ' r l 'm[mT] lm)]  

= (i,,,#i,,,~)(1,.,,A)7,,,, 

by assuming UDD(m) and applying Corollary 2 and L e m m a  l(i). Thus,  
under UDD(I) ,  

( I ' " A ) ~ "  = (i/i~"')[(IA)x - ( l / d  - 1 / d ' " ) A x ] .  

C a s e  2:  (l/n) mod (l /m) = 0. Assuming UDD(n) and applying Corollary 
2, we have 

(I~")A)~ ' '  - (I('A)~"' = E I ( F n T ] / n  - [mT]/m)vF"r l / " l  

= avg ( [ n T ] / n  - [ m T ] / m ) A ! ? '  

= [(rn - n ) / 2 m n ] A ~ " .  

Thus, under UDD(I) ,  

(I(")A)!g ~ = (i/i~")){(lA)x - [1/d  - 1/a~ "~ + ( m  - n ) / 2 m n ] A x } .  

The formulas  above  are equivalent  to those derived by Gerber  and Jones  
[12]. 

The increasing insurance formulas exact  under  UDD(1) can also be 
derived by "genera l  reasoning."  It is easy to come up with the formula  

( iA)x = ~ q A ) x  - ( f ) ~ ) ~ x .  

By considering the area bounded by the graphs [t] and [ m t ] / m ,  we can 
write 

( m ) "  rn) ( I " ~ A ) 7  ' = shm'(1A)x - ( D  s ) ~ a x .  
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If, instead, we consider the area bounded by the graphs LtJ and [ m t l / m ,  
then 

(/"'A):~ = sh'~'[(IA)x - Ax] + ( l " ' s ~ " ' A x .  

The case I formula can be reasoned similarly: 

(I"~A)~ "~ = s ~ ( I A ) x  - ( D " ' g ~ A ~ .  

= s ~ ' t ( I a L  - a , ]  + ( l ' m ' s ) ~ ' A , .  

The case 2 formula is a little tricky. Subtracting from the area bounded 
by the graphs LtJ and [nt] /n  the area bounded by the graphs [nt]/n and 
[ m t l l m ,  we have 

(I"'A)~"' = { s~ ' [ ( lA ) ,  - A~] + (I'"'s)~'A~} - [(m - n ) / 2 m n ] s ~ A ~ .  

IX. LIFE ANNUITIES 

Various actuarial writers (Dowling [8], sec. 41; Davis [5], p. 19; Mereu 
[21], p. 89; Scher [24], p. 374; Charlton [24], p. 378; LeClair [24], p. 385; 
and Gerber  and Jones [11]) have derived expressions exact under UDD(I) 
for a life annuity payable m times per year. The simplest approach was 
given by Butcher  ([21], p. 108): 

/i]"' = (1 - A~" ) / t l  m' = [1 - (i/tv"))A~]l#"~); 

then the substitution of  1 - dd ,  for Ax immediately yields 

ii~"' = (idiix - i + i~m~)/P"~dl"'. 

This method was also used in [12] and [27]. 
The last equation can also be derived directly. Consider the identity 

• " ~  i)Frl - f,,,7l/~d//~fq i)frt - P, ~!:-, . a~-¢~ = [(1 + - (1 + + l ] /d  " )  

Taking expected values and applying Corollary 2 and Lemma l(i), we 
obtain 

ii~ ~' = [(di/i'')8, - (i/?") + l]/d "~' . 
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Formulas  for  t empora ry  life annuit ies can be deve loped  with the identi ty 

, ~ 7 ~  = ~' ,")  - f ,  a':"+). • 

Thus  

ii(~%~ = [ i d i i ~ : . -  1 - ( i  - ? " ) ( l  - .E~)] / i (" )d  ~''  . 

Anothe r  way  to derive formulas  for t e m p o r a r y  life annuit ies is by  means  
o f  the min imum operat ion.  Fo r  a, b E R ~, let a/% b denote  the min imum 
of  a and b. Le t  m E Z+ ,  n ~ R+ ,  and n rood 1 / m  = O; then 

R e m a r k s .  

• . ( m  - -  a~,~- E ( a ~ )  = . . . .  

(i) rm(T A n)llm = (rmZl/m) A . .  

(ii) A!,~'~ = E ( v  7"~rA")l'm) (cf. [29], sec. 5) . 

For  m, n, j, k ( Z + , n m od  m = 0 a n d j  ~< k, increasing annui ty  formulas  
exact  under  UDD(1)  can be deve loped  by means  o f  the identities 

and 

= Ax ÷ j : ~  • 

Also  see [12], page 45. 
W h e n  m = n a n d j  = k, then ( ,)  can be easi ly verified. Differentiat ing 

the equa t ion  

with respec t  to 8, we have 

- (Pm'A)(~'~ = v ' / ' ~ i i% + d'm)(l(m'a)~%~-,/.,I 

= -a'~7~ + d,",(r~,a)' ,~-~. 
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TO prove  (*) for the general case,  consider the annuity-certain formula 

( / ~ a ) ~ ¢  ....~ 
-Pc q~ = (aN - PV~)/d~"' 

where l/m mod 1/n = O, p rood l/m = O, q mod l/n = O, and p ~< q. 
(Such a formula can be elegantly derived by means of diagrams;  see [20].) 
Setting p = [m(T A j)]/m and q = [ntT A k)]/n and taking expected 
values, we obtain (*). This proof  is a refinement of  the technique discussed 
in [10]. 

X. MATHEMATICAL SYMBOLISM 

A common  complaint concerning actuarial mathematics  is the vast num- 
ber and variety of  its symbols .  Since we are introducing more symbols 
here, we feel obliged to justify this by concluding our  paper  with some 
highlights on the effective use of  symbols  in mathematics .  

The most important invention in the history of science is the system 
of Hindu-Arabic numerals.  Although Fibonacci (Leonardo of Pisa), the 
greatest  mathematician of  the Middle Ages, published his Liber abaci in 
1202, even in the sixteenth century only brilliant universi ty graduates 
were expected to be able to master  long division. (In order  to cling to 
Roman numerals,  some European countries passed laws forbidding cal- 
culations by "a lgor i sm.")  A. N. Whitehead [30] wrote: 

By relieving the brain of all unnecessary work, a good notation sets it free to 
concentrate on more advanced problems, and in effect increases the mental power 
of the race . . . .  Our modern power of easy reckoning with decimal fractions is 
the almost miraculous result of the gradual discovery of a perfect notation . . . .  
Symbolism represents an analysis of the ideas of the subject and an almost pictorial 
representation of their relations to each other . . . .  By the aid of symbolism, we 
can make transitions in reasoning almost mechanically by the eye, which otherwise 
would call into play the higher faculties of the brain. 

The most important mathematical  discovery in the past three hundred 
years is the calculus. It was independently discovered by Newton,  whose 

dv 
fluxion is denoted by ~', and Leibniz, whose notation is dx" There was 

a long and bitter dispute over  priority. Let us quote E. T. Bell ([2], p. 
114): " T h e  upshot of  it all was that the obstinate British practically rotted 
mathematical ly for all of  a century after Newton ' s  death,  while the more 
progressive Swiss and French,  following the lead of  Leibniz,  and devel- 
oping his incomparably bet ter  way of merely writing the calculus, per- 
fected the subject and made it the simple, easily applied implement of  
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research that Newton ' s  immediate  successors should have had the honor  
of  making it." The emphasis  on the word writing is Bell 's ,  not ours. 

Bertrand Russell suggested: " A  good notation has a subtlety and 
suggestiveness which at t imes make it seem almost  like a live teacher ."  
This we found to be very true as we developed this paper. Fur thermore ,  
when we integrate by parts an integrand involving integer functions, we 
are immediately faced with a Stieltjes integral. Thus we are led to an 
interesting investigation of  the applications of  the Stieltjes integral in life 
contingencies. Since, in this paper, we wish to keep the mathemat ics  
elementary,  we shall report  the Stieltjes integral results separately. 

For readers interested in the symbolism of mathemat ics  we recommend 
Whitehead ([30], chap. 5), Hammers ley  in [13], and Iverson (ACM Turing 
Award Lecture  [15]). 
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DISCUSSION OF PRECEDING PAPER 

C. J. NESBITT:  

The author is to be congratulated for his brilliant application of  integer 
functions to the systematic derivation of many of the formulas of actuarial 
mathematics,  ranging from the very simple to the very complex. In doing 
so, he has partially bridged the gap between fully continuous and fully 
discrete functions by displaying the latter by integrals with integrands 
specified by integer functions. 

The new textbook that is under preparation contains some elements of  
these concepts but does not develop them as systematically and as thor- 
oughly as the presentation here. We do adhere consistently to what the 
author calls the UDD(I)  assumption, obtaining such formulas as 

• " ( n ~ )  " l r t O  . .  a, = or(m)//, - [3(rn) = a n a, - t3(m)A~ , (1) 

where a(rn) ' "  """ = s.- 1 a n and 13(m) = (s~" - l ) / d ' " .  These formulas for 
//,m, agree with those given by the author at the beginning of  Section IX. 
It is important to observe how well such formulas work out in relation to 
net annual premiums and reserves,  in particular, how P'~" and ,V','"' relate 
to P~ and ,V~. We found that the most useful premium relation was the 
obvious one, 

I~, ''' = P , ( t i ] i i ! ; " ' ) ,  (2) 

and that by use of (2) and the right-hand member  of (1) we can show that 

,v'c, = [ I  + 13(re)P;"] , v , .  (3) 

This is to be compared with the traditional formula, 

m - 1 ) 
,V'~'  ~- 1 + 2rn 1 ~;' '  ,V,  . 

On the basis of the UDD(m) assumption, the author indicates that 

i'""A!~"" = a A , .  

591 



592 INTEGER FUNCTIONS AND LIFE CONTINGENCIES 

By substituting ! - d'""ii','"' for A','"', and 1 - ~d, for ,4,, and solving for 
?/','"', one obtains 

ii'; . . . .  (52h~ + i'"" - ~) / i ' ""d '"" .  (4) 

For m a positive integer, UDD( 1 ) implies UDD(m).  Hence,  under UDD(1 ), 
formula (4) holds. This also follows from formula (1). 

Additional difficulties appear  when one considers d','~!' and A'7 ' .  These 
can be obviated by assuming uniform distribution of  termination of the 
joint life status, but this is different from assuming uniform distribution 
of  death for the individual lives. 

These are but a few scat tered comments  in appreciat ion of  a paper  
remarkably  rich in new concepts .  We shall likely hear  more of some of 
them, including It], t pad s,  and UDD(m), 

A .  D .  W I L K I E :  

I am very pleased to see Mr. Shiu 's  use of  the te rmsf loor ,  ce i l ing ,  rood ,  
and p a d  to assist in the definition of actuarial functions.  However ,  some 
principles can be used in the construct ion of an actuarial notation that 
would assist in choosing between alternative versions of  some of  the 
functions. 

First, annuities and assurances  are contracts  that promise to pay spec- 
ified sums at specified times subject to defined conditions. The symbols  
a and A should be used to denote  the expected  present values of such 
contracts ,  and the details of  the contract  should be clear  from the notation. 
The symbols  are more than just  mathematical  functions of a given set of  
parameters .  

Second, it is convenient  if an annuity value a at a zero rate of  interest 
has the same value as the corresponding expectat ion of life e. 

Third, it is convenient  to be able to use a term-certain ~ in place of  a 
life (x) with consistency. The term-certain " e x p i r e s "  in exactly n years.  
This is the justification for using the joint life functions a,:~ and A,:,-; I in 
place of,,a~ and , ,A, + ,,E,. 

Fourth, it is consistent if a ..... ~ d and i t" '  ---, d as m ~ ~. 
Now since a~ = E(a~r--~j), it is consistent to set u~ = E(a,h-z~) = t t-53 " , and, 

similarly, a~ = a ~ ,  with no additional fractional payment .  If  it is now 
January !, 1982, and we have promised to pay £100 on each January ! 
commencing in 1983 until 5.5 years have expired,  the last payment  we 
shall make is £100 on January  1, 1987. We have made no promise to pay 
£50 on July 1, 1987. 
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. . . . . .  ( m )  

Similarly, we should choose a,-- I = a ~  and ci~" = a ~ ,  so ii,-q, = 

//~. The " l i fe"  5-3], born January I, 1982, dies July I, 1987, so it is still 
alive on January I, 1987, and six payments  are made, from 1982 through 
1987. 

We can then write a~ = E(a~), using this new definition o fa~ ;  similarly, 
ii~ = E(ii,-q), and also d, = E(d~) as usual, 

A complete life annuity contract ~°t~"~ usually (always'?) actually provides 
a payment of T rood 1 / m  on the death of (x) at time T. The only appropriate 
definition of ~'g" is therefore Shin's definition (ii), used by Spurgeon and 
Jordan, viz.: 

t~',' . . . .  a', .... + E [ v ' ( T  mod l / m ) ] .  

It is then consistent 
payable at the rate of  
payable at time k. This 

to define a~ '  as the present value of an annuity 
1 / m  for ~ m k J  payments,  with a final k rood 1 / m  

results in 

~lrn)  (rtt) ~q = a ~  + (k rood 1 / m ) v  k . 

This is equal to none of  the definitions of  a~ ''~ or &~"' given by Shin, but 
it does allow one to set ~!,"' = E ( ~ " ) ,  consistent with Rasor and Greville 
but with both symbols having different meanings! 

It is helpful to be clear what payments  would be made under an ap- 
portionable annuity-due. What may be intended by d~ '~, say, is a payment  
of  I at the start of  each complete year of  life of  (x ) ,  with a final payment 
of T rood 1 at the start of the final fractional year of (x)'s life. How one 
is supposed to be able to pay this I don' t  know, but it is at least clearly 
defined in retrospect.  The only consistent definition of this is Shin's def- 
inition (iii): 

ii~'~ = ii 'y '  - E[vL,,,TJ,,,(T pad I /m)] .  

A more realistic definition is a payment of  1 at the start of each year 
of  life (x) and a refund of  T pad I on the death of (x) at T. We then have 
Shiu's definition (ii): 

ii~ ''~ = Li'/ . . . .  E [ v T ( T  pad l/m)] . 

For consistency again we should define either 

i i~  "~ = a~"~"' - vt"~Jl"(k pad l / m )  
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o r  

- . { m }  . . ~ m l  
a~ = a~ - v~(k pad  l / m ) ,  

respectively, where  in ' " '  """ each case a~ = a ~ ,  as defined above.  
.o. . 

Why should we not use the s y m b o l / ~ "  instead of//!~'~? Or would this 
imply a final additional., payment  of  T mod l /m?  Perhaps we should keep 
fi',"' for this and use fi';"' for the apport ionable annuity-due... Both converge  
to dx as m ~ ~. At zero interest,  ~(m) °(m) O _~ = e~ = d~ = e~,but"~"~ e x 

Ex + l /m .  
The definition of  ah "~ chosen by Shiu and Hart ,  viz., 

= aL~k-gTy~ + (k mod 1/tn)v ~"kl'' , 

at least indicates that a final payment  of  k mod 1/m is made  at t ime 
[mk] /m.  The definition chosen by Donald and by Kellison, that is, 
a~ "~ (1 - vk)/i '"', denoted °" '  = a~ by Shiu, does not cor respond  to any 
uniquely defined set of  payments  at specific times and in my view should 
be avoided. 

The use of  a term-cer ta in  n-] to replace a life (x) allows some interesting 
notations that have not been widely used. Thus an n-year  family income 
benefit issued at age x and providing an annual income of  1 payable  
monthly at the end of  each policy month for n years but not while (x) is 
still alive (thus making the same number  of payments  as Shiu 's  and Jor- 
dan ' s  contract ,  but on average half a month later) can be denoted by 

{nl~ ( r t l )  { m )  

a+,-71 = a,,-'l - a,:,-71 , 

comparable  to the revers ionary annuity to 0') after the death of  (x): 

I m l  a,i , = a~,, . . . .  a~,,!, . 

The family income benefit described by Shiu, and denoted by Jordan 
°F,, has to have the rather  cumbersome  symbol  '~'"' a~b,-rl, which indicates that 
payments  are made at intervals of  l /m  counting from the death of  (x), the 
first being payable  on the death of  (x), the last shortly before the expiry 
of  n years. If  there is a final fractional payment  to be made at the end of  

^ 
• ° . i r a  ~ the n years,  we get the top-heavy symbol  a,~,,-q, where the order  in which 

the "co i f fu re"  is super imposed may or may not be of  significance. 
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A term-certain is also useful, though seldom used, for an annuity guar- 
(m)  

anteed for n years and life thereafter,  viz., a,:,~. 
A notation used by King (Life Cont ingencies ,  1887), but neglected since 

his time, is a~,~,, a reversionary annuity payable after the death of (x) to 
a nominated life who is then aged y. Clearly we do not know at the present 
time who f.v) is. He is perhaps (x)'s successor  in office. 

Analogously, we can write a~,,,-l, for an annuity that commences  on the 
death of (x) and is payable for n years certain thereafter, being paid on 
the policy anniversary. Its value is A~ii,q. If it were paid on the anniversary 
of the death of (x), it would be denoted 6,f,~,, with the value fi.xa~. 

If we use n--] as a life, we must be careful about Shiu's implication (top 
o fp .  572) that we can ignore the case where (x) dies in exactly an integral 
number of  years,  that is, T ~ Z. If n is integral, or n mod I/m = 0, then 
n--] will " e x p i r e "  exactly when a payment  may be due. 1 assume that if a 
life annuitant dies on a payment  date, he receives the payment  if the 
annuity is " in  a r rears"  (aW) but not if it is " in  advance"  (d',~"'). Actual 
life offices may adhere to this practice,  or may be more generous. But it 
allows the definitions of  aa  and a,-q to be as expected.  

British government  securities provide a practical example of yet another  
type of annuity-certain for an irregular period. Each of  these pays interest 
on defined half-yearly payment  dates and is redeemable on one such date; 
but each is usually issued on a date that is not a payment  date, and the 
first interest payment  is for  a fractional amount  corresponding to the first 
fractional period. Such an mthly annuity for k years has the value 

(ml  v t ( f  + a~ ) , 

w h e r e f  = k mod l /m and n = Lml¢J/rn, so/¢ = n + f .  I don ' t  know what 
symbol to give this. Would a~" do, indicating that the apport ionment is 
initial, not final? 

Such an annuity-certain has no practical life annuity equivalent. One 
could write a'o~ . . . .  E(a~ ') but one cannot actually agree to make payments  
on the preanniversaries of  the death of  (x), commencing with a suitable 
first fractional payment ,  without more prescience than an insurer de- 
serves ! 

(AUTHOR'S REVIEW OF DISCUSSION) 
ELIAS S. W. SHIU: 

I would like to thank Dr. Nesbitt and Mr. Wilkie for their discussions. 
Their  remarks add considerably to the paper 's  perspective. 
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Dr. Nesb i t t ' s  equa t ion  (3) is an elegant  formula,  and the fol lowing is a 
useful reformulat ion:  Let t and n be two posit ive integers and t < n ;  then 
under  U D D ( I )  

7 v " ' (  ) - 7v (  ) = I ~ ( m ) . P " ' (  ) ,VJ:.q,  (1) 

" w h e r e  the sets o f  parentheses  have been left blank to indicate  that the 
benefit involved is unspecif ied,  emphas iz ing  that the relat ionship exhibi ted 
is independent  o f  the part icular  benef i t "  (Scher  [4], p. 614). 

Equat ion  (1) is der ived in the same way as Dr. Nesb i t t ' s  equat ion  (3); 
it follows f rom 

,,P( ) = ..,,,, .. , f f  ( ) ( a~,-ql a,:,~) " 

and 

a<:~""' --- a~'"a~:~ - [3(m)A~, ~ , k E Z + (2) 

To prove  (2), cons ider  the identi ty 

, . ( m )  a ~  = (dii~TA---~ + vrr~,,'~ -- vr , , ,r~, ' ,v- , ) /d( , , , ) .  

Taking expec ta t ions ,  we have 

• , ( m )  ( m )  ( m i  
= - A ~ : ~ ) / d  a~:~ (d i i , :~  + A , : ~  

" " "  ' 
= a ~  a , , ~  + ( A , : ~  - A : ..... . 

By UDD(1) ,  

Thus  

~x I) 
A :~ =- ( i / : " ' )A~x :~ .  

• q m )  . , (m)  ~. a,,~ -= aq  a,:~ + AI:~[1 - ( i / : ' " ' ) ] / t t  '''~ 

= ,aq ........ a~: n - [~(m)A' , :~  

Mr. Wilkie has provided  a comprehens ive  discuss ion on the definitions 
o f  annui ty  symbols .  However ,  I cannot  quite agree that the definition 

a ..... v ~ ) / i  ..... = (1 - , k ~ R + , (3) 
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should be avoided. This definition is mathematically elegant, and it is 
consistent with formulas such as 

1 1 
v s ~  , a z l  = ( t  ~at ) - -  = ? " '  

a n s ~  

a n d  s o  o n .  
It is interesting to note that Todhunter ([5], chap. 3, art. 16) gave two 

definitions for an'', he suggested that formula (3) be used " fo r  purposes 
of  theory,"  while " in  pract ice"  

( n l  ) m ) , a~ = a ~  + (k mod l / m ) v '  

With the electronic computer,  yes terday 's  theory can become today 's  
practice. Formulas such as (3) can be evaluated readily using a pocket 
calculator with an exponentiation key. 

In the rest of  this review we shall expand on Mr. Wiikie's remarks that 
a term-certain n--] be used in place of a life (x). For a positive number n, 
let us define 

1, t < n  

,P,,rl = 0, t ~> n .  

and 

,q,,7 = 1 - -  , p ~ .  

Following Jordan (13], formulas [9.1] and [9.2]), we have 

,P,:,,-I = ,P, ,P,,-] , 

and 

,q , : ,7  = 1 - ,P , : , -o .  

Applying the method of Stieltjes integration, we obtain 

(cf. [!], p. 223; [2], p. 2). 
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By J o r d a n ' s  formula  (11.1), 

Jo ,q , :,,-;1 = ,P  ,,-I d ,q.~ 

f f l\n 
= d~q,, 

= , ..,,q, 

]',qx , t < n 

] L , ,q  ~ , t >I tl . 

Thus  

f ~ v '  d ,q A ~:,,q = I,,~ . 

Similarly,  

llo ,qx:,-'l = ,Px d,q~ 

= {0, t < n  

,,p, , I ~ r/ " 

and 

- I t I A . : ~  = v d ,q~:~ . 

Unl ike  ,q~,,,-q, the con t ingen t  probabi l i ty  ,ql:~ as a func t ion  in t is not a 
cumula t ive  d is t r ibut ion  func t ion .  However ,  it has in te res t ing  appl ica t ions .  
Cons ide r  the fol lowing p rob lem {13], p. 266, No.  9): 

Find the value of an annuity of $1.00 per annum payable to (3'}. the first payment 
to be made at the end of the tth year succeeding the year in which (x) dies, 
provided (x) dies within n years, the annuity to be void if(x) lives beyond n years. 

Solut ion:  

• iql , ,71j~,E,  = , E , ~  i ,,q, , E  . . . .  
i l j - i  
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= ,E,~] (1 - i , P , )  jE, +, 
j = l  

= , E , ( a , , ,  - a , : , , , : ~  - , ,p,  ,,~a,+,) . 
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- 2  A~ (4) 

deno tes  the net single p r e m i u m  for  an insurance  o f  I payab le  immed ia t e ly  
at the death  o f  (z), p rov ided  that  the s ta tus  (c~) fails before  (z) ( Jordan  [3], 
p. 233). I f  the subscr ip t  a deno tes  the c o m p o u n d  s tatus  (~:~), then (4) is 
the net single p r e m i u m  for  an insurance  of  1 payab le  immedia te ly  at the 
death  of  ( z ) ,  prov ided  tha t  (x) dies within n years  and before  (z). By  
J o r d a n ' s  f o rmu la  (11.31), exp re s s ion  (4) b e c o m e s  

f; ,  v '  , q . , :~d  ,q~ = ,4: - v '  , . , , p ,  d , q :  

= - A=.,:~ , ,p ,  ,,~A. 

(5) 

On the o the r  hand ,  if a deno t e s  the s ta tus  (x:n--]), then  (4) is the net single 
p r e m i u m  for  an insu rance  o f  1 payab le  immedia te ly  at the dea th  o f  (z) 
p rov ided  that  (x) dies  wi th in  n yea r s  and before  (z), or  that  bo th  (x) and 
(z) surv ive  for  n years .  Apply ing  J o r d a n ' s  fo rmula  ( l1.31) again,  we have  

A~:.,.:,,-q = f o v ' , q , : , , - l d , q  ~ 

= A~ - f~]v '  ,p,.:,-rld,q~ (6) 

- I  = A ~  -A=, . : , ,q  

(cf. [3], p. 235, first pa ragraph) .  Let  us i l lustrate the appl ica t ion  o f  fo rmulas  
(5) and (6) with a ques t ion  f rom the 1970 Part 4 Examina t i on  ([6], p. 56, 
No.  1): 

A family policy is issued on the lives of a man age 40, his wife age 35 and lheir 
son age 15. At issue, the policy provides $10,000 of whole life insurance on the 
man. $2,500 of endowment insurance on his wife which matures at her age 60, 
and $1,000 of term insurance on the son which expires at his age 25. 

At the moment the first benefit tdeath or endowment) is paid under the policy, 
the amount payable under any other insurance and/or endowment benefit then in 
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force is doub led .  At the  m o m e n t  the second  benefi t  (death or e n d o w m e n t )  is paid 
under  the policy, the amoun t  payable  u n d e r  any o the r  benefit  t hen  in force b e c o m e s  
three  t imes  the  original  amount .  

If all d e a t h  benef i ts  are payable  at the m o m e n t  of  death ,  find the  part  of the net 
single p r e m i u m  for the policy which  appl ies  to the life insu rance  benefi t  on the 
man only. Expres s  your  a n s w e r  in t e rms  of  pure  e n d o w m e n t s ,  p robabi l i ty  symbols  
and c o n t i n u o u s  in su rances  payable  at the first death .  

Solution: 

N . S . P .  = 10,000(A4o + A~:~ + A~,:w),  

! 
where the subscript s = ( , , :~) and the subscript w = ( , : ~ )  . 

Since 

and 

we have 

- 2 

A , o : ,  A , o  - ' = - A4o:ls :~ - ~oP,s lolA4o 

A40:~ A4o - I - , = - -  Aao:3~:53]_ ~ , 

N . S . P .  10 ,000(3A,o  ,oE4o:,~ A~o - ' - ' • = - - A 4 o : . : ~  - A4o:,~:~) 

In conc lus ion ,  1 wish to thank Dr. Nesbitt  and Mr. Wilkie again for 
their interest in the paper and their stimulating discuss ions .  
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