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ABSTRACT 

This paper develops the theory of  the measurement of interest rate risks 
from its foundations, beginning with the question of which asset values 
(market or book) are economically relevant and therefore at risk. Upon this 
foundation, the paper builds a flexible and general theory of the measurement 
of interest rate risk that includes the familiar Macaulay-Redington theory as 
one special case. The theory is applied using a simple model of interest rates 
to allow separate measurement of the risks associated with permanent and 
transient changes in interest rates. 

I. INTRODUCTION 

Few subjects have generated more controversy or been the topic of more 
meetings among actuaries than the subject of the interest rate risk. Whatever 
an actuary's field of practice, he faces the thorny problem of judging or, if 
possible, measuring the risk of changing interest rates to the financial se- 
curity plans he advises. That problem has become more important in recent 
years with the increasing volatility of  interest rates and, for U.S. actuaries, 
the introduction of interest rate futures contracts, the huge and unprecedented 
federal budget deficits, and the accompanying uncertainties about likely fu- 
ture movements in interest rates. 

It is fundamental that the interest rate risk is an equity risk--losses are 
incurred only when assets fall more (or rise less) than liabilities. The Ma- 
caulay-Redington theory of immunization, which has become fairly well 
known among North American actuaries over the last decade, reflects an 
awareness of that fact. That theory, which is reviewed in section Ill, mea- 
sures the vulnerability of a portfolio of assets in relation to a set of liabilities 
using a construct called a "dura t ion ."  The durations, D a of assets and DL 
of liabilities, are defined so that a one percent increase in the interest rate 
will result in approximately a DA percent decrease in the value of the assets 
and a DL percent decrease in the value of the liabilities. According to this 
theory, when the values of the assets and liabilities are equal, the difference, 
DA -- DL, measures the loss that would occur from a l percent increase in 
the interest rate, computed as a fraction of total assets. A positive difference 
indicates that asset values will fall faster than liabilities when the interest 

241 



242 MEASURING THE INTEREST RATE RISK 

rate rises and rise faster than liabilities when the interest rate falls. Later, 1 
will review the computation of the duration measure as well as related mea- 
sures. The important point is that they all purport to provide an index of the 
vulnerability of a portfolio of assets to interest rate changes in relation to a 
set of liabilities. 

Some of the controversy over immunization theory concerns the question 
of just what " the  interest rate" means. Some argue that it means the market 
rate of  interest, though that cannot be precisely right, since there is not a 
single rate that applies to all investments in fixed-income securities, inde- 
pendent of  the term to maturity, the call provisions, the issuer's solvency, 
and so on. Others argue that '~the interest rate" means the rate that the 
actuary reasonably forecasts to apply on average to investments that will be 
made in the future. Such an evaluation, of course, is inherently subjective, 
and it is subject to the criticism that there is no good reason to forecast a 
single rate for all years in the future. Vanderhoof and other advocates of  
immunization theory have argued the reverse proposition that immunization 
theory, because it identifies the assured return from a particular investment 
strategy relative to a particular set of liabilities, should guide the interest 
assumption made by actuaries in valuing liabilities. 

The proper resolution of these disputes depends on the way interest rates 
are determined in the bond markets, if long-term interest rates fluctuated 
randomly around some " n o r m a l "  level, so that very high rates in any one 
year were simply an aberration and rates could be counted on to fall in the 
very near future, then a loss in asset value exceeding the decrease in liabil- 
ities caused by high current market rates would be transitory and therefore 
no cause for concern. Indeed, very high current rates would represent an 
unusually favorable opportunity to invest in long-term bonds to lock-in the 
current attractive returns. That seems to be the interest rate model that those 
who advocate basing asset valuations on actuarial assumptions have in mind. 
However,  if high long-term interest rates are caused by a change in the 
environment that is likely to persist for awhile, so that currently owned assets 
may eventually have to be sold in a high interest rate (low price) environ- 
ment, then the loss in market value of assets from high interest rates is a 
real cause for concern. Thus, the right interest rate to use for studying the 
value and vulnerability of  an asset depends very much on one's theory of 
how bond markets work. 

To illuminate the relationship between prevailing market interest rates and 
" t r ue"  asset values, we must begin by returning to the fundamentals of the 
theory of present value. This is done in section II, using the standard eco- 
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nomic treatment of the theory, which differs in some small but crucial details 
from the way the theory has usually been treated by actuaries. The theory 
is developed for investments where the only risk is that prevailing interest 
rates will change. The main conclusion is that if the cost of bond trading is 
negligibly small and market prices for bonds are "internally consistent" (or 
"arbitrage free")  then every cash-flow stream has a single objective value 
at every point in time. That value is the stream's present value computed at 
the year-by-year interest rates implicit in current bond prices. 

Apart from the assumption that bonds are liquid assets and that bond prices 
are internally consistent, the fundamentals reviewed in section II do not 
require any additional assumptions about the details of how the bond markets 
operate or  how interest rates vary over time. In that general context, there 
is no way to measure interest rate risk in terms of a few simple indexes like 
the duration index, without making further assumptions about the shapes of 
possible '~yield curves."  Therefore, in section lII, I consider how a theory 
of the shape of yield curves can lead to one or more indexes of interest rate 
risk. It is in that context that I develop the general theory of measurement 
of the interest rate risk. 

Unfortunately, there is no empirically proven theory of the term structure 
of interest rates at this time. For the practical actuary, the best course for 
now seems to be to use a rough-and-ready model of interest rates. The 
Macaulay-Redington theory is based on such a model in which the term 
structure of interest rates has an unvarying shape, so that a 1 percent increase 
in the short-term rate is always mirrored by a 1 percent increase in the yields 
to maturity of bonds of all durations. The fact, however, is that the shape 
of yield curves varies over time and that short-term interest rates are very 
much more volatile than long-term rates. As a result, the duration measure 
overstates the sensitivity of long-term bond values to changes in the interest 
rate environment and understates the sensitivity for short-term bonds. 

In section IV, we suggest a refinement of immunization theory based on 
a simple two-parameter theory of  yield curves, which allows short-term rates 
and long-term rates to move separately but requires intermediate-term rates 
to be the interpolated value between them. The result is a pair of measures, 
reflecting the sensitivity of the portfolio of assets and liabilities to changes 
in short- and long-term rates separately. These measures are offered as tem- 
porary expedients. Research into the actual term structure of interest rates 
is proceeding rapidly (see the recent work by Cox, Ingersoll and Ross [1]), 
and the results of that research offer the promise of a more reliable set of 
measures in the foreseeable future. 
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]l. THE ECONOMIC FUNDAMENTALS OF PRESENT VALUE 

There is a small but crucial difference between the foundations of the 
theory of present value as traditionally developed in the actuarial mathe- 
matics of compound interest and the foundations developed by economists. 
In traditional actuarial theory, there is a "bank"  that stands willing to accept 
deposits or lend money at fixed interest rate i. If the interest rate varies in 
a predictable way over time, so that the rate in year t is i,, there is no 
problem: the value of any certain (that is, nonrandom) stream of cash flows 
(F~ . . . . .  Fn) is simply its present value, computed at the year-by-year 
varying interest rates. The real problem begins when the interest rate offered 
by the bank is volatile and unpredictable; one does not know then what rate 
to use in discounting flows in future years. 

The problem is not as bad as one might think because long-term bonds 
exist which allow one to lock in an interest rate over an extended period. 
An approach that some actuaries have advocated for evaluating cash-flow 
streams is to discount the flows using rates of interest that are a blend of 
the rate forecasted to be available on future investments and the rate locked- 
in by existing assets. The appeal of this procedure is that it reduces the 
amount of subjectivity in the interest rate forecasts, at least for years in the 
near future, because the rates obtained depend largely on the existing port- 
folio of  assets. Still, unlike the economic theory that follows, this theory 
admits a substantial role for subjective element. 

The economic theory of  present value is a branch of price theory. As a 
matter of terminology, let us say that if some item, say a toaster, can be 
bought or sold in the marketplace at a given price, say $15, then its "eco- 
nomic value" is $15, regardless of whether the owner likes toast. No one 
will be willing to pay more than $15 for a toaster when he can buy one for 
that amount in the marketplace. Anyone would be happy to buy a toaster 
for $14 if he can resell it for $15. In an idealized, "frict ionless" market 
where toasters can easily be bought and sold at a fixed price, a toaster has 
the same value to everyone, in the sense that anyone would be happy to buy 
a toaster for any amount less than $15 and nobody would be willing to pay 
even a penny more. It is in this sense that economic values are objective. 

To apply this theory to the bond market, we must suppose that the costs 
incurred in buying and selling bonds are a negligible factor in the determi- 
nation of value. The theory applies if bonds are sufficiently " l iquid ."  The 
implications of an objective theory of value are far reaching. Suppose, for 
example, that we wish to evaluate some particular investment, represented 
by the sequence of cash flows F = (F1,F2,F3) over a period of three years, 
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and that there are bonds available in the market with coupons C, ,  C2, and 
C3 that mature in one, two, and three years, respectively, for a maturity 
value of 1. A portfolio of these bonds is represented by a vector x = 
(xl ,x2,x3), where x,, is the number of  bonds with maturity n in the future 
that the investor owns. The cash flows y = ~'t,Y2,Y3) generated by the 
portfolio x can be computed by multiplying the matrix B of bond returns by 
the vector x describing the portfolio: 

Yt l + CI  C2 +C3cs [~Cl 
v2 = 0 1 + C2 Cs x2 1) 
3'3 0 0 1 . x3 

or, more compactly,  y = Bx.l 
Thus, a portfolio x exactly matches the cash flow F if and only if it is a 

solution to: F = Bx. Notice, however, that the matrix B is upper triangular 
(that is, all entries below the diagonal are zeros) with nonzero entries on the 
diagonal. Such a matrix is always invertible, and therefore there is a unique 
solution x = B-  IF to equation ( 1).2 Suppose the prices of the three bonds 
are Pt,  P2, and P3, respectively, and let p be the vector of the three prices: 
P = ( P l , P 2 , P 3 ) -  Then the net outlay required to purchase the portfolio x is 

pjxj or, in vector notation (treating p as a row vector and x as a column 
vector);px.  3 Since x = B-  'F ,  the purchase price can be expressed as pB- IF. 

According to economic price theory, as long as the investor is free to buy 
or sell bonds at the prices p, pB-~F is the unique objective value of the 
cash-flow stream F. This is so even though the interest rates that will be 
available on future investments may be unknown. If an investor had to pay 
some amount P > pB-tF to acquire the stream F, then by buying the 
portfolio x = B ~ tF he could acquire the same cash-flow stream at a lower 
price, so he should decline to make the purchase. If, instead, the investor 
could buy the stream F for some amount P '  < pB- IF, by selling the portfolio 
x (with sale proceeds pB- IF) and purchasing the stream F, he would leave 

I1 use column vectors 07 × I matrices) to represent both cash-flow streams and portfolios. Later. 
prices are represented by row vectors (I x n matrices). 
-'In general, some components of the solution x may be negative. In that case, the investment 
strategy needed to match F involves selling some kinds of bonds. This corresponds to the need in 
the actuarial version of the theory to borrow from the "'bank" to justify the present-value evaluation 
of some cash-flow streams. 
3The purist may object that p.t is a 1 × 1 matrix, rather than a real number, so that the expression 
should be the trace of the expression 1 have written. To avoid unnecessary notation, l shall not 
distinguish between numbers and I × I matrices. 
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future cash flows unchanged while enjoying immediate net cash receipts of 
pB- IF - P'. Since these are positive, it is obviously profitable to make the 
purchase, Any investor, regardless of his preferences or the other assets in 
the portfolio, should be willing to pay P to acquire the cash-flow stream F 
if and only if P < pB ~F. This is the meaning of our claim that P is the 
objective value of  the cash-flow stream F, a value that depends neither on 
the investor's preferences nor on the content of the portfolio. 

The foregoing analysis is easily generalized to numbers of periods other 
than three. Given a set of n bonds with varying maturities including one of 
each maturity ranging from one year to n years, one can construct an upper 
triangular matrix B of bond cash flows in the manner illustrated. The matrix 
will have nonzero entries on its diagonal. Then, for any cash-flow stream F 
that expires in n periods or less, there is a unique portfolio x that precisely 
matches the cash flow F, that is, a unique solution to F = Bx. That portfolio 
can be purchased for the price px = pB- ~F, which is therefore the economic 
value of the stream F. 

The given matrix form is useful for simplifying the economic argument, 
but for computations it may be more convenient to express the economic 
value of F in present-value terms. 

PROPOSITION. The econonlic value qf the cash-flow stream F is pB IF. 
This value is the present value of the cash-flow stream F computed using 
the period-by-period interest rates i . . . . .  i,, implicit in the bond prices, that 
is, the rates that set the present value of the cash.[lows on each bond equal 
to its price. 

Prooj: Let PV(F) denote the present value of any cash-flow stream F 
using the interest rates described in the proposition. As is well known, and 
easily verified, the present value function PV is linear, that is, for any two 
cash-flow streams F and F'  and any constants et and 6, 

PV(aF + ~5F') = aPV(F) + ~PV(F'). 

Regarding p B - ' F  as a function of F, it, too, is linear, By construction, these 
two linear functions agree in their evaluation of the bond cash flows, and 
those are a basis for the n-dimensional vector space. Hence, the two linear 
functions must be identical. Q,E.D. 

Thus, when bonds are a liquid investment in the sense that they can be 
bought and sold with negligible transactions costs, any riskless cash-flow 
stream has an objective value, which is the present value of the stream at 
the year-by-year interest rates implicit in the bond prices. This conclusion 
means that the proper interest rate to use in discounting cash flows for the 
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analysis of an investment opportunity depends neither on the other invest- 
ments held by the firm, nor on the nature of the investor's liabilities, nor 
on any other similar factor. There is no room for subjectivity in the choice 
of interest rates in the world we have described. 4 When liquid bond market 
investments are available, an investment outside the bond market can be 
worthwhile only if it is less expensive than the bond market investment with 
the identical cash flows. Moreover, an outside investment is always worth- 
while if it can be financed by selling bonds from the portfolio in such a way 
as to exactly match the investment cash flows while leaving a positive amount 
of extra cash on the table today. 

I wish to emphasize at this point that the foregoing analysis does not mean 
that there is an objectively best strategy for investing in the bond market. It 
asserts that one should always accept "bargains" (bonds offered for less 
than their market price) and sell bonds which are overpriced relative to other 
bonds. If an investor expects long-term rates to rise soon, it is generally 
wise to sell long-term bonds. Conversely, when the investor expects the 
rates to fall, then to be consistent with his expectation, the investor will buy 
long-term bonds. These are standard conclusions that are unaffected by the 
prescriptions I have been offering. 

At this point, what happens if there are many bonds traded in the mar- 
ketplace each of different maturity? Is it not possible that there is another 
set of bonds with cash-flow matrix B'  and price p '  such that p'B' is different 
from pB, so that there are two different "economic values" for a cash-flow 
stream F? This question is akin to the question that one might ask in the 
"banker"  model of present value, if there were two bankers offering dif- 
ferent interest rates. If the world were like that, it would be possible to 
borrow large sums from the bank charging the low rate to use for making 
deposits in the bank offering the high rate, netting large and certain profits 
to the investor. Such a situation could not persist, since a surge of investors 
exploiting the opportunity would soon force one of the banks to change its 
policy or fall into bankruptcy. 

Similarly, an inconsistency in the prices in the bond market offers what 
is known as an arbitrage opportunity. Investors or firms could sell (or issue) 
the bonds that were relatively overpriced to finance the purchase of under- 
priced bonds, earning a certain profit. Investors exploiting an arbitrage op- 
portunity would soon force brokerage houses to change their price quotations, 
to balance supply and demand, or to deplete the inventories of the offending 

~However, the world I have described omits all tax considerations, which are important in the United 
States and Canada at the present time. I leave the analysis of tax consequences to others. 
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brokerage house so that the arbitrage opportunity disappears. Arbitrage op- 
por tuni t ies - the  flaw in the market that permits one to earn huge sums at 
no risk with a tiny initial investment--are the dream of every new investor. 
Practical investors soon learn that such opportunities, if they exist at all, are 
rare and fleeting, just as economic theory predicts. We can safely build a 
theory of present value on the hypothesis that arbitrage opportunities do not 
exist or+ at least, are of negligible importance for investment analysis. It 
was this no-arbitrage hypothesis that [ alluded to in the introduction as the 
assumption of "internal consistency." 

To understand the major conclusions of financial economic theories and 
the perspectives they lend, one must grasp fully the importance and extent 
of the no-arbitrage hypothesis, When one finds two bonds with nearly iden- 
tical coupons and maturities offering quite different yields+ the hypothesis 
directs us to find an explanation in terms of differences in call provisions, 
convertibility provisions, default risk, tax treatment, or some similar factor. 
To isolate the interest rate on a riskless investment in the United States, one 
must use U.S. Treasury bonds, which are fully call-protected and suffer 
virtually no default risk. 

In the outlined theory, there is no single measure that summarizes the 
sensitivity of  a portfolio of assets to changes in the market interest rates, 
either alone or in relationship to a set of liabilities, For example,  suppose 
that a certain liability can be represented by a series of cash flows L = 
(L~ . . . . .  L,,), and that there is an associated set of assets of  equal present 
value whose flows are represented by A --- (Ai . . . . .  A,,). How sensitive is 
the difference in the present values of A and L to changes in the prevailing 
level of  market interest rates'? The question is difficult even to pose in the 
present context for the notion of a prevailing level of rates is ill-defined. 
There are, after all, n interest rates i = ( i i  . . . . .  i , ,)--one for each year, 
and the sensitivity of  values to each of them is different. There is little value 
to reporting n separate measures, though this is precisely what is required 
for a complete evaluation of risk in an environment where each interest rate 
is free to change independently of  all others. Fortunately for those who seek 
simple measures, the interest rates (i I . . . . .  i,,) have some tendency to change 
together, That is where immunization theory comes in. 

nl, YIELD CURVES AND TttE INTEREST RATE RISK 

With no theory of how interest rates move, the problem of measuring the 
vulnerability of  a portfolio of assets relative to a set of liabilities has no 
practical solution because there is a different sensitivity of the portfolio to 
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the interest rate at each different maturity. However, the interest rates for 
each different maturity do not fluctuate completely independently. Long- 
term rates tend to move up and down together, and there is even some 
linkage between long- and short-term rates. The function i, that specifies the 
yield available on bonds maturing in each year t is often presented in graph- 
ical form, and called the "yield curve."  By making assumptions about the 
possible shapes of the yield curve, one can simplify the problem of mea- 
suring interest rate risk. The accuracy of the measures depends in part on 
the accuracy of the theory of yield curves used and in part on the kind of 
portfolios to which the measures are applied. 

The simplest theory of this tbrm is the Macaulay-Redington (M-R) im- 
munization theory, which normally assumes that i t ~ i ,  that is, that the rate 
of interest is the same for all durations. The mathematical analysis works 
out most neatly when one works with the continuously compounded rate (or 
force) of interest ~,and a formulation of this kind also makes possible a 
significant extension of the M-R theory. The key assumption of the theory 
is that the continuously compounded rate of interest applicable to time t is 
b(t) = ~ + A(t). The parameter 8 determines the overall level of the yield 
curve while the function A(t) fixes its shape--the variant reported by Van- 
derhoof specifies ~.(t) = 0 for all t. If the level of interest rates changes 
gradually over time so that investment managers can rebalance portfolios as 
conditions change, then the relevant risk to measure is the risk to the portfolio 
of small changes in ~. Letting A represent the cash-flow stream associated 
with the assets and L the stream associated with the liabilities, we assume 
that the two streams initially have the same present values. Also, we assume 
that the two streams expire after n years. Then, 

At e x p ( -  ~(s) ds) = L t e x p ( -  ~(s) ds). 
t ~ |  t ~ l  

Letting D(t)  = • (s )  ds, we may rewrite this as: 

PV(A; g) -- ~'~ At e ~,-D,,,= ~ L,e 3, ~,, ,= PV(L', 8). (2) 

We regard these present values as functions of the overall level of interest 
rates b. Then the duration Da of the assets is defined to be minus the 
derivative of PV(A; ~) divided by PV(A; ~i); this measures the percentage 
decrease in PV(A; ~) per unit of increase in the level of interest rates. Thus, 
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letting primes denote differentiation with respect to 5. one defines 

-dPV(A; 5)/d~ ~ t At e ~,-olt~ 

Da = PV(A; 5) = Z At e~,_o~;~, (3) 

A similar expression describes De, the duration of the liabilities. The "'du- 
ration" of assets is so named because it represents a present-value weighted 
average of the time until the cash flow occurs. For example, tor an asset 
which generates flows only in year five, the duration is simply five. 

The duration of assets or liabilities is not significant by itself, The differ- 
ence in duration between assets and liabilities is important since that mea- 
sures the change in surplus per 1 percent change in the overall rate of interest 
measured as a fraction of total asset values. To express the same thing in 
symbols, 

PV' (A; 5) - PV' (L; 5) 
D A - D L = 

PV(A; 5) 

The advantage of measuring durations in percentage terms is that the duration 
of a portfolio of assets is the average of the durations of the assets in the 
portfolio. Therefore, if one wants to raise the portfolio duration from DA to 
D~, one can do so by purchasing bonds with durations exceeding D~ using 
new funds or the proceeds from selling bonds with shorter durations. 

Vanderhoof's account of immunization theory (with A(t) = 0) also gives 
a role to the second derivative of PV(A; 5) and PV(L; 8) with respect to 5, 
arguing that if the first derivatives are equal and the second derivative of 
PV(A; 5) exceeds that of PV(L; 8), then any small change in the overall level 
of interest rates from 5 to 5' will result in a profit: PV(A; ~') > PV(L; 5'). 
This conclusion, though mathematically correct, is not a proper or useful 
interpretation of immunization theory. Indeed, one can say more generally 
that the no-arbitrage hypothesis implies that there is no place in immunization 
theory for measures based on second derivatives of the present-value func- 
tion. What has actually been shown by this mathematical argument based 
on second derivatives is that if the flat yield curve theory were correct and 
if interest rates change frequently and by small amounts, then there must be 
an arbitrage opportunity. To see this. let x A and xt. be portfolios of assets 
that duplicate the cash-flow streams A and L. respectively, with PV(A: ~) 
= PV(L; 8). PV'(A: ~) = PV'(L: 5), and PV"(A: 5) > PV"(L; 5). Then 
buying the portfolio Xn and selling x L generates a cash-flow stream A - L 
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with present value zero and PV'(A-L; ~) = 0, but PV"(A-L; ~) > 0, 
that is, a portfolio that costs nothing but yields a certain profit whenever 
changes, which it certainly will do. Such a portfolio represents an arbitrage 
opportunity. If the no-arbitrage hypothesis is correct, then there must be 
something fundamentally wrong with the hypothesis that the yield curve is 
always flat. Of course, actual yield curves are not flat and do not maintain 
the rigid shape prescribed by our assumptions as they vary over time. The 
interest rate model underlying the theory is only a very rough approximation. 
It may be suitable for use in generating approximate measures of asset vul- 
nerability but it should not be used for fine-tuning investment choices. 

At this point, we can also address the question about whether interest rates 
fluctuate randomly around a "normal"  level. The idea that bond prices (and 
therefore interest rates) fluctuate in that way is the basis for the argument 
that market rates should not be used for actuarial valuations. The main point 
is that randomly fluctuating long-term interest rates on a day-to-day or week- 
to-week basis always generate effective arbitrage opportunities. If the ran- 
dom fluctuations theory correctly described the workings of bond markets, 
one could do a statistical study to estimate the normal level and find out 
whether rates are currently higher or lower than that level, and then buy or 
sell accordingly in the market for bonds or interest rate futures, financing 
the purchases by sales of short-term assets. That would lead to positive 
expected profits for each day or week. Then, since the fluctuations are 
presumed to be independent over time, the result of a consistent strategy of 
trading in bonds (or interest rate futures contracts) would be a certain im- 
provement in the yield of the portfolio in the long run (by the Strong Law 
of large numbers of probability theory), which constitutes an arbitrage op- 
portunity. Thus, the no-arbitrage hypothesis--a hypothesis that is strongly 
supported by both economic theory and the experiences of investors--im- 
plies that the random fluctuations view of long-term interest rates must be 
incorrect. 

Some readers may think the previous paragraph too harsh a critique of 
the random fluctuations view. After all, one might argue, nobody believes 
that the fluctuations in interest rates around their normal level are statistically 
independent on a day-to-day, week-to-week, or even a month-to-month ba- 
sis. But to concede that point is to give up the argument. If changes in 
interest rates are persistent over long periods and if assets and liabilities are 
not perfectly matched, then one may have to trade at near current market 
prices, so there is no merit in the view that fluctuations in asset prices should 
be mostly ignored as temporary and irrelevant phenomena. 

As noted above, the flat yield curves originally used for developing the 
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duration measure are not consistent with the no-arbitrage hypothesis, that is 
they imply that there exist arbitrage opportunities. 5 Economic theories of 
the yield curve (such as the Cox-Ingersoll-Ross theory) that do not allow 
arbitrage opportunities are often much more mathematically complex than 
the simple theories already analyzed and have not yet been subiected to the 
kind of empirical scrutiny needed to lend sorne degree of confidence to them. 
Moreover, there is really no prospect of ever specifying a perfectly correct 
theory of interest rates upon which to base a theory of immunization, so the 
best course for practical people is to base immunization rneasures on simple, 
approximate theories of interest rates. These theories should be used only 
to construct vulnerability indexes based on first derivatives of the present- 
value function, in order to aw)id the kind of misleading recommendations 
that necessarily result from the second derivative measures, which are ef- 
fectively based on trying to identify by mechanical means that rare and 
elusive animal-- the  arbitrage opportunity. 

To build a general theory to measure interest rate risk, let I = (1~ . . . . .  Ik) 
denote a series of  k economic indexes that summarize both the current in- 
terest rate environment and whatever other factors affect expectations about 
future cash flows. Let At(l) and Lt(l) denote the expected cash flows from 
a certain asset portfolio and set of liabilities, respectively, in year t. These 
generally depend on I since, for example, the cash surrenders and policy 
loans on individual ordinary life insurance are sensitive to prevailing interest 
rates, and the payments on health insurance plans are sensitive to the inflation 
index for health care costs. Let 5(t;/) denote the continuously compounded 
rate of interest implicit in current bond market prices for time t when the 
index values are 1. We assume that all functions of I are continuously dill 
ferentiable. We wish to measure the vulnerability of the cash-flow stream 
to a change in index !i, with other indexes held constant. Let PV(A:I) rep- 
resent the present value of the cash-flow stream A and PV/(A:I) the partial 
derivative with respect to I i (with other index values being held constant). 
Then the ratio V/(A) = - PVi(A;I)/PV(A:J) is the decrease in the asset value 
per unit increase in the index lj, as a percentage of the total asset value. A 
similar calculation can be done to compute a vulnerability index Vj(L:I) for 
liabilities. 

Since the indexes V}A: I) and Vi (L; I) are basically first derivatives of 

kin fact, one can shov. that this model is consistent with the requirement that there is no possibility 
of arbitrage if and only if"/~(1) = ex ~- 13! tier s o m e  constants c~ and 13. The ma~dnitude of ]3 depends 
on the vola t i l i t y  o f  interest  rates. In particular, 13 can be zero only it interest rates do not  fluctuate 
at all. A reasonable specification would set 13 > O. 
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the present-value function, it may appear that they give a good idea of 
vulnerability only for very small changes in interest rates. One can extend 
things a bit using the argument given earlier in connection with the discussion 
of Vanderhoof's theory. (NOTE: The conclusions reached in the remainder 
of this paragraph and in the next paragraph are incorrect. See the author's 
review for corrections to this analysis.) In particular, if A and L have equal 
present values and equal vulnerabilities when evaluated at market interest 
rates, then the no-arbitrage hypothesis implies that PVj/A; I) = PVjj(L; I). 
This fact suggests two important conclusions: First, equating indexes based 
on first derivatives immunizes against small changes in interest rates even 
if they are large enough to alter the first derivative term (provided the first 
derivative itself is approximately linear in the relevant region). Second, 
maintaining a strategy of approximate immunization over time does not 
require an excessive amount of trading, since an immunized portfolio re- 
mains (approximately) immunized as I fluctuates in a neighborhood of its 
original value. 

As we have seen, if one rebalances the asset portfolio over time to main- 
tain (approximate) equality of the asset and liability vulnerability indexes, 
then the change in the PV(A - L; I) over any short period is of "'second 
order. '  ,6 The crucial mathematical fact now is that if the changes are second- 
order over all short periods of time, then their sum over longer periods is 
also negligible. Therefore, immunizing effectively against the losses suffered 
from small changes in I over all short periods also solves the larger problem 
of immunizing against the large movements in 1 that may take place over 
longer periods. 

In general, the risk indexes I that we have been discussing abstractly need 
not be interest rate indexes; they could equally well consist of an oil price 
index, a health care costs index, etc., and such indexes may well be useful 
for evaluating the risks associated with certain specialized kinds of insurance 
or with portfolios containing common stock, real estate, etc. To be useful, 
the number of indexes in the theory must be small. For bond portfolios, it 
is probably necessary to use at least two indexes of interest rates, since yield 
curves vary over time in both their slope and their level. In the next section, 
we introduce a particularly simple and familiar two parameter theory of the 
yield curve that allows the curve to vary in both slope and level, and we 
derive the resulting risk measures. 

~This means that the change over any period of time, during which the portfolio was not rebalanced, 
is on the order of the square of the length of time involved. If the relevant period is one month. 
V~2 of a year, then the squared value is VH~. which is a negligibly small number for applications of 
this kind. 
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IV. A SIMPLE TWO-FACTOR THEORY OF IMMUNIZATION 

A two-parameter model of the term structure of interest rates makes it 
possible to separate the effects of changes in long-term rates from those of 
short- and medium-term rates. By so doing, it reduces the bias that is inherent 
in the Macaulay-Redington theory due to its false assumption that long- and 
short-term rates are equally volatile and closely tied. For a useful two index 
model of interest rates, I propose a variant of a model that is familiar to 
many actuaries--a model that has been widely used in pension valuations, 
premium rate calculations, GAAP reserve calculations for life companies, 
and other applications. Specifically, I use a two-point graded interest-rate 
model, with the grading occurring up to some predetermined time T. More 
precisely, the continuously compounded rate (force) of interest at any time 
t > T is the long-term rate ~(t) = 11 and for t -<  T t h e  rate is linearly 
interpolated between the long rate 1~ and the short rate 1~ + 12: ~(t) = I~ 
+ (1 - t/T) 12. Letting M(t) = min(l,t/T), we have: 7 

~(t) --- 11 + ( l - M ( t ) ) l  2. (4) 

I use a long-term rate plus a transient component (rather than a long rate 
and a short rate) as interest indexes to make the first vulnerability measure 
take the same form as the traditional duration measure. It is equally valid 
and perhaps more readily interpretable to construct vulnerability indexes 
using the long- and short-rate indexes--this is primarily a matter of style 
and taste. 

Before proceeding, I offer a brief warning: the theory specified is incon- 
sistent with the no-arbitrage hypothesis. 1 shall use it only to develop first- 
derivative based measures of vulnerability, in the hope that these measures 
may approximate the ones that could be obtained from the "correct theory."  

Given our specification, the present value PV(A;I) is given by: 

PV(A;I) = ~ A t e x p [ -  I i~(s)  ds] 
t = l  

H 

= ~ A, e x p { - l t t  - /2 TM( t )  11 - M(t)/2]}. (5) 
t~l 

7Of course, it is also possible to specify: 

iS(t) = I I + ( l - m i t ) ) 1 2  + ,~( t )  

and to allow M(') to be nonlinear. 
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The vulnerability measure for the first index is then given by DA, = 
- PVi(A;I)/PV(A;I), where 

-PVt(A;I)  = ~ t At e x p [ -  I t " ~(s) ds]. (6) 
t ~ l  do 

The identity of form between this measure and the duration measure masks 
an important distinction; this measure reflects the sensitivity of asset values 
to permanent changes in the interest rate environment, that is, changes that 
are reflected in yields-to-maturity in bonds of all maturities. Such changes 
tend to be smaller than changes in any overall interest rate index which give 
substantial weight to short-term interest rates. 

The second measure records the vulnerability of an asset portfolio to 
transient changes in the interest rate environment, that is, changes whose 
effects are not reflected in the rates that apply to years from year T on. Once 
again, to measure vulnerability in the convenient percentage of assets format, 
we use the form: DA2 = --PV2(A;I)/PV(A;I). Using the second expression 
in equation (5), one may compute the derivative as: 

-PV2(A;I) = ~ At T M(t) [! - M(t)/2] e x p ( -  Ii 8(s) ds). (7) 
t= l  

Just as the first index is a present-value weighted average of the times t to 
payment of the cash flows, this second index is a present-value weighted 
average of a particular function of time, namely, TM(t) [ 1 - M(t)/2]. This 
index is easy to compute for both assets and liabilities, and it reflects the 
relatively large sensitivity of the value of medium-term cash flows to tran- 
sient fluctuations in interest rates. 

V. CONCLUSION 

The theory of immunization is not a theory that is properly studied in 
isolation without reference to theories of financial markets, present values, 
and the like. The controversies that rage over matters such as valuation 
interest rate assumptions and the nature and measurement of the interest rate 
risk are founded in differences in the underlying theory of bond markets that 
the debaters carry in their minds. The main issues can be resolved only by 
exposing and examining the underlying theories, reaching a consensus based 
on the best available evidence, and building an immunization theory and a 
set of measures of risk on those sound foundations. 

I have tried to carry out just such a program in this paper. In section II, 
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the economic theory of  valuation is laid out, founded on the observation, 
which is almost universally affirmed by financial economists and business 
people, that the bond markets are not teeming with arbitrage opportunities. 
The conclusion is that when the subject of  interest is real economic values 
of  the kind that should guide pricing and investment decisions, cash-flow 
streams should be valued using the rates of  interest implicit in bond prices. 
In particular, assets should be evaluated at market values and liabilities 
should be evaluated by a present-value calculation using the corresponding 
market-determined interest rates. These are the real values of  the assets and 
liabilities whose vulnerability to fluctuating interest rates requires measure- 
meat. 8 

Having identified the values to be immunized, I observed that without 
some knowledge of  the structure of  the yield curves, one cannot have a 
sound theory of  immunization. I summarized the Macaulay-Redington theory 
and set it in the framework of  a general theory, which can be specialized to 
take account of  whatever may be learned in future studies of  the yield curve. 
Finally, I offered a simple, practicable enhancement of  the Macaulay-Re- 
dington theory which is similar to it in form but which allows separate 
measurement o f  the risks associated with transient and permanent changes 
in the interest rate environment.  In general, permanent changes of  any given 
magnitude have a larger effect on asset values than transient changes of  the 
same magnitude, but transient fluctuations tin short-term rates) tend to be 
more frequent and larger in magnitude. The importance o f  the enhancement  
depends on the relative volatility of  long- and short-term rates and the nature 
o f  the assets and liabilities under study. 

I owe a debt o f  gratitude to John Ingersoll for references to the immuni- 
zation literature, to James Hickman and Cecil Nesbitt for their detailed com- 
ments on an earlier draft, and to the Actuarial Education and Research Fund 
for its financial support. 

~In a regulated environment, some nominal values may also be important, ,,imply because the 
regulations say they are, Management may then care about the ,~ensitiviI 3 of these a~sct values to 
changing intcrc,d ratc~, However, except ~hcn threats to solvency arc immcdialc, it is lhc real 
values of asscls, thai is. lhe marke! values. Ihat should be of principal concern. 
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DISCUSSION OF PRECEDING PAPER 

J O S E P H  J. B U F F  A N D  G R A H A M  L O R D :  

Professor Milgrom has made a useful contribution to the literature avail- 
able to actuaries about the interest rate risk (the so-called C-3 risk). We 
would like to offer some comments on his paper, suggest some avenues for 
further analysis, and cite some references for additional reading. 

C-3 Risk is a Market Value Phenomenon 

We strongly agree with Professor Milgrom that actuaries should learn 
about the market values of  their assets and liabilities. Both statutory and 
generally accepted accounting principles (GAAP) accounting obscure C-3 
risk exposure. Ironically, book-value accounting sometimes discourages as- 
set portfolio restructuring, which can effectively reduce exposure. Book- 
value accounting artificially stabilizes reported net worth against some of 
the volatility of interest rates, but this stability can be transitory. The reported 
surplus may disguise serious impairments and so compromise the long-term 
surplus position of the firm. 

One manifestation of C-3 risk occurs when interest rates rise enough to 
cause asset market values to fall below book values. Then negative cash 
flow can force the sale of assets at a realized capital loss. This exposure can 
be quantified by measuring asset and liability market values and computing 
their durations and other interest-sensitivity indexes. Book-value balance 
sheets disguise the extent of surplus depreciation and the potential for further 
depreciation in the future. 

Companies may try to avoid realized capital losses when rates rise by 
following a simple strategy: raise the interest rates credited to existing pol- 
icyholders so as to match new money rates. This removes the incentive for 
disinterrnediation lapses. The capital losses on those assets which supported 
lapsing policies are traded for a (potentially lengthy) sequence of income 
reductions on all policies. If rates come down quickly, the insurer would 
lower credited rates and may be inclined to think that a loss never occurred. 
If rates do not come down quickly, the costs of this strategy can be excessive. 
Book-value accounting provides little guidance for the proper costing of such 
crediting rate strategies. 

Another manifestation of C-3 risk occurs when reinvestment interest rates 
fall below the levels needed to support long-term policy guarantees. Book 
accounting will show the period-by-period shortfall as a reduction of current 

259 
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income. The long-range costs, should rates remain low, are not fully re- 
flected on today's balance sheet. Yet, an interest rate decline can seriously 
impair the vitality and solidity of the firm. This is fully apparent only if a 
market valuation is performed. 

Liability market values change when interest rates change, just as asset 
values do; net worth is determined by the dynamic interplay of these changes. 
For instance, surplus can increase even though both assets and liabilities 
decrease as a result of a change in interest rates. As an example, disinter- 
mediation lapses, which occur when rates rise, can actually create gains in 
market-value surplus. This might happen if the liabilities have substantial 
surrender charges and market-value adjustments which apply upon with- 
drawal of cash values. Consequently, intuitions based on book-value think- 
ing often fail to predict correctly the changes in market-value surplus caused 
by interest rate fluctuations. 

As an approach to C-3 management, book-value accounting is reactive. 
Market-value balance sheets portray a truer picture of a company's financial 
condition. Risk exposure and economic behavior made manifest today by 
market valuation will eventually emerge in statutory or GAAP statements. 
(This is particularly true if there are no further changes in financial markets, 
or if further C-3 risk exposure is hedged away through immunization tech- 
niques.) Market valuation is a proactive approach for C-3 risk management; 
as Professor Milgrom indicates, market-value analysis suggests specific, 
practical ways to control risk. One such tool is duration analysis. 

Some insurers now follow a strategy of systematically matching the du- 
rations of their assets to the durations of their liabilities. This duration match- 
ing helps stabilize a critical financial variable, the ratio of market-value 
assets to market-value liabilities. 1 The duration of that ratio is the difference 
between asset and liability durations, and something with a duration of zero 
is insensitive to interest rate changes. (When liabilities include interest-sen- 
sitive cash flows, duration matching amounts to a dynamic trading strategy 
for synthetic option replication. A "mirror image" of the options implicit 
in the insurance liabilities is synthesized in the asset portfolio. The insurer 
need never actually purchase options to do this. By periodically adjusting 
asset holdings based on an option pricing model, total returns are about the 
same as if options were really owned.) 2 This creates an effective hedge 
against interest rate volatilities. Market-value surplus is stabilized. This sta- 
bility is neither artificial nor transitory. 

I j. Tilley. "Risk Control Techniques for Life Insurance Companies." Morgan Stanley. June 
1985. 

2 R. Platt and G. Latainer, "Replicating Option Strategies for Portfolio Risk Control." Morgan 
Stanley, January 1984, and R. Btu)kstaber. "The Use of Options in Porttk31io Structuring: Molding 
Returns to Meet Investment Objectives." Morgan Stanley, September 1984. 
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The Usefulness of Spot Interest Rates 

Professor Milgrom has noted that the yield curve of interest rates for 
different terms to maturity has a complex, ever-changing structure. He dem- 
onstrates that many portfolios of bonds can be valued if we have price 
information for just a few different bonds which span our investment hori- 
zon. By introducing the concept of spot interest rates, his observation can 
be reformulated, and additional intuitions may result. A spot rate is a rate 
used to discount a single payment from its due date back to a valuation date. 
Spot rates appear in the real marketplace in the form of yields to maturity 
on zero-coupon bonds.3 

It is possible to translate between current-coupon yield curves and spot 
yield curves, and vice versa. Yields to maturity for coupon bonds give their 
prices. With enough coupon bond prices, we can price zero-coupon bonds. 
Then we can derive the zero-coupon bonds'  yields to maturity to get the 
spot rates. What makes spot rates so fundamental is that any given cash- 
flow stream can be priced using the spot rate yield curve. 

Some practical applications of spot rates to insurance are the pricing of 
the irregular cash flows in structured settlement annuities, pension plan closeout 
annuities, and guaranteed interest contracts. C-3 risk is better controlled by 
reflecting the current yield curve structure in one's  ratebook. There is evi- 
dence that not all insurers appreciate the importance and value of this ap- 
proach. 

Research has shown that spot rates have an interesting and useful property. 
This property depends on an assumption about forward rates of interest. 
These are interest rates implied by the current spot rate yield curve, which 
would apply to investments made in the future. For instance, suppose that 
the spot rate for money due in one year is 10 percent annual effective, and 
the spot rate for money due in two years is 12 percent annual effective. A 
dollar due in one year is worth $0.909, and a dollar due in two years is 
worth $0.797. This implies that a dollar due at the end of the second year 
is worth 0.797 + 0.909 = $0.877 at the end of the first year. The rate of 
interest from the end of the first year to the end of the second year is, 
therefore, about 14 percent. This rate of interest implied by current spot 
rates is a forward rate. Let us suppose that expected forward rates can be 
derived, in fact, directly from current spot rates, without needing adjustment 
for liquidity premiums which might reflect different investor preferences for 
different terms-to-maturity. (This model has been called the Expectations 
Hypothesis.) Within this framework, given a particular model for the sto- 
chastic process of interest rate volatility, the only rates of  return which can 
be immunized over a specified holding period are spot rates. The spot rates 

3 W. Sharpe, Investments. Second Edition, Prentice-Hall, 1978. 
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are immunized by matching the duration of the portfolio to the holding 
period .4 

The Importance of Net Sector Spreads 

Financial markets present the investor with a varied choice of yield curves. 
Spot rates differ not only by term-to-maturity, but also according to the type 
of investment to be bought or sold. Gross yields on fixed-income securities 
depend on many aspects of the securities. One variable is the perceived 
probability of default. Another is the tax treatment of the bond, which is 
affected by the tax situation of  the investor. The cash-flow pattern of the 
bond also matters---premium, participating, discount, and zero-coupon bonds 
tend to trade at different levels. The illiquidity of private placements can 
affect their investment return. Gross yield of an asset also depends on the 
options attached to it--puts and calls affect prices in a complex way. Mort- 
gage-backed securities, futures, and interest rate swaps present other tech- 
nical problems to an analysis of total realized return. 

The gross spreads between different classes of assets vary by term-to- 
maturity. Spreads tend to change over time. The differences between Treas- 
ury-bond yields and yields on A-rated corporate bonds are often about fifty 
basis points (0.5%) or more. This can exceed the typical interest-sensitive 
insurance product's profit margin. 

Gross yields need to be adjusted to obtain rates of interest suitable for an 
actuary's use in pricing, selecting investment strategies, and reserving. The 
gross yield on a callable bond should be altered to reflect the risk that the 
bond may be called before it matures. A reasonable adjustment for default 
risks should also be made, and this depends on good and up-to-date credit 
analysis. Investment expense allocations are subject to the same complica- 
tions as other expense analysis. What is more, insurance companies usually 
cannot borrow capital at the same rates of interest at which they invest. 
Setting interest rate assumptions has become yet another professional re- 
sponsibility for the practicing actuary. 

The Question of the Stochastic Process 

Over the last few years, a number of different models of yield-curve 
variation have been proposed by researchers. Each model leads naturally to 
its own definition for bond duration. Then a duration-matching strategy can 

4 A. Toevs, "Use of Duration Analysis for the Control of Interest Rate Risk.'" Morgan Stanley. 
January 1984. 
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be used to immunize total return over a holding period, at least against 
changes which follow that particular model. 5 

We want to emphasize a major distinction between the realism of a par- 
ticular stochastic model and its practical value for solving business problems. 
The Macaulay-Redington model, in which all rates are assumed to change 
by the same amount, is very useful. This is so despite the model's simplicity 
and despite financial theory proving that the real world cannot work in 
precisely that fashion. This has been borne out by simulations and by actual 
portfolios of real money exposed to historical yield-curve variation, includ- 
ing inversions and other whipsawing. A particular definition of duration can 
be used quite effectively even if interest rates do not follow the model on 
which it is based. 6 

We posit that the ultimate worth of any model depends on whether it 
increases one's chances for success as a manager in the real world. Does 
use of the model lead to higher profits (or lower losses) than might have 
occurred without it? Does it suggest solutions to practical problems which 
work reasonably well and which might not have come to mind otherwise? 
Our own work in option pricing and duration analysis shows that the answer 
to these questions, for tractable stochastic-process models, is definitely yes. 

The Value of Second Derivatives of Price Functions 

As Professor Milgrom's article makes clear, duration measurements are, 
mathematically, first derivatives of price functions. The independent variable 
is a single-parameter shock to interest rates, which follows some specified 
model for the stochastic process of interest rate variation. We find it con- 
venient to model infinitesimal shocks to the continuously compounded in- 
terest rate yield curve. This gives the following formula for duration: 

1 dP 
D =  - - × ~  

P dZ' 

where Z is the shock parameter. Some observations about this formula are 
in order: It can be estimated for any security for which a price function can 
be specified. It does not refer explicitly to any cash-flow projections. It does 
not refer to any "'average time to maturity." It is a definition of duration 
which directly addresses the question of interest rate risk by measuring price 
sensitivity. 

A great deal of interesting and profitable work has been done with second 

5 G. Bierwag, G. Kaufman, and A. Toevs, "Duration, Its Development and Use in Bond Portfolio 
Management."  Financial Analysts Journal, July/August 1983. 

6 A. Toevs, January 1984, op. cit. 
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derivatives as measures of  interest rate risk. One often applied second-order 
term is called convexity. Convexity is defined as: 

1 d2p 
C = - ×  

p dZ 2" 

It is easy to prove that: 

dD 
- D 2 - C .  

dZ 

Duration itself changes as interest rates change, This is particularly true 
for securities with options attached; they are highly convex. Duration match- 
ing (or the structuring of an intentional duration mismatch) is consequently 
a dynamic process. Computing and matching convexities as well as durations 
does a better job of hedging over finite holding periods against finite interest 
rate changes, 7 

Convexity has other applications. It can be the basis for constructing a 
duration-immunized portfolio, given an investor 's chosen risk/return tradeoff 
with regard to yield-curve changes which do not follow the stochastic model 
he or she is using, s What ' s  more, convexity derived by the Macaulay- 
Redington model can be used to immunize against changes in the slope of 
the yield curve in the same way that Macaulay-Redington duration immu- 
nizes against changes in the level of the yield curve. ~ 

The Duration o f  an Interest-Sensitive Cash-Flow Stream 

We caution newcomers to duration analysis about misusing Professor Mil- 
groin's vulnerability indexes. If cash flows depend on future interest rates, 
then financial options are part of those cash flows either explicitly or im- 
plicitly. Interest rate volatility has a critical impact on the market value of 
cash flows involving options. Correct prices, durations, and convexities can- 
not be obtained from a single best estimate interest rate scenario or expected 
cash-flow projection; this approach ignores the whole effect of rate volatility. 
Professor Milgrom's  quantities PV(A;I) and PV(L;I) must be evaluated care- 
fully. This will be illustrated in a moment by a simple option example. 

Let us digress to review some option terminology. In general, someone 
who owns an option has the right to exercise it but is never obligated to do 
so. An option contract on a bond is written in reference to a particular bond. 

v j .  Tilley, June 1985, op. cir. 
s G. Fong and O. Vasicek, "The Tradeoff Between Return and Risk in Immunized Portfolios." 

Financial Analysts Journal, September/October 1983. 
D. Chambers and W. Carleton, "A More General Duration Approach," Working Paper, The 

Pennsylvania State University, 1981. 
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A call option is the right to buy the underlying security at a fixed price 
called the strike price, regardless of the market value of that security at the 
time the option is exercised. A put option is the right to sell the underlying 
security at a fixed strike price, regardless of the market value of the security 
when the option is exercised. Option contracts are valid for a specific term, 
at the end of which they expire. European options are options which can 
only be exercised on the expiry date. American options are options which 
can be exercised at times betbre they expire as well. Options have value 
because the market price of the underlying security and the strike price of 
the option can differ. A call is most valuable when the underlying security 
is selling above the strike price, and a put is most valuable when the un- 
derlying security is selling below the strike price. 

Now consider the case of a European put option on a bond. We will show 
how deterministic interest rate or cash-flow forecasts can lead to mispricing 
of the option. Suppose the strike price is 90, and the bond is selling at 100 
today. For this option to have a payoff when it is exercised, the bond must 
be selling for less than 90 at expiry of the put. If interest rates do not rise, 
the option will expire without value. Such an option is said to be out-of- 
the-money. Suppose the best-estimate forecast is for rates to remain stable. 
One might be led to think that this option should then be worthless. This 
result is not generally correct. Roughly speaking, the put will have value 
today if there is some chance that, at the expiry date, interest rates might 
have risen enough to give the option a positive payoff. This depends on the 
volatility of interest rates. 

Interest-sensitive insurance liabilities behave as if they include financial 
options. These options differ from the options an investor can buy or sell 
on an exchange or over-the-counter. Typically, the terms-to-expiry of the 
insurance options are longer than those of traded options; the strike prices 
of the insurance options vary over time; and the underlying securities are 
pools of fixed-income assets held by the insurer to back the liabilities. An 
insurance product's options can be characterized by studying how different 
policy features increase or decrease the insurer's costs when interest rates 
rise or fall. 

Consider a single-premium deferred annuity (SPDA) which does not in- 
clude a market value adjustment to cash values. The withdrawal privilege 
of this product amounts to an American put option. It can be exercised at 
any time. The strike price is the cash surrender value due a lapsing policy- 
holder. The underlying instrument is the set of assets which were purchased 
by the insurer in order to back the policy reserve. When interest rates rise, 
the withdrawal right becomes valuable to the policyholder. If this right is 
exercised, the insurer suffers a loss equal to the excess of the strike price 
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over the market value of the assets. This is exactly the payoff pattern of a 
put option. 1o 

Traditional option pricing models assume that the person who holds an 
option will always act so as to maximize the value of that option, l~ For 
American options, this perfectly efficient behavior requires the option holder 
to constantly make the right choice between exercising immediately or hold- 
ing for use in the future. In theory, this choice depends on option pricing 
calculations which are obviously beyond the ability of most policyholders. 
Consequently, the traditional option pricing approach has to be modified to 
capture the inefficiency of policyholder exercise behavior. With a properly 
designed model, realistic market values, durations, and other interest-sen- 
sitivity indexes can be calculated for interest-sensitive insurance liabilities. ~ 2 

Interest rate forecasts have definite uses in a duration analysis approach 
to C-3 risk management. A good forecast, given an accurate measurement 
of today's liability duration, can be used to devise a structured market timing 
bet. If the bet pays off, profit is increased. If the bet loses, profit is reduced. 
This is done by intentionally mismatching asset and liability durations. If 
interest rates are expected to rise, asset durations might be kept shorter than 
liability durations. If interest rates are expected to fall, asset durations might 
be kept longer than liability durations. Under any such strategy, C-3 risk 
exposure is increased since interest rate forecasts can be wrong. The only 
way to immunize market-value surplus against the next interest rate shock 
is to match asset and liability durations. 

Conclusion 

When interest-sensitive liabilities like SPDAs or universal life are backed 
in part by interest-sensitive assets like Government National Mortgage As- 
sociations (GNMAs) or callable bonds, the balance sheet is loaded with 
options. Measuring the interest rate risk requires sophisticated modeling for 
which option pricing theory is indispensable. Duration matching becomes a 
cost-effective hedging technique for control of C-3 risk exposure. Research 
in this area continues. 

Io j. Buff, "Examining the Investment Risk Using Financial Option Theory." News From the 
Individual Life Insurance and Annuity Product Development Section, June 1985, pages .5~6. 

it R. Clancy, "Options on Bonds and Applications to Product Pricing," TSA XXXVII (1985) 
and Discussion of this paper by Tilley, Noris, Buff, and Lord, pages 97-151, and Sharpe, op. cit. 

12 D. Jacob, G. Lord, and J. Tilley, "Pricing a Stream of Interest-Sensitive Cash Flows." Morgan 
Stanley, January 1986, and J. Buff, "Modeling Interest-Sensitive Liabilities," News From the 
Individual L~e Insurance and Annuity Product Development Section, Part 1, November 1985, page 
4, and Part 2, February 1986, pages 3--.4. 
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RONALD LEVIN: 

Actuarial treatment of  interest rates has the weight of longstanding practice 
and tradition behind it. As such it has been slow to change and lags far 
behind current financial theory and practice. 

By pointing out the serious fallacies behind the traditional approach, Pro- 
fessor Milgrom has made an important contribution to the literature. Hope- 
fully, this will help bridge the gap between financial theory and actuarial 
practice. 

My comments do not concern the majority of the paper with which I 
strongly agree. Instead, I am going to focus on the end of section III of  the 
paper where Professor Milgrom discusses the role of the second derivative 
in asset-liability management. 

Professor Milgrom argues that in selecting a fixed-income portfolio to 
back a liability stream, only the first derivative need be considered; i.e., in 
practice, duration matching is enough. Any discrepancy between the second 
derivatives is made negligible by frequent portfolio rebalancing. Professor 
Milgrom states in section III: 

As we have seen, if one rebalances the asset portfolio over time to maintain (approx- 
imate) equality of the asset and liability vulnerability indexes, then the change in the 
PV (A - L; !) over any short period is of "second order.'" The crucial mathematical 
fact now is that if the changes are second order over all short periods of time, then 
their sum over longer periods is also negligible. Therefore, immunizing effectively 
against the losses suffered from small changes in 1 over all short periods also solves 
the larger problem of immunizing against the large movements in I that may take 
place over longer periods. 

I argue for the importance of  the second derivative in portfolio manage- 
ment. 

INTRODUCTION 

Economics and finance often deal with the random changes of a variable 
as it moves continuously through time. The variable might be a stock price, 
option price, or interest rate. In these situations, the ability to relate one 
variable to another is critical. I to 's  Lemma (also known as the Fundamental 
Theorem of Stochastic Calculus) is the tool which accomplishes just that. 

Some of the major breakthroughs in finance are based on applications of 
I to 's  Lemma.  Black and Scholes, for example,  used it together with arbitrage 
considerations to arrive at their famous option pricing model. Some of the 
more recent term structure theories such as Brennan and Schwartz and Cox, 
Ingersoll, and Ross are also based on I to 's  Lemma. 

Two of the major points of l to 's  Lemma concern the second order term: 

I. The term is not negligible. 
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2. U n d e r  c o n t i n u o u s  r e b a l a n c i n g  it h a s  a n o n s t o c h a s t i c  ( i .e .  cons tan t )  i m p a c t .  

The remainder of  this section will be spent developing I to ' s  Lemma as it 
applies to bond returns. The approach will be more intuitive than rigorous. 

T H E O R Y  

We begin by introducing some notation: 

t 

y (t) 

P (y,t) 

A y  

A P  

= time 

= yield of  bond at time t on a continuous basis. 

--- Price of bond 

--- y ( t +  At) - y (t) 

= P (y + A y ,  t + A t )  - P ( y , t )  

Our notation could just as easily apply to a bond portfolio as to one 
particular bond, 

For now we assume that we are dealing with known cash flows (i.e., a 
noncallable bond). The theory,  however,  is easily extendable to callable 
bonds and mortgage pass-throughs where cash flows are variable but still 
interest sensitive. 

Next, suppose we are managing a bond portfolio which is rebalanced every 
At  (e.g. once a month). The performance measure that interests us is the 
gain, A P ,  or, more specifically, the holding period return, A P / P .  Let us 
write out P ( y +  Ay,  t +  At) as a Taylor Series. 

P ( y + A y ,  t + A t )  = PO,,t)  + 
0 P ( v , t )  

.. ~ (At) 
at 

OP(y,t) 1 0 2 P(y , t )  
+ ~ (Ay) + (Ay) 2 (1) 

Oy 2 3y 2 

We have truncated the series because the remaining terms are of  an order 
higher than (At). For small At ,  they thus become negligible. The only 
question is about the (Ay) 2 term. It would appear that being a second order 
term, its impact is also negligible. We will see shortly that this is not so. 

From (1) we have 

aP aP 1 a2P 
_ _  _ _  ~ ,  + - -  ( A V )  2 

A P  = at A t  + Oy " -2 Ov 2 " ( 2 )  
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and the holding period return is given by 

~ P  1 0 P  1 0 P  1 02P 
- At + - -  A~, + (Av) 2 (3) 

P P at P Oy " 2P 03 '2 

These three terms have important intuitive explanations. 

('9 Term 1 - -  ~ - ~  is exactly the yield of the bond, y. That is, if the yield 

on a bond remains unchanged, the holding period return is the yield itself. 

Term 2 - -  is simply the bond's  duration, D. 
P 

So far we have Return = y (At) - D (Ay) + Term 3. 
Term 1 is the yield of the bond. Term 2 is the effect of changing yields 

on the bond's  return as expressed by duration. 
The effect of Term 3 is known in the investment community as convexity. 

It is the extent to which duration does not fully explain price movements.  
It accounts for the fact that the same absolute change in yield has a greater 
impact on bond price when yields drop than when yields increase. The 
question we want to answer is: to what extent does convexity affect the 
performance of a portfolio undergoing frequent rebalancing? In order to 
answer this question, we have to assume something about the way yields 
change. For simplicity, we will assume that Ay follows a normally distrib- 
uted random walk with constant standard deviation, ~ per year t and zero 
mean.2 

Let us now examine (Ay) ~. By assumption, Ay is normally distributed 
with a standard deviation of er for a time interval of  one year. In general, 
the standard deviation in yield change over the period At  is given by O'A, = 
~ r%/~  i.e., the standard deviation is proportional to the square root of  the 
time interval. 

We now borrow several results from probability theory. (Ay) 2 is the 
square of  a normal random variable, i.e., a ×2 distribution with one degree 
of freedom. Its expected value is the variance of Ay, i.e. 

E {(Ay)2] = cr 2 At  
and Var [ ( ~ y ) 2 ]  = 20-4 ( A t ) 2 .  

This assumption is just ft~r illustrative purposes, Unfortunately, it allows for the possibility of 
yields ultimately becoming negative. The assumption could be refined to eliminate this possibility. 
For example, yields could lollow a Iognormal random walk, i.e., where Ay/y has a normal distri- 
bution. 

s This assumption is also for the sake of simplicity. We could have used a non-zero mean without 
affecting our main result. 
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Let us interpret these results. Since E [(Ay) 2] is of order At, Term 3 is 
not, in fact, negligible. Even though ( A y )  2 gives the appearance of being 
second order, it is actually first order in terms of At! 

Next, Var [(Ay) 2] is of order (At) 2. Over time the cumulative effect of 
Term 3 will have a variance of order At; that is, under continuous rebal- 
ancing, the variance is zero (i.e. it is nonstochastic). Under frequent rebal- 
ancing (small At), this variance is negligible. To summarize: 

1. For small Gt Term 3 is of  order ~ t  as is Term 1, the yield term. 
2. The cumulative effect of Term 3 has negligible variance. Hence, we may treat Term 

1 32P 
3 as a constant equal to its expected value, ~ Ov---y cr z (At). 

This does not mean that over each At that Ay = 0 , " x , / ~  (which is exactly 
one standard deviation). It means that over a large number of small intervals, 
the effect of averaging is a s / f  it does, 

For the purpose of our analysis, we thus can express our holding period 
return as 

A p  1 0 Z P  
- y ( A t )  - D ( A y )  + - - -  0 ,2 (At). 

P 2P Oy z 

APPLICATION TO ASSET SELECTION 

Suppose we have two bonds (or portfolios) with respective holding period 
returns of 

AP i 1 
Pi - Yi (A t )  - Di ( A y )  + ~ Ci (O'QYi)) 2 AI, 

1 0 P i  C i _  1 d2pi 
Di = Pi OYi' Pi OY2i for i 1,2. 

(4) 

Pt Yl + ~ C t  0"2 At - D(Ay) 

~ ' 2 [  ' ] 
P2 Y2 + ~ C2 Gr2 At - D ( A y ) .  

We are now in a position to determine a price tag for bond convexity. 
Since the two bonds have identical inter.~st rate risk (same duration), their 
relative performance is independent of the direction of interest rates. It will 
depend only on the At  term. Unless these two terms match, there is an 

Now assume that the durations are equal (D~ = D2)  and that the respective 
yields always change by the same amount, Gy. We can then rewrite (4) as 
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arbitrage opportunity in that one bond outperforms the other, independent 
o f  interest rate move.  

For the bonds to be priced fairly, we need 

1 1 
Yl + ~ C l ~  2 = Y2 + ~ C 2  ~2 

o r  I 0" 2 Yl - Y2 = - ( C 2 - C i ) .  
2 

A bond with high convexity should have a lower yield and vice versa. In 
particular, bonds with equal duration should not necessarily have the same 
yield. 

There are several caveats to this analysis. Before going through them, let 
us first look at a numerical example. 

The two bonds we consider are: 

1. A 10-year zero-coupon bond (Treasury STRIP) priced to yield 10 percent. 
2. A 30-year Treasury-bond with a 10 percent coupon priced to yield 9.9 percent. 

An investor with a 10-year time horizon is considering two portfolio strat- 
egies: 

!. Buy the 10-year zero (exact cash match to the horizon). 
2. Manage an immunized portfolio which is duration matched to the horizon. 

The immunized portfolio consists primarily o f  the 30-year bond. There 
will be a small position in money market  instruments to achieve an exact  
duration match.  The portfolio is rebalanced periodically to match its duration 
to the zero coupon.  

We are going to look at the relative performance over a six-month period. 
Our  assumptions are: 

1. Yields on the two bonds always move by the same amount. 
2. The standard deviation of yields is 120 basis points per year. 

The two bonds start out with the same duration. Without  taking convexity 
into account,  an investor might look at the respective yields and decide that 
the zero-coupon bond is the better investment. 

Now let us actually compare the components  o f  return: yield, duration, 
and convexity.  

Yield - y~ = . I0 ,  Y2 = .099. 

The zero has a 10 basis point yield advantage. 
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Duration- 1 0 P i  
Di - - 9.53 

Pi 0Yl 
1 BP, 

De - " - 9.53. 
P2  0Y2 

This term will be the same for both bonds regardless of interest rate move. 

Convexi ty-  1 02PI 
Ci - - 95.2 

Pl O)'~ 

1 02p2 
- - 160.8. 

C2 P 2  0y~ 

Under continuous rebalancing, the impact of convexity on annualized 
1 

return is ~ Ci o2. 

Based on our assumed ¢r = .012, the difference in convexity gains for 
these two bonds translates into 47 basis points per year. 

Under our assumptions, the 30-year bond has a 37 basis point per year 
advantage over the zero (47 from convexity minus 10 from yield). 

The Short Term Rate. Earlier we mentioned that the immunized portfolio 
would contain some money market investments. This was in order to adjust 
duration to match the 10-year zero. Our analysis, however, did not consider 
the effect of short-term investments on the yield. 

The reason for this is that the percentage of short-term assets in the port- 
folio is so small that it has virtually no impact. Since initial durations are 
equal, there is no short-term position at the outset. As yields change, the 
durations will differ slightly requiring some rebalancing with short-term as- 
sets. Over the six-month period, however, it will not be enough to make a 
significant difference. 

Continuous Versus Periodic Rebaluncing. Converting convexity into a 
nonstochastic term really depends on continuous rebalancing. By letting our 
rebalancing interval, ~ t ,  become small, we experience the effect of aver- 
aging (law of large numbers) over any given period. 

Continuous rebalancing, however, is unrealistic because of the high trans- 
action costs it generates. Less frequent rebalancing, on the other hand, will 
introduce more variance into our returns. In practice, a balance should be 
reached between reducing risk (variance) and trading costs. 

If there are N rebalancings over a period, then the cumulative convexity 
effect has a ×2 distribution with N degrees of freedom. 3 

For example, with monthly rebalancing over a 6-month period, the total 

3 This assumes that convexity is fairly constant over the time period. For most bonds this is a 
reasonable assumption, For options on bonds, however, convexity changes too rapidly to justify 
the assumption. 
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convexity gains of the 30-year bond relative to the zero has a X 2 distribution 
with 6 degrees of freedom. It has a mean of 47 basis points in annualized 
return and a standard deviation of 27 points. 

Correction of Mispricing. We have begun with the assumption that the 
zero's yield was 10 basis points higher than the 30-year bond. Since this 
yield spread does not adequately compensate for the zero's lower convexity, 
the bond actually has a 37-point per year advantage. 

This assumes that the 10 basis point yield spread remains fixed over time. 
Suppose, though, that the mispricing suddenly corrected itself, i.e., that the 
spread increased from 10 points to 47 points. Over the course of that cor- 
rection, the bond would outperform the zero by 350 basis points. 

This correction is the heart of arbitrage: not the small gains that accrue 
slowly when mispricing persists, but the rapid reversal of the mispricing 
which telescopes all the future gains into one point in time. 

Yield Volatility. Our mispricing conclusion has depended on the assump- 
tion that the standard deviation of changes in yield is 110 basis points per 
year. Unlike price and yield, this is unobservable in the market and can only 
be estimated. 

If we had estimated a lower volatility, the effect of  convexity (which is 
proportional to variance) would have been diminished. In our example, it 
would take a volatility of 50 basis points per year before the mispricing 
would go away. 

The role of the volatility assumption here is very much akin to its role in 
option pricing, An option, like bond convexity, is more valuable the more 
volatile the underlying asset, a 

Basis Risk. The weak link in our whole analysis is the assumption that 
the respective bond yields move in parallel. This is especially true at the 
shorter end of the yield curve where shape changes are most pronounced. 

At the longer end, the shape is more fiat and is much less subject to 
change. Because of this, the yield changes in longer bonds show a high 
level of correlation. (It is partly for this reason that our example uses long 
bonds.) Even so, yields on long bonds will not move in exact parallel leaving 
us with some basis risk. 

Basis risk can be analyzed by estimating correlation and regression coef- 
ficients of one bond's yield relative to the other. This allows us to estimate 
the basis risk (e.g., determine its standard deviation). 

Under basis risk we can no longer say that one asset will always outper- 
form another. What we can say, however, is that it is likely for one asset 

a This similarity is no coincidence. An option is a decaying asset in the sense that its value will 
decline if the underlying asset price or yield remains unchanged. One could thus think of an option 
as having a negative yield. What compensates the investor for the negative yield is the option's 
extreme convexity. 
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to outperform another. The degree of yield correlation will determine just 
how likely that is. 

APPLICATIONS TO ASSET-LIABILITY MANAGEMENT 

Another Way of Viewing Convexity 

The duration of a coupon bond will change as its yield changes. More 
specifically, duration decreases with rising yield and increases with falling 
yield. Because of  this, a 1 percent drop in yield will change the bond price 
by a greater absolute amount than a 1 percent rise. But this is exactly the 
effect of convexity. 

We now have another way of looking at convexity-- the extent to which 
duration changes with a change in yield. Armed with this approach, we can 
next look at some typical general account assets. 

CALLABLE BONDS AND MORTGAGE PASS-THROUGHS 

Callable bonds and pass-throughs have low and sometimes even negative 
convexity. An intuitive way of seeing this is to realize that higher interest 
rates extend the maturities (and therefore durations) while lower rates shorten 
maturities. This is in the opposite direction of convexity, where durations 
move inversely to yields. 

In the case of mortgage pass-throughs, the borrowers prepay the loans 
more rapidly in a low interest rate environment but avoid prepayment when 
rates are high. In the case of corporate bonds, the likelihood of call is 
inversely related to the yield level. 

LIFE INSURANCE COMPANY LIABILITIES 

What we saw on the asset side was that options in the hands of the 
borrower remove convexity from the investor's portfolio. On the liability 
side, it is the options of the contract holders that increase liability convexity. 

These options crop up in almost every conceivable investment and interest- 
sensitive product. For guaranteed investment contracts (GICs) there are de- 
posit options and book-value withdrawal features. Universal life, whole life, 
and SPDAs have book-value features which are equivalent to put options. 
The more sophisticated the contract holders are the more valuable the option. 

PORTFOLIO MANAGEMENT 

Life insurance companies are in tight competition to offer high yields on 
investment products. This, in turn, places increasing pressure to invest in 
high yielding assets. Unfortunately, the tendency is to back high convexity 



DISCtJSSIOrq 275 

liabilities with low convexity assets in search for this higher yield, while 
ignoring convexity in the pricing. 

By ignoring asset and liability options and the convexity gap that results, 
phantom profit margins are created. These margins can only materialize if 
yields remain stable. Under volatile interest rates, the convexity deficit will 
erase any profit margin. The disintermediation experience of the early 1980s 
is testimony to the power of volatile interest rates. 

ELIAS S. W. SHIU: 

Professor Milgrom is to be thanked for reminding us that there is no free 
lunch. In view of the many interest-sensitive products in the marketplace, 
this is certainly a timely paper. The following are some remarks on the 
paper. 

C. D. Rich [6] is perhaps the first person to point out that the second 
derivative profit in Redington's model does not occur in practice. P. P. 
Boyle also mentions this fact in his paper [1], which won the 1978 Halmstad 
prize. 

I am puzzled by the statement that " i f  A and L have equal present values 
and equal vulnerabilities when evaluated at market interest rates, then the 
no-arbitrage hypothesis implies that PVj j (A; I )=PVj j (L; I ) . "  

Denote the surplus 

PV(A;I)  - PV(L;I)  

by S(1). It is assumed that 

Sj(I) = 0, j = 1,2 . . . . .  k. 

By the no-arbitrage hypothesis, the function S cannot have a maximum 
or a minimum at I. This implies that the Hessian matrix (second derivative) 
of  S at I, (So(I)),  is neither positive definite nor negative definite. Without 
further assumption, it cannot be proved that 

Sjj(I) = 0, j = 1,2 . . . . .  k, 

which, however, is the conclusion in the statement quoted previously. 
I would like to present a generalization of the model discussed in the last 

part of the paper. Given a force-of-interest function 5(.), the present value 
of  a stream of cash flows {C~} is 

fo ~ C, e x p ( -  g(s) ds), 

which we shall denote by S(g). (If we consider each C, as At - L,, then 
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S(~) = PV(A;~)  - PV(L;~) . )  

Suppose that the force-of-interest function changes from ~(-) to ~ ( - ) .  Then 
what is 

S ( ~ j )  - S ( ~ ) ?  

fo Define ct = Ctexp( - ~(s) ds),  

~(t) = ~l(t) - ~(t) 

and 

Then 

and 
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Interchanging the order of summation and integration yields the equation 

c, ( (t - w) f " (w)  dw) = ( ~  c, (t -- w)) f " (w)  dw. 
I : :0  ) 1='),~' 

Now, suppose that the cash flows {C,} are such that either 

c,(t - w) ~ 0 for all positive w (2) 
l - w  

or 

c,(t - w) ~ 0 for all positive w; (3) 
I~) ) '  

then, by the mean-value theorem for integrals, there exists a positive number 
such that 

f o ( ~  c,(, -- w ) ) f " ( w ) d w  = f"(~)  fo  ( ~  G(t - w))dw.  

Reversing the order of integration and summation, we have 

fo ( ~  ct(t - w)) dw = ~ c, ( (t - w) dw) 
t - -  ~t' t - ' O  

= . ~  c, (t2/2). 
t>'O 

(4) 

Thus, subject to (2) or (3), 

S(a l) S(8) -E(O) Z tG + ~ f" (~)  Z t2 - -  ~ C t .  

If, in addition to (2) or (3), we also assume that the first moment of the 
present values of the cash flows is zero, i.e. 

tc, = 0, (5) 
t~O 

then 

S(8,) - S(8) = ~ f  (4) ~ t2 c,. (6) 
t_=-O 

Observe that, because of equation 4, the term 

f 2  Ct  
t--O 

(7) 

is nonnegative if (2) holds and nonpositive if (3) holds. Also note that, since 
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f " ( s )  = fis)t(~(s)) 2 - e'(s)]  for all s, 

the sign o f f " ( ~ )  is the same as that of  

( ~ ( 0 )  2 - ~ ' ( O -  

Equation 6 implies that, subject to (5) and (2) or (3), the term 7 or its 
absolute value can be used as a measure of  the interest rate risk of  the cash 
flows. For the case where there is only one positive cash outflow, an expres- 
sion similar to (7) has been derived by Fong and Vasicek [3], and it is 
described as a measure of risk for an immunized portfolio. For a simple 
derivation of  the Fong-Vasicek result, see [5]. Note that, if 

Z t2 Ct "~- 0, (8) 
t>O 

then, for each interest rate shock e, 

S(8 + ~) = S(8). (9) 

However ,  if (5), (8), and (2) or (3) hold, then, for each t > 0, C, = 0, and 
thus, we have (9). 

Equation (6) suggests a strategy, conservative with respect to interest rate 
fluctuations, for structuring the cash flows of  a line o f  business: Solve for 
{C,} by minimizing expression 7 subject to (2), (5), and any other necessary 
constraints or by maximizing (7) subject to (3), (5), and any other necessary 
constraints. However ,  since the point ~ depends on the cash flows {C,} (and 
the interest rate shock e), minimizing 

] Z  t2c,  I 

does not necessarily imply that 

I f " (~)  ~ t2 c, [ 
t~O 

is minimized even for a fixed function ~. 
For more details on this model, see [7] and [8]. 
Let me conclude this discussion with some quotations on duration match- 

ing, Fisher and Weil [2] claim that the reduction in risk provided by a 
duration matching strategy is " s o  dramatic that . . . a properly chosen port- 
folio of  long-term bonds is essentially r iskless."  However,  a recent paper 
by Ingersoll 14] says: 

Academic research in this area has multiplied many fold. Most of it has been concerned 
with correcting or replacing Macaulay's measure to fine tune a portfolio manager's 
ability to immunize, There have not, however, been any published tests of these new 
models. Indeed even the Fisher and Weil test has not been independently confirmed, 
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In this paper, we review the Fisher-Weil findings and report substantially different 
findings when a similar test is performed on the quoted bond prices in the CRSP 
Government Bond File . . . .  Since Durand's yield curves and those similarly con- 
structed would tend to smooth out this effect, it could account for the discrepancy 
between our results and those of Fisher and Weil. But if this explanation is correct, 
then there is little hope for the practical application of Macaulay's duration in im- 
munization . . . .  In repeating the Fisher-Weil immunization tests on quoted bond prices, 
we found that immunizing through duration matching did nowhere near as well as they 
report. On an absolute scale we found the remaining risk to be larger by a factor of 
10. On a relative scale we found that duration matching could not consistently beat 
the more naive scheme of maturity matching. 

REFERENCES 

1. BOYLE, P. P. "Immunization Under Stochastic Models of the Term Structure," J1A, 
CV (1978), 177-86. 

2. FmHER, L., AND WELL, R. L. "Coping with the Risk of Interest-Rate Fluctuations: 
Returns to Bondholders from Naive and Optimal Strategies," Journal of Business, 
XLIV (1971), 408--31. 

3. FONG, H. G., AND VASXCEK, O. "A Risk Minimizing Strategy for Portfolio Im- 
munization," Journal of Finance, XXXIX (1984), 1541-46. 

4. INGERSOLL, J. E., JR. "Is Immunization Feasible? Evidence from the CRSP Data," 
Innovations in Bond Pororolio Management: Duration Analysis and Immunization, 
edited by G. G. Kaufman, G. O. Bierwag, and A. Toevs, Greenwich, Connecticut: 
JAI Press inc., 1983, 163-82. 

5. PROKOPETZ, M. U., AND SHIU, E. S. W. Discussion of. l .D.  Stiefel's "'The Guar- 
anteed Investment Contract (GIC)," TSA, XXXVI (1984), 569--73. 

6. RICH, C. D. Discussion of F. M. Redington's "Review of the Principles of Life 
Office Valuation," JIA, LXXVIII (1952), 319-21. 

7. SHIU, E. S. W. "Immunization---The Matching of Assets and Liabilities," Proceed- 
ings of the Symposia in Statistics and Festschrift in Honour of V. M. Joshi, edited 
by I. B. MacNeill and G. J. Umphrey, Dordrecht, Holland: D. Reidel Publishing. 
To be published. 

8. ~ .  "A Generalization of Redington's Theory of Immunization," ARCH, 1986. 

ROBERT P. CLANCY: 

Professor Milgrom has produced a timely paper on a subject of  great 
interest to actuaries. His derivation of the term structure of interest rates 
from economic fundamentals  is a fine one and should considerably improve 
actuaries '  understanding of spot and forward rates. However,  I must  take 
issue with his statement that " the  no-arbitrage hypothesis implies that there 
is no place in immunizat ion  theory for measures based on second derivatives 
of the present-value func t ion . "  This statement rejects not only the referenced 
work by Vanderhoof  but also the work of such widely respected researchers 

as Fong and Vasicek, Diller,  and Til ley (see [2], 13], [4], [6], and [7]). The 
importance of second derivatives in immunizat ion  theory has led even re- 
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cently to the adoption by the investment community of the term convexity 
to refer to second derivatives. In the balance of this discussion, I will attempt 
to show that the quoted statement and its subsequent corollaries are incorrect. 

In referring to Vanderhoof's account of immunization theory, the author 
states that "what  has actually been shown by this mathematical argument 
based on second derivatives is that if the fiat yield curve theory were correct 
and if interest rates change frequently and by small amounts, then there must 
be an arbitrage opportunity."  This statement is true, and the author correctly 
concludes that the no-arbitrage hypothesis suggests that " there must be 
something fundamentally wrong with the hypothesis that the yield curve is 
always f la t . "  However,  one cannot further conclude that second derivatives 
are irrelevant in immunization theory unless one can show that the second 
derivatives contribute nothing to our ability to predict price changes in the 
face of  more realistic yield curves and yield curve changes. It is hoped that 
the evidence presented here will suggest that this is not the case. 

First, I would like to establish the framework for examining the relevance 
of derivatives in immunization. If P(i) is the price of a bond or portfolio at 
a yield of  i, then we can use a Taylor series expansion to express P(i) in 
terms of its derivatives. 

I 1 d2p(i) I __dP(i) + - • ( i -  i0) 2 • - -  q- . . . P(i) P(io) + 
( i - i ° ) "  di io 2 di 2 i o 

The author essentially argues that one need not consider the second and 
higher order terms when looking at the change in present value of the dif- 
ference between the assets and liabilities, when the portfolio is rebalanced 
as frequently as monthly. In the following remarks, I will attempt to show 
empirically the significance of the second derivatives. 

Consider two investment strategies appropriate for a five-year investment 
horizon, for example, to support a five-year zero-coupon GIC. Strategy 1 
matches the duration of the assets to the investment horizon while minimiz- 
ing the difference between the second moments (or second derivatives) j of 
the assets and liabilities. The definitions used here of duration and second 
moment are contained in the appendix. Note that these definitions use the 
term structure of interest rates and, hence, account for yield curves that are 
not fiat. Strategy 2 is a "barbe l l "  strategy which also matches duration. It 
initially invests in six-month and ten-year bonds, and then sells progressively 

t Technically,  the second moment is not exactly the same as the second derivative of the present- 
value function. However,  as long as one applies the same measure to both the assets and liabilities, 
a strategy of matching duration while minimizing the difference in second moments is essentially 
the same as a strategy of matching duration while minimizing the difference in second derivatives. 
The significance of the second moment is the same as that of the second derivative. The phrases 
- second  momen t"  and "second der ivat ive ,"  therefore, will be used somewhat  interchangeably in 
this discussion. 
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the long bonds, placing the bond sales proceeds in new six-month bonds in 
order to match the target duration. 

Strategy 2, therefore, calls for the assets to be considerably more dispersed 
than the liabilities, and the difference between the second moments of  the 
assets and liabilities is greater than in Strategy 1. Suppose further that we 
happen to be in a flat yield-curve environment at 10 percent. Table 1 sum- 
marizes the results for two parallel yield-curve shifts. 

The results in table 1 are hardly startling, and they conform to classical 
immunization theory. Strategy 2 outperforms Strategy 1 when parallel yield- 
curve shifts occur. This result was predictable from the relative magnitudes 
of the second moments of the two strategies. However, as Professor Milgrom 
points out, these results are somewhat irrelevant since "yield curves are not 
flat and do not maintain the rigid shape prescribed by our assumptions as 
they vary over t ime."  It is precisely for these reasons that considerations of 
second moments (or derivatives) are important. 

Consider now a nonparallel shift in the yield curve which represents a tilt 
in the yield curve. For example, suppose that we make our initial investments 
in the same flat 10 percent yield-curve environment as before. Suppose 
further that yields on six-month bonds suddenly drop to 7 percent while 
yields on ten-year bonds remain at 10 percent, and yields on all intermediate 
length bonds are obtained by linear interpolation. If the yield curve holds 
this positively sloped shape for the remainder of  the time horizon, then the 
estimated performance results under each of the strategies would be as shown 
in table 2. Two alternative yield-curve shifts with the same slope in which 
the ten-year bond rate moves 300 basis points are also analyzed. 

Comparing table 2 with table 1, one can see that the results are extremely 
sensitive to the slope of the assumed yield curve but not too sensitive to the 
level of  the yield curve. In fact, moving the positively sloped yield curve 
up or down 300 basis points (the last two scenarios in table 2) has just about 
the same effect on each strategy as parallel shifts of  the same magnitude, 
as shown in table 1. One can see also that a shift to a positively sloped yield 
curve results in Strategy 2 drastically underperforming Strategy 1. This order 
of  performance is the exact opposite of  that obtained from table 1 for a 

T A B L E  1 

REALIZED YIELDS OVER 5-YEAR HORIZON 

Yield-Cur',e Shift Strategy I Strategy 2 

I. NO Shift  10.00% 10.00% 
2. up 300 basis  points 10.04 10.13 
3. down 300  basis ix~ints 10.04 10.14 
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TABLE 2 

REALIZED YIELD OVER 5-YEAR HORIZON 

Yield-Cure Shift 

6-Month Rate 10-Year Rate 

7~ ~o~ 
4 7 

I0 13 

Strategy I 

9.65% 
9.72 
9.66 

Strategy 2 

8.87% 
9.02 
9.02 

parallel yield-curve shift. This result was also predictable using the following 
nontechnical reasoning. If  the second moment  for a duration-matching strat- 
egy indicates the sensitivity o f  that strategy to a parallel yield-curve shift, 
then could it not also indicate the sensitivity of  that strategy to a nonparallel 
shift? In fact, Fong and Vasicek define the second moment ,  M 2, as an index 
of  sensitivity to a change in shape of  the yield curve. This concept is central 
to the "s ta te  of  the ar t"  immunization systems currently on the market. 
These systems try to find the duration-matching portfolio which is least 
sensitive to parallel yield-curve shifts. 

I concede that 1 would get slightly different results if I assumed more 
gradual yield-curve shifts and continuous rebalancing. Even if the results 
did differ dramatically, such sensitivity of  results would be of  great impor- 
tance to a prospective portfolio manager  who wishes to ignore second mo- 
ments. In this event, the portfolio manager would realize that one can obtain 
the theoretically predicted result only by continuous rebalancing rather than 
rebalancing at less frequent intervals, such as the one-month interval sug- 
gested by the author. O f  course, the portfolio manager  might then have 
significant transaction costs. 

In any event,  I believe the results with continuous rebalancing and gradual 
yield-curve shifts would not be different enough to alter the conclusions put 
forth above. Fong and Vasicek confirm the reasonableness of  my suspicion 
with the following insightful observation 13]: 

It is not difficult to see why a "barbell" portfolio composed of very short and very 
long bonds should be more risky than a "'bullet" portfolio consisting of low coupon 
issues with maturities close to the horizon date. Assume that both portfolios have 
durations equal to the horizon length, so that both portfolios are immune to parallel 
rate changes. When interest rates change in an arbitrary non-parallel way, however, 
the effect on the two portfolios is very different. 

Suppose, for instance, that short rates and long rates increase. The end-of-horizon 
values of both portfolios would fall below the target, since both portfolios would 
experience a capital loss in addition to lower reinvestment rates. The decline however, 
would be substantially higher for the barbell portfolio than for the bullet portfolio, for 
two reasons. First, the barbell portfolio experiences lower reinvestment rates for a 
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longer time interval than the bullet portfolio, so its opportunity cost is much greater. 
Second, the portion of the barbell portfolio still outstanding at the horizon date is 
much longer than that of the bullet portfolio, which means that the same rate increase 
will result in a much steeper capital loss for the former. The low M 2 bullet portfolio 
has less exposure to whatever the change in the interest rate structure may be than the 
high M 2 barbell portfolio. 

In short,  one can perfect ly  immunize  a set of  l iabil i t ies against  all kinds 
of  y ie ld-curve  shifts only by  invest ing in a portfol io which perfect ly  matches  
the l iabi l i ty  f lows.  In this event ,  first,  second,  and all h igher  order  der ivat ives  
of  the present  value of  the assets would  match those of  the l iabil i t ies.  Match-  
ing first der ivat ives  alone is not suff icient  to assure immuniza t ion  in the real  
wor ld  o f  nonparal le l  y ie ld-curve  changes.  Matching first and second deriv-  
at ives is safer than matching only durat ion.  To refute the s ignif icance of  the 
second  der ivat ive ( commonly  referred to as convexi ty)  is to refute the work  
o f  leading researchers  and pract i t ioners  in the inves tment  communi ty .  I con- 
c lude  that convexi ty  measures  are re levant  in immuniza t ion  theory.  
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APPENDIX 

DEFINITIONS 

C F  t = cash f low at t ime t f rom bond  or portfol io  
Y, = spot rate for d iscount ing payments  at t ime t, i .e . ,  the term 

structure of  interest  rates 
D i  = durat ion of  bond  or  portfol io  (first moment )  
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D 2 = second moment of  bond or portfolio 

t.CF,.(l + y,)- '  
l 

D 1 = 

CFt.( I + y , ) - '  
I 

t2"CFt'( 1 + Yt)- '  
t 

D 2 = 

CF/(1  +Yt) - '  
t 

B E N J A M I N  W.  W U R Z B U R G E R : *  

B A C K G R O U N D  A N D  S U M M A R Y  

Professor Milgrom claims that setting V i = 0 (the first derivative of the net 
present value) will ensure that the change in V over any short period will be 
second order in time. t Were this claim valid, it would have important im- 
pl icat ions- implicat ions  that Professor Milgrom does note: (1) A strategy of 
matching asset and liability first derivatives, in conjunction with very fre- 
quent rebalancing, would suffice to guarantee that V be unaffected by rate 
movements.  (2) A GIC intermediary who practices frequent rebalancing need 
not he concerned with second derivatives. This implication would invalidate 
the standard actuarial wisdom that it is very important to calculate second 
derivatives. 

Professor Milgrom's claim is, however, incorrect. In the first half of my 
comments,  I shall explain that setting Vi = 0 without also setting Vii = 0 will 
ensure that the changes in V will be first order in time. Second derivatives 
are therefore crucially important. It turns out that Professor Milgrom is off 
by one derivative--recent work has demonstrated that it is legitimate to 
neglect third derivatives. 

In the second half of my comments,  I discuss at length the actual deter- 
minants of the evolution of V, devoting special attention to the case where 
the assets are more dispersed than the liabilities. I derive a formula for the 
evolution of V in terms of the underlying parameters of  the yield curve 
dynamics and the asset and liability second moments. 

IT IS I N V A L I D  TO N E G L E C T  T H E  S E C O N D  D E R I V A T I V E  

I begin with some notation. Let PA denote the present discounted value 
of the assets, PL the liability present value, and V = PA - P L  the net present 

* Dr. Wurzburger,  not a member of the Society, is an economist in the Financial Research and 
Risk Analysis  division at the John Hancock.  

i More precisely, the changes in V attributable to interest rate movements  would be proportional 
to (&t) 2. 
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value. Let Vi = P A i - P L i  denote the first derivative of V with respect to the 
interest rate index. ~- Let AW represent the change in V attributable to interest 
rate movements. This superscript notation emphasizes that V can change for 
many reasons above and beyond movements in i; for example, the passage 
of time will affect V even if rates do not change. I now discuss why the 
standard specification of the interest rate dynamics implies that AV i is first 
order in time even though V i= O. 

The standard assumption has rates following a Brownian motion diffusion 
process, otherwise known as a Wiener process. (For those more comfortable 
with the binomial formulation, I shall shortly rederive the major result under 
that framework.) In other words, if the interest rate is now i o, the interest 
rate t periods hence will be normally distributed with mean io and variance 
o'21, where o" is the "volati l i ty." Formally, interest rates follow the sto- 
chastic differential equation 

di = o'dw ( 1 ) 

where dw is the increment to a Wiener process w. 3 
Let us now expand d W  (the differential of the change in V attributable to 
rate movements) as a Taylor series in i. 

dV i = Vidi + Vii(di)2/2 (2) 

Equation (2) neglects the (di) 3 and the higher-order terms, which is ac- 
ceptable. By hypothesis 

Vi = 0 and (di) 2 = 0 -2 (dw) 2 = o-2dt, so 

dV i= Viio-2dt/2. (3) 

Even though V i = 0, the change in V attributable to rate movements is first 
order in time (on the order of dt), in contradiction to Professor Milgrom's 

z For simplicity one can think of a model with a single interest rate i, so yield curve shifts are 
perforce parallel. More generally,  one can incorporate systematic nonparallel shifts by regarding i 
as an index of interest rates, so Vi represents the sensitivity to that index. 

3 w follows a Wiener process if  w ( q ) - w ( t o )  has a normal distribution with mean zero and 
variance t~ - t o .  It can be shown that this implies (dw) 2= dt. The right-hand-side (r.h.s.) of (1) does 
not include any deterministic component,  only a pure stochastic term, so the expected value of the 
r.h.s, is zero. Because of the absence of a deterministic component,  the specification is strictly 
speaking an equilibrium-type model; in practice, economists explicit ly forecast and the yield curve 
implici t ly forecasts both the direction and the magnitude of change, so Eidi) ,  the expected change, 
may be non-zero. The condition E(d i )=O is often described as the zero-drift condition. 

It is also olten standard to modify ( 1 ) to make the increments proportional to i so that di = cridw. 
Under this specification i will  be lognormally distributed. (The classic Black-Scholes [1] work 
assumes stock prices are Iognormal, and Clancy [2] also assumes interest rates are Iognormal.)  
Neither of  these complicat ions-- introduct ion of a disequilibrium non-zero E(dil or making the r.h.s. 
proportional t o / - - w o u l d  affect the thrust of this section. 
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claim that the condition Vi= 0 will ensure that changes be second order in 
time. 

A similar result can be demonstrated in the binomial framework of interest 
rate movements. Recall that in the binomial framework (e.g. Clancy [2]), i 
moves in any small time period to either i+~r(A) In or i -¢ r ( • t )  t/2. (This 
is a binomial with zero drift and constant or, the finite analogue of equation 
1.) Thus, (~ i )2=  ~r2~t. A Taylor series expansion implies 

A V  i = V i i i  + Vii(hi)2~2 + higher-order terms, (4) 

so V i = 0 implies ~ V  i = Vi i t r2~t /2 ,  i.e. first order in time. 
Why is AV i first order in time even though the first term in the Taylor 

series vanishes? Because changes in interest rates are on the order of the 
square root of time, so that squared changes are first order in time. With 
this insight, I can now present a corrected version of Milgrom's footnote 
(page 253): If the relevant time period between rebalancing is one month, 
1/12 of a year, then the change in interest rates will be on the order of 
(1/12) 1/2, and the squared value is 1/12, a fraction which is not negligible. 
Klotz {5], Tilley [7], Wurzburger [8], and others are therefore correct when 
they advocate paying close attention to the second derivative Vii. 

What about third and higher order derivatives? In the Brownian motion 
example (equation 2) I asserted that the third and higher order derivatives 
could be neglected. I asserted this result rather than proving it since my 
primary purpose was to emphasize the importance of the second derivative. 
It is a relatively straightforward exercise (the quickest way would involve 
applying Ito's Lemma (see Malliaris and Brock, [6]) to demonstrate that for 
Brownian motion, equation 3 is exact and third derivatives are irrelevant. 
Garman [4[ has recently extended this result and shown that for all reasonable 
continuous-time processes, third and higher order derivatives are irrelevant 
" in  the small ."  

I conclude that Milgrom is off  by one order of derivative in his claim that 
the second derivative Vii is unimportant--it  is the third derivative Vii i that 
is unimportant. 

THE EVOLUTION OF THE NET PRESENT VALUE OVER TIME 

The first part of my remarks has concentrated on the change in V attrib- 
utable to changes in i, the index of interest rates? A more complete analysis 
would recognize that V also depends explicitly upon time, i.e. V= V(i,t).  

(The passage of time raises the present discounted value of both the asset 

4 Recall (footnote 2) that interpreting i as an index allows the analysis to incorporate systematic 
nonparallel shifts. 
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and liability cash flows.) Let Vt denote the partial derivative of V with respect 
to t. Clearly, our earlier equations must be augmented by a V t term. Hence, 

dV = Vflt  + Vidi + Vii(r2dt/2. (5) 

For those familiar with lto's Lemma,  equation 5 is the partial differential 
equation for the system V= V(i , t ) ,d i=trdw.  Since I agree with Professor 
Milgrom about the importance of setting V i = 0, I shall restrict the analysis 
to such cases. Hence, 

dV/dt = Vt + Viio'2/2. (6) 

Let us consider the standard case where the present values of assets and 
liabilities are equal (V=0) ,  and to make the analysis interesting, I will 
assume that the assets are more dispersed than the liabilities. (It is nowadays 
characteristic of  GIC intermediaries that their assets are more dispersed.) By 
assumption both V and Vi are zero, and we want to discuss the evolution of 
V, namely dV/dt. For simplicity we are restricting ourselves to equilibrium- 
type analysis (see footnote 3). I now discuss the two terms in (6). 

The V t term: In equilibrium, the yield curve should be concave. (The yield 
curve is typically concave, i.e., the curve lies above the straight line joining 
any of its two points.) Accordingly, excess asset dispersion tends to make 
Vt negative--intuitively, the concave yield structure implies that the dis- 
persed assets earn, on average, a lower yield than the concentrated liabili- 
ties. 5 

The Vii t e r m :  While PAii  and PLii  are both positive, Vii = P A i l - P L i i  will 
be positive provided the assets are more dispersed. This positivity is a clas- 
sical result from immunization theory and also follows from the analysis in 
the appendix of this discussion. While excess asset dispersion is adverse 
from the Vt standpoint, it is favorable from the Vii cr 2 standpoint. 6 

In the appendix, I apply several first order approximations to equation 6 
and derive a formula describing how excess asset dispersion contributes to 
dV/dt. Let M 2 (A) denote the second moment of the (discounted) asset stream 
and M2(L) the second moment of  the liabilities. Let b denote the slope of 
the (spot-rate) yield curve, c the concavity term, and h the coefficient cap- 
turing the systematic nonparallel yield shift. (If h = 0, we are in the world 

s The systematic tendency for nonparallel shifts, with short rates more volatile than the long. 
partially offsets this concavity. Because of this systematic nonparallel s-~fift, the condition Vi = 0 
implies that the dispersed assets will have a higher duration than the liabilities. This higher duration 
raises the yield, provided the yield curve is upward sloping. For a derivation, please see the 
appendix. 

An asset 's second derivative is often described as its convexity (e.g. Klotz I5]). Convexity 
refers to the shape of the price-yield curve. Concavity, in our V, discussion, refers to the shape of 
the yield-maturity curve. It is noteworthy that convexity of the price-yield curve offsets the concavity 
of  the yield-maturity curve. 



288 MEASURING THE INTEREST RATE RISK 

of parallel shifts.) The parameters b, c, and h have been defined so that they 
are all positive. I have derived the following equation: 

dV/dt= [M2(A)-M2(L)] × (0-2/2+ 2 b h -  3c). (7) 

As discussed, volatility and the systematic nonparallel shifts favor asset 
dispersion, while yield curve concavity argues contrarily. An intermediary, 
therefore, ought to estimate the equilibrium value of 0-2/2 + 2 h b -  3c, hence- 
forth denoted as Q. 

In his paper, Professor Milgrom (page 254) observes that one would like 
a model to be consistent with the no-arbitrage hypothesis. Superficially, it 
would appear that if we estimate Q to be, say, positive, 7 our model then 
contradicts the no-arbitrage hypothesis: a zero V is earning a positive V t. I 
note three reasons why an estimate of  a positive Q would not guarantee, in 
fact, that excess asset dispersion generates riskless profits: 
1. The analysis is equilibrium-based and, therefore, might not apply to a 

particular disequilibrium situation. Under reasonable assumptions about 
yield-curve disequilibrium dynamics, however, Q would have the same 
value in disequilibirum as in equilibrium, even though the individual 
components may differ. 

2. It is difficult to estimate the relevant parameters. For example,  cr is not 
stationary. Even if one has estimated that Q is positive, and excess asset 
dispersion is a desideratum, it might turn out that Q is actually negative. 

3. Our formula assumes a simple index, namely any single maturity deter- 
mines all the other rates. In particular, the model implies that short-term 
and long-term rates always move in the same direction. In practice, it is 
of course possible for short-term rates to decline while long-term rates 
increase. As Fong and Vasicek [3] have observed, such a steepening of 
the yield curve would be very adverse for an intermediary that displays 
excess asset dispersion. Multi-index models of the term structure would 
generate more complicated formulas, and the second derivative term would 
involve third and higher-order moments. 

In conclusion, second derivatives and second moments are crucial for 
determining the evolution of the value of a portfolio. 
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APPENDIX 

DERIVATION OF THE FORMULA dV/d!  = M 2 (o'2/2 + 2 b h -  3c) 

Let r9N) denote the spot zero-coupon spot rate as a function of  maturity,  
i.e. the present discounted value (P .D.V.)  o f  1 dollar N periods hence is 
e -r~N)N. (I use the notation r instead of  i to emphasize that r is a function 
of  N.) We assume the following term structure behavior for our equilibrium 
analysis: 

r = a + b N - c N  2, (1) 

and dr = o-( 1 - hN)dw.  (2) 

All the parameters,  a,  b, c, and h are assumed to be positive. The c term 
implies that the yield-curve is concave,  and the b term is positive so that 
the yield curve is upward sloping. The h term reflects the fact that short 
rates are more volatile than long rates; a rate increase will be systematically 
associated with a flattening of  the yield curve. The equation neglects poten- 
tial nonsystematic changes. 

Let A(N) and L(N) denote the cash-flow streams. Thus,  the net present 
value is 

V = ~ (A - L ) e  rN (3) 

From a Taylor series expansion ( I to 's  Lemma),  

KV = Vtdt + Vrdr + Vrr(dr)2/2. (4) 
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now Vt = VN (the passage of time reduces the maturity by an equal incre- 
ment.) 
Thus, dV  = - VNdt + Vrdr + Vrr(dr)2/2, and (5) 

d - r ( N ) N  
(3) and (1) imply - V  N = ~ - ( a -  L)e  -rN 

dN 

= ~ ( A - L ) e - r N ( a + 2 b N - 3 c N  2) = a M  ° + 2 b M  j - 3 c M  2, (6) 

where MJ is the jth moment of the net P.D.V. M ° is thus the net P.D.V. 
Provided M ° = 0 ,  M ~ is the difference in duration times the asset (or liability) 
present value. M 2 is the difference in the second moments. 

Combining (3) and (2), Vrdr = ~ ( - N) (A  - L)e- rN O'( 1 - -  h N ) d w  

= _ ~rdw(M I - hM2) .  (7) 

The condition V r d r = O  (first-order insensitivity, analagous to Milgrom's 
condition Vi = 0) implies M l = h M  2. (8) 

Thus, if the assets are more dispersed than the liabilities (a positive M2), 
Vrdr = 0 implies that the assets ought to display a greater duration than the 
liabilities. Substituting M l = h M  2, M ° = 0, into (6) 

V, = - VN = ( 2 b h -  3c)M 2. (9) 

Similarly, Vrr(dr)2/2 = ~ N2(A  - L)e  rNo'2 (1 - hN)2(dw)2/2  
= cr2dt(M 2 - 2 h M  3 + h2M4)/2.  (10) 

Under reasonable conditions (the first order approximauon that h is small 
so that h M  3 and h2M 4 are small relative to M2), (10) implies 

Vrr(dr)2/2 = ff2M2 dr~2. (11) 

Combining (11), (9), and (4), 

dV/d t  = M2(cr2/2 + 2 b h -  3c). (12) 

ALBERT K. CHRISTIANS: 

Professor Milgrom is to be commended for a presentation that reaches 
thought-provoking conclusions directly from simple and fundamental prem- 
ises. His recommendation that we are our limited knowledge of interest rate 
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fluctuations to avert large losses rather than to seek small profits is com- 
pelling. 

Among the provacative elements of his theory is Professor Milgrom's 
extremely inclusive definition of arbitrage. The dictionary defines arbitrage 
as a set of simultaneous transactions that produce a gain immediately. Pro- 
fessor Milgrom expands this to include transactions that will produce a cer- 
tain profit after an interval of time if interest rates follow the arbitrageur's 
hypothesis. Such intertemporal arbitrage opportunities would not arise in an 
idealized system following the author's implicit assumptions, and he shows 
that the assumptions of the Macaulay-Redington immunization theory are 
inconsistent with his. 

A crucial feature of Professor Milgrom's assumptions seems to be that 
the mechanism by which interest rates and yield curves are determined should 
be able to operate in a world possessing complete information about its 
operation. My guess is that ignorance is an important part of the process of 
yield curve determination and that developing a theory of immunization to 
apply in a world of complete information is an exercise in contradiction. 

The author's assumption that arbitrage opportunities do not arise must be 
considered a first order approximation. Its approximate accuracy may be 
sustained, however, by arbitrageurs who profit by exploiting second order 
exceptions to its rule. Any financial institution or intermediary with a need 
to immunize its portfolio should fall within Professor Milgrom's definition 
of an arbitrageur and could not exist if the author's assumptions were per- 
fectly accurate. 

Thus, the paper makes clear the difficulties of deriving a practical ap- 
proach to immunization when assuming efficient, rational, and perfectly 
informed markets. This leads me to hypothesize that the need for immuni- 
zation strategies arises because of the differences between ideal and real 
markets. This also seems to demonstrate a limit to the applicability of so- 
lutions derived from simple models. 

DOUGLAS A. ECKLEY: 

Professor Milgrom covers a variety of aspects of interest rate analysis, 
and his commentary is thought-provoking in every case. My purposes in 
discussing his paper are to provide further commentary in two places, to 
provide numeric illustrations of some concepts, to disagree with one con- 
clusion drawn by Professor Milgrom, and to espouse the applicability of the 
random walk theory to interest rates. 

In section II of his paper, the author discusses interest rates in terms of 
period-by-period rates. In section III, he turns to the more customary char- 
acterization of interest rates, which is in terms of yields to maturity. This 
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characterization is often referred to as the yield curve. To understand these 
concepts, one must realize that a set of  period-by-period rates does not 
determine a set of  yield rates, or vice versa. To derive one from the other 
a specific cash-flow stream is required (except in the trivial case where all 
of the period-by-period interest rates are equal). This is illustrated in the 
followb~g tables using two specific cash-flow streams: 8 percent bonds with 
semiannual coupons maturing in year t, and Treasury Zeros maturing in year 
t. 

To generate a yield rate in the "8% Bonds" column, the cash-flow stream 
of an 8 percent bond is discounted using the year-by-year interest rates. The 
yield rate shown is the yield rate an investor would earn if he purchased the 
bond for an amount equal to the present value. This shows that the term 
yield  curve has no definition without reference to a specific cash-flow stream. 
In fact, different cash-flow streams can produce materially different yield 
curves given the same year-by-year interest rates. 

Year-by Year 
Yew Ra~s 

T /{~ 8~  Bonds 
I 0 .1000  0. I 00000  
2 0.0950 0.097679 
3 0.0900 0.095462 
4 0.0850 0.093339 
5 0.0800 0.091299 
6 0.0750 0.089335 
7 0.0700 0.087435 
8 0.0650 0.085594 
9 0.0600 0.083802 

10 0.0550 0.082052 
11 0.0500 0.080340 
12 0.0500 0.078875 
13 0.0500 0.077604 
14 0.0500 0.076-490 
15 0.0500 0.075502 

Year by-Year 
Yew Rates 

T 1t13 8% Bonds 
1 0 .1000  0. I00000 
2 0.1050 0.102315 
3 0.1100 0.104516 
4 0.1150 0.106610 
5 0.1200 0.108598 
6 0.1250 0.110484 
7 0.1250 0.111828 
8 0.1250 0.112833 
9 0.1250 0.113611 

10 0.1250 0.114229 
I1 0.1250 0.114731 
12 0.1250 0.115145 
13 0.1250 0.115491 
14 0.1250 0.115784 
15 0.1250 0.116035 

Yield Rates 

Yield Rates 

~ros 
0.100000 
0.097497 
0.094992 
0.092486 
0.089977 
0.087466 
0,084954 
0.082439 
0.079923 
0.077404 
0.074884 
0.072788 
0.071017 
0~069502 
0.068191 

~ros  

0.100000 
0.102497 
0.104992 
0,107486 
0.109977 
0.112467 
0.114249 
0.115587 
o.116629 
0.117463 
0.118147 
0~118716 
0.119198 
0.119612 
0,119970 



DISCtJSSION 293 

Professor Milgrom refutes the theory that interest rates fluctuate randomly 
about a normal level. Readers should not confuse this theory, which is 
invalid, with that of the random walk, which I believe to be applicable to 
interest rates. The random walk theory states that changes in. not the levels 
of, stock or commodity prices are random. Interest rates do measure the 
price of a commodity (borrowed funds). 

Few random walk theorists maintain that their model is applicable beyond 
the short term. The theory allows for Ion-term trends reflecting intrinsic 
value changes. The short-term perspective makes the long-term trend im- 
material. Factors affecting the long-term intrinsic value of borrowed funds 
probably include inflation, a large and persistent borrower such as the United 
States government, and actions of the Federal Reserve Board. 

A major premise of the random walk theory is that the market is efficient. 
An insider would bias price changes until the information in his possession 
became widely distributed. In an efficient market, the disagreement of in- 
formed people provides one element of randomness. But price changes would 
be random even if everyone always agreed as to intrinsic value. This is 
because the supply and demand for borrowed funds reflect expectations. 
These expectations are changed in light of new events and new information. 
The new events and new information fall on either side of expectations in 
random fashion. In a world of uncertainty, new events cause random changes 
in commodity prices and interest rates. This is not to say that one who had 
better insight than his peers cannot profit. 

Professor Milgrom is a strong believer in the no-arbitrage hypothesis. This 
hypothesis, like the random walk theory, is premised upon an efficient mar- 
ket. He reasons from this hypothesis that taking second derivatives of interest 
rate functions is inappropriate. I agree and would go further by saying that 
taking first derivatives of interest rate functions is inappropriate. Taking a 
derivative implies that the interest rate can be expressed as a function of a 
finite number of parameters. This, in turn, implies more knowledge of the 
shape of the yield curve than one can ever obtain. Any function of a finite 
number of  parameters has possible values numbering the first order of in- 
finity. On the other hand, the number of possible yield curves is on the 
second order of infinity. Any representation of a yield curves as a differ- 
entiable function is, at best, an approximation. Professor Milgrom and I 
agree that the approximation can be close enough to reality to be useful. 

Professor Milgrom goes on to argue that if two different cash-flow streams 
have equal present values and equal first derivatives, then the no-arbitrage 
hypothesis implies that they also have equal second derivatives. The type of 
analysis rejected by this argument is illustrated in the following table. 

The flaw in this table is that the yield curve is assumed to be linear with 
unchanging slope. This allows the construction of a cash-flow portfolio whose 
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YEAR: 

YIELD CURVE AT PURCHASE: 

NEW YIELD CURVE SHAPE: 

CASH FLOWS: 

3 6 9 

0.0700 
x 

- ! , o o o . o o  

0.0750 
x + . 0 0 5 0  

- 1 , 0 0 0 . 0 0  

YIELD TO VALDE OF ARIcII'/'RAGE 
YEAR 3 PORTFOLIO GA/N 

- 754.4457 
- 754.6762 
- 754.8809 
- 755.0602 
- 755.2143 
- 755.3438 
- 755.4489 
- 7 5 5 . 5 3 0 1  
- 7 5 5 . 5 8 7 6  

- 755.6219 
- 755.6332 
- 755.6220 
- 755.5885 
- 755.5332 
- 755.4563 
- 755.3581 
- 755.2390 
- 755.0993 
- 754.9393 
- 754.7594 
- 754.5597 

0.0600 
0.0610 
0.0620 
0.0630 
0.0640 
0.O650 
0.0660 
0.0670 
0 . 0 6 8 0  

0 . 0 6 9 0  

0.0700 
0.0710 
0.0720 
O. 0730 
O. 0740 
0.0750 
0.0760 
0.0770 
0.0780 
0.0790 
0.0800 

1.1875 
0.9570 
0.7523 
0.5730 
0.4189 
0.2894 
0.1843 
0.1031 
0.0456 
0.0113 
0.0000 
0.0112 
0.0447 
0.1000 
0.1770 
0.2751 
0.3942 
0.5339 
0.6939 
0.8739 
1.0735 

0.0800 
x +  .0100 
1,416.55 

value can only increase on changes in interest rates. The illustrated portfolio 
has cash outflows of  $1,000 in years 3 and 6 and an inflow of $1,416.547 
in year 9. If the year 3 yield rate is 7 percent, this portfolio, whose value 
is a liability, could be assumed on receipt of  $755.63. The non-zero second 
derivative of the value of this portfolio is illustrated in the table. Before 
trying to construct this portfolio, the speculator must realize that this table 
expresses interest rates as a function of a finite number of  parameters. The 
following table illustrates the flaw. 

This table illustrates that a minute change in the shape of the yield curve 
produces a loss for the dream portfolio. The new yield-curve shape was not 
allowed for in the simple model used to produce the portfolio. A more 
complicated model could be developed to allow for this shape also. In fact, 
Professor Milgrom does just this in section IV of his paper. However, any 
model involving a finite number of parameters cannot allow for all possible 
yield-curve shapes. 

I must disagree with Professor Milgrom's conclusion in section III that 
"immunizing effectively against the losses suffered from small changes in 
I over all short periods also solves the larger problem of immunizing against 
the large movements in I that may take place over longer periods." His 
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YEA R: 

YIELD CURVE AT PURCHASE: 

NEW YIELD CURVE SHAPE: 

CASH FLOWS: 

0.0700 
x 

- 1 , 0 0 0 . 0 0  

0.0750 
x + . 0 0 5 1  

- 1 , 0 0 0 . 0 0  

YIELD TO VALUE OF ARBITRAGE 
YEAR 3 PORTFOUO GAIN 

- 755.3647 
- 755.5757 
- 7 5 5 . 7 7 1 0  
- 7 5 5 . 9 4 0 9  
- 7 5 6 . 0 8 5 9  
- 756.2063 
- 7 5 6 . 3 0 2 4  
- 7 5 6 . 3 0 2 4  
- 756.4234 
- 756.4489 
--756.4516 
- 756.4319 
- 7 5 6 . 3 9 0 0  
- 7 5 6 . 3 2 6 3  
- 756,2411 
- 7 5 6 . 1 3 4 8  

- 756.0076 
- 755.8600 
- 755.6921 
- 755.5043 
- 7 5 5 . 2 9 7 0  

0.0600 
0.0610 
0.062O 
0.063O 
0.0640 
0.065O 
0.0660 
0.0670 
0.0680 
0.0690 
0.0700 
0.0710 
0.0720 
0.0730 
0,0740 
0.0750 
0.0760 
0.0770 
0.0780 
0.0790 
0.0800 

0.2785 
0.0575 

- 0.1378 
- 0 . 3 0 7 7  
- 0 . 4 5 2 7  
- 0 . 5 7 3 1  
- 0.6692 
- 0 . 7 4 1 4  
- 0 . 7 9 0 1  
- 0 . 8 1 5 7  
- 0.8184 
- 0 . 7 9 8 7  
- 0 . 7 5 6 8  
- 0 . 6 9 3 1  
- 0.6079 
- 0 . 5 0 1 6  
- 0 . 3 7 4 4  
- 0 . 2 2 6 7  
- 0.0589 

0.1289 
0.3363 

0.0800 
x +  .0102 
1,416.55 

reasoning is that equality of  first derivatives implies equality of second de- 
rivatives, else a portfolio could be constructed which resulted only in gains. 
Since this reasoning makes use of derivatives, it implies that interest rates 
are a function of a finite number of parameters. I have stated that this cannot 
be valid, but even if it is valid, it contradicts earlier statements by Professor 
Milgrom. For example, the interest function must either be consistent with 
the no-arbitrage hypothesis or inconsistent with it. If the former, then it is 
untested as stated by Professor Milgrom in section III. If the latter, then the 
second derivatives are not necessarily equal. Finally, Professor Milgrom 
stated that there is no place in immunization theory for second derivatives. 

Although I disagree with one of Professor Milgrom's conclusions, I found 
his paper to be most scholarly. 

J A M E S  M.  R O B I N S O N :  

I would like to congratulate Professor Milgrom on his thought-provoking 
analysis of the measurement of the interest rate risk. I offer a brief discussion 
of the traditional immunization model presented in section III of the paper, 
especially with regard to the existence of arbitrage opportunities. I hope that 
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my comments and any subsequent remarks that Professor Milgrom might 
add will help clarify the points already presented. 

Again, consider a yield curve g(t) = ~ + 2x(t), where ~(t)  is a shape 
component and 8 establishes the overall level of interest rates. Now, let v(t) 

= exp { - f ~  8(s) ds}, the discount factor generated by such a yield curve. 
If it is assumed that only g varies in the short run while A(t) remains 

fixed, then arbitrage opportunities will always exist. To see this, consider 
the following construction, 

Given L = (LI, L2 . . . . .  L,,), structure A = (AI, A 2 . . . . .  A,z) in the 
following manner. For some arbitrary k such that 1 < k < n, define 

{ L s.  i 4: k - l ,  k, k + l  

Ai = L i - 1, i = k 
L i + v ( k ) / 2 v ( k - 1 ) ,  i = k - 1  
Ls + v ( k ) / 2 v ( k +  1), i = k +  1. 

In other words, use exact matching to support all but $1 of the liability 
stream. For the remaining $1, purchase assets of equal present value ma- 
turing one period prior and one period after the duration at which this $1 is 
due to be paid. It is easily shown that the asset and liability structures have 
equal present values and durations. Furthermore, the second derivative of 
the assets with regard to changes in 8 is greater than that for the liabilities. 

P V ( A  - L , g )  = { v ( k ) / 2 v ( k  - 

+ {v(k) /2v(k + 

- - 0  
- d P V ( A  - L ,  g)/dg = {v(k)/2v(k - 

+ {v(k)/2v(k + 

= 0  
a e P V ( A  - L ,  g)/d82 = { v ( k ) / 2 v ( k -  

+ 

l ) } v ( k - l )  - {1}v(k) 
l ) } v ( k +  1) 

1)}(k- l ) v ( k -  1) - {l}kv(k) 
1)} (k+ I)v(k+ I) 

l ) } ~ k -  l~2~,~k - l )  - {1}kz,,~k) 

{v (k ) /2v (k+ 1)}(k+ 1)2v(k+ 1) 
v(k) {k z - 2k + 1 - 2k 2 + k 2 + 2k + 1}/2 

= v(k) > 0 

Therefore, the present value of the assets will be greater than or equal to 
the present value of the liabilities for 8 sufficiently close to the current value 
of ~. Since interest rates are almost certain to vary, an arbitrage opportunity 
exists. That is, the preceding technique would seem to be a fool-proof recipe 
for creating surplus. 

The no-arbitrage hypothesis argues that such a technique may not survive 
in an efficient market. Consequently, there must be something wrong with 
this development. Professor Milgrom contends in section Ill that flat yield 
curves (i.e., Z~(t) = 0) produce arbitrage potential. This is certainly sup- 
ported in the previous example. However, Professor Milgrom goes on in a 
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footnote to state that a linear form for •(t) may be constructed which is 
consistent with the no-arbitrage hypothesis. I find this difficult to reconcile 
with the previous findings, which apply to any reasonable form for ~( t ) .  
Perhaps the author could help explain this apparent inconsistency in his 
response to the discussions. 

What is wrong with the previous analysis? The only significant assumption 
required is the constancy of ~( t )  as 8 varies. At this point, I can only 
conclude that in a market in which arbitrage opportunities are nonexistent, 
A(t) must vary as well as 8. As Professor Milgrom points out, unless we 
have some knowledge about feasible variations in A(t) and b, we cannot 
hope to develop a practical measure of the interest rate risk. The author's 
two-factor yield structure and the associated first order sensitivity indexes 
are certainly more palatable than the overly simplistic counterparts in the 
traditional Macaulay-Redington model. With these points in mind, I tend to 
agree with Professor Milgrom's contention that the various immunization 
factors presented in the paper are not reliable measures of the total exposure 
to the risk of varying future interest rates but are more appropriately used 
as sensitivity indexes for a variety of speculated types of interest variations. 

(AUTHOR'S  REVIEW OF DISCUSSION) 

PAUL R. MILGROM: 

I would like to thank all the discussants for their comments, which serve 
to expand, elucidate, and in one case correct the points made in my paper. 
It was especially gratifying to find so much agreement--or  at least so little 
disagreement--with the economic approach to present value theory that I 
described, ~ even though that theory diverges importantly from the traditional 
actuarial approach. 

The discussion by Messrs. Buff and Lord brings out practically some of 
the issues I explored abstractly. The discussants focus their comments on 
the kinds of errors that are frequently made in evaluating the status and 
vulnerability of financial security plans. Their concrete listing of the dangers 
of using book values in place of market values for evaluating C-3 risk are 
well worth studying. But this listing of dangers is not their only contribution. 
They also highlight the problems that arise when the cash flows to be im- 
munized may themselves be sensitive to interest rates. That is a problem of 
enormous practical importance not only for managing portfolios and mea- 
suring the interest rate risk, but also for the valuation of liabilities. For 
valuations, the difficulty is that the cost of a portfolio that matches the cash- 
flow pattern of the liability will generally depend on the interest sensitivity 
of the cash flows. 

This approach was first developed more than half a century ago by the American economist 
Irving Fisher, It has since become the standard approach used in textb~vaks on microeconomics. 
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It is important to recognize that the difficulty in valuing and immunizing 
interest-sensitive cash flows is not one of principle. The Vj indexes can (in 
principle) be computed exactly as specified in my paper regardless of the 
interest-sensitivity of the cash flows. The real difficulty is that there is little 
precise information about how the cash flows of even such major classes of 
financial security plans as life insurance and pensions actually respond to 
shifting interest rates. Failure to account for interest sensitivities introduces 
biases into the index calculations. For example, if annuity holders delay 
making withdrawals in order to take advantage of interest guarantees when 
market interest rates are below the contractually guaranteed rates, then falling 
interest rates increase liabilities more than otherwise; the index understates 
the true sensitivity of the present value of annuity payments to changing 
interest rates. 

General statements about the biases introduced by interest-sensitive cash 
flows are hard to make because so little is known about how people actually 
respond to changing interest rates. Research shedding light on this matter 
would be of great value. 

Four of the discussants, Messrs. Levin, Shiu, Clancy, and Wurzburger, 
have spotted an error in my treatment of second derivatives of the present- 
value function. (They also provide a formal mathematical treatment, using 
the Ito stochastic calculus, of some of the same issues I treated.) I had 
mistakenly argued on the last page of section III that if "A and L have equal 
present values and equal vulnerabilities" then the second derivatives of the 
present-value functions PV(A; I) and PV(L; 1") with respect to the interest rate 
indexes must also be equal. I relied on this statement to reach the incorrect 
conclusion that frequent portfolio rebalancing is not critical for approximate 
immunization. 

The correct argument, rendered here in plain English, goes as follows. If 
A and L have equal present values and vulnerabilities (evaluated at market 
interest rates), then the random variations in their returns 2 over the next short 
interval of  time will be equal--that  is how the vulnerability indexes were 
constructed. Then, if the mean returns over the next short time interval for 
A and L are not equal, the stream with the higher mean will always have 
the higher return over the next short interval of time so that there is an 
arbitrage opportunity. Therefore, assuming the no-arbitrage hypothesis, 
equalizing vulnerability measures assures that the two streams have precisely 
equal returns over the next short interval.3 This argument confirms that, as 

2 Around, say. the mean return. 
3 Those facile with the Ito calculus can check the corresponding formal steps of this argument as 

follows. Equal vulnerabilities and present values imply that the diffusion coefficients of the values 
of A and L are equal, Then. the no-arbitrage hypothesis implies that the drift coefficients are also 
equal. For, otherwise, the investment portfolio corresponding to A - L would have zero net cost, 
non-zero drift, and zero diffusion coefficient; that is. it would be an arbitrage portfolio. 
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I had claimed, only first derivative measures of vulnerability are necessary 
for immunization if poroColios can be rebalanced suffficiently frequently. And, 
importantly, for nonimmunized portfolios, these same vulnerability measures 
correctly reflect the risk the portfolio faces in the near term due to shifting 
interest rates. 

The foregoing argument is not inconsistent with the argument advanced 
by several discussants that convexity (second derivative based) measures 
have a role to play in immunization theory. To maintain effective immuni- 
zation over time without frequent (and expensive) rebalancing, one needs to 
arrange the portfolio so that the vulnerabilities of A and L remain nearly 
equal as time passes and interest rates change. One does this by equating 
the derivatives of the vulnerability measures with respect to time and the 
interest rate indexes. The latter involves second derivatives of the present- 
value function. Mr. Levin makes precisely this point when he says that 
convexity can be viewed as the "extent  to which duration changes with a 
change in yie ld ."  

The upshot of the foregoing analysis is that using both first and second 
derivative based measures for immunization reduces the need for frequent 
portfolio rebalancing. For portfolios that are not fully immunized because 
immunization is but one of  several objectives and for which vulnerability 
measures are needed, the indexes derived from first derivatives of the pres- 
ent-value function are probably adequate. 

Two of the discussions, those of Mr. Shiu and of Messrs. Buff and Lord, 
assess the success of the Macaulay-Redington index in practice. While Messrs. 
Buff and Lord are optimistic about the value of the Macaulay-Redington 
index (arguing that immunization using that index is, as a practical matter, 
effective), Mr. Shiu cites a study by my colleague, Jon Ingersoll, who finds 
in a study of managed portfolios that the immunization using the Macaulay- 
Redington duration measure is ineffectual for eliminating the interest rate 
risk. 

Given the strength of  the theoretical arguments against the Macaulay- 
Redington duration index, Ingersoll's empirical findings are as expected. 
Certainly, no well-trained actuary would expect a single mortality " l eve l "  
index to capture the subtle shifts in age/sex-specific mortality changes that 
occur over time and are important to insurance pricing; that is why detailed 
mortality studies are continually conducted by the life insurance industry. 
Imagine how much less satisfactory a single mortality index would be if the 
highest mortality rates occurred sometimes at the young ages and sometimes 
at the old, and "overa l l "  rates were sometimes rising and sometimes falling! 
That is precisely the case for interest rates: short-term rates are sometimes 
higher and sometimes lower than long-term rates, and the whole twisting 
structure rises and falls quite suddenly. Just as mortality rates are key for 
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all life insurance pricing, interest rates are key to bond pricing and liability 
valuation. Any sensible person can see that a single index based on the 
overall " l e v e l "  of  interest rates cannot represent the shifts of this kind 
adequately for liability valuation. 

As I have emphasized in my paper, measures of  risk are based on theories 
of  interest rate movements,  that is, theories that impose some restrictions 
on the term structure of  interest rates and how it may change over  time. The 
Macaulay-Redington duration measure is based on the theory that interest 
rates at all durations move up and down together equally and in unison. That 
model errs substantially in its description of actual interest rate movements. 
Shifts in the shape of the yield curve can and sometimes do have large 
effects on the solvency of financial security plans, even when the Macaulay- 
Redington duration measure says the risk is zero. Empirical studies normally 
operate by averaging the performance of the Macaulay-Redington index over 
those times when it works well and those when it fails. For a decision maker, 
the most telling point to emerge from the data is that the Macaulay-Redington 
index is unreliable, and it is most unreliable precisely when it is most needed, 
which is when the cash-flow streams of assets and liabilities are far from 
being matched. The favorable empirical studies, which average the good 
performance of Macaulay-Redington-immunized portfolios when the streams 
are well matched with the bad performance of Macaulay-Redington-immu- 
nized portfolios which are not well matched, are cold comfort  to a manager 
who needs a reliable guide to measuring risks. 

Mr. Christian's main criticism of my article is founded on his view that 
the no-arbitrage hypothesis is just a first order approximation and that any 
worthy financial institution ought to be looking for arbitrage opportunities 
to exploit. He then hints that such an institution ought to be suspicious of a 
risk measure based on the no-arbitrage hypothesis, such as any of the mea- 
sures I have mentioned. However, Mr. Christian's argument does not justify 
the hinted conclusion. 

In saying that the no-arbitrage hypothesis is a "first approximation,"  one 
might sensibly mean that financial institutions, from time to time, can iden- 
tify arbitrage opportunities but not on so large a scale as to limit the insti- 
tution's ability to finance other investments. Then, surprisingly, the economic 
theory of  market valuation I have described applies exactly; that is, the 
economic value of a cash-flow stream is its present value computed using 
the interest rates implicit in the bond prices of the arbitrage-free portion of 
the market. Indeed, nothing in the argument given in my paper is affected 
by the presence of the limited arbitrage opportunities described previously: 
It is still true that an asset is worth no more or less than the cost of duplicating 
its cash flows by trading in liquid bonds. If the asset is cheaper than the 
corresponding bonds, one would still want to sell the bonds and make the 
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investment. If the investment were dearer, it would still be better to buy the 
bonds. 

This is not to say that the economic valuation theory described in my 
paper is exactly right for the world we actually live in, with its illiquidities, 
tax consequences of  trading, and interest-sensitive cash flows. My point is 
much more limited in that the no-arbitrage hypothesis need not hold exactly 
in order for the theory and its associated risk measures to be useful. Indeed, 
as we have seen, the theory is unchanged if one weakens the no-arbitrage 
hypothesis to allow limited arbitrage opportunities to arise from time to time. 

Mr. Eckley criticizes the use of immunization theories and measures in 
principle, since they depend on parametric assumptions about the yield curve- -  
assumptions which are only approximations, and possibly poor ones. I have 
already emphasized that these theories and measures do depend on assump- 
tions about the shape of the yield curve. There are both theoretical and 
empirical reasons to believe that the yield curve does have some structure, 
although that does not guarantee that we will be able to isolate the structure 
in a useful way. Mr. Eckley 's  cautions are well-warranted. 

Nevertheless, the only proper reason to eschew the use of all parametric 
yield curves is that one can do as well without them. Indeed, as Mr. Eckley 
argues, there may be some situations in which matching is perfectly appro- 
priate and immunization indexes are dispensable. I suspect, however, that 
actuaries more often find matching strategies to be inadequate. How should 
an actuary advise a client who rejects matching because immunization is but 
one of his several objectives? Should he eschew all vulnerability measures 
because they are imperfect? How should managers who would like to ap- 
proach perfect immunization proceed when the cash flows to be immunized 
are interest sensitive'? Matching in such a case may be impossible, and then 
immunization using measured vulnerabilities is presently the only alterna- 
tive. 

I have emphasized the word presently, because it is certainly conceivable 
that actuaries sharing Mr. Eckley 's  views could develop " theory-f ree"  mea- 
sures of  vulnerability that expand the domain of matching ideas. For ex- 
ample, one might say that the M-vulnerability index (M for matching) is 
defined as the maximum, over all nonnegative, year-by-year interest rates, 
of the excess in present value of the liability stream over the asset stream. 
For perfectly matched streams, the measure is zero. For other streams, it 
represents the worst-case loss from shifting interest rates. It is my guess that 
worst-case indexes will never be as useful as the kinds of  indexes described 
in my paper: The worst case described is quite extreme, and attempts to 
account for more realistic variations in interest rates amount to reintroducing 
an interest rate theory through the back door. However,  the matter is still 
far from resolved. 
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Mr. Robinson's discussion proves the claim in my paper that the Macau- 
lay-Redington flat curve theory of interest rates contradicts the no-arbitrage 
condition. He does this by showing how one can create a spread which, with 
certainty, performs better than a given original portfolio if the yield curve 
is always fiat. He then further argues, mistakenly, that the same spread rules 
out all theories of the term structure of interest rates in which the continu- 
ously compounded rate of interest rate at date t has the rigid form: 

~(t) = ~ + A(t), 

where ~ is subject to stochastic changes. However, when A(t) is not flat, 
the original and spread portfolios have different yields, and the inferior 
convexity of the original portfolio may be compensated by its higher yield. 
When A(t) is chosen exactly to compensate for differences in convexity, 
there is no arbitrage opportunity here, contrary to Mr. Robinson's assertion. 

I have tried to keep my review of the discussants' remarks reasonably 
brief and free of complicated mathematical arguments. I hope that readers 
fluent in the stochastic calculus will forgive me for the consequent lack of 
rigor, and that the discussants who used these techniques will forgive me 
for my necessarily incomplete review of their comments. My choices have 
been guided by a desire to communicate the principal, relevant, economic 
ideas to the widest possible actuarial audience. I will be most gratified if 
actuaries who have not mastered economics, finance, and the Ito stochastic 
calculus find my paper and review of the discussions to be illuminating or, 
at least, stimulating. 


