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ABSTRACT 

Traditionally, actuaries have assumed that the individual lives of joint-life 
and last-survivor statuses are independent when calculating the probabilities 
of survival or failure of these statuses. However, we usually find that indi- 
viduals covered by joint-life insurance or last-survivor annuity contracts are 
associated in some manner. This implies that the individual lifetimes are not 
independent. 

The dependent relationship between two lives is readily analyzed within 
the context of probability theory. Before proceeding with the analysis, we 
will present some useful relationships between certain actuarial and proba- 
bility functions. 

This paper will then explore some measures of dependence and examine 
a general class of bivariate distributions that possesses some desirable prop- 
erties with respect to these measures. We then present a special case of this 
class of distributions that simplifies the calculation of probabilities and an- 
nuities. Next, we show how large an increase or reduction is possible in the 
value of certain annuities when the individual lives are not independent. 

PROBABILITY AND ACTUARIAL FUNCTIONS 

Let T be the time until death of a life aged 0 with the distribution function 

F(t) = P(T<-t). 

Most of the standard actuarial functions may be derived from F(t). For 
example, the life function is equal to Ct = go (1 - F(t)) where ~'o is the 

F(x + t) - F(x) 
radix of the table. Also ,qx = 1 - F(x) . Let us denote ,q., by F~(t). 

Figure 1 illustrates F(t) for a female life using three mortality bases. The 
mortality rates are from the Ga-1951 table, the 1971 GAM, and the 1983 
Table a .  These mortality tables will be used later for the calculation of 
annuity values. 

' Dr. Chan, not a member of the Society. is Professor and Head ~f the Department of Statistics 
at ihe University of Manitoba in Winnipeg, Manitoba. 
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FIG. l--The distribution function of the time until death of a female aged 0 using various mortality 
tables. 

Let us examine the relationships between bivariate distributions and the 
joint- and last-survivor probabilities tq.~y and t q ~ .  Let T~ be a random var- 
iable of the time until death of a life aged x, and let Ty be the random 
variable for the second life. The bivariate distribution function of Z~ and T~. 
is defined as: 

F~v(t~,t,.) = P(T~<_(~,Ty<~tv). 

In this case, the marginal distribution function of T~ is E~(t,) = E~y(t~,~) 
which is tq.~ in actuarial notation. Now t q ~  is the distribution of the random 
variable Max(T~,7"v) and ~q.,~, is the distribution of the random variable 
Min(T~,T 0.  These probabilities will be used later for the calculation of 
annuities. It can be shown that: 

, ~ .  = F~. ( t , t )  

tq~,. = Fx( t )  + F~.(t) - F, .v( t , t ) .  

Under the assumption of independence, the bivariate distribution is equal 
to F~,. ( t , , t y )  = E~(tx)F, .( tv) .  Consequently, the joint- and last-survivor prob- 
abilities are simplified into the form: 

, ~q~. = ~q~ tq,. and tq~,. = 1 - (1 -tqx)(1 - t q , . ) .  
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What does a bivariate distribution look like? We could plot the distribution 
function, but illustrating its density is more instructive. If the density exists 
then it is equal to: 

032 
f (tx,(O - - -  F~.~. ((~,t,,). 

03t x 03t,. 

Figures 2A, 2B, and 2C illustrate the densities of bivariate distributions 
whose marginals follow the Gompertz law of mortality w h e n / ~  and T;. are 
independent, negatively related and positively related. In these figures we 
set x = y = 20. The densities were derived by the translation method which 
will be outlined later. 

A more detailed exposition of some of these ideas may be found in Bowers 
et al. [1]. 

MEASURES OF ASSOCIATION 

There are a variety of ways in which the dependence between two random 
variables can be summarized by a single measure. These measures are usu- 
ally defined to lie between - 1  and + 1 and to be equal to zero under 
independence. 

Let us suppose that the death of  a life, aged x, has no effect on the 
death or survival of  another life, aged y. Then we will usually say that 
there is no association between the two lives. Stochastically, this means 
that the corresponding random variables Tx and T,. are independent, that 

tx 

0 
FtG. 2A--Density of an independent bivariate distribution that follows the Gompertz law of mor- 
tality. 
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Fi(i. 2B--Density of a distribution with negative correlation that follows the Gompertz law of 
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Ftc;. 2C--Density of  a distribution with lx~sitive correlation that follows the Gompertz lay,' ol 
mortality. 

is F~y(t~,t , .)  - F , ( tOF , . ( t , . )  for all values o f  t~ and t,. In this case,  the 
usual measure o f  associat ion will be zero. 

We will say that a pair of  lives are in agreement if a long life for one is 
associated with a long life for the other. In this case, the measure will be 
positive. We will say that the two lives are in perfect agreement if there 
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exists a strictly increasing function I(.) such that T,. = I(7" 0. For example, 
if T,. = 7"~, then the lives will die at exactly the same time. 

We will say that the lives are in disagreement if a short life for one is 
associated with a long life for the other. In this case, the measure will be 
negative. The lives will be in perfect disagreement if there exists a strictly 
decreasing function D(-) such that T,. = D(T0.  

The usual parametric measure of association is the linear correlation coef- 
ficient. Let E be the expectation operator and let g.~. and o'~ be the mean 
and variance of the random variable T,. The linear correlation coefficient is 
defined as: 

Another measure is the grade correlation coefficient. This measure is 
realized by first transforming T~ and 7",. and then applying the previous 
formula. Let M = E~(T0 and W = Fv(Tv) and let ~M and ¢~w be the mean 
and variance of the random variable M. The grade correlation coefficient is 
defined as: 

It is well-known that 19p[ = ! if and only if the functional relation between 
the variables is linear. This measure is deficient in the sense that if the 
variables are monotonically related and nonlinear, then ]gpl <1. But Ps is 
better behaved in the sense that if there exists an increasing function I(.) 
such that 7~, = I (T0,  then p.~ = 1. Similarly, p.~ = - 1 if and only if there 
exists a decreasing function D(.) such that T, = D(TO" (See Theorems 1 to 
3 in Appendix I for details.) We will later see that the grade correlation 
coefficient is an ideal measure because if 1o l - -  1, then the bivariate dis- 
tribution F~y(t~,(,.) attains certain bounds. 

Suppose that we have a sample of  n independent pairs of observations 
from the distribution Fxy(t~,t O. Then the estimates for pp and p., are the 
Pearson product moment correlation coefficient and Spearman's rank cor- 
relation coefficient. (The formulas for these estimators are given in Appendix 
II.) 

Additional information about these measures of association may be found 
in Kruskal 18]. 

A GENERAL CLASS OF BIVARIATE DISTRIBUTIONS 

In practice, the only probabilities available for the calculation of joint-life 
insurance and last-survivor annuity values are tq~ and tqy. Therefore, it 
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would be desirable to have a general bivariate model that is a function of 
the marginal distribution functions E,.(t0 and F,.(t,). Initially, we want a 
model that is not restricted to special laws of mortality, such as Gompertz 's  
Law. 

Note that the marginal distributions E,( tO and F,.(ty) can be generated 
from many different bivariate distributions. Consequently, we first shall 
introduce a general class of  one-parameter bivariate distributions with these 
marginals. Each distribution in the class can be represented as: 

F,,.(t,,t, .) = HIE,- (t~,), Fy(ty);p], - 1 < P <- 1 

subject to the conditions that: 
a. H I F , ( t O ,  F~.({,.);+ 1] = Min[F,.((0, F>.(t,.)] = U (t,,t,) 

b. H[F,.(t,). E,.(t0;0] = E,(t,)/~,.({,.) = l(t~,t,.) 

c. HIEs( tO,  F,.({,.);-1] = Max[0, F~( tO+ F, . ( { , . ) -1]  = L(t.~,{,.). 

The parameter p gives some measure of association between Z~ and Z,'- 
Let us now discuss the derivation of these conditions and justify their use 
for our model. First, if p = 0, then we want the distribution to be indepen- 
dent, that is, Fx,.(t~,t,.) = F,.(t,)F,.(t,.). Second, if p = + 1 then we want 
T,. = I (TO,  which is a necessary and sufficient condition for the bivariate 
distribution to equal Min[E~(t , ) ,F, . ( tO].  Third, if 9 = - 1 then we want 
T v = D(Tx), which is necessary and sufficient for the bivariate distribution 
to equal Maxl0,E~(t0 + E~,(q) - 1]. (For further details, see Theorems 4 and 
5 in Appendix I.) 

L(t~,t,.) and U(t~,t,.) are called boundary distributions because any bivariate 
distribution lies within these bounds. It is easy to prove that: 

L(t~,t,.) ~ E,,.(t~,t,.) .<- U(t, , tv) .  

These boundary distributions were first introduced by Fr6chet [2] and are 
directly related to the grade correlation coefficient. Specifically, if IP.~l = 1, 
then F~,.(t,,t,.) assumes Fr6chet's bounds. Also, note that the density of a 
bivariate distribution does not exist at these bounds. 

There are an uncountable number of one-parameter distributions which 
will satisfy the conditions of  the previous model. Many of these were out- 
lined by Johnson and Tenenbein [4], Kimeldorf and Sampson [6], I7], and 
Mardia [9]. 

MIXTURES OF DISTRIBUTIONS 

One easy way of obtaining probabilities for all degrees of association is 
to construct a distribution that is a mixture of L(t~,t,.), l(t , , t , .) ,  and U(t~,t,).  
The mixture arises from the assumption that the population consists of three 
groups. We will assume that the proportion of paired lives in perfect 
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disagreement within the population is P l .  Similarly, the proportion in 
perfect agreement is P3, and the proportion that is independent is P2- The 
model is defined as: 

H[Fr(t0,F,.(tv);p] = Pt(p)L(t~,ty) + P2(p)l(tx,(,.) + P3(p)U(t~,tv). 
The proportions P~(p), P2(P), and P3(P) are weight functions that satisfy the 
following conditions: 

a. PI(P) -> 0, P2(P) -> 0, and P3(P) -> 0 
b. PI(P) + P2(P) + P3(P) = I 
c. P l ( - -  1) = P2(0) = P3(+ 1) = 1. 

The density for this model does not exist, but the strength of this distri- 
bution lies in its simplicity. Later we will show how easy it is to calculate 
annuities for all levels of association with mixtures of distributions. Another 
important feature of this model is that the grade correlation coefficient is 
equal to p., = P3(P) - P~(P)- (See Theorem 6 in Appendix I.) 
A general class of weight functions can have the form: 

2 t + l  

Ipl*(1 - 
Pl(P) = 

2 

P2(P) = 1 - I p l  ~ 

Ipl ( 
P3(P) - 

w h e r e k - > 0 ,  c = 0,1,2 . . . . .  d = 0,1 
The grade correlation for this model is: 

2 c +  I 

1 +p~+l )  

2 

2('+ 1 

p~ = Ipl k p~+~. 

As a special case of this model, Mardia [9] used the weight functions: 

Pt(P) = p2 ( l - p ) ,  p2 
(1 +p)  

2 P 2 ( P )  = 1 - p  2 , P 3 ( p ) =  2 

The grade correlation for this model is Ps = 9 3. 
Another model has the weight functions: 

P , ( P )  = ipl2/l.s ( l __ , -p l /5 )  P2(P) = 1 - [9[ 2/''5, P3(P) : ipl=,, (l +p,,5) 
2 2 

The grade correlation for this model is Ps = 91/3- 
Estimating a mixture distribution is a matter of estimating the marginal 

distributions E~(tO and E,'((,) and the proportions PI,  P2, and P3. If the true 
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form of the distribution is not a mixture,  it may still be possible to approx- 
imate the true distribution with a mixture. 

A N  A N A L Y S I S  O F  T H E  E F F E C T  O N  A N N U I T I E S  

In this section, we examine how the value of  certain annuities are affected 
when the probabilities assume Fr6chet 's  bounds, We will consider some 
standard annuities found in Jordan [5]: 

aty = immediate  annuity payable yearly until the first death 

= ~ v'(! - ,qxy) = ~ v'( 1 - ,q,. - ,q~. + ,q~,,.); 
t : l  t : l  

a ~  = immediate annuity payable yearly until the second death 

---- ~ ,  Vt( [ -- tq?~y); and 
t I 

= immediate  annuity payable yearly and reducing to 2/3 of  the 
principal amount  on the death of  the principal life v 

= ~ v'[ 1 - (,qy + 2,q~)/31. 

q f _  

t 1 

The female life is aged x and the male life is aged 3' and v' = (l + i ) - ' ,  
where i = effective annual rate of  interest. If  we have a mixture of  distri- 
butions, then 

, .q~. = F~,.(t,t) = H(,q. , . . ,q ,;p)  

= P ~ ( p ) L ( t . t )  + P2(p) l ( t , t )  + P3 ( 9 )U ( t . t ) .  

The last-survivor annuity assumes the following form when the distribution 
is a mixture: 

a ~  = PI(P) ~ v ' ( l - L ( t , t ) )  
! | 

3¢ 

+ P2(P) E v'( 1 - l( t ,  t)) 
t 1 

+ P3(P) ~ v'(l - U(t . t ) ) .  
t I 
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That is, a ~  is the weighted average of the last-survivor annuities correspond- 
ing to the distributions L(t,t), l(t,t) and U(t,t) with weights PI,  P2, and P3. 
Also, a~:~. and ajr c a n  be similarly obtained for any mixture. 

Figure 3 illustrates the value of a last-survivor annuity for two lives aged 
60 at 5 percent interest using the 1971 GAM table. Plot I shows the value 
of a ~  for all values of the parameter p, when we use Mardia's weight 
functions. The weight functions for plot II are those of the general class 
when k -- 2/15, c = 0, and d = 2. The grade correlation for the distributions 
underlying plots I and II are Ps = P 3 and Ps = 01 /3 ,  respectively. 

Tables 1A and IB give the values of a~., a~ ,  and air at four interest rates 
(0%, 5%, 10%, 15%) and three mortality bases (Ga-1951, 1971 GAM, 1983 
Table a )  for pairs of lives aged 40, 60, and 80. Annuity values at the upper 
and lower bounds are tabulated, as well as the independent case. On ex- 
amining the tables, one notes that changing the mortality basis is about as 
significant as changing the correlation from zero to one or negative one. 
Also, note that discounting for interest lessens the effect of changing the 
parameter 13 and that increasing the ages of the pair of lives increases the 
effect of changing the correlation. 

These tables can also be used to calculate annuity values for any corre- 
lation I).3, if we assume that tq~ is a mixture of distributions. For example, 

15.0 

14.5 

~ 14.0 

~ 13.5 
Z 

13.0 

12.5 

" " " ' ~ ' " ~ ' ~ ' - ~ %  I I -  Ps = P% -,,, 
I- P$ = P3 | l l  

u I 1" 

- 1 . 0 - 0 . 8 - 0 . 6 - 0 . 4 - 0 ' . 2  0'.0 0:2 0:4 0.6 0:8 1.0 
P 

FIG. 3--Value of a last-survivor annuity for mixtures of distributions based on the 1971 GAM table. 
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TABLE IA 

ANNUITY VALUES AT THE BOUNDS 

TABLE 

Ga- 
1951 

1971 
GAM 

1983 
Table t /  

i = 0 %  i =  5% 
AGE t 

' at~ a'~ air a ~  a ~  al¢ 

40 - 1 27.124 45.723 41,827 14.083 17.779 17.000 
0 29,657 43.189 40.138 14.518 17.344 16,710 

+ I 34.035 38.812 37.220 15,443 16.418 16.093 

60 - 1 11.449 26.426 23.359 8.150 14.324 13.061 
0 13.614 24,261 21.916 9.016 13.458 12.484 

+ I 17.225 20.651 19.509 10.535 11.939 11.471 

80 - I 2.455 10.599 9,024 2.195 7.873 6.783 
0 3,687 9.367 8,203 ~ 3.086 6,981 6.189 

+ 1 5.875 7,180 6.745 ' 4.604 5.463 5.177 
I I 

40 - 1 29.191 I 47.920 43.785 14.624 18,005 17.255 
0 31.654 45.458 42,143 15.004 17.625 17.001 

+ 1 35.515 41.597 39.569 15.754 16.875 16,501 

60 - 1 12.812 28.450 25.053 8,851 14.855 13.550 
14,995 26.267 23.598 9,655 14,051 13,015 

+ 18.259 23.003 21.422 10.942 12.765 12,157 

80 - /  2.983 11.898 10.100 2.626 8.604 7.407 
0 4.320 10.560 9.208 3,552 7.678 6.789 

+ I 6.504 8.377 7.752 5.012 6.217 5.816 

40 - I 32.658 51.610 47.657 15.350 18.339 17,707 
0 35.213 49.055 45.954 15.683 18.006 17.486 

+ I 39.751 44.517 42.929 16,444 17.245 16.978 

60 - I 15.915 32.022 28,720 10.280 15.688 14.577 
0 18.206 29.731 27.192 10.998 14.971 14.099 

+1  22.115 25.822 24.586 12.355 13.613 13.194 

80 - I ] 4.272 14.300 12.354 3.631 9.845 8.642 
0 ] 5,788 12.784 I 1.343 4.591 8.885 8.002 

+ 1 , 8.462 10.110 9,561 6.237 7,239 6.905 

the value ofa.,~., using the 1983 Table a when i = .10, x = y = 60, 
p = .9 (i.e., p.,. = .729), with Mardia's weight functions is equal to: 

~ 0 ( 1  
.92 -'------~" x 7.273 + ( 1 - . 9 2  ) x 7.526 

2 

+ .92 (! + . 9 )  x 8.110 = 7,965. 
2 

Now, let us consider the following problem. What is the change in the 
interest assumption that would yield an annuity value equal to the change 
in the correlation from zero to one or negative one? Table 2 shows the 
change required from a 5 and 15 percent interest assumption so that the 
value of the annuity when p = 0 is equal to the value when p = +_1 for 
various annuities and mortality bases, at ages 50 through 90. Note that at 
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TABLE 1B 

ANNUITY VALUES AT THE BOUNDS 

61 

TABLE 

1951 

1971 
3AM 

1983 
Fable a 

i = 10% / i = 15% 
AGE + 

a.r~.!a~ta.Fta~.',a'~ta/r 
40 - ,  8.829 9.856 9.638 6  .63 6 ! 6 5 6 9  

0 8.920 976  9,577 6.286 6.630 6.554 
+1 9.201 9.484 9.390 6.403 6.513 I 6.476 

60 - I 6.150 9.103 8.496 4.858 6.461 I 6.129 
0 6.530 8,723 8.242 5,040 6.278 6.007 

+ 1 7.282 7.971 7.741 5.465 5.853 I 5.724 

80 - 1 1.979 6. 130 5.338 1.798 4.951 4.352 
0 2,643 5.466 4.896 2.305 4.444 I 4.014 

+ 1 3.754 4,355 4.155 3.154 3.595 3.448 
I 1 I 

40 - 1 9.011 9.883 9.688 , 6,340 6.656 ! 6.585 
0 9.083 9.812 9,640 6.357 6.640 6.574 

+ 1 9.297 9.598 9,497 6.443 6.554 6.517 

60 - 1 6.543 9.259 8.665 5.096 6.511 6.198 
0 6.871 8.931 8.446 5.244 6,363 6.100 

+ 1 7.477 8.325 8.042 5,574 6.033 5.880 

80 - 1 2.336 6.566 5.723 2.098 5.223 4.602 
0 3.000 5.902 5,280 2.588 4.733 4.276 

+ I 4.037 4.865 4.589 3.361 3.960 3,760 

40 - 1 9.208 9.919 9.765 6.410 6.661 6.606 
0 9.262 9.865 9.729 6.421 6.649 6.598 

+ 1 9.459 9.668 9.598 6.496 6,575 6.548 

60 - 1 7.273 9.477 9.021 5.507 6.573 6.35 I 
0 7.526 9.223 8.852 5.608 6.473 6.284 

+1 8.110 8.640 8.463 5.907 6,173 6.084 

80 - I 3.137 7.250 6,454 2.747 5.621 5.064 
0 3,771 6.615 6,031 3.183 5.185 4.774 

+ 1 4.863 5.524 5,304 3.951 4.416 4.261 

the younger ages, changing the correlation from zero to one or negative one 
is insignificant relative to the interest assumption. But as the lives grow 
older, the correlation assumption increases in importance relative to the 
interest assumption. And, eventually the correlation assumption dominates. 

Another way to grasp the effect that the bounds have on annuity values 
is to calculate the relative change of the annuity at the bound compared to 
the independent case. That is, 

( Boundary Value ) 
Relative Change = 100 \Independent Value - 1 . 

Figures 4A and 4B illustrate the relative change of last-survivor annuities, 
a ~ ,  at four interest rates, using the 1971 GAM table, for all ages between 
20 and 80. Note, that as the age of the pair of lives increases, the relative 
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T A B L E  2 

THE CttANGE REQUIRED IN THE INTEREST ASSUMPTION FOR MAINTAINING TIlE ANNUITY VALUE 
AT O = 0 WHEN 10 IS CEIANGED TO -- I OR 1 

TABLE 

Ja- 
1951 

1983 
Fable ~/ 

i = 5 %  i = 15% 
AGE p 

a~.~. , a ~  , air , a ~  , a~- air 
50 --1  0 . 5 9  - - 0 . 3 2  - 0 . 2 4  0 .22  - - 0 . 1 7  - 0 . 1 2  

+ 1 - - 0 . 9 8  0 . 6 7  0 .48  - - 0 . 6 8  0 .57  0 . 3 9  

60  - I 1.44 - 0 . 6 1  - 0 . 4 6  0 . 8 0  - - 0 . 4 9  - - 0 . 3 6  
+ 1 - - 2 . 0 4  1.24 0.91 -- 1.67 1.25 0 . 8 8  

70 - I 4 .04  - 1.18 - 0 .92  3 .03 - 1.28 -- 0 . 9 7  
+ I - 4 , 6 5  2 .50  1.85 - 4 . 3 8  2 .83 2 . 0 4  

80 - 1  11.95 - 2 , 1 6  - 1 . 7 3  10.81 2.71 - 2 . 1 3  
+ 1 - 10.32 5.01 3 .73  - 10.65 6 .04  4.41 

90 - 1  34 .70  - 3 . 6 2  - 2 . 9 1  29 .53  - 4 . 5 7  - 3 , 6 5  
+ 1 - 20 .22  10.12 7 .37  - 21 .54  11.93 8 .62  

50 - I 0 .35  - 0 . 2 2  - 0 . 1 6  0 . 1 0  - 0 . 0 8  - 0 . 0 6  
+ 1 - 0 . 6 7  0 . 4 9  0 .35  - 0 . 4 3  0 .38  0 . 2 6  

60 - 1 0 . 8 0  - 0 . 4 0  - 0 . 3 0  0 .35  - 0 . 2 5  - 0 . 1 8  
+ I - 1.29 0 . 8 6  0 . 6 2  - 0 . 9 7  0 . 7 9  0 , 5 5  

70 - 1 2 .05  - 0 , 7 8  - 0 . 6 ( I  1.29 - 0 . 7 1  - 0 . 5 2  
+ I 2.71 1.58 1.16 - 2 . 3 4  1.66 1.18 

80 - 1 6 .05  - 1.52 - 1.20 4 .95  - 1.76 - 1.35 
+ 1 - 6 , 4 4  3 ,36  2 , 4 8  - 6 . 2 6  3 ,84  2 . 7 8  

90 - I 17.95 - 2 . 7 6  - 2 . 2 0  17.10 - 3 ~ 4 9  - 2 . 7 4  
+ 1 - 15.04 7 .78  5 .62  - 15.83 9 .23 6 . 6 0  

change in a ~  increases and that the effect is less significant at higher interest 
rates. 

Figures 5A and 5B illustrate the relative change of a~ ,  at four ages, using 
the 1971 GAM table, for all interest rates between 0 and 20 percent. Note 
that as interest increases, the relative change in a ~  decreases and that the 
effect is more significant at higher ages. 

S O M E  O T H E R  M O D E L S  

Consider some models developed by other authors. First, Fr6chet [2] sug- 
gested the following one-parameter bivariate distribution: 

F~,(t~,q,) = (1 - p )  Min lF~(tx),Fy(tr)] + p Max [O,F~(t,)+Fv(tO- 1] 

for0  <_ p_< 1. 

This model is simply a linear interpolation formula between his upper and 
lower bounds. The weakness with ,,lis model is that it does not include the 
case of independence. 
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FIG. 5A--Effec t  of the upper bound on a last-survivor annuity at four ages using the 1971 GAM 
table. 
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FZG. 5B--Effect of the lower bound on a last-survivor annuity at four ages using the 1971 GAM 
table. 

Second, a one-parameter  model that does include independence but not 
Fr6chet 's  bounds was given by Morgenstern [10]. He suggested the follow- 
ing formula: 

Fxv (tx, ly) = F,(tx)Fv(tv)[l  + p(1 - Fx(/x))(l - Fy(ty))l 

for - 1  <- p < - + 1 .  
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Third, Plackett [11] introduced a one-parameter model which includes 
Frrchet's bounds and also the case of independence. He pointed out that 
solving for Fxy(tx,tO in the following equation will yield a proper bivariate 
distribution: 

= Fxy(tx,t~)ll - F x ( t x ) - F z ( t s ) - F ~ ( t x , t ~ ) ]  for ~ > 0. 
[rx(tx) - Fxy(tx, ty)]IFy(ty) - Fxy(tx, ty)] 

Fourth, Mardia [9] suggested another one-parameter model which satisfies 
Frfchet's bounds and the case of independence. This model is generated by 
the translation method and uses the fact that the bivariate normal distribution 
assumes Frrchet's bounds when 101 ~ 1. Figures 2A, 2B, and 2C were 
created with this method. To generate the distribution of Fxy(tx, ty), we apply 
the transformation T~, = F x- I[+(U)I, T r = Fy-~[+(V)l to the standard 
bivariate distribution Huv(u, v;p) 

s: s_ ' { -' } = ~ ~ 2 " n ' V q - ~  exp 2(1----9 z) (r2 + s z -  29rs) dsdr 

r 2 

f_ - 
u e 2 

with a marginal distribution ~(u) = ~ ~ dr. 

This yields F~(t~,ty)  = P[T~<-tx,Ty<-t~] = 

P l f  x -  J [+(U)]-<tx,F,- 1 [d~(V)l ~ty] = H , v ( + -  llFx(t~)l ,~b- l [ f  y(ty)] ;p). 

The density is then derived by taking the partial derivatives of F~y(tx, ty) with 
respect to t~ and ty. 

Many other models may be found in Johnson and Kotz [3]. 
Finally, another measure of association that has properties analogous to 

the grade correlation coefficient is the difference sign correlation coefficient. 
Let (T~',Ty') and (Tx,Ty) be independent pairs of identically distributed ran- 
dom variables, then this measure is defined as: 

P, = 2PI(T~' - Tx)(Ty' - T0>0]  - 1. 

C O N C L U S I O N  

The usual calculation of joint-life or last-survivor annuities assumes that 
the individual lives are independent. This paper shows that dependence could 
have significant effects. The maximum effect occurs when the bivariate 
distribution of the random variables T x and Ty attains Frrchet's bounds, or 
equivalently, when the grade correlation coefficient attains its bounds of 
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+--- 1. A model  is presented that will facilitate the computa t ion  o f  annuity 
values for l ives wtih var ious  degrees  of  associat ion.  

But further work may  still be done.  The p rob lem of  identifying the true 
form of  the bivariate dis tr ibut ion and its es t imat ion is one project .  Another  
project  would  be to study how these measures o f  associa t ion change as the 
pair  of  lives grow older.  Still  another project  wou ld  be to analyze the effect  
the bounds may  have on pension plan l iabili t ies.  Also ,  a natural extension 
would be the case of  mult i l i fe  statuses and their distr ibutions.  
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APPENDIX 1 
THEOREMS AND PROOFS* 

TttEOREM 1. Let X and Y be two random variables with means P'x and p,y and variances 
¢r~ e and ~ry 2 and let 

90= E [ ( X - p ' x t ( Y - I ' t ' ~ ' ) ]  Then 
\ (~x / \ c)_~, ] j  

* The marginal probability distributions are assumed to be bijective and in many cases random 
variables are only equal up to sets of measure zero. 



BOUNDS OF BIVARIATE DISTRIBUTIONS 67  

a) pp = +1 iff X - I t ,  _ Y - I t  v, 

b)  

c) 

X - It~ I ts . -  Y 
pp = - 1 iff 

(** (*y 

i f  X and  Y are independent ,  then pp --- O. 

THEOREM 2. Let  X and  Y be 

G(y) and  let 

_r 
P'= ' l_i ,) 
a) p, = 12 EIF(X)G(Y)I  

two random variables with distribution funct ions  F(x)  and  

I /1" When 

- 3 ,  

h) 

c) 

d) 

a) 

Proof .  

p.~ = +1 iff F(X) = G(Y), 

Ps = - 1  iff F(X) = 1 - G(Y),  

I f  X and  Y are independent ,  then Ps -- O. 

Since F(X) and G(Y) are uniformly distributed over  (0,1), E(F(X) )= E(G(Y))  = 

1 1 
and V(F(X)) = V(G(Y))  = ~ ,  therefore p, = 12 E(F(X)G(Y))  - 3; 

b) and c) are direct results o f  Theorem 1. 

THEOREM 3. Le t  X and Y be two random variables with distributions F(x)  and  G(y) and  

let 1(.) and  D( . )  be strictly increasing and  decreasing funct ions .  Then 

I(X) iff  F(X) = G(Y) ,  

O ( X )  i f f  F ( X )  = 1 - G ( Y ) .  

If F(X)  = G(Y), then Y = G i (F(X)) which implies that Y = I(X). Now, if Y 
= I(X), then F(x)  = P(X<~x) -- P(l-n(Y)<--x) = P(Y<-I(x)) = G(l(x))  which 
implies that G ~(F(-)) = 1('); therefore F(X) = G(Y).  

b) If F(X) = 1 - G(Y),  then Y = G I ( I - F ( X ) )  which implies that Y - D(X).  

Now, if Y -- D(X), then F(x)  = P(X<--x) = P (D  l(Y)-<x) = P ( Y > D ( x ) )  = 1 

- G(D(x))  which implies that G ~ ( 1 - F ( ' ) )  = D( ' ) ;  therefore F(X) = 1 - 

G(Y). 

THEOREM 4. Let  A and B be two events. Then 

M a x ( O , P ( A ) + P ( B ) - 1 )  --< P I A A B )  <- Min(P(A) ,P(B)) .  

Proof.  P(A) + P(B) - P ( A A B )  = P ( A U B )  -< 1. This implies that P(A) + P(B) - 1 

P(Af 'IB).  But P(Af'IB) >- O. Therefore P ( A N B )  >- M a x ( O , P ( A ) + P ( B ) - I ) .  Now,  
P ( A A B )  <~ P(A)  and P(Ar )B)  <- P(B).  Therefore P ( A A B )  ~ Min(P(A) ,P(B)) .  

a) Y = 

b) Y =  

Proof.  
a) 
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THEOREM 5. Let X and Y be two random variables with a bivariate distribution function 
F~, (x,y), and marginal distribution functions F(x) and G(y) and let 1(.) and D(.) be 
strictly increasing and decreasing functions. Then 

a) F,-y (x,y) = Min[F(xLG(y)]  iff Y = /(X), 

b) Fxy (x,y) = Max[0 ,F(x)  + G(y) - 11 iff Y = D(X). 

Proof. 

a) If Y = I(X), then  F~. (x,y)=P[X~x,Y<-y] = PIX<~x,I(X)~-y] = P[X<-x,X<-l-l(y)] 
= MinlP(X<-x),P(X<-I 1(3,))] = MinlP(X<-x), P(I(X)<-y)] = MinlF(x),G(y)l. Now,  

if F,,. (x,y) = MinlF(x),G(.v)],  then E[F(X)G(Y)] = E(MW) where M = F(X), W = 

G(Y) and where  the bivariate distribution o f  M and W is Fmw (m,w) = Minim,w] .  
P i  t - i  

But it can be shown  that E(MW) = Jo L( Fm,, (m,w)dmdw. So E(MW) = 

f~ ~.. 1 m l 
~ m d m d w +  fo fo w d w d m  =- .There forep ,  = 1 2 E ( M W ) -  3 = 1. 

3 
And by Theo rems  2 and 3 this implies  that Y = I(X). 

b) If Y = D(X), then Fx~. (x,y) = P[X<-x,D(X)<-y] = P[X<-x,X>-D t(y)]. Now i f x  --- 

D t(y), then E~. (x,y) = 0 and i f x  > D -  ~(y) then F~. (x,y) = P[X<-xl - P[X<D- J(Y)I 

= PIX<-x] - P[D(X)>yl  = F(x) - (1 - G(y)). T h e r e f o r e  Fxy (x ,y )  = 
MaxI0 ,F(x)  + G(y)-  1]. Now if F~, (x,y) = Max[0 ,F(x)  + G ( y ) -  1], then Fm~ (re,w) 

f f' = Max[0 ,m  + w - 1 ] and E(MW) = (w + m - l )dmdw = - ,  therefore p~ = - 1. 
- w  6 

And by Theo rems  2 and 3 this implies that Y = D(X). 

THEOREM 6. Let X and Y be two random variables with marginal distribution functions 
F(x) and G(y) and with a bivariate distribution Hxv (x,y) = Pl(p)L(x,y) + P2(p)i(x,y) 
+ P3(p)U(x,y) where Pl(P) ,  P2(P), and P3(P) are suitable weight functions. Then the 
grade correlation coefficient is equal to p.~ = P3(P) - Pl (P) .  

Proof. 

EIF(X)G(Y)I=E,MW)=f~fo'Hm~(m,w)dmdw 
 ofo = [Pt(p)Max(O,m+w-I) + P2(p)mw + P3(p)Min(m,w)]dmdw 

= P l ( P ) [ o f / ~ ' m + w - l ' d m d w  + P'>(P'f~fomwdmdw + P3(P) f]  fo2mdmdw 

P2(P) P3(P) 
PJ(P) + + But PI(P) + P2(P) + P3(P) = I. 

= 6 - 7 - -  

P3(P) - PI(P) + 3 
Therefore  E(MW) = and p,~ = P3(P) - P~(P)- 

12 
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APPENDIX I1 
S T A N D A R D  E S T I M A T E S  OF C O R R E L A T I O N  

Let (xl ,yl),(;c2,y2) . . . . .  (x,,,y,~) be a random sample of n pairs of observations. Then 

theestimateofthelinearcorrelationcoefficientp,,  = E [ ( X ~ )  ( Y - ~ ' I ]  isPear - 
\ (r,. /j 

son's product-moment correlation: 

(xi-~)  (Yi-Y) where.~ = ~ x, 
i 1 i - 1  // 

(xi- .D 2 (y i -y )  2 and 7 = =. 
~ i = 1  i | i = l  n 

Let Rj ,R2 . . . . .  R,, denote the ranks of the xj. x2 . . . . .  x,, and let SI.S2 . . . . .  S,, 
denote thc ranks of the Yl,Y2 . . . . .  y,,. Then the estimate of the grade correlation coef- 

G(y) are the distribution functions of X and Y, is Spearman's rank correlation: 

(Ri--R) (Si--S) where R = 
R,. 

i I i I n 

rs = ~ (Ri -~ )2  L (Si-~)2 and S ~ Si 
i = 1  i = 1  i=1 F/ 





DISCUSSION OF PRECEDING PAPER 

ELIAS S .W.  SHIU: 

The authors are to be thanked for this interesting survey on the bounds of 
bivariate distributions. It is perhaps useful to point out that the theory dis- 
cussed in the paper can be applied to life insurance as well as annuities. 
Given the random variable T(x, 3'), we have 

E(v[mr(x y) m) = a ( m )  ( l )  

E.. .(m) ;/(m) 
~a[mT~x,y)] 2,'rnl) = Uxv , 

(m) n(m) E(au~-r¢~,~,)l/,, 1) = -xy , and so on, 

where, for a real number t, It] denotes the least integer greater than or equal 
to t, and [tl denotes the greatest integer less than or equal to t (see [2]). 
Relationships such as 

and 

A~  = 1 - d ~  

may be used to convert the numerical annuity values given in the paper into 
life insurance values, although different mortality tables usually are used to 
compute insurance values. 

A key feature in the new Actuarial Mathematics textbook [1] is the con- 
sistent application of the assumption of a uniform distribution of deaths 
(UDD) throughout each year of age to express values payable at the end of 
l/m of a year in terms of those payable once a year. Under the independence 
assumption, such formulas for the joint-life status are quite complicated. 
Without the independence assumption, as advocated in this paper, these 
tbrmulas will be even more difficult to derive. Let me illustrate the com- 
plexity in deriving such formulas with one example [1 ,(8.7.8)]. I shall show 
that under the UDD and independence assumptions, 

A!,'~--(i/?'~){A~;,+[(m+ l) /m+2(l / i -  l/d~'~)] ~'~ v*+t,pqx *lq,}. (2) 
k--O 

71 
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By (I)  

A ( " )  = vlmtl/mdtqrv. (3) " ' x y  ) 

By the independence assumption, the differential dtqx,, becomes 

iPy dtq~ + iPx dtqv, 

which, in turn, by the U D D  assumption, can be written as 

[raP, .-  ( t -  [tl)mlq,.]t,jlq~ dt + [I,IP.,+ - ( t -  ltl)t,jlq~]mqy dt 

[LzlPy ttllq~ + triP, ttlbqy- 2 ( t -  [tJ)ttlbq,+ t,llqy] dt 

{[t,lPv l,llq~ + I,IP.+ t t l lqy-It l lq . ,  ttllq~.] + I 1 -  2 ( t - [ t l ) ] l , l l ( - / ,  ttlqq,.} dt 

= {l,llq,y + [1 - 2 ( t -  ltl)lt,jlq~ l,Jlq~} dt. 

(In the preceding derivation, we ignore the points where the values of  t are 
integers; these points form a set of  measure zero.) Hence,  the right side of  
(3) becomes 

f+ ++ v f'''~ "{t,llq,.,+ + [1 - 2(t -ltl)]t,tiq++ L,Iqq, +} dt ) + 

fo = v l " ' v "  I,llq-+, dt + vt"t a* '"[1 - 2(t - [tl)lttllq+ t,lk q,' dt. (4) 
) 

The integrals in (4) will be evaluated using the Average Value Theorem [2, 
p. 5791 (also see II ,  section 3.61). 

The first integral in (4) is 

(I + i)1¢1 l,,t,¢,,, V1¢1 [tllqx ' dt 
) 

= (~ t ( l ,  + i) I'' - l '"~'m dt) fo+ v 1'| t,llq-+~' d, 

fo = ( (1 + i) l l 'm~"dt)Axe. 

• ~ A,y 

= (i/i <'m) Axv. 
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The second integral in (4) can be written as 

f o ( l  + i) [ t l - lmt~ V Ill [1 -- 2(t -- [tl)]ltllqx mlqv dt.  m 

The average value of the periodic function in the integrand in (5) is 

~ ( l  + i)I'1-I""~''[1 - 2(t-ltl)ldt 

fo = (1 + i ) ~ - l ~ ' a " ( 1  - 2 t ) &  

= (i/i  ( ' ° )  - 2(1 + i) v ~ " ' n / " t  dt .  

NOW, 

v i 'mq/mt  d t  = v l'nt2''~ [ l m t - V m  - ( [ m t - V m  - t ) ld t  

= ( l~m)a )~  - f t l  v l ' t ~ m  ( [ m t - V m  - t )dt  

= (d / i tm) ) [ l / d  t'n) - l/i] - ( 1 / 2 m ) a ~  

= (d / i t "~ ) [ l / a  ¢m) - 1 / i -  l /2m]. 

Thus,  the second integral in (4) is equal to 

(i/itm~){l - 2( l /d  t 'n  - i / i  - l /2m)] fo ~ 

and equation (2) follows. 
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(AUTHORS' REVIEW OF DISCUSSION) 
JACQUES F. CARRII~RE AND LAI K. CHAN: 

A main objective of  this project is to illustrate, through annuity examples ,  
the effect o f  dependence on actuarial calculations. We appreciate that Dr. 
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Shiu, using his broad knowledge of actuarial research and profound math- 
ematical skill, has pointed in other possible research directions. 

From the viewpoint of theoretical statistics, stochastic independence of 
random variables simplifies algebraic derivatives of formulas considerably. 
But in practice it is not always realistic to assume independence. With de- 
pendent random variables, actuarial models become more difficult to deal 
with, perhaps even intractable analytically. However, with the advances of 
computing capabilities and algorithms, approximate solutions to these mcxtels 
usually can be obtained through numerical computations or simulation. 
Mathematical complexity should no longer be considered as the major hurdle 
for developing more realistic actuarial models. 


