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ABSTRACT 

A fundamental problem in actuarial science is the determination of the 
level of a premium payment plan necessary to meet future contingent obli- 
gations. In the modern stochastic version of life contingencies, this net level 
is determined by the principle that expected value of a certain loss random 
variable is set equal to zero. This principle is desirable in that it yields the 
same net premium level as under the traditional deterministic life contin- 
gencies. To achieve this reduction to the traditional framework, in stochastic 
contingencies the actuary must use care in selecting random variables to be 
used in calculating premiums. 

In this paper we use expectations of different random variables to define 
the notions of retrospective, prospective, individual, and aggregate net pre- 
miums. Unlike deterministic contingencies, these premiums are not equiv- 
alent. Their respective relationships are discussed in order to provide a deeper 
understanding of the notion of a net premium. The individual premium turns 
out to have desirable properties, and therefore this approach is extended 
from premium to reserving considerations. 

INTRODUCTION 

In an insurance enterprise, the premium formulation process is complex 
and must be performed in the presence of the conflicting requirements of 
several interested parties. A central idea within this process is the notion of 
a fair or "net"  premium. In the framework of stochastic contingencies, the 
notion of a net premium can be expresse d in terms of an expected value of 
a random variable. In life contingencies, this random variable is typically a 
simple function of the random time to death. In this paper we investigate 
the relationships between several net premiums within the stochastic contin- 
gencies framework. (See Shapiro [10] for an introduction to the use of net 
premiums in the general premium formulation process.) 

In the theory of modern stochastic contingencies as presented in Bowers, 
Gerber, Hickman, Jones, and Nesbitt [1], net premiums are determined by 
equating expected present value of future benefits to expected present value 
of future payments. Alternatively, one may use as net premium the expected 
present value of future benefits per unit of present value of future premium 
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372 NET PREMIUMS 

payments. We call the former an aggregate approach and the latter an in- 
dividual approach. Both approaches are prospective in the sense that expec- 
tations are evaluated at contract initiation. If we denote the present value of 
future benefits as claims and the present value of future premium payments 
as exposure, then under the individual approach net premiums can be thought 
of as an expected loss ratio. Here, the loss ratio is claims per unit exposure. 
Not surprisingly, the individual net premium turns out to be greater than 
aggregate premiums under general conditions. We also show that reserves, 
useful in assuring solvency, can be developed under the individual formulation. 

Compare the traditional theory of deterministic contingencies as presented 
by Jordan [7] with the approach presented by Bowers et al. [1]. An inter- 
esting, and somewhat perplexing, difference is the active use of prospective 
and retrospective premiums in the former and the absence of these ideas in 
the latter. In this paper we define prospective and retrospective aggregate 
premiums within the stochastic framework. Our notion of prospective pre- 
mium is the same as the net premium principle in Bowers et al. It turns out 
that under general conditions, retrospective premiums are smaller than pro- 
spective premiums. This difference provides insight into a paradoxical "un- 
derwriting gain" noted by Jewell [6]. 

In the following section the important special case of whole life insurance 
is discussed. Some general premium relationships which are straightforward 
to establish for the whole life policy also hold for more general contracts, 
as is argued in the third section. Several examples and interpretations are 
provided. We then extend the individual approach to the formulation of 
reserves. The proofs of the main propositions appear in the Appendix. 

WHOLE LIFE INSURANCE PREMIUMS 

To illustrate the ideas, consider the determination of an annual premium 
of a whole life policy to a life aged x. For simplicity, assume that benefits 
are paid immediately and premiums are paid continuously. Using standard 
notation as defined in Bowers et al. [1], let T = T(x) be the random re- 
maining lifetime for a life aged x, v be a constant discount factor, and P be 
a fixed, arbitrary premium. The prospective loss of the company, Lp, is 

L (r,P) = v T -  e 

where t~ I = (1 - v')/~ and ~ = -log(v). Aggregate net premiums are 
determined under the principle of equivalence, that is, the requirement that 
the expected present value of losses is zero. With this guiding principle, we 
have E Lp(T,P) = Ax - Pax  = 0, and thus we use as the prospective 
aggregate net premium 
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ep = ~Ja. = E v"/E an. (1) 

To define the individual net premium, we choose P so that the prospective 
loss of the company, Lp, is zero. Thus, the equitable individual premium is 
a function of T, i.e., P = P(T) = 1/~. The individual net premium is 
defined by 

P, = E P(T)  = E (1/S~). (2) 

Under general conditions given in the following section, we have Pp _< P~. 
For the whole life policy, this is easy to see using a geometric series expansion: 

Pp = ~ E v'r/(1 - E v r) 

-< ~ E (e v~') 
j= l  

= e I. 

= ~ E (E vO" 
j=l  

= E (1/~) 

(3) 

The fact that E v r _< (E (v/7)) '°, j ___ 1, follows from Jensen's inequality (cf. 
Gerber [4, equation (1)]). An aggregate premium can be thought of as the 
ratio of expected benefits to expected premiums, while the individual pre- 
mium is the expectation of the ratio of benefits to premiums. The difference 
between the ratio of expectations and expectation of ratios helps to explain 
otherwise confusing issues in the literature, some of which arise in this paper. 

From a retrospective viewpoint, the loss to the company at the instant of 
expiration, Lr, is 

Lr(T,P) = 1 - P ~ .  

Using the principle of equivalence, we have that imposing the requirement 
E Lr(T,P)  = 0 leads to the retrospective aggregate net premium, 

P,. = 1/E ~ .  (4) 

Unlike deterministic contingencies, under the stochastic framework we do 
not have Pp = Pr. Under general conditions given in the following section, 
we have/Dr -< Pp- For the whole life policy, this easy to see. Since v' and 
g~ are inversely related, we have that v r and g~ are negatively correlated. 
Thus, 

E a~ = E ( v r ~ )  -< E v r E g ~  (5) 

and 
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Pr = 1/E *rl <- E vT/E a n = Pp. 

If we compare equations (1) and (4), the fact that Pp and Pr are not equivalent 
is not surprising. This highlights the different interpretations of the loss 
random variables, Lp and L r. tp  is the loss at contract initiation and L,. is 
the loss at contract termination (incurral of loss); these variables thus are 
related by Lp = v r Lr. Note that equality exists in equation (5) when v = 
1 o r /  = 1 / v - 1  = O. 

The notion of a retrospective premium is closely tied to Jewell's [6] un- 
derwriting gain, defined to be 

G(P) = -L~(T ,P )  = P g~ - 1. (6) 

By calculations similar to those in (5), Jewell argued that the expected gain, 
E G(Pp), is nonnegative under mild conditions on the discounting and mor- 
tality assumptions. The conditions and benefit structure were subsequently 
generalized by Chan and Shiu [2] and Ramsay [9]. Jewell interpreted E G(Pp) 
to be the expected gain to the company measured at the instant of expiration 
and noted that the profitability is not affected by this unexpected expectation, 
which "cannot even be developed through the use of classical expected- 
value notation" [6, p. 94]. Note that using retrospective premium P,. in 
equation (6) produces an expected zero underwriting gain. 

PREMIUM RELATIONSHIPS FOR GENERAL CONTRACTS 

In this section, we establish some relationships between prospective and 
retrospective aggregate and individual premiums under conditions that hold 
for several different types of policies. We limit ourselves to policies in which 
the random time T serves as a signal to halt the premium payment process 
and commence the benefit payment process. To this end, for a loss occurring 
at a fixed time t, let a(t) and s(t) be the present value of a known discounted 
stream of payments at contract initiation and termination, respectively. Sim- 
ilarly, let z(t) and b(t) be the present value of benefits at contract initiation 
and termination, respectively. In the special case of whole life insurance 
with constant discount factor v, we have a(t) = ~ ,  z(t) = v', s(t) = s,I, 
and b(t) = 1. In general, we assume only that premiums and benefits are 
discounted in the same fashion, so that s(t)/a(t) = b(t)/z(t) = F(t), an 
accumulation factor. With this common factor, prospective and retrospective 
individual premiums are the same and need not be distinguished. 

To achieve greater generality and thus wider potential usefulness, in the 
general propositions we allow the force of interest to be a stochastic quantity. 
Thus, a(t), b(t), F(t), s(t), and z(t), at each fixed time t, are potentially 
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random quantities. (See Panjer and Bellhouse [8] for an argument in favor 
of assuming a random interest environment.) However, so that the results 
are easier to interpret, in each corollary we assume the force of interest to 
be deterministic. Further, in each example the force of interest is assumed 
to be constant. 

For each individual, if the time of loss t is known, then the equitable 
premium is 

P(t) = z(t)/a(t). (7) 

That is, P(t) is defined so that the present value of payments, P(t) a(t), 
equals the present value of benefits, z(t). Since T is not known, some alter- 
natives are to use: 

(i) P~ = E P(T), its expected value; 
(ii) Pp = E z(T)/E a(T), the ratio of expected present values at contract 

initiation; or 
(iii) Pr = E b(T)/E s(T), the ratio of expected present values at contract 

termination. 

Using the whole life example, the use ofPp, Pt, and Pr notation is suggested 
by equations (1), (2), and (4). We assume throughout the paper that a(t), 
z(t), s(t), b(t), and the distribution of T are such that all relevant random 
variables have finite second moments. To demonstrate a relationship between 
prospective and individual premiums, we have the following. 

Proposition 1. 

A necessary and sufficient condition that Pp <_ PI is 

coy (P(T), a(T)) _< 0. (8) 

Further, Pp = Pi if and only if there is equality in equation (8). 
Proposition 1 is a characterization in the sense that it provides an exact 

condition for individual premiums to exceed prospective premiums. An im- 
plicit consequence of proposition 1 is that if P(T) and a(T) are positively 
correlated, then Pp > P~. If a(t) is constant, as with single premium plans, 
then Pp = PI- To demonstrate the usefulness of proposition 1, we return to 
the whole life policy. 

Example 1. - -  Whole Life Policy 

Consider a whole life policy with constant discount factor v, premiums 
payable at the beginning of the year, and benefits payable at the end of the 
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year. Define K = [T] where [.] is the greatest integer function. Thus, a(T) 
= /~c+ 11 = (1 - v x+ 1)/(1 - v) and P(T) = v K+ l/aK+ 1i = 1/gK+ 1i- Similarly 
to equations (1), (4), and (2), we have Pp = Ax/iix, Pr  = 1/E gK+ 11, and PI 
= E(1/ge-~). (See Figure 1 for  a plot of these net premiums for various 
interest rates using mortality decrements from the 1979-81 Male U.S. Life 
Tables [1, pp. 55-58].) In the case of v< 1, similarly to equation (3), with 
coy (P(T), a(T) )  = E v K+I - E a~:+ iI E(1/gK~-'z~) <- O, we have Pp <- P v  In 
the case of v = 1, since 

coy ( P ( T ) ,  a ( T ) )  =cov ((K+ 1 ) " ,  (K+ 1)) 

-- i - E ( K + I )  - 1 E ( K + I )  _< 0, (9) 

we have Pp <_ 1'i. Further, when K is not degenerate, Pp < PI- The inequality 
in equation (9) is well known (cf. Shiu [11, p. 97]). 

FIGURE 1 

WHOLE LIFE NET PREMIUMS AS A FUNCTION OF INTEREST 
(Mortality Decrement Is 1979-81 Male U.S. Life Table with x = 30) 
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The condition (8) in proposition 1 is precise but may be onerous to check 
in certain situations. Some stronger sufficient conditions are given in cor- 
ollary 1. 
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Corollary 1. 

Suppose that a(t) and P(t) are deterministic and that a(t) is monotonically 
increasing in t. If P(t) is monotonically decreasing, then Pp _< P~. If P(t) is 
monotonically increasing, then Pp _> P~. 

The proof of corollary 1 is a direct result of proposition 1 and some 
standard results in probability (cf. Gurland [5]). To demonstrate the useful- 
ness of corollary 1, we have example 2. 

Example 2. -- Pure Endowment Policy 

ConSider an n year pure endowment policy with premium payable con- 
tinuously. Then, z(t) = v ~ I(t>_n), a(t) = d~ I(t<n) + ~ I(t>n) and P(t) 
= z(t)/a(t) = (l/Sty) l(t>n) (cf. [1, p. 90]). It is easy to see that a(t) and 

P(t) are monotonically increasing. Hence, E z(T)/E a(T) = Pp >_ PI = 
E P(T), by corollary 1. 

To demonstrate a case in which corollary 1 is not applicable, we have 
example 3. 

Example 3. --  Increasing Whole Life Policy 

Consider an increasing whole life policy providing $k for death in the kth 
policy year, with premiums payable continuously. From, for example, Bow- 
ers et al. [1, p. 95], we have z(t) = It+ 1] it, a(t) = a n and P(t) = [t+ 
1]/~ 1. For small interest rates (v close to 1), it is easy to check that P(t) is 
neither monotonically increasing nor decreasing, and thus the conditions of 
corollary 1 do not hold. For specific interest and mortality assumptions, one 
must analyze the correlation between P(T) and a(T) to determine the rela- 
tionship between Pp and P/using proposition 1. 

To demonstrate a relationship between prospective and retrospective pre- 
miums, we have the following. 

Proposition 2. 

Assume that 

cov (F(T), a(T)) >_ 0 and cov (F(T), z(T)) <_ O, (10) 

then Pr <- Pp. If either inequality in equation (10) is strict, then Pr < Pp. 
Further, if both inequalities in equation (10) are equalities, then P,. = Pp. 

Remarks: In the case of zero interest, F(t) = 1, and by the third part of 
proposition 2, we have Pr = Pp- A set of conditions that is simple to check 
is provided in corollary 2. 
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Corollary 2. 

Assume that a(t), F(t), and z(t) are deterministic, that F(t) and a(t) are 
monotonically increasing, and that z(t) is monotonically decreasing. Then 
P r < P p .  

For a case in which corollary 2 is not applicable, see the Pure Endowment 
Policy of example 2. For an application of corollary 2, see the Whole Life 
Policy of example 1, or see example 4. 

Example 4. - -  Term Insurance Policy 

Consider an n year term life insurance policy with premiums payable 
continuously. Then z(t) = vq(t <n), a(t) = fz~ I(t <n) + fz~ I(t>_n), e(t)  = 
z(t)/a(t) = 1/g~ I( t<n)  and F(t) = v- '  = (1 +i) ' .  It is easy to see that a(t) 
and F(t) are increasing and that z(t) and P(t) are decreasing. Thus, Pr < Pp 
< e l .  

SOME INTERPRETATIONS 

In this paper, we use the adjective "ne t "  to refer to cases in which the 
expected value of some random variable is considered, and not other sum- 
mary measures of a distribution, such as percentiles, variances, skewness, 
etc. There is an extensive literature concerning principles of premium cal- 
culation, which are defined using various summary measures of a distribution 
(cf. Gerber [3, Chapter 5] for a nice introduction to this area). By limiting 
ourselves to expectations of certain random variables, we can take advantage 
of the law of large numbers to discuss the interpretation of our net premiums 
in terms of averages of homogeneous random variables. 

We first contrast aggregate and individual prospective net premiums. Par- 
tition a population of n individuals into m strata so that each stratum expe- 
riences times until death Tij, j = 1 , . . .  , Ki, i = 1, . . . , m. For convenience 
we think of each stratum as representing an employer who maintains a 
contract with an insurance company with identical ~subcontracts, one for each 
of the Ki employees. The random premium level for each employer is 

Ki Ki 

P, = E z(T,j) / E a(G) 
j= l  j~ l  

and the level of the total random premium is 

P =  ~ wi P i. 
i=l 
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Here, {wi} is some sequence of weights chosen so that w~ _> 0 for each i and 
E~wi = 1. To get the aggregate premium, fix m, the number of employers, 
and let the number of employee subcontracts tend to infinity for each stratum, 
i.e., Ki ---> ~0 for each i. Then, under some mild moment and correlation 
assumptions, by  the strong law of large numbers we have that limit P~ = 
E z(Til)/E a(Til) = Pp and thus limit P = Pp, with probability = 1. Since 
we are averaging over several subcontracts within a master contract, we 
have labeled Pp an aggregate premium. Conversely, now let the number of 
employers, m, tend to infinity and keep the number of employees per master 
contract small. For simplicity, take Ki identically equal to 1 and w; = 1/m. 
Then again under the strong law of large numbers with some mild assump- 
tions, we have that limit P = E (z(T~)/a(Tl~)) = P~, with probability = 1. 
Thus, we have labeled P~ an individual premium. 

The interpretation of aggregate retrospective net premiums in less clear. 
Here, one could think of a stationary sequence of contracts flowing through 
a company. At any particular instant in time t there is a small window, [t, 
t+  At], in which the company experiences losses b(Tl), . . . , b(T~) and 
with associated accumulated premiums s(T1) . . . .  , s(Tr). Here, 7",. is the 
time since inception of the ith contract. If the company could set premiums 
based on these realized contracts, a candidate might be 

limit ~ b(Ti) / ~ s(T~) = P,., 
r-"-~O0 i = l  i=1 

with probability one, by the strong law of large numbers. However, premium 
determination is typically done at contract initiation and thus on a prospective 
basis. The quantity Pr is interesting because it is the smallest premium one 
can charge and still not suffer Jewell's "'expected underwriting loss." 

EXTENSIONS TO INDIVIDUAL RESERVES 

Under the individual approach, the random quantity P(T) is the equitable 
level of premiums so that, at contract inception, premium payments exactly 
meet benefit obligations. Similarly, the notion of a reserve can be defined 
so that, for times after contract inception, the insurer has an adequate amount 
of assets available to meet benefit obligations. It is clear that a new concept 
of a reserve is desirable since, under the broad conditions characterized in 
proposition 1, we have/°/ > Pp- Thus, at contract inception and using P~, 
the usual reserve, or the expected present value of future benefits minus 
expected present value of future premiums, is negative: E z(T) - P / E  a(T) 
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< 0. This fictitious creation of wealth - -  i.e., negative liabilities - -  at 
contract inception would clearly be unacceptable to regulatory authorities. 

To motivate a definition of the individual reserve, we begin by considering 
the expected aggregate reserve at some fixed time t > 0. We work on the set 
{T>t} and use the symbol E, to denote the expectation conditional on the 
event {T>t}. At time t, define z( t ,T)  = z(T) F(t)  to be the present value of 
future benefits and a(t ,T)  = (a(T) - a(t)) F(t) to be the present value of a 
future payment stream. The expected aggregate reserve is defined to be 

Vl, (t) = E, z ( t ,T)  - Pp E, a(t ,T) 

= (Pp(t) - Pp) E, a( t ,T) .  (11) 

Here, Pp(t) = E, z( t ,T)/E,  a(t ,T) is the aggregate net premium for a policy 
issued at time t. The link, established in equation (11), between premiums 
and reserves is the so-called premium-difference formula [1, p. 195]. This 
link suggests the natural definition for the expected individual reserve, 

V~(t) = (P~(t) - PI) E, a(t ,T) (12) 

where P~(t) = E, P( t ,T)  = E, {z(t ,T)/a(t ,T)}.  To complete the definition, in 
the case where premiums are no longer payable, we have a(t,®) = 0 and 
thus define V~(t) = E, z( t ,T) .  The motivation behind the definition is as 
follows. At time t, to fund the obligation z(T) ,  the level of contributions is 
P(t ,T)  = z ( t ,T) /a( t ,T) .  The insurer's portion of this is P(t ,T)  - PI, a random 
quantity. Using the individual approach, we define the level of contributions 
to the reserve at time t by E, {P(t ,T)  - 1°1} = Pl(t) - PI, which leads to 
equation (12). With this formulation, it is easy to see that reserves at time 
0 are zero. 

The problem of comparing individual and aggregate reserves is more com- 
plex than in the case of premiums. Even in the basic case of whole life, one 
can construct simple examples to show that neither reserve dominates the 
other for all relevant time points. For example, suppose i = .0 6  and the 
random remaining lifetime at contract initiation is 10 or 20 years, each with 
probability one-half, i.e.: P ( T =  10) = P ( T =  20) = 1/2. Then, it is a pleas- 
ant exercise to check that Vp(5) = .26051 < .40836 = I//(5) and Vp(15) = 
.55259 > .53021 = V~(15). It would be interesting to establish nontrivial 
conditions on interest rates and the distribution of T so that V~(t) >_ Vp(t), 
for all relevant t, or Vl(t) <- gp(t). 
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CONCLUDING REMARKS 

This paper examined the notion of a net premium in stochastic life con- 
tingencies by defining several closely related premium formulations. Aggre- 
gate net premiums are calculated using expected benefits per unit of expected 
premium. Conversely, individual net premiums are calculated as the ex- 
pected benefit per unit of premium. Even in the case of zero interest, these 
two concepts are not identical. Under the broad conditions given in propo- 
sition 1, we find that aggregate net premiums are less than individual net 
premiums. Heuristically, there is a reduction of premiums by averaging 
benefits, averaging payments, and taking the ratio in lieu of averaging the 
ratios. That is, in most cases the mean of the ratio will be larger because of 
the highly skewed distribution of the ratio. Prospective and retrospective 
premiums have been distinguished by examining the expectation of random 
variables at different points in time. As one would suspect, when the time 
value of money is constant (zero interest), a consequence of our proposition 
2 is that prospective and retrospective premiums are the same. 
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APPENDIX 

Proof of Proposition 1: 
From equation (8) and the definitions of Pp and P~, 

Pp/P~ - 1 = E {/)(7") a(T)}/{E P(T) E a(T)} - 1 
= coy (P(T), a(T))/{E P(T) E a(T)}. 

The result of the proposition is immediate. :~ 

Proof of Proposition 2: 
By equation (10), we have E F(T) E a(T) <_ E{F(T) a(T)} and E{F(T) 

z(T)} <- e F(T) E z(T). Thus, 

Pflep = E{F(73 z(T)} E a(1)/{E z(7) E(F(T) a(T))} 

= {E{F(T) z(T)}/{E z(T) E F(T)}} 

{E F(T) E a(T)/E(F(T) a(T))} 

<_1, 

which is sufficient for Pr <-- Pp. The other cases are immediate. 1: 



DISCUSSION OF PRECEDING PAPER 

COLIN M.  R A M S A Y "  

I would like to congratulate Dr. Frees on his paper exploring some of the 
alternatives to the traditional net premium Pp given in his Equation (1). 
However, care must be taken when interpreting his retrospective premium, 
Pr, as given in Equation (1). Because P,  satisfies that equation, it is deter- 
mined by summing monies (that is, losses) without considering the time 
value of money. 

For example, suppose T is an integer-value random variable with 

Pr[T= t] = 1/3 for t = 1, 2, and 3, 

and interest is at 10 percent per annum. The retrospective loss at time T will 
be 

L r ( T , P )  = 1 - P s i .  

The expected loss is given by 

1 
E[Lr(T,t') -- ~ [(1 - P) + (1 - 2.1P) + (1 - 3.31P)]. 

See the diagram below. Summing the financial losses at the end of years 1, 
2, and 3 violates the concept of the time value of money, even though it is 
quite sound mathematically. 

This dilemma arises because Lr(T,P) is a function of the random time of 
death T. A similar criticism can be applied to the concept of the expected 
underwriting gain at death in Equation (6). 

I - P  l - 2 . 1 P  I - 3 . 1 P  

I I I I 
0 1 2 3 

ELIAS S . W .  SHIU" 

The remarks below are motivated by Dr. Frees's elegant inequalities 

-> > - -  (D.1) - 

and his reference to stochastic interest rates. 
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Let P(s,t) denote the price, at time s, of a pure discount bond paying 1 
at time t, s -< t. One learns in Compound Interest [4, section 1.10] that, if 
800 is the instantaneous rate of return or force of interest at time "r, s -< "r 
_< t, then 

t 

P(s, t) -- e x p [ - J  8('r)dr]. (D.2) 
S 

However, at time s, the function 8('r), "r _> s, is not known. One might 
postulate that 8('0 is a stochastic process and the price P(s, t) is an average 
value or an expectation. How does one define this expectation? There are 
several possibilities: 

t 

P(s, t) = E{exp[ -  ~ 800 dr] 8(s)}, (D.3) 
s 

I 

P(s, t) = e x p { - J  E[~('r) I ~(s)] d.r} (D.4) 
.v 

and 

1 
e ( s ,  t) = , (D .5 )  

E{exp[ I 8('0 d'r] [ ~(s)} 
S 

Each of these three conditional expectations seems to provide a reasonable 
model for explaining the relationship among the returns on bonds of different 
maturities. Each has been called (by different authors) the Expectations Hy- 
pothesis of the Term Structure of Interest Rates. 

If 8(, 0 is a deterministic function, each of (D.3), (D.4) and (D.5) reduces 
to (D.2). When 8(, 0 is stochastic, consider the positive random variable 

! 

X = e x p [ -  f ~(r) d-c] 
S 
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for a given initial value ~(s). Then, the arithmetic, geometric and harmonic 
means inequalities 

E(X) _> exp{E[log~(X)]} _> [E(X-~)1-' 

show that (D.3), (D.4) and (D.5) are three distinct propositions. Indeed, 
Cox, Ingersoll and Ross [2] prove that only Formulation (D.3) is sustainable 
in a continuous-time rational expectations equilibrium (also see Chapter 18 
of [3]). 

Evaluation of (D.3) as a function space integral is discussed in [1]. 
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(AUTHOR'S REVIEW OF DISCUSSION) 

EDWARD W. FREES: 

I thank Professors Ramsay and Shiu for their discussions, which amplify 
and extend certain aspects of the paper. 

Professor Ramsay emphasizes the point that the retrospective premium 
does not make sense except in the most contrived examples. These premiums 
are useful to include in the paper because they complete some mathematical 
excursions, but should not be used in practice. His example is simple and 
to the point. 

Professor Shiu suggests extensions to a stochastic interest structure in 
which, for simplicity, the time until loss is considered fixed. Probably the 
most important frontier of research in life contingency models is the intro- 
duction of a stochastic interest environment. Actuaries need such models in 
order to talk, and gain credibility, with other financial analysts. As Hick- 
man* noted, "interest rate variation and resulting risk is a fact of business 
l ife." 

*HECKMAN, J.C. "Why not random interest?" The Actuary 19, No. 2 (1985):1--4. 




