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ABSTRACT 

The need to evaluate risks, in either the investment or the insurance com- 
ponent of business, is a primary task of the actuary. Mathematical constructs 
for risk assessment using expected utility theory are problematic for practical 
use. One reason is that the elicitation of the utility function is difficult or 
impossible in most situations. Second, data related to risk choices contain 
noise that must be accounted for in the decision process. This paper presents 
a method of testing second-order stochastic dominance of risks. By using 
this methodology, risks can be partially ordered by value, with available 
data. The methodology developed here requires only that the risks have 
yields distributed as one of the location-scale family of distributions and that 
the actuary can specify that family. The paper presents the simulated power 
of the procedure. 

I. INTRODUCTION 

Risk assessment has three components: (i) analysis of the contingent event, 
(ii) evaluation of the contractual obligation associated with the event, and 
(iii) determination of the premium to be received for assuming the risk of 
the event. Assessing the value of the risks associated with either an invest- 
ment or an insurance product is a fundamental task of the actuary. One 
appealing method of assessing the value of a specified risk is the use of 
utility functions. In this case, the value of a risk is assessed based on the 
expected utility of income or loss associated with the risk, calculated by 
using the probability density function of the risk. Those risks with higher 
expected utility are preferred over those with lower expected utility. 

As one example, consider three different proposed cost schedules for 
health care. Once an individual has made a claim, the claim amount and 
relative frequency for each schedule are as shown in Table 1. Under all three 
schedules, the expected cost for a claim is $36. However, depending on 
which schedule is used, some claims will result in different amounts of 
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reimbursement. Choosing the "best"  schedule for the insurer depends on 
the set of values the insurer has assigned to the distribution of different claim 
sizes. This set of values, which the actuary chooses, is called the utility 
function. Choosing (or failing to choose) a utility function provides the basis 
for selecting the "best" cost schedule. 

TABLE 1 

AMOUNT REIMBURSED AND EXPECTED FREQUENCY OF REIMBURSEMENT 
UNDER THREE HYPOTHETICAL HEALTH CARE SCHEDULES 

Amount Frequency of Reimbursement 

Reimbur.~d S~:hedule I Schedule II Schedule Ill 

$10 0.05 0.10 0.05 
$20 0.10 0.15 0.15 
$30 0.25 0.15 0.25 
$40 0.40 0.25 0.25 
$50 0.20 0.35 0.30 

As a second example, suppose that the actuary must choose between 
increasing the company's whole life offering or increasing the offering of a 
policy that is a combination of term life and annuity income. Not including 
operating expenses, the risks for these policies are based on the differences 
between the net premiums and the actual expense. Again, depending on the 
value given to each dollar of profit or loss, one risk may be preferred over 
another. 

Both examples are simple enough that the experienced actuary can readily 
solve each without formally appealing to sophisticated utility theory. On the 
other hand, it is not hard to visualize extensions of either example in which 
choosing the best risk is difficult. For example, at what additional premium 
can the whole life policy in the second example be equally preferred to the 
retirement income policy? Also at what premiums do payment schedules II 
and III in the first example become neutral relative to schedule I or to each 
other? To approach these questions in general entails a utility function setup. 

The use of expected utility as a method of both pricing and selecting risks 
has been recognized as useful from a theoretical point of view, especially 
for risk theory (see, for example, Bowers et al. [1], Btihlmann [2], and 
Goovaerts et al. [6]). However, the use of expected utility in practical prob- 
lems has proven problematic for two reasons. First, the actual utility function 
is difficult to determine in practice. Explicitly specifying the utility function 
under which actuaries, financial officers or stockholders are operating is 
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impossible under most circumstances. Second, except for large volumes of 
business with which the company already has considerable experience, the 
actuary usually can specify the probability distribution of the risks only up 
to a set of unknown constants. The actuary may estimate these unknown 
constants from past experience, based on exogenous data, or with expert 
guess. However, in any of these cases, the uncertainty resulting from having 
to estimate the distribution of risks must be accounted for in evaluating a 
portfolio of risks. 

The problem of specifying the utility function has been approached in 
several ways. One common approach is to choose a parametric class of 
utility functions that provides relatively simple expressions of expected util- 
ity (see, for example, Cass and Stiglitz [3]). A second approach, and the 
one of interest here, is to restrict the class of utility functions by using 
qualitative constraints. For example, one might require that the utility func- 
tion be in the class of monotone increasing functions. This set of utility 
functions results in what are called first-order stochastic dominance decisions 
(Whitmore and Findlay [13]). The problem with such qualitative restrictions 
is that the risks based on the resulting class of utility functions can only be 
partially ordered. This means that for two different risks, one may be de- 
termined better than the other, worse than the other, or neither. The last 
condition of neither better nor worse is an indeterminate condition. One 
cannot determine the best risk with respect to the class of utility functions. 
The set of risks that is better than some risks and no worse than the rest is 
called the efficient set. Any risk in the efficient set is acceptable for the 
class of utility functions. Thus, the actuary should offer (or invest in) risks 
in the efficient set. If no efficient set exists, the offerings and investments 
are selected from the indeterminate set. If the premise of the partial ordering 
is accepted, the actuary should never offer or invest in the remaining set. 
To reduce the size of the efficient set of risks, the actuary must specify a 
smaller class of utility functions by adding further restrictions. When the 
only qualitative restriction is that the utility functions be monotone increas- 
ing, the efficient risks are called the first-order stochastic dominant risks. 

The qualitative restrictions of interest in this paper are those utility func- 
tions that are both monotone increasing and concave downward. In essence 
this implies two assumptions: (i) more return is better than less return (or 
less loss is better than more loss); and (ii) the marginal value of an incre- 
mental increase in return decreases as the total value of the return increases 
(risk averse). Most will agree that these two premises, though restrictive, 
are usually acceptable. Under these assumptions mathematical methods of 
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partially ordering the risks can be developed without explicit specification 
of a utility function. The resulting partial ordering of risks is called second- 
order stochastic dominance (SSD) and is recognized as a mathematical con- 
struct that is useful in determining the efficient class of choices of random 
variables (Whitmore and Findlay [13]). Note that the number of utility func- 
tions satisfying the second-order dominance criterion is smaller than the 
number satisfying the first-order criterion of restricting utility functions to 
be monotone increasing. Some risks in the efficient set under first order will 
not be so under second order. Hence, the second-order criterion produces a 
finer partial ordering among any pair of risks. In this sense, provided the 
qualitative restrictions are acceptable, second order is preferred to first-order 
stochastic dominance. Higher orders of stochastic dominance are created by 
more qualitative restrictions on the class of permissible utility functions. 

The second problem in the use of expected utility is the element of un- 
certainty in the specification of the density functions. For example, the 
frequency tables in the first example (Table 1) may be estimates based on 
sparse, uncertain data. Decisions resting heavily on these expected frequen- 
cies may not be justifiable. When the risks are chosen based upon a para- 
metric form of the utility function, explicit expressions of how the unknown 
parameters of the density function enter into the expected utility can be 
derived. Incorporating uncertainty into the decision process then follows 
standard (large sample) statistical procedures. In the case of stochastic dom- 
inance, no specific form of the expected utility function is obtained. There- 
fore, including uncertainty in the parameters of the distribution function is 
more difficult. For the case in which first-order dominance is considered, 
nonparametric procedures have been developed that allow selection of the 
efficient sets when the underlying probability density functions of the risks 
must be estimated (see Whitmore and Findlay [13] and Stein et al. [11]). 
Franck [5] has provided a likelihood ratio test applicable to both parametric 
and nonparametric methods. 

When the criterion is second-order stochastic dominance, the solution is 
much less developed. By analogy to first-order results, Whitmore and Find- 
lay [13] proposed a procedure, but it has been found to be inconsistent and 
biased (see Stein et al. [11]). Deshpande and Singh [4] proposed an asymp- 
totic test for the single sample case; however, this procedure works only in 
restricted cases. Tolley and Pope [12] proposed an exact randomization pro- 
cedure that appears to have reasonable "power." However, the computa- 
tional requirement is large, even for small problems. It is unlikely that the 
procedure could be used in medium- and large-sample finance and actuarial 
problems. 
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The conclusion is that there is no general two-sample procedure for sec- 
ond-order stochastic dominance. Therefore, a method of choosing the effi- 
cient set of risks cannot be generated without explicitly assuming both the 
form and the parameter values of the density function of the risks. One 
temptation has been to assume that the estimated parameters determined from 
the sample distribution are, in fact, the true population parameters. This 
results in very little power to choose the truly efficient set of risks (Kroll 
and Levy [8]). 

The purpose of this paper is to present an easily implemented approximate 
univariate statistical procedure for use in making second-order stochastic 
dominance decisions when the distributions of the two risks are from the 
same location-scale family. A location-scale family is a set of distributions 
that can be standardized to the same distribution by subtracting a parameter 
from each observation coming from the distribution and dividing the result 
by a second constant. The values of the two constants depend upon the 
particular member of the location-scale family of interest. In this paper we 
assume that the location-scale family is continuous over the region in which 
it is nonzero. This allows for a simpler development. Similar results can be 
obtained for discontinuous location-scale distributions. Because stochastic 
dominance is invariant under a fixed monotone transformation, such as the 
logarithm, the methodology presented is useful for risks with distributions 
that can be transformed to a location-scale family by such a transformation. 
The log-normal distribution is one such distribution. The procedure presented 
here is a large-sample test procedure in that the probability distribution of 
the test statistic is known only in the limiting case as the sample size tends 
to infinity. With this procedure, the efficient set can be chosen by taking all 
possible pairs of risks and comparing. Those that dominate some risks and 
are not dominated by any others would make up the efficient set. 

Because the procedure considers risks restricted to the location-scale fam- 
ily of probability density functions, one may feel that it provides no more 
flexibility in choosing risks than the standard mean-variance method. Clearly 
the test procedure will eventually result in decisions based only on location 
and scale parameter estimates, as does the mean-variance procedure. How- 
ever, we believe that the results presented here are useful for the following 
reasons: 
1. The procedure is pedagogically appealing; the resulting statistical pro- 

cedure resembles the classical chi-square and t-tests. 
2. The procedure provides for incorporation of any skewness or kurtosis 

apparent in the location-scale family. 
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3. The procedure provides the basis for selecting between several portfolios 
of convex combinations of random variables. 

II. THE MAIN RESULT 

Assume that two independent risks are to be compared. Each may be an 
insurable risk or an investment. Each may be a single entity or a combination 
or portfolio of entities. In any case let X~ and X2 represent the estimated 
average yield of these two risks, with S~ and $2 the estimated standard 
deviations of the yield, respectively. Here yield includes the premium or 
risk loading. We assume that the estimates of .X and S are calculated from 
a set of data in the usual manner. Explicitly, let Xj (*), j = 1 . . . .  nl and X) -(2), 
j =  1 . . . .  n~ be samples of size n~ and nz from populations 1 and 2, re- 
spectively. Let N =  nl + n2 denote the total sample size. Then 

and 

~ m 

_ 1 / 2  

are estimates of location and scale for population i. Similarly define estimates 
of 

g(x,- ~,)3 
ci = 2cri 

and 

EG - ~,)~ - ~ 
vi = 4o-~ 

as ci and 9i, respectively. Let fo(X) denote the probability density function 
with location at zero and a scale of unity. We assume thatfo(x) is continuous 
and nonzero over its domain ofx  values. In other words, there is not a region 
in the "midd le"  where the function fa(x)  is zero and nonzero on either side 
of the region. We choose fo(x)  such that a location of zero corresponds to a 
mean of zero. We assume Xa and )(2 are random variables with densityf~(x) 
and f2(x), respectively, where 
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l fo (x - IX' I (1) 
f , (x)  = 7~ ~ o.1 I 

1 fo (x - ~2] (2) k(x)=-- ;  ~ ,*2 / 

In these expressions, >~, ~z, o1, and o2 are unknown location and scale 
parameters. In other words, fo(x) represents the standard form of the distri- 
bution of yields for the risks considered. Both risks are assumed to have this 
same form, although each has its own location (mean yield) and scale (stan- 
dard deviation of the yield). For example,fo(x) may be exponential, uniform, 
normal, or any of a large set of location-scale families (see Lehmann [9] for 
examples and further details). 

Similarly, we make the following definitions of notation: 

z~, is the upper 100~x percentile of the standard normal distribution 

X1 -- X72 
Z o - 

$2 - $1 

R, = _ fo(Z) & 

I?: & = Z/o(Z) de. 

l'2 = (X2  - X ' I )  

/, = ( n l  + ~ 2 ) / n ,  

+ 2 K 1 Kz (/'1 el + ke2) 

"¢/2 = K, E S ~  + f z S z  2) + K 2 E  e, +f262) 

To determine whether, statistically, risk 1 is better than risk 2 by using 
the criterion of SSD, the following steps are taken: 
1. Choose an a-level or type I error level. 
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2. Determine whether the product (.}, .}3)/A n is approximately the same as 
.}~/ye (within 10-16). If .}1 .}3 --- "}2, then form 

d2 S{ + S~_ 
/71 1'12 

and 
t = t2/d; (3) 

otherwise skip to step 4. 
3. Determine which of events E2, E4, or E5 has occurred. 

If t > z~/2, event E2 has occurred. 
If t < - z,~/2, even t  E 4 has occurred. 
If - z~/2 <- t <_ zoj2, event E5 has occurred. 
Skip to step 6. 

4. Form the statistic D as 

D = N t~ .}3 + t 2 .}1 - 2 t x t 2 . } z  

.}3.}, - .}2 2 ' (4) 

and check to determine whether D - - 2 log 2a. If so, then conclude 
that event E5 has occurred and skip to step 6. 

5. If D > - 2 log 2a, then determine which of the following events has 
occurred: 

E, if I. ~ > z,~/2 and ~ ~ - z,~/2 J 

E 2 i f (  ~ > z ~ , / 2 a n d ~  • - z,~/2 

E3 if I. ~ < -z,~/2 and ~ ~ z,~/2 
J 

t2 tl } 
E4 if I. ~ < - z,~/2 and ~ ~ z,,,2 

E5 if {all other possibilities}. 
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6. If E, and/or E 2 has occurred, conclude that there is empirical evidence 
that risk 2 is better than risk 1 using SSD. If E3 and/or E4 has occurred, 
there is empirical evidence that risk 1 is better than risk 2. If E5 has 
occurred, there is insufficient empirical evidence to favor one risk over 
another without either a more specific utility function or more accurate 
estimates (more extensive data). 

Note that although the terms 2cx and ed2 appear in various steps in the 
procedure, the size of the test is or. By size we mean the probability of 
concluding that one risk is second-order stochastic dominant over another 
when actually both .have the s a m e  distribution. As noted previously, two 
risks can have unequal probability distributions and yet have no dominance 
present. If this condition is prevalent among the risks being evaluated, the 
value of ~ in the procedure should be increased to avoid mistaking this form 
of inequality as second-order stochastic dominance. 

Ill. EXAMPLE 

To fix ideas, this section illustrates the use of the second-order stochastic 
dominance algorithm to select between two contingencies. For this example, 
consider two investments. From the past 100 investments of the first type, 
the mean profit has been ix, = 0.3 with a standard deviation of sl = 1.0. 
For the second type of investment, data from 50 policies yield a profit of 
~2 = 0.3 and a standard deviation, s2, of 3.0. We wish to determine whether 
there is sufficient evidence to prefer one investment over another based upon 
the data. 

We will assume that the yield is normally distributed. Under this as- 
sumption, c = 0. Therefore, we will estimate d as zero. For the normal 
distribution recall that 

v =  i E = -  

2" 

An estimate of vi to be used is ~i = -- 
2" 

From this information we can now put values to the definitions in the 
previous sections. Explicitly, 

0.3 - 0.3 
Zo 3 . 0 -  1.0 0.0 
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f o  

j 05 

[(,: = f°®zfo(z)dz = - do (0) = - 0.399 

where @(x) and d0(x) are the cumulative distribution and the density of  
the standard normal distribution, respectively. 

tl = (0.3 - 0 . 3 ) (0 .5 )  + (3.0 - 1 . 0 ) ( - 0 . 3 9 9 )  = - 0 . 7 9 8  
fa = (50 + 100)/100 = 1.5 
f2 = (50 + 100)/50 = 3 .0  
~1 = (0-5) 2 [3 • (1.0) 2 + 1.5 (3.0)21 

+ ( - 0 . 3 9 9 )  2 [3 (0.5) + (1.5) (4.5)] 

+ 2 (0.5) ( - 0 . 3 9 9 )  [3 (0) + 1.5 (0)] 
= 5.438 

"h = (0.5) [3 (1.0) 2 + 1.5 (3.0) 2] 

+ ( - 0 . 3 9 9 )  [3 (0) + 1.5 (0)] 
= 8.25 

% = 3 (1.0) 2 + (1.5) (3.0) ~ 

= 16.5 

The  steps in Section II proceed as follows: 

1. Select a = 0.05 ~ z ,~  = 1.96 
2. N = 150 

- -  = 0.00399 
N 2 

~--~ = 0.00303 
N 2 

^ ^ ^ 2  ~1~3 ~2 Thus - ~ -  @ ~ ;  therefore skip 

3. 
4. 

to step 4. 

(Skipped) 
D = 150 [ ( - 0 . 7 9 8 )  2 (16.5) + (0) 2 (5.438) 

- 2 ( - 0 . 7 9 8 )  (0.0) (8.250)]/(16.5) (5.438) - (8.250) 2 
= 72.750 

- 2 log 2e¢ = 4.605 

Since 72.750 > 4.605,  do not skip to step 6. 
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. 
t i ~ ( - 0 . 7 9 8 )  

X/5.438 

= - 4 . 1 9 1  

. 

t2 x/i30 (0.o) 
V-/--63 

= 0.0 
Since - 4 . 1 9 1  < - z ~  and 0.0 $ z~/2, conclude E3 has occurred. 
From the conclusion in step 5, we conclude that investment 1 is 
better than investment 2 relative to the class of increasing concave 
downward utility functions. 

IV. PROOF OF MAJOR RESULT 

As noted in the introduction, we wish to choose between two risks by 
using an expected utility approach in which the utility function is unspecified 
except that it is required to be positive and concave downward. A risk that 
has higher expected utility than another risk for all utility functions of this 
type is said to be second-order stochastic dominant over the second risk. To 
place this idea in mathematical terms, define G(y) as 

G(y) = i { i [fl(x) - f2(x)] dxdt }. (5) 
- z  - , e ~  

Note that by the definition off l(x)  and fz(X), G ( - ~ ) = 0 .  Therefore, either 
GO,) = 0 for all y or G(y) has at least one maximum or minimum, although 
it may not be attained except at y = + 00. 

Definition 
Population 1 is said to be second-order stochastic dominant (SSD) over 

population 2, if G(v)_<0 for eve ryy  and GCvo)<0 for at least one yo. 
This definition is the same as given by Gooverts et al. [6], except that 

we require strict inequality for at least one value o fy .  It can be shown that 
this definition is equivalent to the two qualitative restrictions considered in 
the Introduction (see Whitmore and Findlay [14]). The hypothesis of interest 
is Ho: Pop.1 SSD over Pop. 2. 
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Lemma 1 

I f  0"~ 4: 0-2, then G(y) takes its extreme value (either a global max imum or 
global min imum) at 

Yo = 
0 " 2  - -  f f l  

if 

If 

then GO') takes in extreme value as y--*:c. 

Proof 

Rearranging the order of  integration, we can write 

Y Y 

Y 

= J O' - x)  [f ,(x) - f2(x)]  ~ 
- z  

r 

= y [ F , O ' )  - F20 ' ) ]  - i x [f ,(x) - f2(x) l  J x  

Differentiating with respect to y ,  we have 

G ' ~ )  = F ,O, )  - C,O' )  

\ o-~ / \ 02 / 

(6) 

(7) 
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Since fo (x) is assumed to be continuous and nonzero,  Fo(x) is monotone  
increasing. Thus Equation (7) implies that if G'(yo) is zero (and only if), 
then it is at the root Yo of  the equation 

Y -  I, Zl Y - >2 

0"1 0"2 

I f  0"1 ¢ 0"2 

Yo = 0"2 - 0"1 

_ o - 2 W  - 0 . 1 1 x 2  ( 8 )  

0.2 - err 

For this value o f y o ,  G ' 0  e) has either a local m a x i m u m ,  local min imum or 
an inflection point.  To  determine which,  we  examine the second derivative 
of G(y). 

a " 0 ' )  = f ,  Cv) - k 0 , )  

0.1 \ 0"~ ] 0"2 

Foryo  = °2}"L1 - -  0"1}"£2 the arguments  become  

and 

0"2 - -  0"1 

Yo - ~x~ 

0"1 

0 . 2 ~ 1  - -  0 . 1 ~ 2  - -  ~ 1 0 . 2  + ~ 1 0 . !  

0 . , ( 0 . 2  - 0 . , )  

Ix1 - -  I,*,2 

0"2 - -  0.1 

Setting Zo = 
0"2 - -  0.1 

Yo -- ~2 ~J -- ~2 

~2 ~2 -- ~I 

- -  we  see that 
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which is positive or negative as 0.2>07 or 0"2<07. Thus, if f(zo)~O, for 
oh v t 02, there is exactly one point, Yo, at which G(y) reaches its maximum 
or its minimum, and the result follows. Iff(zo) = 0, then there is no maximum 
value of G(y). In this case the sign of G'fy) remains constant, and therefore 
the extreme value of G(y) is attained asy--->~. 

From the proof of lemma 1, G(v) can be evaluated at two important points, 
Yo and ~. Since these two values are used in the sequel, we will determine 
here the values of G(Yo) and G(~). From Equation (6), replacing y by 

021.z~ - ohm2 
Yo = 

0"2 - -  0"1 

we get 

G(Yo) = Yo [F,(Yo) - F2(yo)] - 

R e c a l l  that 

Similarly 

Also, 

Y o  

I x  [f,(x) - f2(x)] dr.  
x 

YtI Yo f (x 
_ - \ o r ,  ] 

Making the substitution of variables z = ( x -  ~)/o7,  we note that the range 
ofx  from - ~ toyo implies the range ofz  is from - ~ to ( ~ , -  ~2)/(~z-cr,). 
This substitution yields 

Yo zl'~ 

- - 3  
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where z ;  = (~1 - IX2)/(Crz- o"1). Similarly we have 

Y~ zu 

In summary, if cr~ + cr2, then G6') takes the extreme value of 

Zo 

G (Y0) ~--- (~1~2 - -  ~ 1 )  f 
From Equation (6) we have 

lim G(y) = r x f2 (x) dx - -  

y..-..~ ~ .J 

fo (z) dz + (,~ - ,~) f z fo (z) ± .  

f x fl (x) dx + lim y[Fl(y ) - Fz(y)], 
y......,~ ~ 

- x  

provided that the expected value of X~ and )(2 both exist. Note that 

IF1(y) - Fz(,v)l < I1 - F16')I + I1 - F26') { 

0"  1 0" 2 ] 

where Z is a random variable with density function fo(x), with mean zero 
and with variance 1. From Chebychev's inequality, this last expression is 
bounded as 

Prob Izl > y Ix1 < 
~ 6 '  - i~ )  2 

and 

Therefore 

__S_____) cr~ 
Prob JZ I > y ~z < 

cr2 6 ' -  W2) z" 

y o-~ y o-~ 
y IF ,6 ' )  - F26')1 < + 

6 ' _ ~ , ) 2  Cv-  ~.2) 2" 
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This last expression goes to zero as y-- ,~.  Therefore 

G(~) = lira G(y) = EX2 - EX~ = ~x2 - ~x~ 
y.--..+,~ 

L e m m a  2 

If crl = 0.2, then G(y) reaches its extreme at y = ~. 

P r o o f  

Without loss of generality, we may assume in this case that or1 = ~2--- 1. 
From the proof of lemma 1, G'(y) =Fo(y - tXl) - F o ( y -  Ix2) has either a pos- 
itive or a negative sign for all y depending on whether ~1 < Ix2 or Ix1 > Ix2. 
Since G( - ~) = 0, the result follows. 

From the results of these two lemmas and the facts that G(y) is continuous 
and G ( - ~ ) = 0 ,  we can conclude in the case of o-1402 that if SSD exists, 
then one of the following four cases exists: 

1. G(Yo)>0 and G(+  ~)>-0. 
2. G(yo)<0 and G(+  ~)-<0. 
3. G ( + ~ ) > 0  and G(yo)_>0. 
4. G ( + ~ ) < 0  and G(yo)_<0. 

In the case where crl = 0.2, then SSD implies one of the following two cases: 

5. G(+  ~)>0.  
6. G(+  ~)<0.  

If any of the cases 1, 3 or 5 hold, then risk 2 is better than risk 1 in the 
sense that risk 2 is SSD over risk 1. Similarly, if any of the cases 2, 4, or 
6 hold, then risk 1 is SSD over risk 2. Consequently, the vector g' = [G(yo), 
G(+  2)] can be used as the basis for forming a test statistic for the hy- 
potheses. For simplicity, we denote G(yo) as g~ and G(+  :~) as g2. A test 
statistic can be formed by replacing ~ ,  Ix2, 0.1, and 0.z in the definition of 
g with the estimates of X~, X2, S~, and Sz. Denote the estimate ~ = [G(Yo), 
G(+ ~)]. To determine the large sample distribution of fg, the following 
well-known theorem is essential and is included here for completeness. 
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T heorem  

Suppose that Y ,  = (Y, . . . . . .  Y,,,)' is a random vector depending on n 
such that 

[ ~ / ~  (Yln -- 01) . . . .  , V ~  (Yn, -- Or)] 

tends in law to the multivariate normal distribution with mean vector 0 and 
covariance matrix V, and suppose that h l ,  . . . ,  hr are r real-valued func- 
tions of 0 = (01 . . . .  ,0r), defined and continuously differentiable in a neigh- 
borhood of the true parameter 0 and such that the matrix B = {dh/d0j} of 
partial derivatives is nonsingular in a neighborhood of the true parameter 0. 
Then 

{V"ff [hi(Y,) - fl(0)] . . . . .  ~ [hr(Y,,) - f,.(0)]}' 

tends in law to the multivariate normal distribution with mean vector 0 and 
with covariance matrix B V B'.  

P r o o f  

See Lehmann [9]. 

Col lorary  1 

If the random vector 

Yi = Si 

is derived from a sample ofn~ independent and identically distributed random 
variables from a location-scale distribution and 

O~ = (P~/  \Oil' 

then ~ (Yi - Oi) is distributed asymptotically as a bivariate normal random 
variable with mean vector 0 and covariance matrix 

vi(  ci) 
Ci Vi 
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P r o o f  

Let Y~'= IX, - ~ .  (X~ - ~,)2], = (y~, Y2~)'- Then EY7 = ( 0 , ~ ) '  
0,* and 

var (Y~) E(X~ - ~,)3 E(X~ - ~ ) 4  _ ~ 

Let 

, , ,  ] 
?/i r/i 

By the central limit theorem ~ (Y~,-07) tends in law to the multivariate 
normal distribution with mean vector 0 and with covariance matrix Vi. 

Setting 

Z(xo -L) 
h ,  (Y~,,) = Y,-,. = X,  and h 2 (Y;n)  : Yi2,, - Yi2/ln = j= ' '  = $2 ,  

ni  

we apply the preceding theorem with 

i. h ( 0  n = ( 0 , 4 )  

[1  ~]  
ii. B -- {OhflO0*~} = - 2 y , . , ~  

Evaluated at Yi. = 0", we have B = [~ o], and B V ,B'  = V,. Setting Y,. 
= (X~, S~)' = (Y,1. .Yi2.) ' ,  hdY.,) = Y.,,, and h2(y.,) = ~ ,  we have 

h (0,) = (~,, o-,.)' and B = {OhL/OOtx } = [: 
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Evaluated at y~, = 0,, 

B = 

o 

525 

and 

B V ~ B '  = 
E ( & -  Ixi) 3 

2~ 

E(x,-  ~,)' 
2o-~ 

4of, 

Therefore, applying the theorem 

= ~ (z i - -  -rg) 

tends in law to the multivariate normal distribution with mean vector 0 and 
covariance matrix 

Ei  tc,  v, - 

_ Let N--nx +n2 be the total number of observations on which the estimates 
X1, $1, X2, and $2 are based. Assume that the relative proportion in each 
sample tends to a constant as the total sample increases, that is, limN...+= 
(N/n,) = f~. Let "q denote the large sample expectation of ~,, that is, limu_.+~ 
E~ = "q. Similar to Section II, define the following, 

where 
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Similarly define I',. Here the hat, ' . . . .  , indicates that consistent estimates of 
~ ,  g,, c ,  and vi are used in place of the true parameters, and the lack of 
the hat indicates true parameter values are used. 

Le?tlr?la 3 

x/N (~ - ",1) is distributed asymptotically as a normal random variable 
with mean zero and covariance matrix f~ F~ + f~ F2, provided the covariance 
matrix is nonsingular. 

Proof 
By assumption X! ~) and X! 2) are two independent series of independent 

random variables with densities f~(x). The Taylor series expansion gives 

V ~ ( ~ - - q ) = v ~ B ,  s,  o-, " s2 0-2 

where 

B1 

0o°.....!1 0,~1, 

OX1 OS1/ 

and 

B2 

@__i, @___~ 

og_, ~2 
OX2 0S2 
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From the corollary to the theorem, we know 

::) 
is distributed asymptotically as a bivariate normal random vector with mean 
0 and covariance B~ V~ B~'. Since, by assmption (N/ni) ~ fi, we may con- 
clude that 

" J - 9 - ~ .  i S, ~, 

Thus, following the theorem, to establish the result we need only to determine 
values for the matrices B~ and B2. Focusing first on ~ l=(X2-X1)  /~1 
+ ( S 2 - S d / ~ ,  we differentiate with respect to X~ to get 

ok, ok2 
o~_, = _ k l  + (x2 - x , )  g2~, + (&  - s,)  02; OX~ 

Recall that 

and 

Zo 

ka = ffo(:) az 

Zo 

where Zo = (X1-22) / ($2-  SI). Therefore 

~2, - s~ - s ,  f°  (Zo) 

ak2 1 
" '~ -  = - -  Zo f lZo)  
OX1 $2 - S~ 
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Hence, 

a~',~-z' = _ k, + (~s: - s~ ) f (Zo) + (s~ -(s~S,)_ Zos,) f (Zo) 

= - -  k l  o 

Similarly, one can show the following 

aS~ 
08_, -_ k~ 
0x~ 
~g~ = k~. 
0S2 

Therefore, 

-k, -k~) 
- 1  0 

Similarly one can show, after some algebra, that 

^ ^ 

We note that the values of B1 and B 2 are  defined similarly by replacing the 
estimated values of location and scale with their true values: Ixl, Ix2, 0-1, o'2. 

Note that if 3'j = f ~ )  + f2~6 (2), then the covariance matrix is nonsingular 
provided that "h'¢3-'/22 ~ 0. Consequently, evaluating Be at X~= tz~ and 
St =0"~ and performing the matrix operations, we have the result. 

Corollary 2 

The statistic D = N~' (f~F~ + f2 F2)-1 ~ is distributed asymptotically as 
a chi-square with 2 degrees of freedom and noncentrality parameter N'O' 
(fl F1 +f2 F2)-' "q provided that -,/1",/3- ~/~4= 0. 
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Proof 
The proof follows directly from lemma 3. 
One can see from the definition ofg~ andg2 that as tr 2 ~ cry, then gl 

g2 and the matrices B i both become singular. In this case, 7173 - 722 ~ 0. 
Therefore multiplying the matrices together in corollary 2 gives the results 
listed in Section II of this paper for the case o12:~ 0 2. 

From lemma 2, comparing risks using the stochastic dominance in the 
case where (r~--o~2 reduces to comparing the means, or location parameters. 
This comparison follows immediately from the theorem by recalling the 
central limit theorem for averages of independent random variables. 

IV. POWER OF THE TEST PROCEDURE 

The test procedure described in the proofs leaves one unsure as to how 
to determine whether "/13'3--"fiE is zero. If this determinant is zero, then one 
of the eigenvalues of flF1 + f2F2 will be zero and the test procedure resembles 
the comparison of means. If, however, neither eigenvalue is zero, the de- 
terminant is nonzero and the test is a two-step procedure, the first step being 
an overall chi-square test and the second step, performed only in the case 
where the first produced a significant result, consisting of the comparison 
of two statistics. The problem of testing is made more difficult by the fact 
that we use estimates of the covariance. Therefore, "Y~'Y3- "Y2 may be close 
to zero by chance alone, even though f~F1 + fzFa is of full rank. 

Regarding the determinant of the true covariance matrix, some statisticians 
believe that testing for singularity in the covariance matrix makes no sense 
(see, for example, Mardia et al. [10]). Pursuing this line, the comparison 
of means approach would be used only if the calculated determinant 
('~I~3/AP) - (~/2/N2) was equal to zero within the computational error of the 
computer. In the simulations described below, this rule was used. 

The two-step procedure of testing stochastic dominance in the case where 
the determinant is not zero might appear to result in an inflation of the it- 
level. However, since the second step in the procedure is undertaken only 
in the case where the first step is significant, the a-level is protected. Ex- 
amples of a similar two-step multivariate procedure, given by Hummel and 
Sligo [7], indicate that the true a-level is in fact slightly below the nominal 
level. Thus, in our case, we would expect the test procedure to be conserv- 
ative, asymptotically. Recall that the a-level is the probability of concluding 
stochastic dominance when, in fact, FA = Fn. 

To evaluate the power of the procedure as described above for medium 
and small sample sizes, a series of simulations was run. Three location-scale 
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families were used in these simulations: the normal, uniform, and exponen- 
tial densities. These densities are expressed as 

(Normal) 

f(x; Ix, cr) - 1 ( (x 2 2 )  2) ~ e x p  , - ~  < x  < 

(Uniform) 

f(x; ix, or) = 
v W 2 " ~  ~ 

- ~ V 3 < x <  Ix+~rx /g  

(Exponential) 

f (x ; i , ,o . )  = 1 e x p (  ( x -  r~)) 
eo or 

I X - - o ' < x <  ~ 

For these three densities, the estimates of ci and vi are as given in Table 2. 
For each density, two sets of location-scale parameters were selected for 
comparison. Table 3 lists these parameter sets. Five hundred simulations 
were then performed for each set of parameters for samples of size 10, 25 
and 75 for each of the two samples in the comparison. The number of times 
the null hypothesis of no stochastic dominance was rejected in favor of SSD 
(one-sided test) was tabulated. Figures 1 through 3 are plots of the observed 
proportion of time the hypothesis was rejected using the procedure given in 
Section II. The x-axis in these plots is the "distance" between the two 
underlying distributions. This distance is measured as the noncentrality pa- 
rameter corrected for degrees of freedom. 

TABLE 2 

ESTIMATES OF C i AND V i FOR THE NORMAL EXPONENTIAL 
AND UNIFORM LOCATION-SCALE FAMILIES 

Esfimalcs of 

Family ci vi 

Normal 0 S~12 
Uniform 0 $7/5 
Exponential S, 2 2S, 2 
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TABLE 3 

LIST OF THE PARAMETERS OF EACH SIMULATI2D CASE 
FOR THE THREE LOCATION-SCALE FAM1LIES 

531 

Population A Population B 

Case it ~r I~ o" 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.0O 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

1 . 0 0  
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1 . 0 0  
1.00 
1.00 
1.00 
1.00 
1 . 0 0  
1.00 
1.00 
1.00 
1.00 
1.00 
1 . 0 0  
1.00 
1.00 
1.O0 
1.00 
1 . 0 0  
1 . 0 0  
1.00 
1.00 

0.00 
0.00 
0.00 
0.00 
0.00 

- 0.25 
- 0.25 
- 0.25 
- 0.25 
-0 .25  
- 0.50 
-0 .50  
-0 .50  
-0 .50  
-0 .50  
-0 .75  
-0 .75  
-0 .75  
-0 .75  
-0 .75  
- 1 . 0 0  
-1 .00  
- 1 . 0 0  
- 1 . 0 0  
- 1.00 
-1 .50  
- 1 . 5 0  

0.00 
-1 .00  
- 1.50 

1.00 
1.25 
1.50 
1.75 
2.00 
1.00 
1.25 
1.50 
1.75 
2.00 
1.00 
1 . 2 5  
1.50 
1.75 
2.00 
1.00 
1.25 
1 . 5 0  
1.75 
2.00 
1.00 
1.25 
1 . 5 0  
1.75 
2.00 
1.00 
2.00 
3.00 
3.00 
3.00 

As shown by the plots, the ability to detect one risk as being better than 
another when, in fact, the first risk is preferred using the SSD criterion 
increases as the favorability of the first risk increases. Notice also that the 
simulated power of detecting the better risk is irregular, as demonstrated by 
the plots. There are two reasons for this. First, because each point in each 
plot is simulated using 500 replications, some noise is expected in the plots. 
Second, one risk can be preferred over another because of differences in 
either location, scale, or both. Therefore, the power plots should be three- 
dimensional plots with separate axes for location, scale, and power. We 
have compressed such a three-dimensional plot into two dimensions, based 
on the asymptotic argument associated with G(yo). To the extent the sample 
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FIGURE 3 

PLOT OF THE OBSERVED PROPORTION OF TIME THE NULL HYPOTHESES OF EQUAL DISTRIBUTIONS 
WAS REJECTED IN FAVOR OF SSD VERSUS THE "DISTANCE" BETWEEN THE TWO UNDERLYING 
DISTRIBUTIONS.  ( T H E  HYPOTHESIS TESTS WERE PERFORMED FOR E Q U A L  SAMPLES SIZES OF SIZE 

10, 25, and 75 D R A W N  FOR SAMPLE FROM AN EXPONENTIAL PROBABILITY DISTRIBUTION;  A L P H A  

LEVEL = 0 . 0 5 . )  
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sizes are insufficient to use the first-order approximation of GCvo), the com- 
pression from three to two dimensions will produce irregularities in the plots 
of power. 

V. SUMMARY 

In this paper we have presented a method of comparing risks by using the 
criterion of second-order stochastic dominance (SSD). The SSD criterion is 
more restrictive than first-order stochastic dominance. Consequently, the 
partial ordering is finer. However, the qualitative restrictions giving rise to 
second-order stochastic dominance are often justifiable. Therefore, the SSD 
criterion would seem to be an effective way of ordering risks. This paper 
contributes to the literature on choosing efficient sets of risks by providing 
a large-sample statistical criterion that incorporates the uncertainty inherent 
in data based estimates of the densities with the SSD criterion. 

With the methodology presented in this paper, risks can be divided into 
three sets by using the SSD criterion: (i) those that are dominated by one or 
more risks, (ii) those that are dominant over some and dominated by none, 
and (iii) all other risks. In any investment or risk management strategy, 
choosing the first group seems always imprudent. This is because, based 
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upon the data available, one can conclude, statistically, that there are no 
utility functions in the class of monotone increasing, concave downward 
functions under which the risk would be a good choice. 

The choice between risks in the second and third groups is more complex. 
Clearly, risks in the second group are statistically better than risks in the 
first group. Hence choice of these risks appears defensible. However, a risk 
in the third group may be classified as an indeterminate risk simply because 
of lack of data or too much noise in the data. On the other hand, risks in 
the third group might actually be members of the first group, but the statis- 
tical methodology failed to identify them as such for the same data reasons. 
The third option for risks in the third group is that they truly are indeter- 
minate. This happens when the risks are preferred under some utility func- 
tions and not preferred under others. In such cases, perfect knowledge of 
the density functions associated with the risk would not give any more 
information. The choice of these risks requires further specification of the 
utility function. Note that in certain situations there may be no members of 
the second group; this means that there may be no dominant risks. A market 
perfectly efficient with respect to second-order stochastic dominance would 
result in no risks that are dominant or dominated. 
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DISCUSSION OF PRECEDING PAPER 

S. DAVID PROMISLOW: 

To test for stochastic dominance, when one does not know the underlying 
distributions but relies instead on observed data, is an interesting and chal- 
lenging statistical problem. The authors have made a contribution to the 
literature on this subject. I believe that a full understanding of such statistical 
testing requires knowledge of the theory of dominance. This has been dis- 
cussed a few times in actuarial literature. In addition to the paper by Goo- 
vaerts, DeVylder, and Haezendonck, referenced by the authors, the same 
writers have an extensive discussion in Goovaerts et al. [1]. Elias Shiu has 
made frequent applications of stochastic dominance to immunization theory; 
see [3], for example. Moreover, see Promislow [2] for a summary of some 
aspects of dominance together with actuarial applications. 

Despite these references, I would surmise that most actuaries are not very 
familiar with the concept. A reader who relies on the highly oversimplified 
example of Section III, as an indication of what testing for dominance can 
do, is likely to be misled. (In fairness to the authors, this example is pre- 
sumably designed to illustrate the computational aspects of the algorithm 
and seems fine for that purpose.) Anyone planning to use dominance testing 
in a practical decision-making process should carefully note the fact, outlined 
in the introduction to the paper, that dominance does not help one to make 
final decisions when comparing risks. It can only serve to eliminate some 
possibilities, leaving a smaller set of choices. In selecting investments, for 
example, the concept of dominance cannot help us to solve the problem that 
we are all frequently faced with, namely, how to choose from two possi- 
bilities, when one has a higher return but also carries more risk. In this 
situation, it is usually the case that neither distribution dominates the other. 

In addition, anyone planning to make use of second-order dominance 
should be aware of the peculiar behavior of this partial ordering. I illustrate 
this with some examples. (These are based on well-known facts about dom- 
inance. For completeness we will give formal proofs of all the statements 
later on in the discussion.) Throughout the discussion I use dominance to 
mean second-order dominance. 

Example 1 

Suppose you have to choose between the following two types of invest- 
ments. Type 1 has an annual yield uniformly distributed over the interval 
10 to 11 percent. Type 2 has a yield uniformly distributed over the interval 

537 



538 COMPARING RISKS USING STOCHASTIC DOMINANCE 

9.99999 to 30 percent. (We assume here that these actual distributions are 
known, so there is no statistical problem.) It is almost impossible to imagine 
that there is someone who would not choose type 2. And yet, type 2 will 
not dominate over type 1, and this is true no matter how many 9's we add 
to the decimal point or how large we make the 30. It is well-known that if 
one distribution is bounded below by a number a, then any distribution that 
has a positive probability of getting a value less than a cannot dominate the 
first. We can see this intuitively in the above example because it is possible 
to imagine a scenario, rather far-fetched, in which someone prefers the type 
1 investment. For example, you have gambling debts of $110,000, but your 
total capital is only $100,000. Your bookie gives you one year to pay, but 
warns that if you are even one penny short at that time, you are in danger 
of being shot. Hence, you invest your $100,000 in the type 1 investment, 
not willing to risk even the very slight chance of obtaining a yield less than 
10 percent and coming up short of the required amount. 

Example 2 

Let's get even more bizarre. Compare a normal with a mean of 1 million 
and standard deviation of 1 to a normal with a mean of minus 1 million and 
a standard deviation of 0.9999. Will everybody prefer the first distribution 
in this case? The answer is no!, since it is well-known that for two normals, 
a necessary condition for dominance is a lower standard deviation. 

Example 3 

I am sure that all of us at one time or other have chosen a distribution 
with a lower mean than another, because the alternative carried more risk 
than we desired. We exhibit this behavior whenever we choose a government 
bond over a stock, or a blue chip stock over a more speculative one. How- 
ever, a distribution with a lower mean can never dominate, regardless of 
how much extra risk the higher mean distribution carries. 

These examples may be extreme, but they still indicate that, in practical 
situations, it can be difficult to find distributions that dominate others. The 
point is that the dominant one must be preferred by all risk averse individ- 
uals, no matter how extreme their degree of risk aversity is, as indicated by 
the first two examples, or no matter how slight their degree of risk aversity 
is, as shown by example 3. The authors' statement on page 509 that "any  
risk in the efficient set is acceptable for the class of utility functions" needs 
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some qualification in my opinion. It is possible to have a set that is theo- 
retically efficient with respect to dominance but that contains risks that no 
reasonable decision-maker is likely to want. 

Referring to the final paragraph of the paper, I am not sure why the authors 
want to distinguish between risks in the second and third groups. In both 
cases (assuming no type 2 errors) we have risks that are not dominated by 
any others and hence are potential candidates for a final choice. For example, 
take the case of comparing three risks, X, Y, and Z. Suppose Y dominates 
X, but Z is incomparable with both X and II. This means that some individuals 
prefer Z to Y. Hence, I fail to see why Z should be excluded from the efficient 
set. To use the language of mathematics rather than economics, we are 
simply seeking the maximal elements of a certain partially ordered set, and 
Z is certainly one of those. The authors claim that risks in the third group 
may have been incorrectly classified. True, but certainly this can also be the 
case for risks in the second group. 

It is not clear to me what control the proposed test has over the error of 
concluding dominance for incomparable distributions, which are likely to be 
quite prevalent, as we have noted above. The authors allude to this at the 
end of Section II and claim that one should increase the value of et used, 
to avoid such an error. I don't follow this remark. Will not this result in 
even more chance of rejecting the hypothesis and incorrectly asserting dom- 
inance in this case? The way I see things, the null hypothesis asserts that 
the distributions are the same, so presumably the test allows one to be 
confident (by choosing ot low enough) that one will not incorrectly identify 
two equal distributions as showing dominance. But how likely is this error 
in the incomparable case? In certain extreme cases, like my Example 1 
above, I would think that this or any other test would be almost certain to 
conclude dominance of the type 2 distribution. In this instance, even though 
not theoretically correct, it would seem to be a good conclusion to reach 
from a practical viewpoint. However, consider the situation with different 
endpoints. For example, let X be uniform on (4,5) and let Y be uniform on 
(1,9). I don't believe that one can point to either of these as being superior. 
They are genuinely incomparable, and the choice will depend on the partic- 
ular decision-maker. We can show this conclusively. Consider two examples 
of typical utility functions, u(x) = In(x), and v(x) =x ~/2. Then ED,(X)] = 1.502, 
while E[u(Y)] = 1.472, so the person with utility given by u would prefer X. 
On the other hand, E[v(X)]=2.120, while E[v(Y)]=2.167, so the person 
with utility given by v would prefer K In this case we would not want our 
test to incorrectly conclude dominance and eliminate from the efficient set 
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a risk that should be there. One can make an even more serious error. 
Suppose that one risk really does dominate another, but the sample is such 
that dominance is concluded the wrong way. (This is certainly possible, and 
is discussed by Kroll and Levy, ref. [8] in the paper.) I therefore raise the 
following question. In the Tolley-Kosorok test, is there any way to estimate 
the probability of such errors for a given choice of oe? If not, then I don't 
see how one can be confident that the test is doing the job it is designed 
for. 

The authors do not point out the theoretical conditions for second-order 
dominance in the three examples they use. For example, it is well-known 
that one normal dominates another if and only if it has a higher (or equal) 
mean and a lower (or equal) standard deviation, while one translated ex- 
ponential dominates another if and only if it has a higher (or equal) mean 
and a higher (or equal) lower bound. A good reference for this and many 
other such relationships is Stoyan [4], in which the term concave ordering 
is used for second-order dominance. I don't think it is clear to the uninitiated 
reader that in all the cases given in Table 3, population A really does dom- 
inate population B. 

One of the most interesting parts of the paper is the authors' analysis of 
the function G. This can be extended to generalize the above facts and 
establish necessary and sufficient conditions for dominance in almost all 
cases of continuous distributions from the same location-scale family. 

To illustrate this, we will first want to write the function G in the form 

Y 
j -  

G(y) --- J El(t) - F2(t) dr, (1) 

which follows by evaluating the inner integral in the authors' formula (5). 
(This is a frequently used form for the function G; see [1], for example.) It 
makes for a much more direct proof than given in the paper of the well- 
known fact that 

G(:~) = 1"2-  ~, (2) 

since this follows immediately from (1) when combined with 

0 
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(Formula (3) is a familiar result, but for those who want a reference, simply 
apply Theorem 3.1 of the text Actuarial Mathematics by Bowers et al., ref. 
[1] in the paper, writing the random variable X as X+ - X -  and noting that 
P(X- >t) =P(X< - t )  for all t_>0.) 

Note that (2) is true in all cases in which both expectations exist. We 
don't need the same location-scale family nor the existence of variances as 
in the authors' derivation. 

An immediate consequence of (2) is the fact, mentioned above, that: 

Lemma 1. If a distribution with mean P~I dominates one with mean tx2, we 
must have ~1-> Ix~. 
Proof. If not, from (2), G(00) would be positive, and G could not be less 
than or equal to zero over its entire range. 

This also can be seen directly from the expected utility definition by using 
as a utility function just u(x) =x, which is increasing and concave. (Even if 
one wants to take just "strictly concave" functions, we can still suitably 
approximate the identity function as closely as we like by such, and use a 
limiting argument.) 

We can also use (1) to prove the fact, noted above, that: 

Lemma 2. Suppose that distribution 2 is bounded below by a and distribution 
1 has a positive probability of taking values less than a. Then distribution 
1 cannot dominate. 
Proof. The conditions imply that F2( t )=0,  for t<a but that F l (b)>0 ,  for 
some b<a. Hence 

a a 

c l a )  >_  FiIt) - F21t)dt = > O. 
b b 

For an alternative proof using the utility theory criterion, we can choose a 
monotone concave function u such that u(x) is 0 for x>_a, and negative for 
x<a. The second distribution gives an expected utility of zero, while the 
first gives negative expected utility. 

Lemmas 1 and 2 are perfectly general and apply to any distributions. We 
now assume the same conditions as the authors. That is, we postulate a 
standard distribution with mean 0 and standard deviation 1, which has a 
density function fo, which is positive and continuous on an interval (a,b) 
and which is equal to 0 outside of this interval. (Since it is irrelevant how 



542 C O M P A R I N G  R I S K S  U S I N G  S T O C H A S T I C  D O M I N A N C E  

fo is defined at the end points, a and b, we take these values equal to 0, 
which is convenient for our development.) Of course, fo can be positive on 
the whole line as in the normal, in which case a = - :~ and b = :¢. 

We will make use of the fact that since fo has mean zero we must have 

a < 0, andb  > 0. (4) 

We then consider two distinct distributions from the same location-scale 
family. For i = 1, 2, distribution i has the density function 

and has mean ~xi and standard deviation 0"i- We want to deduce conditions 
for dominance of distribution 1 over distribution 2. 

We know that that fi is positive on (jxi + a0"+, ~x+ +b0"i). Let 

a '  = min {Ixi + a0"i, i -- 1, 2} 

and 

b' = max {~x, + b0"~, i = 1, 2}. 

Note then that G is necessarily zero on ( -  ~, a ' )  and takes the constant 
value of (ix 2 -  ~1) on (b ' ,~) .  Therefore, some of the statements made on 
page 519 of the paper (for example, the second line) are not really precise 
when a and or b are finite. It is best to distinguish two possible cases from 
the beginning. 

Case 1 

The point 

IL l  - -  }..L2 
ZO - -  

O- t - -  0-!  

is in the interval (a, b), which will imply that 

Yo = ~1 + Zo0-t -= IX2 + ZoOh 

is in the interval (a ' ,b ' ) ,  and it is the only possible critical point in this 
interval. Since f(Zo) > O, G has a local max at Yo if and only if 0-t > 02- 
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Case 2 

The point zo is < a ,  or ->b, s o y o  is outside (a',b'), in which case G is 
monotone.  This corresponds to the case f(zo)= 0. (Note that this case always 
occurs when cr~ = % ,  since we then define zo by a limiting value as Io-1 - %1 
approaches 0, and this will be - ~ or ~ as ~ is > or < V2- Because the 
risks are distinct, we can ' t  have equality. 

We can now arrive at the conditions for dominance.  There are two cases 
to consider,  depending on whether  the distributions are bounded below.  

Theorem 1 

Suppose that a = - ~ .  Then distribution 1 is SSD over  distribution 2 if 
and only if 

(i) ~1 - g2 

(ii) % -< %.  

Proof 

Suppose that (i) and (ii) hold. Then G ( -  ~) is 0, and f rom (i) and formula 
(2), G(~)  is <-0. Regardless of  whether  we  are in Case 1 or 2 above,  it 
follows from (ii) that it is not possible for (3 to have a local m a x i m u m  in 
( a ' , b ' ) .  Since G has at most  one critical point in this interval, it must  be 
that G < O  throughout,  and SSD occurs.  

L e m m a  1 shows that (i) is necessary.  
To show that (ii) is necessary,  suppose that (i) holds but o~>o"2. Since 

b>O,  

Now,  if b < ~, then 

implying that 

I*~ + b0.~ > 1*2 + b°'2- 

P q  - -  P'2 > b o ' 2  - b% 

Zo _ Ix~ - 1"2 < b. 
0 -  2 - -  o- l 

Of course this conclusion is automatic  if b = ao. 
Since a = - :0, we  are in case 1 above and the one critical point in (a ' ,  

b ' )  is a local max imum.  Hence G must become  positive and dominance does 
not occur. 
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Theorem 2 

Suppose that the lower bound a is finite. Then X1 is SSD over X2 if 

(i) ~, -> ~2, 

(ii) .,1 + ao~ _ ~,2 + acr2- 

Remark. Since a <0, conditions (i) and (ii) of Theorem 1 imply condition 
(ii') of Theorem 2, but (ii) is no longer necessary. This is a fact of consid- 
erable interest. It shows that in the case where the distributions are bounded 
below, a distribution with a larger variance can still dominate, provided that 
its mean is sufficiently larger than the other. 

Proof  

Condition (i) is necessary as in Theorem 1. Condition (ii') is equivalent 
to saying that the lower bound of distribution 1 is higher than that of distri- 
bution 2, so it is necessary by Lemma 2. 

Now assume that (i) and (ii') hold. Condition (ii) implies immediately 
that 

~1 - tz~ --> a(cr~ - ~ )  

If 0" 1 -<or2, dominance follows exactly as in the proof given above in Theo- 
rem 1. If cr1>~rz, we have that Zo<a. Hence we are in Case 2, so G is 
monotone and we again have dominance. 

Note that the conditions for dominance in all cases are stated in terms of 
simple inequalities concerning means and variances and depend on the lower 
bound point a, but on no other feature off0. 

This latter observation leads me to wonder whether there are perhaps 
simpler and more natural tests for dominance based on standard procedures 
for comparing means and variances. Of course testing the point G(®) re- 
duces, via (2), to the comparison of means. Is it possible that the authors' 
somewhat involved procedure of estimating G(,vo) could be simplified with 
a statistic based on conditions (ii) and (ii') of the above two theorems? 
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(AUTHORS' REVIEW OF DISCUSSION) 

H. DENNIS TOLLEY AND MICHAEL R. KOSOROK: 

Mr. Promislow's comments help to clear up several fuzzy points in the 
paper as well as add to the theoretical development. The examples on second- 
order stochastic dominance help to clarify the fact that because no utility 
function is specified, one must pay some price for the decision criterion. In 
this case, there are reasonable situations in which the dominance criterion 
will not be fruitful. Thus, the lack of dominance can appear in several ways 
where one would intuitively expect some decision to be possible. In the body 
of the paper, this problem requires the analyst to specify two probability 
levels when forming a test for dominance. Changing the relative values of 
these two levels indirectly adjusts the empirical decision process for "near 
dominant" situations in which no theoretical dominance is present. As a 
consequence, the dominance-no dominance decision is really a multiple de- 
cision problem. 




