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ABSTRACT 

The extension of the theory of life contingencies to a stochastic interest 
environment and its application to solvency valuation are discussed. Al- 
though life contingencies are widely used in traditional actuarial valuations 
of life insurance contracts, certain complications arise in a stochastic interest 
environment that are not evident when using traditional deterministic interest 
assumptions. In particular, many insurance functions can no longer be ex- 
pressed in a simple form, resulting in a loss of the intuitive appeal of these 
functions. In this paper, a stochastic interest environment is introduced and 
analyzed in terms of its effects on insurance functions. Although the model 
is less general than others introduced in the literature, it is sufficiently flex- 
ible to handle the volatility and certain autocorrelation aspects of interest 
series. Its main advantage is the simple form of the resulting insurance 
functions and, hence, its intuitive appeal. 

To examine the performance of a block of business, the assets as well as 
the liabilities are considered. For liabilities of a block of business under a 
common stochastic interest environment, limit theorems for approximating 
the behavior of sums of policies are no longer readily available. Even if the 
mortality experiences of the policies are independent, the liabilities are not 
independent because of the common interest environment. By considering 
assets as well as liabilities, matching of cash flows reduces the volatility of 
surplus, defined to be assets in excess of liabilities. In fact, under an extreme 
type of matching, limit laws for sums of homogeneous policies can be de- 
scribed under more general interest environments than those described above. 

OVERVIEW 

This paper addresses the stochastic theory of the valuation of a risk-taking 
enterprise from a solvency perspective. For concreteness, the enterprise is 
assumed to be a life insurance company. In the development, the incorpo- 
ration of elements of financial economics is emphasized where possible. 
However, it is not the intent of this paper to show how weU-developed 
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valuation theories in finance, such as the capital asset pricing model, arbi- 
trage pricing model, and so on, can be applied in an insurance context as 
in Garven [15]. These models employ several assumptions such as friction- 
less trading, perfectly informed market participants, and the like, which have 
been questioned in the relatively efficient asset markets and are dubious in 
an insurance liabilities context. In particular, the lack of a broad secondary 
market for trading life insurance liabilities makes the straightforward appli- 
cation of these valuation models to the insurance problem highly suspect; 
compare Tilley [35] and Giaccotto [17]. 

The approach is to extend some of the traditional actuarial valuation tech- 
niques to incorporate ideas from modem financial economics. To this end, 
the paper comprises two parts, stochastic life contingencies and valuation 
from a solvency perspective. Part I, stochastic life contingencies, reviews 
and extends a literature that has appeared in actuarial circles since the mid- 
1970s, that is, that not only the time of decrement but also the valuation 
discount rate may be random. Stochastic life contingencies are useful in 
pricing, but their true value is in the ability to determine a value for an 
established contract at current and future times. Part II, solvency valuation, 
addresses broader questions concerning the use of stochastic interest ideas 
developed in Part I. Here, many of the financial interpretations not explicitly 
mentioned in Part I are provided. Further, at the expense of weaker results, 
much weaker assumptions on the interest environment are made. 

An important goal of this study is to provide actuaries with at least a 
partial response to the criticism of other financial analysts that valuation 
models do not take into account the stochastic nature of interest rates. There 
are many different levels to a complete response to this criticism. A basic 
response, as noted by Hickman [18], is that life contingency models tradi- 
tionally use deterministic interest discounting, and these models have been 
successful for centuries. Another response is that the stochastic variability 
of interest rates is not crucial in a world in which assets and liabilities are 
nearly "immunized." Here, immunization refers to an asset management 
system in which an asset portfolio is constructed so that the asset cash inflows 
occur at roughly the same time and in the same amount as benefit payment 
outflows. The objective is to reduce the risk of asset price fluctuations due 
to changes in interest rates. See Bierwag [2] for an introduction to this area. 
This response assumes, however, that total liabilities are nonstochastic or, 
at least, can be predicted quite accurately. When total liabilities arise from 
several policies with unrelated losses, the average loss can be estimated 
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within a desirable level of accuracy. However, in an environment of sto- 
chastic liabilities, matching techniques may or may not be adequate. It is 
precisely the extent of this adequacy that I wish to quantify. Perhaps the 
most complete response is the introduction of a model that includes annual 
forecasts of liabilities, a stochastically changing term structure of interest 
rate and the stochastic relationships among different types of assets within 
a portfolio. I hope that this study provides a step towards constructing such 
a model. 

I. STOCHASTIC LIFE CONTINGENCIES 

1. Introduction to Life Contingencies with Stochastic Discounting 

For every insurance contract, the uncertain timing of contingent events is 
a key feature in quantifying financial aspects of these aleatory agreements. 
This is particularly true in life contingencies, the financial study of contracts 
in which the benefit payment and premium structure are considered known 
at contract initiation. Under the traditional approach to life contingencies, 
as in Jordan [20], premiums and reserves have been calculated by deter- 
ministically discounting for the effect of interest and various decrements 
including mortality, disability, and so on. Under the modern approach the 
decrements are assumed to be stochastic. This approach is described in the 
text by Bowers et al. [3]; see Wolthius and van Hock [41] for an alternative 
description. Thus, several summary measures of financial contracts can be 
examined, including the median, standard deviation, 95th percentile, and so 
on, in lieu of using only the mean discounted value. This flexibility allows, 
for example, the financial analyst to explicitly consider the extent of potential 
adverse deviations from the mean. In this paper, I allow not only the various 
decrements but also the force of interest to be stochastic. Stochastic interest 
models have been considered previously in several studies including those 
of Pollard [27], Boyle [4], Wilkie [40], Waters [38], Panjer and Bellhouse 
[26], Bellhouse and Panjer [1], Westcott [39], de Jong [11], Giaccotto [17], 
and Dhaene [12]. One goal of this study is to review the contributions of 
these papers and recast the results in the notation of Bowers et al. [3], the 
current standard notation used in the North American actuarial literature. 

Following Pollard [27] and Boyle [6], to model a stochastic interest en- 
vironment we use the sequence {Ak}. Here, Ak is a capital Greek delta that 
represents the random force of interest in the k-th period. Section 5 argues 
that A k can be interpreted as a one-period spot rate. It is convenient to model 
the force of interest as the random quantity, in lieu of the effective interest 
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or discount rate, due to the linear nature of correlation and autoregressive 
models and the multiplicative nature of compound interest. In this paper 
attention is restricted to discrete time models, and for convenience, we refer 
to time intervals as years. Continuous time models can be formulated (com- 
pare Panjer and Bellhouse [26] and Martin-Lof [23]) but are more complex 
and of less interest in actuarial practice. 

The following outlines the rest of this part of the paper. In Section 2, I 
consider the case in which {Ak} is identically and independently distributed 
(i.i.d.). With the interpretation of {Ak} as one-period spot rates and the 
assumption that {Ak} as i.i.d., the logarithm of the accumulation of a one 
dollar investment, A1 + Az + ... + Ak, follows a random walk. This is de- 
sirable from the viewpoint of financial economics theory because the random 
walk is a special case of a discrete time martingale. See Gerber [16] for an 
introduction to martingales from an actuarial perspective. In investment pric- 
ing theory the martingale structure does not permit riskless arbitrage. In 
Section 2, I focus on summary measures, or parameters, of general insurance 
and annuity policies. For the mean and variance of many basic policies such 
as whole life, n-year term, life annuity due, and so on, the notation used in 
Bowers et al. [3] extends to the more general model. This represents two 
important differences between this study and those cited above. First, pre- 
vious papers dealt primarily with the whole life and life annuity due policies, 
leaving the extension to more complex policies as implicit. Second, previous 
studies dealt explicitly only with net single premiums, leaving the extension 
to reserves as implicit. In Section 3, the Section 2 results are extended to 
an autocorrelated interest environment. Autocorrelated models for interest 
rates have received a resurgence of popularity under the label of "mean- 
reverting" walks in the financial economics literature lately; compare 
de Bondt and Thaler [10] for a recent overview. By restricting the model to 
a simple moving average model of order one, tractable results are achieved. 
The proofs of all the propositions are in the Appendix. 

2. Single Policy-Independent Interest Case 

In this section the notation for a single generalized policy is introduced. 
The mean and variance for the net single premium, net level premium and 
reserves are developed. As in Waters [38] and Westcott [39], higher-order 
moments can be developed in a similar yet tedious fashion. As emphasized 
by de Jong [11], the variance is an important component of the error in 
forecasting expected present values. As shown later in the paper, the first 
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two moments are sufficient to use the Tchebycheff inequality to get a crude 
bound on the entire distribution. Further, it is well-known, in the special 
case of the normal distribution, that the first two moments are sufficient to 
characterize the entire distribution. 

For convenience, I first describe some notation to be used throughout 
the paper. Assume initially that {Ak} is an i.i.d, sequence such that, for 
positive constants ~ and cx, E(e -a) = e  -~ and E(e -2zx) = e - " .  Since 

0 < Var(e-a)  = e - "  - e-z8 

we know that oL<25. If ¢x=25, the force of interest is a degenerate random 
variable and the techniques in Bowers et al. [3] apply. At time 0, the random 
present value of $1 payable at time k is 

vk = e x p ( - A , )  = exp - As , 

and thus, the logarithm of vk is a random walk. (See Section 5 for more 
interpretations of {vk}.) The following example is central to many discussions 
in the literature. 

Example 1.1. Lognormal Distribution 
Assume A1 = A - N ( ~ , 0 2 ) ;  that is, A is distributed normally with mean 
and variance 02. In this case, e x p ( -  A) is said to be lognormaUy distrib- 

uted with parameters -Fz and 02; that is, c x p ( - A ) - l o g N ( - V . , 0 2 ) .  The 
moment generating function of A is E(e ~) = e x p ( l a +  02t2/2). Thus, with 
t =  - 1, we have 

e-  ~ = E e - "  = e x p ( - ~  + 02/2) or 5 = ~ - 02/2. 

With t = - 2 ,  we have 

e - "  = exp ( -2 l~  + 202)or  e~ = 2(~ - 02). 

Finally, with {Ak} i.i.d., 

k 

A - N(k~, k02), 

and thus 

vk - log N( -k lx ,  k02). 
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Note that the i.i.d, normality assumption will rarely be satisfied in prac- 
tice; compare the discussion in Section 3 below. However, it does serve as 
a useful benchmark. For example, in this example the force of interest used 
in expected value calculations can be interpreted as a mean force minus 
~ /2 ,  that is, a price paid for volatility.:l: 

Assume initially that there is only one decrement and that, as in Bowers 
et al. [3], K is the curtate time of decrement. Use the notation P(K=k) =k[qx 
and P(K>k)=k+~Px, k=0 ,  1, 2, . . . ,  for the mass and survival function, 
respectively. Also assume initially that K is independent of {Ak}. Two types 
of general contracts are considered, insurance and annuity contracts. Under 
the general insurance contract, a benefit bk+ ~ is payable at the end of the 
year of loss. The present value of this benefit is 

Z~+I = vk+l bk+i. (2.1) 

Under the general annuity contract, payments a, are payable at the beginning 
of each year up to and including the year of loss. The present value of the 
benefits is 

k 

a(k) = ~, v, as. (2.2) 
s~O 

where v0 = 1. In principle, both insurance and annuity payments, bk+ ~ and 
a~, respectively, may be positive, negative or zero. 

Summary measures for the insurance benefit are easy to evaluate because 
there is only one benefit payment. By the law of iterated expectations, we 
have 

E (ZK+,) = E [E(vx+, bK+,IK = k)] 

= E [e -~(K+') bK+,] = Z e-~(k÷')b,÷, ,Iq.- (2.3) 
k~0 

Similarly, 

E (Z~+,) = E [e -'~K÷') b2+1]. (2.4) 

For example, in the case of whole life insurance, bk+ l = 1 for each k. Then, 
from (2.3) and (2.4), we have 

E ZK+ , = E [e -~(K+''] = ~A~, = Ax 

and 

Var(ZK.I) = ~'A,, - (Ax) z. 
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Compared to the results in Bowers et al. [3], the results are the same except 
we use o~ in lieu of 28 in the variance calculation. Indeed, this holds true 
more generally in instances where : _ bK÷ a - bx÷ 1 as in Theorem 4.1 of Bowers 
et al. [3, p. 85]. As pointed out there, this is convenient for computations. 
Finally, note that, when a specific distribution for {Ak} is assumed, it is 
straightforward to calculate the distribution of ZK÷ ~. We have the following. 

Example 1.1 (continued) 

Assume that A - N ( p ,  o -2) and use ~(y) for the distribution function of a 
standard normal random variable, that is, for Y-N(0,1), we have ~(y)= 
P(Y<_y). To calculate the distribution function of ZK. ~ = v~:+ ~ b,:. ~, we have 

e(z,,+, <_ y) = e [ P  (v,,+, b,,+, _< ylK = k)] 
® 

= E P(vk+, <- fib,+,) k]q,, 
k=O 

= E a, {[logO,/t,~+O + (k + 1)~] 
k = O  

/ [o-(k + 1)an]} *lq,,- (2.5) 

Consider the specific case of whole life insurance. The quantity in (2.5) is 
easy to compute. A graph can be found in Figure 1 for a life age 30, 
ix=4.5%, o-=7% and using the 1979--81 U.S. Male Life Tables for the 
mortality decrement (compare Bowers et al. [3, pp. 55-58]). It is instructive 
to approximate the median from this graph, which turns out to be roughly 
0.12. With 8=p. -oa /2=0.04255,  this can be compared to the mean A3o, 
which turns out to be 0.16744. The fact that the median is less that the mean 
is one indication that the distribution is skewed to the right.:~ 

Summary measures for annuity benefits are more complex because of the 
multiplicities of payments. Similarly to (2.3) and (2.4), with (2.2) we have 

K 
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FIGURE 1 

DISTRIBUTION FUNCTION OF THE NET SINGLE PREMIUM FOR WHOLE LIFE INSURANCE 
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and 

E[a(K) 2] = E e -'~ a~ + 2 ~ e -Ss e -('~-~" ar as • (2.7) 
s=0 r = l  s=0 

The derivation of (2.7) takes several lines of algebra. 
For example, suppose as = 1 for each s. Then a(K) is the random variable 

associated with a life annuity due. Here, after some algebra, from (2.6) and 
(2.7), we get 

and 

(,}o) E vs = E e - ~  = ~dx = ax (2.8) 
X=O 

E ( \~=o = ~'a,, + 2(//x - '~ax)/[1 - e-('~-~)]. (2.9) 

Suppose in addition that K = n - 1  with probability one. Then a(K) is the 
random variable associated with an n-year certain annuity due and (2.8) and 
(2.9) reduce to 

E v s = a ~  = 
\ s ~ O  
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and 
2 I n - I X  

E { ~ ] v s }  = ' ~ , q +  2 ( ~ -  a ~ ) / [ 1 - e - ( a - B ) ] .  
- ] \ s = 0  

The important point is that even in special cases, such as Example 1.1, there 
is a simple expression for the distribution of 2~.o As and thus vx. This is 
not the case for Z~z; vk. This is easy to see since v,, v2, ..., v,,_, depend 
on A1 and hence are dependent random variables. 

Net level premiums can be constructed by using the equivalence principle, 
as in Bowers et al. [3, p. 162]. To this end, consider an insurance contract 
with premiums Pa~ payable at the beginning of each year, at times s = 0, 1, 
2 . . . . .  Benefits bk+, are payable at the end of the year of loss, at time k +  1. 
At contract initiation, with Z~,+, and a(k) defined in (2.1) and (2.2), respec- 
tively, let 

oL(K,P) = Zr+, - P a(K) 

be the loss at time 0 for a generic premium level P. The net level premium 
PN is defined to be the solution of E[oL(/~P)]=0; that is, Pu=E(Zg+~)/ 
E[a(K)]. This is straightforward to compute from (2.3) and (2.6). See Frees 
[14] for some alternative definitions of a net level premium. Waters [37] 
considers the loss at time zero for an endowment policy and remarks on the 
difficulty of calculating its distribution. 

The extension to reserves is similar. Following Bowers et al. [3, Chapter 
7], for duration k, define J = K - k  and Ek to be the expectation conditional 
of the event {K>-k}. Let 

J 

kL(J,P) = Vj+ I b~+j+, - P 2 v, ak+~ (2.10) 

be the loss at time k. The reserves are defined to be 

, v  = 

= Ek [e-~'+') bk+s+,] - P Ek (s~oe-~ a~+s). (2.11) 
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Henceforth, when the context is clear, use E for Ek. To calculate the variance 
associated with the loss function, we have 

bk+~+l) + p2 E vs ak+, 

- 2P E e -~cJ+l) bk+j+~ ~ e - ~ - ~  ak+s • 

Here, the second term on the right-hand side is calculated similarly to (2.7). 

3. Single Policy--Autocorrelated Interest Case 

The assumption that the interest environment, represented by the sequence 
{A~}, is i.i.d, is a useful modification of the traditional assumption that {Ak} 
is deterministic. This modification permits volatility of interest rates in the 
model. In this section the results of Section 2 are extended by assuming that 
{A~} can be represented as a moving average model of order one, that is, 
MA(1). This model accounts for certain autocorrelation aspects of the se- 
quence {Ak} and is particularly tractable in the calculation of insurance func- 
tions. I believe this tractability will help actuaries develop the proper intuition 
concerning the behavior of insurance functions in an autocorrelated environ- 
ment. Although the MA(1) model is not known to prohibit riskless arbitrage, 
financial economists have lately shown a willingness to investigate models 
that cannot be reduced to a martingale. The argument is that when examining 
the microstructure of investments, returns will follow a martingaleplus some 
corrupting influences. It is posited that the corrupting influences account for 
the observed autocorrelations of returns. Cho and Frees [7] examine one 
such corrupting influence: the discreteness of prices. Cohen, Maier, Schwartz 
and Whitcomb [8] give additional background on the microstructure of se- 
curity returns. 

Previous studies that develop insurance functions in an autocorrelated 
environment include Pollard [27], Panjer and Bellhouse [26], Bellhouse and 
Panjer [1], Giaccotto [17], and Dhaene [12]. All these studies dealt only 
with autoregressive (AR) models except Giaccotto [17] and Dhaene [12]. 
Giaccotto and Dhaene considered ARIMA, autoregressive integrated moving 
average, models, which, although more general, lack the interpretability of 
this section. 

There is not yet a consensus in the literature on the selection of a particular 
model to represent {Ak}. As noted by the Institute of Actuaries' Maturity 
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Guarantees Working Party [28], the long-term nature of actuaries' concerns 
may engender model selection criteria substantially different than those of 
other financial analysts. There is a general, although not unanimous, agree- 
ment among financial data analysts that the ARIMA class of models is a 
good starting point based on the principle of parsimony. Statisticians tend 
to prefer AR models because simple transforms enable one to analyze a 
multiple linear regression model with AR errors easily. Probabilists tend to 
prefer AR models because of the nice duality between continuous and dis- 
crete time stochastic process models; compare Shiu and Beckman [33]. 
However, there is a duality between AR and MA models described in, for 
example, Miller and Wichern [24]. An important corollary of this result is 
that it is often difficult, if not impossible, to distinguish an AR(1) model 
with a small lag one autocorrelation from a MA(1) model. Some model 
extensions are discussed briefly at the end of this section. 

Now consider the MA(1) model, 

Ak = Ix + ek -- 0 ek-1, k = 1, 2 . . . .  (3.1) 

where {ek}7,-o is a mean zero, i.i.d, sequence with variance o a. The case 
0 =0 reduces to the i.i.d, structure discussed in Section 2. Often 0 is re- 
stricted to be in the interval ( -  1,1) so that the model is invertible; that is, 
it can be expressed as an autoregressive model. The following simple prop- 
osition is a driving force behind this section. To simplify notation, define 
M(t) =Ee  '~ to be the moment generating function of ~, which is assumed to 
exist throughout the paper. 

Proposition 1 

Consider the MA(1) sequence defined in (3.1) and recall 

Then, for k = 1, 2 . . . .  

v . =  

E (Vk) = C, e -ks', (3.2) 

where ~1 = ~ - logM(0 - 1) and Cx =M(0)M( - 1)/M(0 - 1). 

Note, in the special case of 0 =0 ,  that 81 = 8 and C1--1. The above 
proposition is useful because we can easily calculate net single premiums 
using the law of iterated expectations. As in (2.3) and (2.6), we have 

E (Zr+~) = CI E [e -s'(~+~) bx+~] (3.3) 
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and 

E[a(hO] = C~ E ( ~ e-~" a') 

Thus, even when 0 g~ 0 we have 

(3.4) 

PN = E [e-S,<K÷l~ bk+l] / E e-S," as . 

To be precise, the above equation and (3.4) are approximate equalities. This 
is pointed out by Dufresne is the subsequent discussion. Net premiums are 
calculated as in Section 2, except we use ~ in lieu of ~. Thus, it is of interest 
to compare 8~ and 5, and this can be done in the context of the following 
example. 

Example 3.1 
Use the conditions of Example 1.1 and assume ~-N(0,O2). In the case 

0 = 0, from Section 2 we have 8 = V. - 0"2/2. With 0 ~ 0 and by the moment 
generating function properties of the normal distribution, 

M ( O  - 1) = exp[o2(1 - 0)2/2]. 

Thus, 81 = I~ - o2(1 - 0)2/2- The increase in the force of interest by assuming 
an autocorrelated interest environment is 

8 ,  - 8 = (1  - 0 / 2 ) 0 o 2 .  

To interpret this, recall that the lag 1 autocorrelation for the MA(1) model 
defined in (3.1) is pl = -0/(1+0~).  Thus, for a positively autocorrelated 
environment with p~ > 0, this yields 0 <0 and 8~ < 8. This indicates that the 
actuary should use a higher interest assumption than in the corresponding 
i.i.d, environment.¢ 

Second moment ideas are similar but more complex. The main ideas are 
summarized below. 

Proposition 2 
Under the assumptions of Proposition 1, for k = 1, 2 . . . .  

E (Vk 2) = Cz e -k'', 

and for s <r, 

E (vsvr) = C3 e -s~' e-~r-s)~ 

(3 .5)  

(3.6) 
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where tx~ = 2Ix - logM(20 - 2), 

C2 = M(20)M(-  2)/M(20 - 2), 

and 

C3 = M(0 - 2)M(20)M(- 1)/{M(0 - 1)34(20 - 2)}. 

As before, if 0 = 0, then a~ = ct and C2 = Ca = 1. 
Reserve considerations are similar, but, unlike net premiums, the con- 

stants do not vanish. As in (2.11), from Proposition 1, one can check that 

kVl ~-- E[d.,(J,P)] 

= Cl {E (e-~J+') bk+,+,) - P E(,~oe-~" ak÷,) }. (3.7) 

Similar to (2.10), we have 

Ek[L(J,P)I 2 = E (vs+, bx+,+a) 2 + p2 E v, a,+~ 

where 

( , ) -2PE Vs+l bk+s+l ~ v~ ak+~ (3.8) 
s~O 

E(v,+~ b,÷,+,)2 = c2 e [e  ° , , '+,  b~÷,+ 11, (3.9) 

E vsak+s = E C2 e -"'~a~+~ 
s - O  

J r-1 } 
+ 2 C3 E E e-S~ e-~"~-~°~ ak+r ak+s (3.10) 

r-1 s-O 

and 

( " / { } E vi+1 bk+j+l ~ v ,  ak+s = C3 E bk+1+l e -~I' e -~'+l-s)s~ ak+s (3.11) 
s=O s=O 

A special case is a fully discrete whole life policy issued to (x) at duration 
k. In this case, from (2.9), 

~v~ = c,g~+~ - e,, ~+~} (3.12) 
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and 

E(~)  2 = C~' A.+k 

+ P~. {C~" '~+k + 2 C3(d.+k - '~'~.+k)/[1 - e-~'~'-~'~]} 

- 2 C3 Px(Ax+k - ~"Ax+k)/[1 -- e-~'~'-~')]. (3.13) 

The notation '~'a means use the force of interest eq in calculating a and 
similarly for A. If no force of interest is specified, use 51. Some numerical 
examples of (3.12) and (3.13) appear in Section 4. 

Thus, it is of interest to establish relationships between the pairs (C1, 51) 
and (1,5) under general conditions. Naturally, for specific distributions such 
as in Example 3.1, C1 and 8~ can be computed exactly. More generally, we 
have the following. 

Proposition 3 

Consider the MA(1) in (3.1) and assume 0-2>0. Then, if - 1 < 0 < 0 ,  

51 < 5, oq < ~x and Ci < 1, i = 1 , 2 , 3 .  (3.14) 

If 0< 0_<1, then (3.14) holds with the inequalities reversed. Further, if 
0 = 0, then the inequalities in (3.14) are equalities. 

The interpretation is that in the case of reserves we have offsetting factors. 
For example, in a positively autocorrelated interest environment, 0 < 0, and 
thus C1<1 and 81<8. Now, in general, a lower interest factor (St) means 
that the reserve is higher. However, this is slightly offset in the calculation 
of kV~ in (3.8), because we multiply by C1, a factor less than one. 

We close this section with the following. 

Example 3. 2. Bond Index Returns 

Consider the annual returns of the Salomon Brothers Bond Index for the 
period 1926-85, inclusive. The data can be found in Ibbotson and Sinque- 
field [19]. For each return Ri, i = 1, ..., 60, let Di = log(1 +Ri) be the corre- 
sponding force of interest. For this series, the average force of interest is 

= 0.04676, and the standard deviation is so = 0.07363. Using maximum 
likelihood (with a normal model), the estimated force of interest is 

= D - s~2  = 0.04405, 
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and the second moment parameter estimate is 

& = 2(D - s~) = 0.08268. 

An examination of the histogram in Figure 2 indicates that the assumption 
of normality may be acceptable, although one or two observations could be 
considered to be too far away to be generated by a normal distribution. 

HGURE 2 

HISTOGRAM OF THE SALOMON BROTHERS BOND INDEX r:Oa 1926--1985 
(DATA ARE IN NATURAL LOOARrn~MS) 

N = 60 

Midpoint Count 
-0.10 1 * 
-0.05 6 ****** 
0.00 14 ************** 
0.05 24 ************************ 
0.i0 8 ******** 
0.15 5 ***** 
0.20 0 
0.25 1 * 
0.30 0 
0.35 1 * 

The time series plot in Figure 3 shows the temporal aspects of these data. 
Some summary statistics are rl = 0.144 and r2 = 0.078, the first- and second- 
order autocorrelations, respectively. After considerable examination of the 
data, it was decided that the MA(1) and AR(1) models were the best fitting 
models of the ARIMA class. For the MA(1) model, the estimated parameters 
were 

12 = 0.04731, 0 = -0.1465, and 6" = 0.07346. 

Hence, under a normal model, 

gx = 0.04376 and &l = 0.08043. 

While the Box-Pierce statistic (compare Miller and Wichern [24, page 391, 
equation (10.27)]) indicated model adequacy, in each case the autocorrela- 
tion parameter estimates were only about one standard deviation away from 
zero. This low significance was somewhat disappointing, and a careful in- 
spection of the time series in Figure 3 provides some insights. Note that, 
although the series is stationary in the mean, it appears to be more volatile 
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in the later years than in the early years. Indeed, the largest observation is 
in 1982, which corresponds to an annual return of 42.5 percent! To get an 
idea of the effect on the model of this large outlying observation, I arbitrarily 
truncated the observation to 22.5 percent (still 2.5 standard deviations above 

the average) and reran the MA(1) model. The absolute t-statistic for 0 jumped 
from 1.07 to 1.60, an increase of 60 percent. This illustrates the large effect 
of one observation on the model fitting exercise. It also reminds us that the 
task of modeling interest rates for valuation purposes is by no means com- 
plete. Models that allow the volatility parameter to change over time may 
be a useful next step. See Tsay [36] for a recent overview of this developing 
methodology. 

FIGURE 3 

TIME SERIES PLOT OF THE SALOMON BROTHERS BOND INDEX FOR 1926-1985 
(DATA ARE m NATURAL LOGARrrHMS) 
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II. SOLVENCY VALUATION 

In this part I address various aspects of how to value a life insurance 
company when solvency considerations drive the choice of valuation tech- 
niques. In the development, Section 4 is a direct extension of Section 3 to 
the case of several policies, with two important differences. First, a more 
general interest environment is considered, and second, the notion of a vector 
of cash flows, in lieu of discounting everything back to an arbitrary valuation 
date, is actively used. I interpret Section 4 to be a discussion of valuation 
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models in which all assets are valued at market. This type of valuation is 
useful in considering the liquidation or sale of a block of business, that is, 
the liabilities and assets of a group of contracts, of a company or a division 
of a company. In Section 5 begins the real discussion of matching asset and 
liability cash flows. Here, certain portions of the asset portfolio are not 
valued at market. Bringing assets explicitly into the picture allows us to give 
a financial interpretation to the discounting mechanism. The introduction of 
assets also permits us to discuss various central limit theorems for surplus 
in Section 6. 

4. Liabilities for a Block of Business 

Now consider the case in which several policies share a common interest 
environment. The policies constitute a block of business that is supported 
by the same pool of assets. As such, the policies are not necessarily identical 
and may be of different duration, age at issue, benefit structure, etc. Con- 
ditional on the interest environment, the events of loss are assumed to be 
mutually independent. As noted by Waters [38], if a common interest en- 
vironment is assumed for the policies, central limit theorems to approximate 
the distribution of the sum of losses are no longer available. I present two 
useful alternatives, both available for any sequence {Ak}. First, I propose a 
technique for calculating the variance of the sum by using expected cash 
flows. Second, I establish an approximation to the distribution of the sum 
by the distribution of a simpler random variable. These results quantify, at 
least in one sense, the folklore opinion that interest variability dominates 
mortality variability. Another useful corollary of the second result is that, 
under the i.i.d, assumption, the entire distribution of the sum can be recur- 
sively calculated. This idea seems to be new even for certain annuities. 

Specifically, assume there are n policies in this block of business. For the 
i-th policy, the age at issue is x~, the duration is ki, and the random time 
until loss is Ji" Assume J1, ---, Jn are independent. The benefit structure is 
b { ~.s}s=l and the present value of future benefits is 

z , (J i )  = vj,+l 

Premiums payable at the beginning of each year are (Pfl~s} and the present 
value of such premiums is 

Jr 

P, ai(Ji) = Pi ~ v, a~+,. 
smO 



108 STOCHASTIC LIFE CONTINGENCIES 

Thus, each policy incurs the random loss 

Li (Ji~ei) -~- Zi (Ji) - e i  ai (Ji) 

and the sum of such losses is denoted by 

SL = ~ L, (J,,e,). 
i = l  

Since 

e(sL) = ElL, 
i ~ l  

(4.1) 

(4.2) 

it is straightforward to calculate the expected loss by using, for example, 
(3.7) in the MA(1) environment. 

In order to apply curve fitting techniques to the distribution, it is crucial 
to also calculate Var(SL). For example, Tchebycheff's inequality guarantees 
that the probability that SL is less than E ( S L ) +  3 ~  is a conservative 
11.1 percent. With a normal approximation of SL, this probability is close 
to 0.0001. In an actuarial context, Waters [38] provides a discussion of 
curve fitting using the Pearson family of curves when higher moments of SL 
are known. In the present context, computation of Var(SL) is tractable via 
examination of projected cash flows arising from liabilities. To this end, 
consider the i-th policy with flow of cash at time point s + 1 defined by 

{ - P i a t ~ ÷ ~ + l  i f J i  > s 

F~s.l = bgk,+,+x i f  Ji  = s 

0 if./,. < s. 

(4.3) 

With the convention Fi.o = - P i  ai.kl, the loss in (2.10) or (4.1) can be ex- 
pressed as the sum of discounted net cash flows, that is, 

L, (J~, P,) = ~ vs F~s (4.4) 

Thus, SL is a sum of discounted benefit payments in excess of premium 
income. 
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The projected (expected) cash flow at time s + 1 is 

f l ; s+ l  = E (Fi.s+ l)  = b/ . ,~+s+l slqx,+k, - P i  ai, ki+s+ l s+ lPxi +ki. 

With the convention f~.o = --Pa~ki, the reserve is 

E [L,(J,, P,)] = X E (v~ f~.,). 
s~O 

Now consider the block of business. Define 

Fs=~F~s 
i= l  

to be the total random cash flow at time point s and let f~ =E(F,) be its 
projected (expected) value. Define .9 to be the collection of interest infor- 
mation generated by {Ak}. Note that in this section I no longer require {Ak} 
to be i.i.d, or even stationary. The calculation of E(S~) is summarized in 
the following. 

Proposition 4 
Assume J~ . . . . .  J,, to be independent of .9. Then, 

E (S~)= i.1 ~ E[Var(Li[.9)]+ E (~=ov~ f~ 

where 

(4.5) 

E [War(L/[.9)] = E[L i (Ji, p,)z] _ E Y. vs f,.s (4.6) 
\ s = O  

Note that computation of the second term in (4.5), 

E v, f, = • E(v~) f~ + 2 ~, E(vr v,) fr f, (4.7) 
$- -0  r<$  

is straightforward in, for example, an MA(1) environment from Proposition 2. 

Example 4. I. Block of Whole Life Policies 
To illustrate the application of Proposition 4, consider a block of whole 

life business. For simplicity, policies are categorized into three groups of 
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size N so the total size is n = 3N. Assume, for each category, that ages at 
issue are x=30 ,  30, 40 and durations are k=5 ,  10, 5, respectively. Also 
assume the MA(1) environment of Example 3.2, and thus ~ = 0.04376 and 
al = 0.08043. The mortality decrements are the 1979-81 U.S. Male Life 
Tables. 

The reserve, or E(SL), calculation follows directly from (3.12). Thus, 

E(SL) = N{CI[(A3s - P30/~33) + (A,o - P30 ii,o) + (A45 - e,o/i45)]} 

= N(0.18458). 

Here, for C1, I used a normal approximation in Example 3.1, which resulted 
in 

C1 = exp (62 0~/2) exp (62/2)/exp [(&(0 - 1)2/2] -= 0.99919. 

Similarly, it turns out that C2=0.99677 and C3--- 0.99757. By using (3.13), 
similar calculations establish that 

E (L3 z = N (0.14918). 

From (4.4), the projected cash flow at time s + 1 is 

f~s+l = ,Iqx,+~ - Pi ,*tPx,+k,. 

ThUS, as in (4.7), straightforward calculations yielded 

Y._ E[Var(L,I,~)] __. ~,,_ 2 _ E v, f~ ,  
i=1 i * l  

= N(0.14918) - N(0.01538) = N(0.13380). 

Finally, with (4.7), further tedious calculations establish 

E(S~) = N(0.13380) + N2(0.04268). 

Thus, 

Var SL = Ar2(0.00861) + N(0.13380). 

In Figure 4 is a graph of E [ S z J ~ ]  compared to N. Because the 
limiting value of the ratio does not tend to zero, this is one indication that 
the usual limit laws for sums of policies do not hold., 
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FIGURE 4 

PLOT OF TIIE EXPECTED LIABmlTIES AS A PROPORTION OF THE 
COR~SPONDING STANDARD DEVtA'nON COMPARED TO THE SA-~WLE SIZE IN EXAMPLE 4.1 
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Because the central limit theorem is no longer available, it is desirable to 
have other approximations for the distribution of SL. I assume that the block 
of business is homogeneous. Thus, for simplicity, the following result is 
stated only for identical policies (losses). 

Proposition 5 
Assume ./1, -.., J,, to be independent of $. Assume Li(J,P)=L(J,P), de- 

fined in (2.10), are identical loss functions and define Y=E[L(J,P)I,~ ]. If 
E[L(J,P) 2] < ®, then 

limit in (SL/n) = Y. 
distribution 

n ~ ®  

In the Appendix, I actually establish the order of the limiting approxi- 
mation. It is important that the result holds by using any random sequence 
{Ak}. This includes not only the autocorrelated sequences used as examples 
but also applications to interest rate scenarios. Proposition 5 is useful because 
often the distribution of SL is complex and can be approximated by the 
distribution of nY, which is simpler to compute. For any sequence {Ak} and 
loss function L, the distribution of Y can be approximated via simulation. 
As demonstrated below, in certain important special cases, the distribution 
of Y can be computed exactly. 
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Example 4. 2. n-year Annuities 

Consider a modified immediate life annuity with C dollars payable at the 
end of each year, up to n years, and F dollars payable at the end of n years 
where payments are made if the annuitant (x) is alive. Assuming we are at 
contract initiation and the policy is paid up, from (2.2) the loss associated 
with the policy is 

n - 1  

= c I(K_> k) + V v . I ( K  > n). 
k - I  

Now, define 
n - 1  

Y,,:m = Y = E(LI.~) = C Z v~ ,,p,, + F v, d9~. 
k - 1  

Assuming that {Ak} is i.i.d,, we have 
n - 1  k 

Yx:~ = C ~, 1-I [(vs/v~-l)(~p,,/s-uo,,)] + F v, ,Px 
k ~ l  s ~ l  

n - 1  k 

= C E 17[ [exp(-A,)P~+s-z] + e exp[ - (Az  + ... + A,)] ,,px 
k = l  s ~ l  

n - 2  k 

= exp(-A1)p~ C + C ~ 1-I exp(-A,+~)px+~ 
k = l  s ~ l  

+ F exp[-(A2 + ... + A.)] ._dTx+,} 

= exp(-A1)p~ (C + ~+,:,_a~), (4.8) 

where Y*~+s~_---~ is independent A~ and has the same distribution as 
Yx+l:,---~. This suggests an efficient way to recursively compute the distri- 
bution of Yx:~- Let G~,, and g~, be the distribution function and probability 
density function, respectively, of Y~,:,,7. Then from (4.8), we have 

G, J y )  = I G~+,,,_~(Fy/u - C) gx.,(u) du (4.9) 
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and 

g~.,,O') = f (F/u) gx+ a.,,-l(Fy/u - C) g,,.l(u) du. (4.10) 

As in Example 1.1, the normal distribution is the important benchmark 
choice of distributions, and thus we take A-N(l~,oa). In this case, to start 
either recursion (4.9) or (4.10), we have 

Yx:~ = F exp ( -  A1)p,, - Iognormal[- ~ + log(Fpx), ~ ]  

and thus 

g~a(Y) = (2wY 2 °'2) -l'z exp{- [ logy  - ( - I~  + log F px)]2/(2o2)}. 

Equations (4.9) and (4.10) become greatly simplified in the case of an 
annuity certain in lieu of a life annuity. For the annuity certain case, take 
Px = 1 for all x and drop the x variable in Equations (4.9) and (4.10). In this 
case, the annuity reduces to an ordinary bond without call provisions, and 
indeed, the notation C is for coupons, while F is for face value. To get an 
idea of the distribution of the present value of a bond, consider a $1000 
(=F)  10-year bond with $50 (=  C) coupons payable annually. Assume 
A-N(0.05,o  a) where tr=0.01,  0.05, 0.10 and recall that ~ =0.05 -0"2/2 is 
the mean force of interest. In Figure 5 are graphs that emphasize the effect 
of the volatility parameter tr on the distribution of Y_m. The distribution was 
approximated by simulation techniques. See Kahn [21] for an early discus- 
sion of the use of simulation techniques to value insurance benefits under a 
stochastic interest environment. Note that for each graph, the means are 
close (they turn out to be 1005, 972 and 961) while the standard deviations 
are dramatically different (260, 126 and 25). Extensive literature in financial 
economies provides pricing, strategies for a bond, but the notion of the 
distribution of the present value of a bond has not been emphasized in that 
literature. The following section includes some interpretations of the se- 
quence {Ak} that are more traditional in financial economies. 

5. Matching Stochastic Assets and Liabilities 
There is a widespread belief that the valuation actuary must examine the 

portfolio of assets that support the liabilities of a block of business (compare 
Tullis and Polkinghom [37, Chapter 8]). Although this is particularly true 
for interest-sensitive products, similar arguments can be made for all lines 
of business. In this section I consider a simple portfolio of assets that support 
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the liabilities of the block of business described in Section 4. The portfolio 
comprises two parts, those assets subject to net reinvestment risks and those 
assets subject to asset price as well as net reinvestment risk. The assets 
subject to only net reinvestment risk can be thought of as high-quality bonds 
without call provisions. This asset subportfolio yields an income stream of 
ck at time k. Here, use c for coupon income associated with assets even 
though the asset stream consists of coupons plus bond maturities. Also, make 
the simplifying assumption that these assets are default-free. All other assets 
are assumed to be valued on a market basis with current asset value Ao. 
Assume that the fund earns interest governed by the stochastic environment 
{Ak}. Further, make the simplifying assumption that the net reinvestment 
rate associated with amortized securities is also governed by {Ak}. With 
these assumptions, the present value of assets is 

Sa = Ao + ~ vk ck. (5.1) 
k - 1  

Define the surplus as the excess of assets over liabilities, that is, 

S = SA - SL (5.2) 

where SL is defined in (4.2). 
In this paper, vectors of asset- and liability-generated cash flows are com- 

pared and summarized by being discounted back to an arbitrary origin date. 
Assets are determined through efficient markets, and hence their worth is 
assumed to be known at the valuation date. The secondary market for lia- 
bilities is relatively inefficient, and hence the vector of liabilities is modeled 
stochastically. (A recent exception is the sale of a block of Prudential's 
polieyholder's loans; compare Shante et al. [31].) The discounting factors 
can be interpreted in the more general framework of the term structure of 
interest rates, as follows (see also Bierwag [2] for additional background 
information). 

At time 0, the valuation date, let ho(O,t) be the t-period spot rate. That 
is, the price of a t-year $1 pure discount bond is exp[-tho(O,t)]. Equiva- 
lently, we think of a fund of $1 at time 0 being worth exp[tho(O,t)] in t 
years. The set of spot rates, ho(0,1), ho(0,2) . . . .  is known as the term struc- 
ture of interest rates. It is well-known, disallowing arbitrage opportunities, 
that the term structure also determines ho(s, t). Disallowing arbitrage oppor- 
tunities is equivalent to all investment strategies yielding equivalent returns 
for all s,t. Interpret exp[(t-s)ho(s,t)] as the value at time t of an initial fund 
of $1 invested at time s. Here, the valuation is done at time 0, and at this 
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time, the term structure is considered known. The term structure is generally 
calculated from the yield curve which, in turn, is calculated via least squares 
regression. See Siegel and Nelson [25] for a recent overview of these 
techniques. 

At subsequent valuation dates, j = 1, 2 . . . . .  asset and liability values are 
subject to entirely new term structures [hj(0,1), hi(0,2), ...]. A variety of 
models have been proposed for developing relationships between the current 
and subsequent term structures (compare Bierwag [2, Chapter 11]). Perhaps 
the most well-known model is from the immunization study of Fisher and 
Weil [13]. They posited that the instantaneous movement of the term struc- 
ture does not depend on the spot period, that is, hj(O,t) = hi_ l(O,t) + 8 i, where 
~j does not depend on t. This model for changing term structures may be 
appropriate for some valuations. However, for solvency valuations, I adopt 
the principle that required surplus should not depend on future investment 
strategies except within broad classes of assets. In this paper only two classes 
of assets, based on asset price risk characteristics, are used, although this 
classification scheme can and should be eventually refined. For many val- 
uations, it is appropriate to recognize term structure and other effects. How- 
ever, if one considers a statutory valuation, it seems that uniform standards 
with broad classes of assets should apply. While term effects of the current 
portfolio can be somewhat recognized with the two classes of assets, recog- 
nizing term effects of reinvestments made in the future would not allow 
enough structure in the model to hope that one valuation actuary could 
independently affirm the work of another. Thus, further restrictions are re- 
quired. In this paper the one-periodspot rates, hs(s,s + 1)= As+w, s = 0, 1, 
2 . . . .  are used for discounting asset and liability flows. Use of these rates 
can be justified under a risk-neutral expectations model in financial econom- 
ics (see Cox, Ingersoll, and Ross [9, Appendix]). This model admits an 
AR(1) model, among others, as a model for rates. 

The key point is that, in a stochastic interest environment, it is the dis- 
tribution of S and not SL that is important. The notion of matching assets 
and liabilities is the main point of the immunization literature. See Boyle 
[5], [6] and Shiu [32] for some contributions to this literature from an ac- 
tuarial perspective. The primary innovation of this paper is that the liabilities 
are considered to be stochastic in lieu of deterministic. The main result of 
this section is summarized in Proposition 6 below. As in Section 4, note 
that there is no specific assumption regarding the distribution of {Ak} here. 
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Proposition 6 
Consider the surplus S defined in (5.2) and assume E(S 2) is finite. Then 

Var(S) = Var(SL) + Var(SA) - 2 Cov[E(SLI,~), Sa]. (5.3) 

Further, Var S is minimized by choosing {c~}7,.i so that 

E(ScI~) = Sa + So (5.4) 

where So, the initial surplus, is an arbitrary constant. In this case, 

Var (S) = Var(SL) - Var(S4). (5.5) 

The relation (5.4) suggests a new index of matching, M =  Var[SA-E(SL{~)]. 
When M = 0 ,  liabilities are "fully matched" on a projected basis. The con- 
dition that M =  0 is more restrictive than the usual notion of matching du- 
ration moments. However, the condition also yields more informative 
properties; see Section 6. A sufficient condition for (5.4) is that for each 
period the asset income, ck, equals fk, the expected benefit outflow, condi- 
tional on the interest information. It is not hard to check that this is also a 
necessary condition under mild assumptions on the distribution of {Ak}, for 
example, {Ak} is i.i.d, normal. In the case of full matching, Var(S) is easy 
to compute since, by (4.5), 

Var(S) = ~ E[Var(Lil~)]. 
i -1 

In the special case of i.i.d, policies, we see that the variance of S is pro- 
portional to n in lieu of n 2. This suggests that a central limit theorem ap- 
proximation may be available. Further, it would suggest a way to calculate 
the asymptotic distribution of S even when full matching is not achieved. 
This line of thought is pursued further in Section 6. From an investment 
manager's perspective, this asset position may be neither feasible nor desir- 
able (compare, Leibowitz and Weinberger [22]). 

The above model for the variance of surplus is simplistic from both an 
asset and a liability perspective. Further refinements of the liabilities, or loss 
random variables, are discussed in the following section, so here I discuss 
some of the drawbacks from the asset side. As mentioned above, the risk 
of asset default is ignored in the above analysis. This could be addressed by 
creating special subcategories of assets and using estimates of default prob- 
abilities for each subcategory, the probabilities presumably being interest- 
sensitive. A deeper problem is that all interest-sensitive assets are assumed 
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to be valued at market, and hence all the stochastic characteristics of the 
asset are summarized by a single quantity at the valuation date. The main 
advantage of this approach is that it relies on efficient asset markets for 
pricing and thus avoids a host of problems that arise in developing consistent 
asset-pricing models. The main disadvantage of this approach is that it treats 
all interest-sensitive products equally. For example, once market values are 
established, there is no real recognition of the many different risk charac- 
teristics of a high-quality bond with a mild call provision as compared to a 
mortgage-backed security, which is heavily influenced by prevailing interest 
rates. Presumably, future enhancement of valuation models will involve 
projecting asset vectors of cash streams for subcategories of assets, condi- 
tional on an interest environment. The sum of these projected vectors over 
asset subcategories would be compared with the corresponding projected 
vector liabilities. The difference could then be discounted back to an arbitrary 
valuation date and the resulting random variable summarized via means, 
variances, or percentiles. 

A third drawback is that examination of only the random variable S ignores 
the event of a shortfall of cash flows. Because of the experience suffered 
by the savings and loan industry in the U.S. in the 1980s, one can argue 
that consideration of this event is not merely an academic exercise. The 
event of shortfall could reasonably be ignored if the valuation is for a line 
of business, and it is assumed that other lines of business have available 
funds that could be lent in the event of a shortfall. Analogously, at a company 
level, it may be presumed that a parent company or other lender would be 
available to provide surplus relief on a short-term basis. Alternatively, the 
probability of shortfall could be quantified by using classical risk theory 
ideas, as follows. 

Formally define the event of shortfall of cash flows to occur if surplus at 
time k is less than some predetermined threshold level, say Tk, for each k. 
To define surplus at time k, let ik = exp(Ak) - 1 = vk-  ~/vk - 1 be the random 
interest rate for year k. Interpret 1 +ik  to be the value at time k of $1 invested 
at time k -  1. Surplus at time k, Sk, is defined recursively by 

Sk = Sk-t(1 +ik)  + ck - ~ F ~ k , k  = 1 , 2 , . . .  
i = l  

where 

So =Ao - ~,o- 
£-1 
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With this notation, the probability of shortfall is 

1 - P (Sk -> T,, for each k = 0, 1, 2 . . . .  ). 

This, of course, is just the individual model version of the classical ruin 
problem in risk theory; compare Bowers et al. [3, Chapter 12]. Collective 
model ruin problems with stochastic interest have been discussed by Schnie- 
per [29]. 

6. Central Limit Theorems for Surplus 

In this section, limit approximations for surplus suggested in Section 5 
are more fully developed. To simplify the discussion, only the fully matched 
case is presented explicitly, although some extensions to the general ease 
are indicated. To extend the arena of potential applications, this section 
considers both the multidecrement model and the situation in which loss 
random variables may depend on the interest environment. As in Sections 
4 and 5, no particular assumptions about the interest environment, such as 
i.i.d., are made in this section. 

Specifically, there are two important ways in which the interest environ- 
ment, $, can affect each loss random variable. First, cash flows, either 
through the benefit amount or premium payment, may be determined by 
while the time of loss random variable remains unaffected. Examples of this 
are the variable annuity or fully variable life insurance policies described in, 
for example, Bowers et al. [3, pp. 465-67]. Second, the time of loss random 
variable may be affected by $. An example of this is a whole life policy 
with the lapse rate influenced by $. To incorporate the latter example in the 
analysis, I consider the multidecrement model; compare Bowers et al. [3, 
Chapter 9]. For the i-th policy, let j~0~ be the cause of loss due to the j-th 
cause, j = 1, ..., m, where m is a fixed, known number. Define Jj = rain 
[an~ .... J/"~] to be the random time of policy cessation. Let b~,O3 be the 
benefit amount payable for loss due to thej-th cause, i =  1 . . . .  , m. Similar 
to (4.3), the flow of cash at time point s + 1 is defined by 

- P ~  a~,~+s+l (~) 
F~s+1(~) = ~ + ~ + x  (~) 

ifJ~ (~) > s 
i f  Y,q)(,~) = s, j = 1, . . . ,  m 

if J, (~) < s. 
(6.1) 
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Here, the notation (.9) is added to emphasize the fact that a, b, J ,  and F 
may all depend on the interest environment ,9. The argument (.9) is hence- 
forth omitted in F to simplify notation. 

With {Fts} as in (6.1), define Li as in (4.4). Let 

f,~ = E(F,,[#) 

be the projected cash flow for a given interest environment #. Let Seu be 
the surplus arising from n homogeneous policies under full matching, that 
is, 

S m =  N v,(fts - Ft,) = Sa - SL. (6.2) 
i~ I $ - 0  

The following result quantifies the probability of achieving a specified re- 
quired surplus level, K, =K n v~, which may depend on #. 

Proposition 7 

Conditional on .9, assume {Li~=l are i.i.d, loss functions with E(L2)< ®. 
Then 

limit P(Sm + Kn 1/2 -> 0) = limit P(SL <- Sa + Kn ~c2) 

= E ~{K/[Var(L[.~)] 1~}. (6.3) 

Recall that dp is the standard normal distribution function. Applications 
of Proposition 7 may involve the unmatched surplus in (5.2), 

s = + - f , )  
$=0  

where 

f, = ~ fi., = nfl,, and Co = Ao. 
i - 1  

From Proposition 7, the probability that S exceeds a required surplus level, 
Kt, may be approximated by using 

p(S+KI>O)_~E dp n -vz K,+ E v~ (cs-fs) [Var(Ll#)],f 2 (6.4) 
$=0 
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The right-hand sides of (6.3) and (6.4) are taken over various paths of interest 
rates. These quantities are straightforward to evaluate explicitly by using 
interest rate scenarios. For example, for j  = 1 . . . . .  m, let 

S~j = (1, vl;, v2, . . . .  ) 

represent the j-th interest rate scenario, which occurs with probability pj. 
Then, the right-hand side of (6.4) is 

] } pj e; n-,r2 g l  + ~ vsj (c, - fsj) / [Var(Llgj)] 1/2 . 
j= l  s=O 

Note that the expected cash flows, fsj, may depend on the interest environ- 
ment. If instead one uses a stochastic model for {As} such as in Section 2 
or 3, these quantities can be evaluated numerically via Monte Carlo or 
simulation methods. 

Example 6.1. Block of Whole Life Policies 
Consider a block of n = 100 whole life policies, each issued to a life aged 

x = 30. Use the fully discrete model with benefit = $1 payable at the end of 
the year of death and premium P3o payable at the beginning of each year. 
Under the MA(1) environment of Examples 3.2 and 4.1, it turns out that 
/30 = 0.00816. Assuming the insurer has the luxury of purchasing assets that 
fully match expected benefit flows, how much extra initial surplus is required 
to assure that the block will support itself with a reasonably high probability? 
From Proposition 7 and Table 1, one answer is that K,, = $2.50 will purchase 
protection at the 96.18 percent level; that is, P(SL <-SA + 2.5)----96.18%. Other 
values of Kn are also provided in Table 1, which was computed by using 
100 simulation trials. More trials could have easily been used, but the es- 
timated standard error indicated that 100 trials gives accurate results to three 
decimal places. 

Table 1 underscores the impact of full matching, or immunization, con- 
cepts on solvency probabilities. There is little movement in solvency prob- 
abilities between the MA(1) environment of Example 3.2, the corresponding 
i.i.d, estimates (0 = 0) and the deterministic interest environment (o-= 0 = 0). 
The latter environment is the one presented in Bowers et al. [3]. For com- 
parison purposes, to see the effect of a much more volatile environment, 
0.1 was added to the standard deviation in the MA(1) model, and the result 
is reported in the bottom of Table 1. Although this causes the largest shift 
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in solvency probabilities, the shift was not as large as one might have con- 
jectured. The solvency probabilities are stable under the different values, 
especially when compared to the unmatched distributions in Example 4.2. 
It is possible that these disparities are due to product differences or the central 
limit theorem approximation in Example 6.1. However, the simulation sug- 
gests that a great deal of the stability can be attributed to the matching of 
assets and liabilities. 

III. SUMMARY AND CONCLUSIONS 

AS remarked by Hickman [18], "Interest rate variation and resulting risk 
is a fact of business life." To enhance their credibility with managers and 
other financial analysts, actuaries should explicitly allow for interest rate 
variability in their modeling endeavors and their resulting recommendations. 

This paper is split into two parts. In the first part, stochastic life contin- 
gencies, interest effects as well as decrements are assumed to be stochastic. 
By assuming one-period spot rates are independent or follow a simple mov- 
ing average model, volatility and autocorrelation effects of the interest en- 
vironment can be introduced into the model. Although more general 
assumptions have appeared in the literature, these assumptions allow the 
actuary to use the traditional insurance functions in a number of cases of 
importance with only a change in the interpretation of the force of interest. 
The appropriate model for interest rates has been much debated in the lit- 
erature, but no real consensus has been achieved. The long-term nature of 
actuaries' concerns may engender model selection criteria substantially dif- 
ferent than those of other financial analysts. 

In the second part, valuation of a block of business is discussed in the 
context of stochastic life contingencies. When the policies share a common 
interest environment, the associated losses are no longer independent and 
the usual limiting distribution results for sums of independent random var- 
iables no longer hold. When all assets are valued at market and their value 
is assumed known at valuation date, the variance of the losses is calculated 
by using expected cash flows and the distribution is approximated by using 
simpler random variables. These results quantify the folklore opinion that 
interest variability dominates mortality variability. To compare cash flows 
in different periods, one-period spot rates are used in lieu of the more general 
term structure. This is done so that valuation models do not depend on 
investment strategies and any concomitant arbitrage possibilities. Bringing 
assets into the valuation model allows for some matching of the interest rate 
risk and a resulting reduction of volatility of surplus. Brought to the logical 
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TABLE I 

SOLVENCY PROBABILITIES WITH ESTIMATED STANDARD ERRORS 
FOR A BLOCK OF 100 WHOLE LIFE POLICIES EACH ISSUED AT AGE 30. 

I~, ~r AND 0 ARE PARAMETERS IN THE MA(1) MODEL. 
NUMBER OF SIMULATIONS IS 100. 

Mean Solvency [ Simulation 
K,, , Probability Standard Error 

= 0.04731; ~ = 0.07346; 0 : - 0 . 1465  

0.0000 
0.5000 
1.0000 
1.5000 
2.0000 
2.5000 
3.0000 
5.0000 

0.5000 
0.6385 
0.7608 
0.8561 
0.9218 
0.9618 
0.9832 
0.9998 

= 0.04676; ~ = 0.07363; = 0.0 

0.0000 
0.0001 
0.0002 
0.0003 
0.0002 
0.0002 
0.0001 
0.0000 

0.0000 
0.5000 
1.0000 
1.5000 
2.0000 
2.5000 
3.0000 
5.0000 

0.5000 
0.6378 
0.7596 
0.8549 
0.9208 
0.9610 
0.9828 
0.9998 

0.0000 
0.0002 
0.0003 
0.0003 
0.0003 
0.0002 
0.0001 
0.0000 

= 0.04676; ~ = 0.0; 0 = 0.0 

0.0000 
0.5000 
1.0000 
1.5000 
2.0000 
2.5000 
3.0000 
5.0000 

0.5000 
0.6399 
0.7631 
0.8587 
0.9240 
0.9633 
0.9842 
0.9998 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

Ix = 0.04731; o- = 0.17346; 0 --- -0 .1465  

0.0000 
0.5000 
1.0000 
1.5000 
2.0000 
2.5000 
3.0000 
5.0000 

0.5000 
0.6275 
0.7423 
0.8353 
0.9032 
0.9478 
0.9743 
0.9994 

0.0000 
0.0004 
0.0007 
0.0008 
0.0007 
0.0006 
0.0004 
0.0000 

123 

extreme of "full matching" of assets and projected liabilities, limiting dis- 
tributions can be established to approximate the behavior of the surplus. 
Under a fully matched environment, surplus requirements are not sensitive 
to the choice of the interest model, at least for the simple block of whole 
life policies examined. 
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APPENDIX 

The appendix contains the proofs of the results of Sections 3 through 6. 

Proof of  Proposition 1 

Define the partial sum, Tk = ck + ek- 1 + ... + el, and from (3.1), note that, 

k 

As = k p. + ek - 0 eo + (1 - O) Tk_,. (A.1) 
s = l  

By the i.i.d, property of {ek}, we have 

E(vk) = E{exp[-kp .  - Gk + 0 Go -- (1 -- O)Tk-,]} 

{ -- e [ e x p ( - G ~  + o Go) e -k~] E { e x p [ -  (1 - O) e]}  

= M ( - 1 )  M(O) e --k~ [M(O - 1)]k-L 

This is sufficient for (3.2). :]: 

Proof of Proposition 2 

The proof of (3.5) is similar to the proof of Proposition 1 and is omitted. 
To prove (3.6), from (A.1) we have 

= E { e ~ - [ s ~  + ~, - o ~ + (1 - o ) L - d  

- [ r~  + ~r -- 0 ~0 + (1 -- O ) r ~ - , ] } }  
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= E(exp[-  2(s - 1)B - 2(1 - 0) T~_I] } 

E { e x p [ -  ( r  - s - - ( 1  - o )  - 

E{exp[-e ,  - (1 - 0)% + 20e o - e,. - 31~1} 

= e -(~-1)¢'' e-{ . . . .  1)s, e-3~, E{exp[(0 - 2)e2 + 20el - e3]}. 

Now, since e -sl = e -~ E(e-O-o~,) and e-" l  = e -2~ E(e-2O-°~'), we get 
the result by direct substitution. :1: 

Proof of Proposition 3 
We first investigate the orders for the constants C1, C2, C3. First, note 

that if 0 = 0, straightforward calculations yield Cl = C2 = C3 = 1. 
Now, if 0 > 0, we have Cov[exp(0e), exp ( - e ) ]  <0. This immediately yields 

M(0 - 1) = E{exp[(0 - 1)e]} < E[exp(0 e)] E [ e x p ( - e ) ]  

= M(0) M( - 1) (A.2) 

and thus 1 <C~. If 0<0,  then the inequality in (A.2) is reversed, and thus 
1 > C~. Similar arguments establish that 1 < Cz if and only if 0 > 0. 

To establish 1 < C3, we show 

E{exp[(0 - 1) e]} E{exp[2(0 - 1) e]} 

< E{exp[(0 - 2) el} E{exp(20 e)} E{exp( -  e)}. (A.3) 

Similar to (A.2) for 0<  0 < 1, Cov[exp(0 -  2)e, exp(0e)] <0 and thus 

E{exp[2(0 - 1) e]} < E{exp(0 e)} E{exp[(0 - 2) el}. 

Putting this with (A.2), and the fact that E{exp(20e)}>{E[exp(0e)]} 2, is suf- 
ficient for (A.3). The case - 1  < 0 < 0  is similar. 

As noted before, it is trivial that ~ I=B and c q = a  for the case 0 = 0 .  
Further, without loss of generality, assume ~ = 0 .  For 0<0_<1, we have 
Cov{exp[(0-1)e] ,  e x p ( - 0  ~)}>0 and thus 

e -s = E{exp(-e)}  > E{exp[(0 - 1) e]} E { e x p ( - 0  e)} 

= e -~  E { e x p ( - 0  e)} > e -~' 

since E{exp( - 0e)} > exp[E( - 0k)] = 1 by Jensen's inequality. Thus ~ < ~1. 
The case of - 1 < 0  <0 is similar except that it uses the reverse inequality in 
(A.2). The proof for ct, ax is similar and is omitted. :]: 
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Proof of  Proposition 4 

From (4.4) and the independence of J1 . . . . .  J ,  and .~ note that 

and 

e(L,la) = E v f. 
S=O 

This is sufficient for (4.6). 
Now, from some basic identities, 

E(S, 9 = [E(SL)] 2 + Var(SL) 

= [E(SL)] z + E[Var(SLI~)] + Var[E(SlJ~)] 

: 
= ~ E Var Lil~ + E vsf~ . 

i ~ l  

(A.4) 

(n.5) 

The fourth equality is true since, conditional on .~, the losses L~, .... L, are 
independent. This is sufficient for the result. :1: 

For the proof of Proposition 5, we intend to show 

Theorem A. 1 

Under the conditions of Proposition 5, there exists a positive constant C 
so that 

n E (SL/n - I") 2 < C, for all n. (A.6) 

Remarks: An immediate consequence of (A.6) is that 

limit E (SJn - y)2 = 0. (A.7) 

Further, it is well-known that convergence in mean square implies conver- 
gence in distribution (see, for example, Serfling [30, page 10]), and thus 
(A.7) implies Proposition 5. The advantage of (A.6) over Proposition 5 is 
that not only do we know the limiting distribution of SUn but also how 
quickly SL/n approaches the limiting distribution. 
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Proof of  Theorem A. 1 

To prove (A.6), we have 

n E (Sdn - y)2 = n E{E[(Sdn - Y)~19]} 

= n E{Var (Sutn[9)} 

= E{Var [L(J,P)Ig]} < ® 

since E[L(J,P) z] < ®. This is sufficient for (A.6) and hence the result. :~ 

Proof of  Proposition 6 

Begin with the standard relationship 

Var(S) = Var[E(S[9)] + E[Var(S[9)] (A.8) 

Now, note that Sa is a constant, given 9. Thus, E(S]9)=E(SLIg)-SA and 
Var(SI9 ) =Var(SL]9). Putting this in (A.8)yields 

Var(S) -- Var[E(SL[9) - SA] + E[Var(SL[9)]. (A.9) 

Now, the second term on the right-hand side of (A.9) does not depend on 
{ck}. Thus, to minimize Var(S) over choices of {ck}, we minimize the first 
term on the right-hand side of (A.9). Clearly, (5.4) is such a choice. Now, 
from (A.9), 

Var(S) = Var[E(SL[~)] + Var(Sa) - 2 Cov[E(SL[9), S,~] + E Var(SL[~) 

which is sufficient for (5.3). Equation (5.5) follows from direct substitution 
using (5.4). 

Proof of Proposition 7 

Conditional on 9, by the usual central limit theorem, 

limit P(n -aa SFM < I~,9) = eP{K/[Var(Llg)lr2]}. 
n ~ m  

Taking expectations of both sides and applying the Bounded Convergence 
Theorem yields the result. ~: 





DISCUSSION OF PRECEDING PAPER 

DANIEL DUFRESNE: 

I found Dr. Frees' paper very interesting. After making some general 
comments, I first describe the technique of time reversal, which is very 
useful when discount rates are random, and then address some specific as- 
pects of the paper. 

Dr. Frees correctly emphasizes the tractability afforded by i.i.d, or moving 
average (MA) rates of interest. These processes allow explicit formulas for 
moments or, at the very least, simple algorithms to compute them. Any lack 
of fit with actual data, as compared with ARIMA models, may well be more 
than compensated by the simplifications they permit. See [3], [4], [7] and 
[8] for applications of random rates of return to pension funding. 

Dr. Frees is also right in pointing out that most (if not all) previous authors 
have not dealt with reserves, but only with level payment insurances or 
annuities; in this respect I am as guilty as the others (see [5] and [6]). I try 
to earn forgiveness below. 

For the most part I agree with the author that discrete functions have more 
practical use than continuous ones. Nevertheless, 

(a) Continuous functions do arise when payments are made very often, or 
when claims are paid at the moment of death; 

(b) Continuous functions give a different intuitive understanding of a prob- 
lem, which can sometimes lead to the solution of the discrete counterpart. 

An example of the second point above can be found in [6], where all the 
moments of ax are derived using the same idea that had previously worked 
in continuous time. 

1. Time Reversal 

In his paper, Dr. Frees deals with discounted values of random payments, 
when the discount rates are themselves random variables. To find the dis- 
tribution of such "randomly discounted present values" is by no means an 
easy question, as the paper itself shows. However, in many cases it is 
possible to greatly simplify the calculations, by using a technique called 
"time reversal." This technique has a long history in probability theory. I 
have applied it to random present values in [5] and [6]. My goal here is to 
describe, in simple terms, how time reversal can be used to calculate the 
moments of random present values. No attempt is made to treat the most 

131 



132 STOCHASTIC LIFE CONTINGENCIES 

general case. The simplest case, that of i.i.d, rates of interest and level 
payments, is dealt with in part (a). Two extensions are then given, one to 
variable payments, part (b), and the other to MA rates of interest, part (c). 

(a) First, consider accumulated values. Suppose one unit is invested at 
the end of each year, at i.i.d, rates of interest I~ = Uk-  1, producing a total 
amount S k just after the k-th payment is made. Then 

Sk+l = Uk.lSk + 1, So = O. (A) 

S~ only depends on Uj, j _< k, and is thus independent of Uk+l. The mean 
values of {Sk} thus satisfy 

ESk+~ = ulESk + l ,  ul = EUk+t; 

that is, they grow at constant rate il = u t - 1 .  Hence 

ESk = s~i~ 

= C1 uk + C 2 

where cl and c2 are constants. The first expression s~ is traditional in actuarial 
science, but the second one is more useful in the present context (of course 
ct = 1 / ( u l -  1) and c 2 = - 1 / ( u ~ -  1)). To obtain second moments, square 
equation (A) and take expectations on both sides: 

= uzE  + 2utESk + 1 

= + 2ut(ctu  + c2) + 1, 

where u2=EU~k+ t. Thus ES~k+I is the accumulated value, at constant rate 
i2 = u 2 - 1 ,  of annual payments consisting of two parts, one constant (namely, 
2 u : 2 +  1) and the other growing at rate it = u t -  1 (namely, 2ulctu~0. There 
is no standard actuarial notation for this accumulated value, but what can 

' ' and c~, be said with certainty is that for some constants cl, c2 

(this is a standard result in the theory of difference equations; see, for ex- 
ample, [10, Section 3.4]). In this fashion all moments of Sk can be calcu- 
lated, either recursively or by explicitly finding the proper constants Cmj in 

ES7 = c,,,o + c,,,1 u~ + c,,,2 u~ + ... + c,,,,,, u~. 

The latter approach is used in [6] and is also illustrated in Part 2 of this 
discussion. Going one step further, the distribution of Sk can be calculated 
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numerically from Equation (A); this is essentially what Dr. Frees does in 
his Example 4.2. 

When the rate of interest is constant, there is a simple relationship between 
accumulating and discounting: discounting at rate i is the same as accumu- 
lating at rate i' = - / / (1  +i). As will be shown presently, to some extent this 
duality is preserved when rates of interest are random. 

Suppose V1, 1/'2 . . . .  are i.i.d, annual discount factors. The present value 
of an n-year annuity-certain is 

Y, = 1 + VI + 1111/2 + ...  + V~. . .V~_~.  (B) 

(In Dr. Frees' notation, Vk=e-a*) .  The progression of discounted values 
111, Y2, . . .  is different from that of S~, $2 . . . . .  Y, is obtained by adding VI 
... V,_~ to Y,_~, whereas S, results from multiplying S,_I by/-In, and then 
adding 1. Accumulating is done by moving forward in time, whereas dis- 
counting is usually thought of as bringing back one unit from time n to time 
0. Because of this difference between accumulating and discounting, the 
moments of Yn are a priori a lot more difficult to calculate than those of Sn; 
the random variables 111 ... 11,_ i and Y,_ i are certainly not independent, and 
even the calculation of second moments gets messy; see Equation (2.7). 

To remedy this situation, consider the following argument: imagine your- 
self at time n with an initial amount of 0. Move back to time n -  1, adding 
the unit invested at time n - 1 .  The result is 1. Now move backwards to 
time n - 2 ,  multiplying the previous amount by V,_~, and then add 1. The 
result is 1 + V,_ ~. Next move backwards one more period, multiplying by 
V,_2 and again adding 1. The result is 1 +Vn-2+ Vn-2V,-~. Moving back- 
wards n - 3  more periods yields Equation (B). 

1 1 1 1 

I ..o..° 
1 0 

n - 3  n - 2  n - 1  n 

Vl V.-a "-- 

The progression of discounted values, starting from time n and then moving 
backwards, is seen to mimic the progression of accumulated values. The 
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moments and distributions of {Y.} can therefore be obtained in the same way 
as those of {S,,}. More specifically, define a new process {B,,} by 

Bk + l = Vk + l Bk + 1, Bo = 0. 

( " B "  stands for "backwards.") By iterating this equation, we find 

B . = t + v . + v . v . _ ~ + . . . + v . . . . v ~ .  

B. is not equal to Y., because the discount factors are in reverse order. 
Nonetheless, the fact that the discount factors are i.i.d, assures us that B. 
and Y,, have the same distribution. This implies EY". =EB". for any m. Pro- 
ceeding as with {S.}, we find 

EYk+ , = dplEYi + 1, 

E~+,  = +2E~ + 2d&EY, + 1, 

where ~,,. =EV'L All moments of Yk can either be found recursively, or else 
by determining the constants d,. in 

E ~  = d,,o + d,.~ +~ + .. .  + d,.,. +~. 

(b) Now suppose payment Tik is made at time k, and let Y,, stand for the 
discounted value of Tio, ---, Ti,,. 

First, let the payments be deterministic. Define Po=~, ,  P1 =Ti,-1, .... 
P .  = Tio and 

8~+, = v~+, 8~ + P~+,, Bo = Po. 

1,'1 V._, V. 
Ti0 q"l" 1 Tin - 2 Tin - 1 Tin 

I I ...... [ t I 

(c) 

0 1 n - 2  n - 1  n 

P, P . - ,  P2 P~ Po 
v. v~ v, 

The moments of {Bk} an be found recursively; this yields all the moments 
of 

Y. = Tio + TIiV1 + ... + TI. V I . . . V . ,  
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since 

B, = P,  + P , - 1 V ,  + ... +1:'oi:,...1/'1 

clearly has the same distribution as Y,. 
When the payments are random, but independent of the discount factors, 

the same procedure can be applied. The only additional ingredients required 
are the moments 

EPk, EPj P, ,  O <_ j ,  k <_ n. 

Equation (C), raised to the powers 1 and 2, respectively, implies 

EBk+I = dpl EBk + EPk+I, 

EB~+ I = dOz EBb, + 2d01 EPk÷ I Bj, + eIr~k÷ 1. 

The only unknown quantity on the right-hand side of these equations is EP~÷I 
x B~. This can be found recursively from 

EP~, + 1 Bo = EPj, + a Po 

EPk+I BI = dPiEPk+l Bo + EPk+I PI 

EPk + ~ Bk = ~ E P k  ÷ ~ Bk- 1 + EPk + ~ Pk. 

Third moments of {Bk} can also be found recursively, if {EPi P1 Pk, O<_:i, j, 
k<_n} are known, and so forth for higher moments. Finally, the moments of 
Y,, are again the same as those of B,,. 

(c) Time reversal arguments also apply when geometric rates of interest 
form a moving average process. I illustrate this for an n-year annuity-certain 
when rates of interest are MA(1): 

- l o g  Vk = Ak = I~ + ek + "re~_l. 

{ek, k>O} is assumed i.i.d. The discounted value of the annuity is 

Y. = 1 + e - (~+ ' '+~ + ... + e -[(n-1)t~+:~j',:}'j+T(j-fl. 

After replacing (% . . . . .  e,-1) with (e . . . . . .  el), it is seen that Y, has the 
same distribution as 
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B, = 1 + e -(~+~--'+'~) + ... + e-t("-l)"+zY d ~+-r~+q. 

Furthermore 

Bk = e -(~+'~+~-~ Bk-i + 1, Bo = O. 

Observe that B~-x is a function of (el, .... Ek-~) only. By defining 

= 

we get the pair of equations 

B, = e-O,+~,~J Ck-i + 1 

Ck = e-t~+(~+,)'~l C~_~ + e -~. 

The second equation allows the recursive calculation of the moments of {Ck}, 
from which the moments of {Bk} can be calculated by using the first equation. 

This ends my description of the technique of time reversal. For applica- 
tions to continuous functions, the reader is referred to [5] and [6]. Other 
applications and extensions are also possible, for example, to MA processes 
of higher order. Some of these will be described in future articles. 

2. Specific Comments 

Section 2. Use of only the first two moments may not always give an 
adequate idea of the distribution of randomly discounted payments. I illus- 
trate this point with a random present value possessing a closed-form dis- 
tribution. Consider the random counterpart of 

-d~ = [o e-~t dt. 

Let the log of the discount factors (log v, in Dr. Frees' notation) form a 
continuous-time random walk, that is to say, a Brownian motion process 
-IV,  with mean - 8 t  and variance o~t. This is the continuous-time equiv- 
alent of i.i.d, rates of interest. The discounted value of such a "continuous 
perpetuity" is 

Io Y = e ~m dt. 
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If 8 > 0, it can be proved that 

1 
~. - F(28/o a, oa/2) 

(see Section 4 of [6]). Y has skewness coefficient 

E ( Y -  EY) 3 

g = (Var IO 3a 

4 V ' d  - 2 
- , a > 3 ,  

a - 3  

where a = 25/o "2. A few values of g are shown in Table 1. 

TABLE 1 

S~wr~.ss CoEmcmm (g) OF Comar~vous PE~mxn'rY (10 
WHEN RETURNS ARE WHITE NOISE WITH MEAN 5 AND VARIANCE or 2 

Standard Deviation 
Mean (b) Or) a g 

0.02 0.01 400 0.201 
0.02 0.10 4 5.657 
0.05 0.01 1,000 0.127 
0.05 0.10 10 1.616 
0.08 0.01 1,600 0.100 
0.08 0.10 16 1.151 

The skewness coefficient decreases to 0 at the same rate as 1/V'~ = or/ 
X/'2"~. Most likely this indicates that the normal approximation worsens as 
the ratio 0-2/28 increases, that is, as the variance of returns increases relative 
to the mean. This is rather unexpected: one would think that the absolute 
size of the variance of returns would be the most important factor, but this 
is not so, at least in the case at hand. We tentatively conclude that, when 
average payments are approximately level over an extended period, the nor- 
mal approximation may not be appropriate, especially if the variance of 
discount rates is large relative to the mean. (When applying this criterion, 
inflation and mortality should be taken into account.) 

Closed-form expressions for all moments of Zx+ 1 and level payment an- 
nuities a(K) are not too difficult to derive when returns are i.i.d; see Section 
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2 of [6]. As to reserves, here is how time reversal is applied to the calculation 
of the second moment of 

./r 

d- .=bvj+l  + c  ~ , G .  
$=0  

I am assuming a level death benefit b and level premiums P =  - c .  To 
calculate E(~2~J =j),  first assume J = j  (fixed) and then reverse the order of 
payments and discount rates. 

Payments c c c c b 

Original 
Time Scale 0 1 j -  1 j 

New Time 
Scale J + 1 j 2 1 

If B, is as in Equation (C), with Po=b and P~=c for 1-<s-<_j+ 1, then 

EB,+~ = d:IEB, + c, 13o = b, 

= > £ B s  = 1 -  d:l + b 1 - ~1 0~ 

In the same way 

= dlo + d n 6 ~ , O a s - < j  + 1. 

y+l 

0 

EB~+I = ~:,EB, + 2cdo~ EB, + c 2 (D) 

= > EB~ = d2o + d21 d:~ + d22 ~. 

To obtain the constants d2o and d21, substitute the expressions for EBs, EB 2, 
and EBb+ ~ on either side of Equation (D), and identify the coefficients of 1 
and ~. This yields 

d2o --~ (2c(~i dlo "I- c2)[( 1 - (~2) 

( 1  - ( b ~ ) ( 1  - ~b2) 
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d2, = 2cd~, dnl(4>~ - +2) 

* 2 - - - - + ,  1 " 

To obtain d=,  use the initial condition EBo = b to get 

d22 = b 2 - d2o - d2,. 

Thus 

E(j:V = j) = eB}+x 
= dzo + d2x ~ + '  + dz~ d~ +' 

= > EeL 2 = d2o + d2, Ax+k + d22 2A~,+k 

where A,,+k is valued at rate ix =~p~' - 1 and 2A,,+ k at rate i2=tp~ ' - 1. This 
formula for EeL 2 is expressed in terms of  insurance functions, which is the 
fashion adopted in Actuarial Mathematics and is equivalent to Equation 
(3.13) when 0 =0 .  It is possible to determine the constants d ~  in 

EeL" = dmo + ~ a=sAx+k,m ~ 1, (E) 
S = l  

where sA~+~ is valued at rate i s=q~;" -  1. The same arguments can be used 
for any pattern of benefits and premiums. 

It is a simple matter to derive the counterpart of (2.5) when benefits are 
paid at the moment of death and returns are white noise; see [5, p. 196]. 

Section 3. In this section a small mistake has unfortunately gone unnot- 
iced, and it affects several of  the equations. The first term of 

k 

= X ", as 
s=O 

is 1 • ao. Since Evoa o = ao, Equation (3.4) should be 

K 

Ea(hO = ao + C,E ~ e -"'s as. 
$=1 

This implies 

K 

Pu = E[e -~(r+x) br+x] / (ao/Ct + E ~ e -~'~ as). 
s=X 
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Hence it is onty approximately true that "net  premiums are calculated as in 
Section 2, except we use ~1 in lieu of ~ ."  The same comment applies to 
Equations (3.7) and (3.12): 

J 

kVx = C1E(e -~1÷1) b~+j÷l) - P[ak + C1E ~, e - ~  ak+,] 
$--1 

kvx = C Ax+k - ex(1 + G a x , k ) .  

The second equation relates to a whole life policy. 
Similarly, Equation (3.6) does not hold when s = 0. Thus, the terms voak 

have to be moved out of the two sums on the right-hand side of Equation 
(3.8) and dealt with separately. Equations (3.10), (3.11) and (3.13) are 
therefore incorrect. The effect on the numbers in Example 4.1 is most prob- 
ably negligible, since C1, C2 and C3 are very close to 1. 

Concerning Example 3.1, readers might be interested in the numerical 
example contained in [7]. It shows accumulated values under the assumption 
that arithmetic rates of return are MA(1) with the same mean but varying 
covariances. Both examples indicate that our intuition needs to be reeducated 
when dealing with dependent rates of interest. 

Closed-form expressions can be found for the moments of ~ in the case 
of a whole life policy with level premiums. By using time reversal as in 
Section l(c), a formula similar to (E) can be obtained. The formula for the 
second moment has only three terms (compare with (3.13)). 

Section 4. The development leading to Proposition 4 and Example 4.1 
should be compared with Section 4 of [12]. Proposition 5 is a direct appli- 
cation of the usual ergodic theorem for stationary processes, see, for ex- 
ample, [11, p. 87]. Convergence holds with probability one (not only in 
distribution) and EL 2 need not be finite. It should be emphasized that the 
limit Y has done away with all mortality fluctuations. Only random interest 
and expected cash flows are left. Example 4.2 is in effect an application of 
time reversal. Any discounted value can be treated in the same way, whether 
rates of interest are i.i.d, or MA(1). Some examples of perpetual bonds with 
closed-form distributions are given in [6]. 

For a block of business, I would suggest the following alternative to 
Proposition 4: 

(i) Project cash flows: determine mean and covariance functions. 
(ii) Use time reversal to calculate moments of discounted values. 
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The first step involves mortality and withdrawals only, whereas the second 
introduces random interest. I see a number of possible advantages to this 
approach: 

(i) Multiple scenarios for cash flows and interest rates probably require 
less work; 

(ii) Programming recursive equations may be less time-consuming than 
using explicit formulas; 

(iii) Claims under different policies do not have to be independent; 
(iv) Moments higher than the second can be calculated, ff desired. 

Section 6. Proposition 7 results from the central limit ~heorem for con- 
ditionally independent random variables. Suppose that, given 0, X1, X2 . . . .  
are independent and have common distribution Fo. Let 0 have distribution 
G and 

a 2 = f Var Fe dG(O). 

Then ([9, p. 287, no. 21]) 

1 

e - i  distr. 

with 

r x) = I 
In the case at hand 0 is the vector of random rates of interest. The limit 
distribution is a weighted average of normal distributions. It may be obtained 
via simulations, or else by integrating with respect to the joint distribution 
of interest rates. Of course the latter method is usually a serious exercise in 
numerical analysis, requiring, for example, integrating in dimension 20, for 
a 20-year projection. 
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ELIAS S. W. SHIU" 

Dr. Frees is to be thanked for another contribution to the theory of sto- 
chastic life contingencies. The following are some thoughts on the paper. 

In the context of life contingencies, it seems to me that Ak should mean 
the rate of total return in the k-th period of the investment portfolio that 
funds the insurance policy. The total return of an investment portfolio in a 
period is determined by the interest and dividend income received during 
the period and the market values of the portfolio at the beginning and end 
of the period. In other words, Sexp(Ak) should be the amount that one gets 
at time k if one invests $1 at time k -  1. In practice, it may be difficult for 
an insurance company to come up with such numbers. Although it is rela- 
tively easy to determine interest and dividend income, capital maturities and 
initial investment values, there are many assets whose market values are 
difficult to assess because they are not traded publicly. It may be useful to 
point out that, in Example 3.2 of the paper, some of the annual returns of 
bonds were negative because the bond portfolio incurred capital losses and 
not because interest rates became negative. 

It is stated in Section 5 of the paper that the one-period spot rates, 

hs(s, s + 1) = As+l, s = 0, 1, 2, ... , 
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are used for discounting asset and liability flows. I have three remarks. First, 
note that the one-period spot rate hs(s, s + 1) is known at time s. In particular, 
ho(0, 1) = A1 is fixed at time 0; it is not a random variable. Second, because 
spot rates should not be negative, one may object to modeling them as normal 
random variables. Third, the expression 

gives the '"actuarial" present value at time 0 of 1 to be paid at time k. Is it 
the same as the spotprice ,  at time 0, of a k-period (noncallable and default- 
free) zero coupon bond 

exp[- o(0, k)]? 
In general, for t>s>O,  is 

Under the no-arbitrage hypothesis, the paper [6] shows how one may con- 
struct a term structure evolution model, in which (D.1) is satisfied for all t 
and s,  t>s>-O. However, a probability measure under which (D.1) holds is 
not likely to be the "actual" probability measure (because we do not live 
in a risk-neutral world). Also, in such models, even though the expected 
values are market values, the meaning of variances, etc. is not clear; see 
also [4]. 

It is stated in Section 5 that Fisher and Weil posited that the movement 
of the term structure of interest rates is governed by 

hi(j, t) = hj_~(j, t) + 8j, t >_ j , j  = O, 1, 2, . . . .  

where 8j does not depend on t. I would like to add that such term structure 
movements necessarily admit arbitrages; see [6, p. 236]. 

I now try to rephrase Proposition 6 in the language of  functional  analysis.  
Let (~,  ~;, P) be a probability space. Let L2(fl, ~;, P) be the Hilbert space 
with the inner product 

<X, Y> = E(XI 0. 

Let ~J be a sub-o-algebra of $;. The functions in L2(O, ~:, P), which are ~3 
measurable, form a closed subspace N, that is, N =L2(I~, ~J, P). Let 

rl : L~(n, ~, P) ~ L ~ (n ,  ~,  P) 
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be the orthogonal projection onto N. Then, for X e L2(~~, ~;, P), 

E(XI~ ) = 1-IX 

almost surely. Consequently, we have the Pythagorean Theorem: 

J[X - E(X]~J)II 5 + IIE(X~J) - ~12 = IIX - I'll 2 (D.2) 

for all Y ~ N. With X =  SL and ~J = 4 ,  (D.2) becomes 

)ISL - E(&I~)II  2 + I~E(SLI~) - g(A , ,  A 5, A3  . . . .  )115 
= IlSz - g ( A , ,  As, A a . . . .  )112 

for all Borel measurable functions g. 
To derive (5.3) of the paper, write 

7 = s - E ( S ) ,  

Ta = SA -- E(S.4) 

and 

Then 

I"~ = s~ - E(SL). 

V a t ( S )  = Isrll z 

= lira - rLII 5 

= IITAI? + IITLII = - 2 < T ~ ,  T L > .  

N o w ,  i f  w e  assume that SA is of the form 

SA = g(A1, A2, ,% . . . .  ), 

then TA = IITr. Hence 

<T.4, TL> = <IIT,4, TL> = <TA, H*TL>. 

Since II is a self-adjoint operator, that is 

H* = H,  

w e  have 

< TA, TL > = < TA, IITL > = < r.4, E(TLI~) > = Cov(SA, E(SL[.~)). 
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Dr. Frees points out that, under mild assumptions, 

Var(S,~ - E(SLI~)) 

is zero if and only if c, =fk for all k. Some suggestions on how one may 
match cj, with f~ can be found in Section VI of [5]. 

Finally, I wish to mention that two recent papers, by Beekrnan and Fuell- 
ing [1] and by Dufresne [3], contain results related to those in the present 
one. Black's paper [2] is also of interest. 

REFERENCES 

1. BEEKMAN, J.A., AND FUELLING, C.P. "Interest and Mortality Randomness in Some 
Annuities," Insurance: Mathematics and Economics 9 (1990): 185-96. 

2. BLACK, F. "A Simple Discounting Rule," Financial Management (Summer 1988): 
7-11. 

3. DUI~,ESN~, D. "'Weak Convergence of Random Growth Processes with Applications 
to Insurance," Insurance: Mathematics and Economics 8 (1989): 187-201. 

4. HEATH, D., JARROW, R., AND MORTON, A. "Bond Pricing and the Term Structure 
of Interest Rates: A Discrete Time Approximation," Journal o/Financial and Quan- 
titative Analysis 25 (1990): 419--40. 

5. KOCHERLAKOTA, R., ROSENBLOOM, E.S., AND Srnu, E.S.W. "Algorithms for Cash- 
Flow Matching," TSA 40 (1988): 477-84. 

6. PEDERSEN, H.W., SHIU, E.S.W., AND THORLAClUS, A.E. "Arbitrage-Free Pricing 
of Interest-Rate Contingent Claims," TSA 41 (1989): 231---65; Discussion, 267-79. 

(AUTHOR'S REVIEW OF DISCUSSION) 

EDWARD W. FREES: 

The discussions by Dr. Dufresne and Dr. Shiu serve to expand and to 
focus certain aspects of the paper. They expand the paper by providing 
details of related areas that I had neither the inclination nor expertise to delve 
into here. Both Dr. Duf~esne and Dr. Shiu demonstrated how we can sharpen 
our understanding of the models that we use by using deeper results in 
mathematics, probability, and statistical theory. On the other hand, one of 
my goals in writing this paper was to use only the tools that students learn 
today in their actuarial curriculum. For students of the Society of Actuaries, 
the only tool not encountered in Courses 100, 110, 120, 121, 140 and 150 
is the Bounded Convergence Theorem used in the proof of Proposition 7. I 
found both discussions to be intellectually stimulating in that they forced me 
to focus on certain aspects of the paper that I had not given enough thought 
to. Although not planned, the two discussions complemented the paper nicely 
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in that Dr. Dufresne's discussion essentially focuses on Part L Stochastic 
Life Contingencies, while Dr. Shiu mainly addresses Part II. Solvency Val- 
uation. I thank both discussants for their comments. 

Dr. Dufresne offers a discussion on a technique for simplifying certain 
probability calculations. I am fortunate that he chose to exercise this tech- 
nique on the ideas presented in this paper, because it led him to discover 
errors in some of the formulas for net premium and reserve calculations in 
the MA(1) model. The point that I missed when originally trying to sort out 
these ideas was how to jump-start a moving average series. I assumed the 
existence of a noise term at time 0, %, so that the random term at time one, 
A1, had an identical distribution to subsequent discount factors. The math- 
ematically inconsistent thing that I did was to assume that the discount factor 
at time 0, Ao, was identically equal to zero. This, of course, produces the 
logical result of %=  1. To be somewhat more consistent mathematically, 
one could assume that Ao=% - 0c_1. With this definition, the expected 
value of Ao is 0, but there is a distribution around it. Further, one could 
define 

v~ = exp ( -  ~ o  As) for k = 0, 1, 2, . . . .  

By doing so, similar to Proposition 1, one can check that E(Vk)=C*~ exp 
( - k  ~1) where C~=M(0) M ( - 1 )  for k=0,1,2 . . . . .  Further, Proposition 
2 holds by similarly redefining C2 and Ca. This then provides a model so 
that the intuitively appealing formulas that appear in Section 3 are valid 
using new definitions of the C factors. I think the solution offered by Dr. 
Dufresne is the more practical one. With his solution, one only needs to 
remember in our spreadsheet formula that time 0 is a little different from 
the others because we assume that vo = 1. The interpretation, that we can 
accommodate an MA(1) structure by merely reinterpreting the force of in- 
terest, that I offered in the paper is still essentially valid. An alternative 
solution, again from a spreadsheet standpoint, is to note that in calculating 
variances we can take cash flows at time zero to be equal to zero. This is 
because variances simply are measured of dispersion of unknown quantities. 
Following the suggestion of Dr. Dufresne, I computed some of the per- 
centage differences for annuities due in Example 4.2 and found the differ- 
ences between the exact results and approximations to be of the order 10 -5 . 
Still, an equality should represent sameness, and I thank Dr. Dufresne for 
pointing out this inconsistency in the paper. 

One contribution of the discussion of Dr. Shiu is to rephrase the statement 
of Proposition 6 using the language of functional analysis. By doing so, he 
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has implicitly provided the foundation for switching from the discrete time 
model of the paper to a continuous time model. This is a natural extension 
in that many of the models used in financial economics are continuous. It 
will be interesting to see if the new measure of duration leads to anything 
of use in the future. Another important contribution of his discussion is to 
challenge my vague statements in Section 5 concerning the link between a 
so-called actuarial approach and a financial economics approach to valuing 
surplus. Before responding to these remarks, let me first summarize some 
of the difficulties that I encountered in arriving at a consistent model of 
reality. 

In financial economics, no-arbitrage-type arguments have been available 
for almost 20 years to value widely traded securities using risk-neutral prob- 
ability measures. For derivative securities that depend on exogenous processes 
that are not widely traded, such as interest rates, no-arbitrage-type arguments 
have appeared much more recently; see, for example, the Cox, Ingersoll 
and Ross [9] paper. There are at least four main sources of difficulty in 
valuing surplus using these types of arguments. First, the surplus process 
clearly depends on an interest rate process, which is exogenous in the sense 
that it is not subject to the usual preferences of investors. Second, the fact 
that the term structure changes at each valuation date further complicates 
the model. Third, the liability portion of the surplus process is not widely 
traded and hence it is not clear that no-arbitrage models offer a reasonable 
representation of reality. Fourth, actuaries perform valuations for many rea- 
sons. A solvency valuation seems the closest to a financial economics val- 
uation because both rely on market forces to determine the price function. 

Now, papers such as that by Pedersen, Shiu and Thorlacius ([6] in Shiu's 
list of references) address the first and second concerns, at least if one is 
willing to live in a lattice framework. The third concern is a deeper one and 
perhaps not well enough formulated to be able to model with mathematics. 
Insurance theoreticians have traditionally addressed the economic concerns 
of different players through their respective utility functions. One of the 
desirable features of the no-arbitrage arguments is that they seem to be robust 
to the shape of these various utility functions as long as players desire to 
make more riskless money. One of the goals of this paper was to incorporate 
as much of the no-arbitrage pricing as seems reasonable, while recognizing 
that this valuation technique is not directly applicable to other classes of 
assets/liabilities. This goal is tempered by the fourth concern that, as actu- 
aries, we have the notion that a reserve should represent our best forecast 
of the future at a given time. This position would lend itself to using our 
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knowledge of the entire term structure of interest rates when calculating 
reserves for solvency valuation. Conversely, this attitude could be viewed 
as myopic in that we know that the entire term structure will undoubtably 
change at subsequent valuations. For the purposes of this paper, I advocate 
the clumsy yet practical solution of using our knowledge of the term structure 
for one class of assets and disregarding this information, as unreliable, for 
another. Because of this, no attempt was made to move into the risk-neutral 
world that is so convenient for probability calculations. 

With this background, my response to Dr. Shiu's third remark is that spot 
rates in this paper are meant to be realizations of an actual company in- 
vestment policy. The probability measure governing that measure corre- 
sponds to that investment policy, not one that lives in a risk-neutral world. 
The harder problem that I have not addressed here is how to link the spot 
prices to actuarial present values. With respect to the first remark, I modeled 
A~ =ho(0,1) as a random variable for at least two reasons. First, I wanted 
to be consistent with the division of assets into two types: one that uses 
knowledge of the term structure and one that does not. Second, even though 
we use discrete models in practice, most of us believe the world is better 
approximated through the use of continuous models. If we think of our 
discrete time interval as a quarter of a year, we might interpret ho(0,1) as a 
90-day Treasury bill spot rate. Of course, this is known at time 0, but by 
day 1 we must replace it by an 89-day Treasury bill, an unknown quantity 
at time 0. Now, if I did wish to assume that ho(0,1) is known, I also have 
to assume that ho(0,2), ho(0,3), and so on, are known. For consistency, I 
assumed the entire structure was known for one set of assets and unknown 
for the other. With my notation, hs(s, t) is assumed known at time s. While 
assumed known at time s, it is also considered unreliable for forecasting the 
asset/liability match of one class of assets. 

Overall, I found the discussions thoughtful, well-written and enlightening. 
While I have not commented on all aspects of each discussion, this is gen- 
erally because they are self-contained and I could add little by way of a 
response. I hope that this response serves to sharpen some of the issues 
underlying solvency valuation and suggest some important new areas in 
actuarial research. 


