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ABSTRACT 

In the current paper, a new theory of immunization is introduced in 
which the approach is multivariate, and the goal is stochastic in the sense 
of minimizing stochastic risk. The risk measure utilized is reminiscent 
of the Markowitz [4] approach of variance minimization but generalized 
to also reflect a measure of worst-case risk. The approach is multivariate 
in that full yield curve risk to nonparallel shifts is reflected, as in Reitano 
[6-13], by modeling the yield curve as a vector of yield curve drivers. 
Explicit solutions to the risk minimization problems are developed, sub- 
ject to constraints on portfolio returns and/or various portfolio direc- 
tional durations. In addition, explicit solutions are determined that can 
be achieved by trading any given collection of assets. Applications are 
developed in detail and are exemplified by an analysis of the example 
introduced in Reitano [11]. 

1. INTRODUCTION 

In Reitano [8], [11], [12], the classical theories of immunization are 
extended to a general multivariate framework, which allow their appli- 
cation to virtually any model of the dynamics by which the yield curve 
shifts. The full yield curve is modeled as a vector of yields, reflecting 
values throughout the yield curve maturity spectrum. 

Denoting by i0=(i~, i2, ..., ira), the current value of an m-point yield 
curve vector, one model for yield curve shifts is the "directional shift" 
model, whereby a direction vector of interest, N=(n~, n2 . . . . .  nm), is 
specified and fixed in advance. The yield curve shift model is then: 

io---> io + t N  = (i~ + tnl ,  i2 + tn2 . . . . .  im + tnm), (1.1) 

with t denoting the variable magnitude of the shift in the direction of N. 
The classical parallel shift model is a well-known example, in which 
N = ( I ,  1, ..., 1). 

Another example is the "key rate" model of Ho [2], in which i0 reflects 
a complete spot rate specification, and a number of pyramid-shaped di- 
rection vectors are specified, with values of 1 at the respective peaks 
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and corresponding to the key rate maturities. The spot rates are initially 
specified via a regression model that best prices a large collection of 
bonds, subject to certain smoothness constraints. The "key rate direction 
vectors" have the property that they sum to the parallel shift direction 
vector. See also Reitano [10] for more details on this model. 

Given any such directional shift model, one can consider duration 
measures: directional durations in Reitano [6], [10], [12], [13], or key 
rate durations given the above model in Ho [2], as well as directional 
convexities in the above Reitano references. In addition, one can then 
seek conditions under which a portfolio is immunized "in the direction 
of N" locally, or for relatively small shifts, or globally, for all shifts. 

An alternative model for yield curve shifts is the full multivariate shift 
model, whereby i0 above is assumed to shift by Ai=(Ail . . . . .  Air,): 

i0--'-) io + A i  = (i~ + Ai~ . . . . .  i n + Ai,,). (1.2)  

Here, no explicit relationships between the various Aij are assumed. In 
this context, partial durations and partial convexities are defined (Reitano 
[6], [7], [9], [10]) and nondirectional immunization is explored, whereby 
conditions are developed that ensure immunization against all yield curve 
shifts, Ai, in a local or global context. 

In general, these multivariate models can be applied within the context 
of any yield curve basis--bond yields, spot yields, forward yields--and 
using any nominal rate basis--semiannual, annual, continuous, and so 
on. The basis of choice, due to its tractability, accuracy and ease of use, 
and recommended in the various Reitano references is the "yield curve 
driver" model. Here, the bond yield curve is modeled in terms of market- 
based yields at the actively traded maturities, for example: 0.5, 1, 2, 3, 
4, 5, 7, 10, 20, and 30 years. Other bond yields then can be interpolated 
from these 10 or so market observations, and a complete spot yield curve 
derived in the usual way and used for all valuations of fixed and 
contingent claims. Consequently, with this approach the complete yield 
curve can be easily and accurately modeled as a vector with 10 or so 
components. 

In practice, it is just as easy to locally immunize in any direction N 
as it is to locally immunize against parallel shifts. In general, one con- 
straint is required on the respective portfolio directional duration and one 
constraint on the directional convexity. Unfortunately, as for classical 
immunization, local directional immunization in any given direction N 
leaves the portfolio vulnerable to shifts in other directions, as well as to 
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large shifts in the given direction. For example, nonparallel yield curve 
shifts often can lead to the failure of a classical immunization strategy 
that protects against parallel shifts (Reitano [ 11 ], [ 12]). 

On the other hand, local nondirectional immunization, while effective 
over the full spectrum of conceivable yield curve shifts, may again be 
limited in the magnitude of shifts protected against. Also, it is difficult 
and usually expensive to implement because it requires the portfolio to 
satisfy a number of durational and convexity constraints. For instance, 
in the case of fixed cash-flow assets and liabilities, the constraints are 
effectively equivalent to a cash-matching strategy when a complete spot 
rate model is used. In the context of the "yield curve driver" model, 
nondirectional immunization requires average cash-matching over "sec- 
tions" of the yield curve. 

Two approaches currently exist for overcoming the implementation 
difficulties and/or impracticalities of nondirectional immunization, while 
improving portfolio protection vis-a-vis directional immunization. 

In Litterman and Scheinkman [3], a principal component analysis (Theil 
[14], Wilks [15]) is conducted on historic yield curve vector shifts over 
discrete time periods (monthly, for instance). In this analysis, the first 
principal component, N~, is the vector shift such that the historical shifts 
are best approximated by its multiples, tN~, in the least-squares sense. 
Multiples of the second principal component, Nz, then best approximate 
the residuals left over from the first principal components, again in the 
least-squares sense, and so on for other principal components. 

In other words, this analysis decomposes historic shifts, ziij, into a 
linear combination of vector shifts, N~, N2, N3 . . . . .  N,~, so that for each 
k = 1 . . . . .  m -  1, the collection of residuals: 

{ziij - ~t u N,},j  = 1, 2, ... (1.3) 

is as small as possible in the sense of sums of squares, where the sum- 
mation runs from i= 1 to i=k. 

Using as few as three components, the above authors show that a sig- 
nificant proportion of the total actual return on certain bonds is ex- 
plained, implying that these direction vectors may be used effectively to 
anticipate bond performance and hence can perhaps be used in an im- 
munization strategy to control performance. 

Once these components are identified, the above referenced papers 
(Reitano [8], [11], [12]) provide the necessary criteria for immunization 
in all such principal component directions simultaneously. 



428 TRANSACTIONS, VOLUME XLV 

In the current paper, a new approach is introduced that again has as 
its basis an historic database of yield curve vector shifts over discrete 
periods and the associated covariance matrix. It is shown that one can 
then approximate the variance of surplus, or of any net hedged portfolio, 
using this portfolio's partial durations and the historic covariance matrix. 
Consequently, reflecting the Markowitz [4] approach to risk minimiza- 
tion, one goal of multivariate stochastic immunization is to structure the 
partial durations of the portfolio so that its variance is minimized, subject 
to given portfolio constraints on expected return, and/or  directional du- 
ration values in various directions. More generally, what can be mini- 
mized subject to such constraints is a risk measure defined as the weighted 
average of the variance of the portfolio and a measure of worst-case risk. 

Explicit solutions to the constrained risk minimization problems are 
obtained based on a general result proved in the Appendix. This prop- 
osition provides an explicit solution to the problem of minimizing a pos- 
itive definite quadratic form subject to an arbitrary number of compatible 
linear constraints (see also Martin et al. [5, p. 683]). 

The theory and applications are first explored in the case of many 
tradable assets. That is, it is assumed that sufficient assets exist to allow 
all targeted partial duration structures to be realized by trading. Such 
target total duration vectors are developed in detail, as is the method tor 
determining the trades of the given assets that will produce the desired 
result. 

These methods are then generalized to the case of fewer tradable as- 
sets. Here, the problem is to minimize variance and/or  worst-case risk 
subject not only to the above constraints but also to the constraint that 
the resulting target total duration vector is achievable by trading the given 
assets. 

The example introduced in Reitano [11] is then analyzed in detail, 
illustrating the application of a variety of results. 

For a review of other stochastic approaches to duration-matching and 
dedication, see Hiller and Schaak [1]. In general, these methods were 
developed to handle asset/liability management with stochastic cash flows 
over long time periods, given a model of future yield curve dynamics 
and a model for how future cash flows will vary with the levels of pre- 
vailing yields. These models often reflect the classical approach to du- 
ration in terms of parallel shifts and are implemented by using linear 
programming methods. 
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2.  S T O C H A S T I C  I M M U N I Z A T I O N  W I T H  M A N Y  A S S E T S  

In this section, we investigate stochastic immunization for the case in 
which sufficient tradable assets exist to pose no additional constraints on 
the durational structures achievable, that is, in the case in which any 
targeted partial duration structure can be obtained by a feasible market 
trade. 

A. G e n e r a l  Mode l :  A P r i o r i  E s t i m a t e s  

Let P(i) be a price function defined on an m-point yield curve vector, 
i = ( i ~ ,  . . . ,  ira), where io denotes its current value. We assume for con- 
venience that P( io)#0,  although, as shown below (Section 2-E), this re- 
striction can be circumvented in applications. As developed in Reitano 
[6], [7], [9], [10], the ratio P(io+Ai)/P(io) can be linearly approximated 
by R(Ai): 

R(Ai) = 1 - D ( i 0 )  • A i .  ( 2 . 1 )  

In (2.1), ~d represents an arbitrary yield curve shift, ~i=(Ai~ . . . . .  Aim), 
and D(io)=[Dl(io), D2(i0) . . . . .  D,,(io)] is the total duration vector whose 
components are partial durations: 

Dj (io) = - dj P(io)/e(io), (2.2) 

where the djP(io) are the corresponding partial derivatives of  P(i). For 
matrix calculations, D(i0) is treated as a row vector, while all other vec- 
tors are treated as column vectors. In (2,1), D(i0)" Ai denotes the standard 
dot or inner product of two vectors: x .y=Exjy j .  

Assume that Ai has a given probability density function, f (Ai) ,  which 
may depend on i0, and let E(io) and K(io) be defined as the mean value 
vector of Ai and the associated covariance matrix, which are also as- 
sumed to exist: 

Ej(i0) = E[Aij], j = 1 . . . . .  m (2.3) 

Ki~(i0) = E[(Aiy - Ej(i0))(Aik - Ek(io))], j ,  k = 1 . . . . .  m (2.4) 

where E denotes the usual expectations operator. Note that K(io) has the 
important property ofrpositive semi-definiteness. That is, xrKx>-0 for 
all vectors x, where x denotes the row vector transpose of the column 
vector x. 



430 TRANSACTIONS, VOLUME XLV 

While positive semi-definiteness is a useful property, it is in general 
too weak to ensure the invertibility of K(io), which the methods of this 
paper require. It is straightforward to show that if K(i0) is positive semi- 
definite, then xrKx=0 if and only if Kx=0.  Hence, in the current con- 
text, K(io) will be invertible if and only if it is positive definite; that is, 
xrKx=0 if and only if x=0. 

Henceforth, the positive definiteness of K(i0) is assumed. What this 
assumption implies about the random vector Ai is that no linear com- 
bination of the Aij variates is degenerate, or nonstochastic. In practice, 
this condition is virtually ensured for any reasonable yield curve model, 
as a simple analysis of historic yields demonstrates. 

P r o p o s i t i o n  1: 

Given the above definitions: 

E[R(Ai)] = 1 - D(io) • E(io), (2.5) 

Var[R(Ai)] = D(io) K(i0) DrOoL (2.6) 

where Dr(j0) represents the column vector transpose of the row vector 
D(io). 

Proof. By the linearity of the operator E, (2.5) is immediate. Further, 

Var(R(Ai)) = Var[D(io) • Ai] 

= E[(D(io) • (Ai - E(io)) 2] 

= E[Y. X Dj(io)D,(io)(Aij - Ej(io))(Aik - E~(io))] 

= D(io) K(io) Dr(J0), 

by the linearity of E and (2.4). [] 
Expression (2.6) provides the exact variance of R(Ai), where R(Ai) is 

a linear approximation to P(io+Ai)/P(io) given in (2. l). It is natural to 
inquire, therefore, how well this expression approximates the actual vari- 
ance of this price function ratio. 

Using methods of multivariate stochastic calculus, where the Aij values 
are assumed to follow correlated generalized Ito processes, it is possible 
to show that (2.6) equals the instantaneous variance of P(io+Ai)/P(io),  
at t=0. 



MULTIVARIATE STOCHASTIC IMMUNIZATION THEORY 431 

Proposition 2: 
Given the definitions above: 

]E[R(Ai)] - 11 < {D(io)l[E(io)l, (2.7) 

Var[R[Ai)] --< ID(io)l 2 tr[K(io)], (2.8) 

where tr[K(i0)] is the trace of K(io), or sum of the diagonal elements,  
and Ixl is the usual Euclidean norm, Ixl2=x.x. 

Proof." By the Cauchy-Schwarz inequality, 

[D(io). E(io)]-< ]n(io)] ]E(io)l, 

from which (2.7) is immediate. Similarly, we have that 

[O(io)" (Ai - E(io))] 2 _< ]D(io)lZlAi - E(io)l 2, 

and hence, 

Var[R(Ai)] _< ID(io)l 2 E[IAi - E(io)121, 
from which we obtain (2.8). []  

It is clear from Proposition 2 that E[R(Ai)] will be close to 1 and 
Var[R(Ai)] close to 0, if the length of  the total duration vector, ID(io)[, 
is made small. This length was shown to be related to another measure 
of risk in Reitano [6], [7], [91, [101. Specifically, if N is a direction 
vector, N # 0 ,  and D~i0) the directional duration of  P(i) in the direction 
of N, DN(io)=D(io)'N, and we have by (2.1) that: 

[DN(io)[ = {R(N) - 11 -< ]D(io)l INt. (2.9) 

Also, all values of DN(i0) in this implied interval are possible in theory, 
for various N of the given length. 

Based on (2.9), ID(io)l is seen to be a measure of extreme durational 
sensitivity for P(i), for shift vectors N of  fixed length. Consequently, 
when ID(i0)l is made small, first-order sensitivity of P(i) is made rela- 
tively small in even the most severe directions, independent of their po- 
tential likelihood as implied byf (Ai ) .  Equivalently, using (2.9), an upper 
bound for ]R(Ai)-E[R(Ai)]] can be easily seen to depend on Io(io)l: 

[R(Ai) - EiR(Ai)] I _< ]D(io)llai - E(io)l. 

In the following, two portfolio price risk measures are considered for 
minimization: Var(R(Ai)) and ID(io)l 2, subject to additional constraints. 
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For economy of  argument, we combine these measures using a weighting 
parameter w, 0 - w - I ,  as follows: 

w Var[R(Ai)] + (1 - w)lD(i0)] 2. (2.10) 

Intuitively, for w near 1, the results below minimize the variance of 
R(Ai) subject to the given constraints. For w close to 0, ID(io)l 2 is min- 
imized subject to constraints, thereby minimizing "worst-case" dura- 
tional sensitivity. 

Proposition 3: 
There exists a positive definite matrix, K,.(io), such that: 

w Var(R(Ai)) + (1 - w)lD(io){ 2 = D(io) Kw(io) D(io) r. (2.1 l) 

Proof." By (2.6) and the fact that ]D(io)l 2 = D(io) I D(io) r, with I equal 
to the identity matrix, it is clear that: 

Kw(io) = w K(io) + (1 - w) I. (2.12) 

To see that K,,,(io) is positive definite, assume that 0 < w < l ,  as the 
result is obvious by definition if w=0  or 1. If there is a vector x so that 
x r Kw(io)x<-0, we then have by linearity and (2.12): 

w x r K(i0) x -< - (1  - w)lx] 2. 

Because the covariance matrix K(i0) is positive definite, the above 
inequality is satisfied only when x=O. [] 

Two types of  constraints are considered for the minimization problem 
below: 

D( i0 )  • E( i0 )  = r, ( 2 . 1 3 )  

D( io )  • N = D ,  ( 2 . 1 4 )  

where N # 0  is a given direction vector. Constraint (2.13) fixes the ex- 
pected value of R(Ai) to equal l - r  by (2.5), while (2.14) constrains a 
given directional duration, D~(io), to equal D. When N=(1 . . . . .  1), the 
traditional parallel shift (that is, modified) duration is constrained by (2.14). 

For notational convenience, we will often suppress the dependence of 
the various functions on io. 
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B. Single-Constraint Minimizat ion 

P r o p o s i t i o n  4: 

Given N¢0,  the solution to: 

Min(D K,, Dr), subject to: D • N = D, (2.15) 

is given by the total duration vector: 

D 
Dr = K~. ~ N. (2.16) 

N r K~ l N 

Further, the minimum value in (2.15) is given by: 

Do Kw D r = DZ/(N r K~ I N). (2.17) 

Proof." Since K,. is positive definite, we can apply Proposition A of 
the Appendix directly. For this single constraint case, C in (A.4) is the 
one-element matrix, C = N  r K~ ~ N. Hence, (2.16) is given by (A.3). 
Similarly, (2.17) follows directly from (A.21) of Corollary A. 1. [] 

Although it is not true in practice, consideration of the special case in 
which K(i0) is a diagonal matrix provides insight to the above formulas. 
In this case of uncorrelated {A/y}, the inverse of Kw(io) also is a diagonal 
matrix, which is given by: 

K~(i0)jj = l/(wcr~ + (1 - w)), (2.18) 

where o-~= Kj~(io) is the variance of Aij. Hence, the partial durations of 
the risk-minimizing total duration vector given in (2.16) are: 

Dot ~ nJ(w(r~ + (1 - w)), (2.19) 

with proportionality constant: D / N  r K~ ~ N. 
Consequently, for w= 1 and variance minimization, the components of 

Do(io) vary in inverse proportion to ~r~. For example, when N=(1 . . . .  , 
1) and traditional duration is constrained in (2.15), less partial duration 
exposure is allowed to the more variable yield curve points, and more 
exposure is allowed to less variable yield curve points. 

When w=0 and worst-case risk is minimized, Do(io) in (2.19) is pro- 
portional to N. This result generalizes the conclusion in Reitano [6], [10] 
that if N = ( I ,  ..., 1), ID(io)] is minimized subject to D ' N = D  if all partial 
durations equal D/m, that is, when D0(i0) is proportional to N. 
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Returning to general K,.(io), note that because of positive definiteness, 
D0(i0) in (2.16) is the zero vector if and only if D=0 .  Also note that the 
total duration vector given in (2.16) produces an expected return, 
E[R(Ai)] = 1 - r ,  where: 

E r K~, I N 
r - Nr K~ ) N D, (2.20) 

which varies proportionately with D. Since K~ I is also positive definite, 
the denominator in (2.20) must be positive since N ~ 0  by assumption. 
However, the numerator is clearly 0 when E = 0  and also can attain either 
sign. 

To see this, consider again the simple case in which Kw is diagonal 
and N = ( I  . . . . .  1). We then have: 

E r K~. j N = Y. EJ(wtr~ + 1 - w), (2.21) 

which can clearly assume positive or negative values, depending on the 
signs of the Ej values. In addition, it is clear from (2.21) that 
ErKw I N may equal 0 even if E ~ 0 .  

Finally, from (2.17) one notion of an "efficient frontier" can be de- 
fined in the duration management context. For fixed N, (2.17) can be 
regarded as defining the minimum risk measure as a quadratic function 
D=DN(io). Consequently, for any such value of D~v(io), all portfolios 
with the given directional duration will have risk measures equal to or 
exceeding the value on this curve. From this perspective, therefore, the 
portfolios with durational structures given by (2,16) are "efficient," in 
that they are risk minimizing for each value of D=DN. Clearly, these 
efficient frontiers depend on the direction vector constrained. 

Given N and E, if E rKwIN~0 ,  it is possible to combine (2.20) with 
(2.17) and also express the risk measure of these portfolios as functions 
of their implied returns: 

N r K~ l N 
Do Kw D r = r 2. (2.17)' 

(E r K~, l N)2 

That is, for each r this formula expresses the value of  the risk measure 
of a certain portfolio with D . E = r ,  where this portfolio is chosen to be 
risk minimizing given its value of D . N = D .  
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It is natural to ask whether the above equation also represents an ef- 
ficient frontier in "risk-r" space. That is, given r, does this formula pro- 
vide the minimal risk of all portfolios with D ' N = r ?  We will see below 
that the answer is, in general, no. 

By simply interchanging E and N, we have the following: 

Proposit ion 5: 

Given E # 0 ,  the solution to: 

Min(D Kw DT), subject to: D • E = r, 

is given by: 

(2.22) 

F 

D~ = Er K£ ~ E K£1 E. (2.23) 

Further, the minimum value in (2.22) is given by: 

Do K~ D0 r = r2/(E r K~ l E). [] (2.24) 

Returning to the efficient frontier discussion above, (2.24) defines the 
frontier as a function of r, in the same way that (2.17) defines this fron- 
tier as a function of D=Du(io). Comparing (2.24) with (2.17)', the ques- 
tion raised earlier can now be addressed. Specifically, the curve in (2.17)', 
derived from the efficient frontier in "risk-DN" space, is not, in general, 
an efficient frontier in "risk-r" space; that is: 

N r K~l N 1 

(E r K ~ l N ) 2 -  E r K ~ I E ,  

by the Cauchy-Schwarz inequality applied to the inner product: 
(x ,y)~=xK~y,  discussed in (A. 17) of the Appendix. Also, equality holds 
if and only if E and N are colinear. 

C. Double-Constraint  Min imiza t ion  

Before considering a minimization problem subject to both constraints 
(2.13) and (2.14), or two constraints of type (2.14), note that such 
conditions need not be compatible. For example, if N=(1 . . . . .  l), and 
E=Ai  N, it is clear that this problem can be solved only if r=DAi, since 
otherwise the constraint set is empty. In this case, only one constraint 
can be formally used as in Section 2 above. 
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In general, compatibility is ensured if E and N are not proportional, 
that is, if they are linearly independent. 

Proposition 6: 
Given N¢0 ,  E¢0 ,  and N, E linearly independent, the solution to: 

Min(D K~ D T) subject to: D • N = D, D • E = r, (2.25) 

is given by the total duration vector: 

D r = h~ K~ ~ N + h2 K,~ ~ E, (2.26) 

where: 

(ErK~. l E)D - (ErKw 1N)r 
h~ = (NrK~. ~ N)(ErK£1 E) - (E rK ,  I N)2 (2.27) 

(NrK~lN)r - (ErK~,~ I N)D 

h2 = (NTK~, ~ N)(ErK~t E) - (ErK~. l N)2" 

Further, we have for this total duration vector: 

DoKwD0 r = h ~ N r K ~ , t N + 2 x t ~ 2 E r K ( ~ N + h ~ E r K ~ t E .  (2.28) 

Proof." This result is immediate from Proposition A and Corollary A. 1 
since 

(NrK~t  N ErK~ 'N~  

C = \ E r K ~ I N  ErK~,~IE ] 

in this case, [] 
Note that D0(i0) in (2.26) reduces to that in (2.16) of Proposition 4 

when h2=0, since this occurs exactly when r is equal to the value pro- 
duced in (2.20) and implied by Proposition 4. An analogous statement 
holds regarding the restriction on D for which the result of Proposition 
6 reduces to that of Proposition 5. 

Note also that Proposition 6 can be applied easily in the case of two 
directional duration constraints as in (2.14), via a simple change in no- 
tation. The only requirement is that the direction vectors utilized be lin- 
early independent. 

While not apparent from (2.28), the efficient frontier implied by this 
formula in "risk-(r,D)" space is the three-dimensional analogue of the 
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parabolas of (2.17) and (2.24), or a paraboloid in 3-space. In general, 
the efficient frontier implied by any model encompassed by Proposition 
A is a paraboloid in the (p+  1) dimensional "risk-r" space, as can be 
demonstrated from (A. 21)' of the Appendix. 

To see this, first note that BrK-JB of (A.21)' is positive definite in 
p-dimensional space. This is because K and hence K -t are positive def- 
inite in m-dimensional space, and B has rank p<-m since the column 
vectors of B, the B j, are p linearly independent m-vectors. Consequently, 
(BTK-~B) -I is also positive definite, and the conclusion lollows. How- 
ever, as seen above in the one-dimensional case, the efficient frontier 
implied by (A.21)' depends on the collection of vectors in which direc- 
tions the minimization problem is constrained. 

D. Mult iple-Constraint  M i n i m i z a t i o n  

Clearly, the above propositions can be extended to reflect more con- 
straints by an immediate application of Proposition A in the Appendix. 
For example, a variety of directional durations can be specified for in- 
dependent direction vectors, in addition to a period return constraint. 

Details are left to the interested reader. 

E, Applications 
We first consider in some detail the application of minimizing the vol- 

atility (or more generally, risk) of surplus. If P(i)=S(i) denotes the price 
function of surplus or net worth, where S(i)=A(i)-L(i) and S(io)#0, the 
above propositions can be applied directly to minimize its risk. As above, 
denoting by Do(io) the resulting risk-minimizing total duration vector for 
surplus, a target duration structure for assets can be derived by the iden- 
tity (see Reitano [6], [8], [10], [11]): 

l~0(i0) = r s Do(i0) + (1 - r') DZ(i0), (2.29) 

where r~=S(io)/A(io) is the surplus-to-asset ratio or net worth-to-asset 
ratio, and DL(i0) is the total duration vector of liabilities. 

While it may be tempting to try to extend (2.29) to the case rS=0 by 
simple substitution, since then D'~o(io)=DL(i0) results and perhaps seems 
plausible, two problems are encountered: 
(1) r s Do(J0) need not equal 0 since Do(io) is not even defined. 
(2) Since Do(J0) totally drops out of the solution, the original con- 

straints need not be satisfied. 
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To circumvent this difficulty in the case in which S(io)=0, we consider 
a new ratio function: 

R'(Ai) = -(Da(io) - DL(io)) • Ai, (2.30) 

which equals the first-order approximation to the ratio S(io+Ai)/A(io). 
The variance of R'(Ai) is then given by (2.6) with D = D a - I ~ .  Conse- 
quently, the propositions can be applied to minimize the weighted av- 
erage of the variance of  R'(Ai) and IDa(io)-DL(io)[ 2 as in (2.10) subject 
to constraints on: 

(DA(i0) -- l ~ ( i o ) )  • N ,  

which equals the difference between asset and liability directional du- 
rations in the given direction N, and/or:  

--(DA(i0) -- l~(io)) * E(i0), 

which equals the expected value of S(io+Ai) as a percentage of current 
assets A(io). 

As in (2.29), the resulting target total duration vector, Do(io), then can 
be translated to a target for assets, only here using: 

Da(io) = Do(io) + DL(io). (2.31) 

We next consider the question of trading assets to achieve the total 
duration vector target. For this purpose, it is irrelevant whether this target 
duration vector applies to assets or surplus. That is, we simply assume 
that P(i) is given with total duration vector D(io)=(D~(io) . . . . .  D,,(io)), 
and we wish to implement the necessary trades of  a collection of assets: 
P~(i) . . . . .  Pn(i), so that the transformed price function, P'(i) ,  has total 
duration vector equal to the given target, Do(io)=(Do~(io) . . . . .  Do,,(io)). 

Let aj be the amount traded of the asset with price function Pi(i), so 
that a j>0  corresponds to a purchase and a j<0  to a sale or short position. 

Based on the linearity property of total duration vectors: 

P'(io) = P(io) + •aj, (2.32) 

D'(io) = [P(io)D(io) + EajDj(io)]/e'(io), (2.33) 

where Dj(io)=(Dj~(io), . . . ,  Djm(io)) denotes the total duration vector of  
ej(io). 
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Setting the resulting total duration vector in (2.33), D'(io), equal to 
the target vector Do(io), a system of equations for {aj} results, which is 
readily seen to equal: 

Y~ aj[Djk(io) - Dok(io)] = P(io)[D0~(io) - Dk(io)], (2.34) 

where k = 1 . . . . .  m, and the summations run from j = 1 to j =m.  
In general, (2.34) can be solved only if the collection of n total du- 

ration vectors: {Dj(io)-Do(io)}, which form the columns of the coefficient 
matrix, have rank rn. This rank requirement implies that n>--re. That is, 
the number of assets traded (n) is greater than or equal to the number 
of yield points in the yield curve vector (m). If  n=m,  the rank require- 
ment means that this collection of vectors above is linearly independent, 
and in this case, the solution to (2.34) is unique. If  n>m,  there will be 
infinitely many solutions. 

If (al . . . . .  a,,) is a solution of (2.34), we will in general have Xa)#0. 
That is, additional funds will need to be invested if Ea~>0, while a net 
divestment will be necessary if Y-aj<O. Alternatively, the net residual 
investment of Eaj could be invested or borrowed at overnight REPO rates, 
introducing virtually no additional interest rate sensitivity to the price 
function. 

Because we require that n>-m to solve (2.34) in the general case, it is 
clear that an additional "cash neutral" constraint, Eaj=0,  can be added 
to this system only if n>-m+ 1. In this case, we obtain the system: 

aj Djk(io) = P(i0)[Dok(i0) - D~(io)], k = 1 . . . . .  m 
(2.35) 

E a j  = 0. 

The cash neutral constraint in (2.35) can be explicitly incorporated into 
the first m equations by setting a ~ = - E ~ t  ~ aj, for example, producing: 

E aj[Dik(io) - D~k(io)] = P(io)[Dok(io) - Dk(io)], (2.36) 
j= l  

where k= 1 . . . . .  m. 
This system can be expressed in matrix notation by: 

A a '  = P(io)[Do(io) - D(io)] r, (2.37) 

where a '=(a j  . . . .  , a,_~) is the truncated trade vector, and A is the m × ( n -  1) 
matrix with column vectors equal to [Dj(io)-D~(io)] r, j =  1 . . . . .  n - 1 .  
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Recall that total duration vectors are identified with row vectors by 
convention, and hence the presence of the matrix transpose symbol T to 
convert them into column vectors in (2.37). 

In order for (2.37) to be solvable in general, A must have rank m, 
which as above implies that n - l> -m,  or n > - m +  1. If n = m +  1, this im- 
plies that the column vectors, [Dj(io)-D/1(io)] r, are linearly independent, 
or equivalently, that if: 

/I 

= 0 ,  
j = l  

and 
n 

j = l  

then all/3j=0. 
In practice, the restriction Eaj=0 is usually desirable, and conse- 

quently, (2.36) will represent the system of equations to be solved. For 
example, if P(i) is a non-zero surplus function with current total duration 
vector D(i0), Proposition 4 could be applied to preserve the current mod- 
ified duration D(i0), that is, with the constraint, D.N=D(io), where N=(I ,  
1 . . . . .  l) and D(i0) is equal to the given modified duration. The resulting 
target total duration vector, Do(J0), then could be obtained with a cash- 
neutral trade via (2.36), eliminating the need to add or remove invest- 
ments or borrow/invest in overnight funds. 

Alternatively, one might choose to determine a target total duration 
vector so that surplus will have the same modified duration and expected 
return as a 5-year bond, say. Letting D~(io) represent the total duration 
vector of the given security, Proposition 6 could then be applied with 
D=D~(i0)-N, N=(1 . . . . .  1), and r=DB(i0).E(i0). To do this, all that is 
required is that N and E(i0) are linearly independent. 

Naturally, other constraints could be imposed, fixing a given direc- 
tional duration and/or expected period return. Two directional durations 
in the direction of Nl and N2 could also be fixed with Proposition 6, by 
changing notation, N=NI,  E=N2, and with D and r denoting the desired 
constrained values. For example, one might fix the modified duration 
and a "tilt" duration to equal those of a 10-year bond, whereby Nt=(1,  
.... 1), and N2=(nl, n2 . . . . .  n/1,), nj>--nj_t (see Reitano [6], [10]). To fix 
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more directional durations, Proposition A in the Appendix can be applied 
directly. 

The above surplus portfolio optimization also can be accomplished si- 
multaneously with the hedging of new liabilities or the establishment of  
an initial asset portfolio. For example, let P(i) represent the surplus func- 
tion obtained when liabilities are augmented by the new contract sales, 
say, and assets are increased by an associated cash position, modeled as 
if held in 6-month instruments. The application of the above propositions 
then will simultaneously target the initial duration structure and/or return 
requirements, as defined via the problem's constraints, as well as opti- 
mize the portfolio for minimal risk as implied by K,.(io). 

For the application of creating a hedge for a given security, one creates 
a price function, P(i)=H(i)-A(i), where H(i) equals the price function 
of the asset or liability to be hedged and A(i) the price function of a 6- 
month investment, initially "proposed" as the hedging asset. Because 
P(i0)=0 by definition, the optimization problem is applied to R'(Z~i) in 
(2.30). Constraints then are defined as above, and a target duration vec- 
tor Do(J0) is determined. The desired hedging asset has target duration 
vector given in (2.31), with I ~ = D  L. Asset trades then are determined 
by using (2.36) and represent trades from the initial 6-month invest- 
ments. Because E a F 0 ,  the resultant hedged portfolio price function, 
P(i), will again satisfy P(i0)=0 as desired. 

The above techniques also can be applied to the problem of structuring 
a minimum variance asset pool, subject to constraints on its period re- 
turn, and/or  directional durational(s). Such an application might arise in 
establishing an asset portfolio for traditional life products or in structur- 
ing a separate account vehicle or mutual fund. 

As a final point, note that if the resulting trade vector has negative 
components, a variety of approaches can be investigated. First and most 
directly, the associated asset can be sold "short." If impractical or not 
allowed by investment policy or statute, an alternative approach would 
be to develop a comparable ~synthetic" position. For example, if the 
associated asset is a 10-year bond, one might "short" a financial note 
futures position. For total duration vector purposes, this asset is approx- 
imated by a short Treasury note and long cash position with zero initial 
market value, thereby ignoring the yield effect of the cheapest-to-deliver 
option. To be more exact, this option could be hedged out of the futures 
contract by using a financial options contract. 
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Another alternative is to approximate the short asset by an interest rate 
swap in which the floating rate is received and fixed rate paid. 

Finally, if possible, a liability could be sold that approximates the du- 
rational structure of the asset to be shorted. This liability may be similar 
to those already in the account, such as in the case of a GIC or annuity 
pool, or simply be a traditional debt instrument issued by the account to 
other accounts in the corporation, or directly to the financial markets. 

3. STOCHASTIC IMMUNIZATION WITH FEWER ASSETS 

A. General Model: Change of  Variables 

As in Section 2, we again seek to minimize the objective function in 
(2.11). The difference here is that due to the more limited number of 
tradable assets assumed, not all target duration vectors developed earlier 
will necessarily be achievable. Consequently, additional constraints need 
to be introduced so that the resulting target total duration vector, D0(i0), 
can be achieved by trading the given assets. Naturally, such limitations 
on the target vectors will have as a necessary by-product that the resultant 
portfolios will be suboptimal from the perspective of the results of Sec- 
tion 2. 

Assume that n - 2  assets are given, with associated total duration vec- 
tors, D~(i0) . . . .  , D,(io). For a general trade of aj units of the j-th asset, 
denoted in vector form by a=(a~ . . . . .  a,), the resulting total duration 
vectors satisfy (2.33), where again D(io) is the initial portfolio total du- 
ration vector. 

As noted above for a range of applications, the additional constraint, 
Xaj=0, is desirable and we impose this restriction here. Consequently, 
the resulting total duration vector in (2.33) can be expressed: 

O'(io) = D(io) + 2aj Oj(io), (3.1) 

where aj in (3.1) equals aj/P(io) in (2.33) to simplify notation. 
The restriction 2ay=O again can be reflected in expression (3.1) by 

setting 
n--I 

an= X aj, 
j=l 

and hence: 
n-I  

D'(io) = D(io) + ~ ~ [ ~ ( i o )  - D~(io)] 
j=l 

(3.2) 
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As in (2.37), let A denote the reX(n-1) matrix with columns equal 
to the vectors: [Dj(i0)-D,(i0)] r, j =  l . . . . .  n - I .  Clearly, the rank of A, 
denoted p(A), cannot exceed the lesser of n -  1 and m. Also, let ~ denote 
the collection of vectors in (3.2) for all a '=(az . . . . .  a,--0, which is easily 
seen to be an affine space in E m, m-dimensional Euclidean space. An 
affine space is a linear subspace of E', translated by a fixed vector (here, 
equal to D(i0)). 

In the next proposition, ~ is characterized in a manner that is ideal 
for use with Proposition A. 

Proposition 7: 
If p(A)=m, then ~ = E " .  If 9(A)=m-v<m, then there exist v linearly 

independent vectors in E m, N 1 . . . . .  N,~, so that ArNj=0, and: 

= {DID'Nj = D(i0)'Nj, j : 1 . . . . .  v}. (3.3) 

That is, ~ equals the intersection of v hyperplanes. 
Proof." Denoting by a' the vector (at . . . . .  a , - 0 ,  we have by definition 

that: 

~t = {DID = D(i0) + (Aa')  r, a' E E"-I}. (3.4) 

Now if A has rank m, the result is obvious since ~tCE" by definition, 
and the rank of a matrix equals the dimension of its range. 

Next, assume that p(A)=m-v. Then since A r, the transpose of A, also 
has rank equal to m - v ,  there e x i s t s ,  independent vectors in E m, N~, 
.... N., which span the null space of A r. That is, ATN~=0 for all j ,  and 
ATN=0 if and only if N=ZcjNj. 

Now if D E ~  and hence D=D(io)+(Aa')r:  

D . N j  = D(io). N j, (3.5) 

since (Aa')rNj=(a')rArNi=O, by assumption. 
On the other hand, assume that D.Nj=D(i0) 'Nj for j =  1 . . . .  , v. Then 

the vector D-D(i0)  is orthogonal to the null space of A r. Consequently, 
D-D(io)  is in the range of A by a simple consequence of the definition 
of transpose, and there exists a ' ~ E  n-~ so that: 

D - D(io) = [Aa'] r. [] (3.6) 

Note that the rank of A, p(A), does not depend on the representation 
in (3.2), although the components of A do. That is, if the substitution 
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n 

¢/1 =- EI: l j  
j:2 

was made in (3.1), the resulting affine space would clearly be identical 
to that in (3.2). Consequently, while the matrix A would have changed, 
its rank and null space would remain constant. Naturally, in any given 
problem, the collection of vectors {Nj} will not be unique, although their 
linear span will be unique. 

From Proposition 7, we see that constraining potential target total du- 
ration vectors to be those achievable by trades of given assets as in (3.2) 
can be equivalently formulated as constraining the target duration vector 
to be in the intersection of the u hyperplanes as in (3.3). Equivalently, 
this constraint can be articulated as specifying v direction vectors, N,, 
.... N~, so that the directional durations of the resulting portfolio, D'Nj,  
equal those of the original portfolio D(i0)'Nj. 

Consequently, the minimization problem that results is: 

rain (D K,, Dr), (3.7) 

subject to: 

where: 

D.Nj= ~, (3.8) 

rj = D(i0) .N j, (3.9) 

for j =  1, ..., v. Of course, if v=0 ,  (3.8)-(3.9) provide no constraint and 
this problem reduces to that in Section 2, since in this case, the rank of 
A in (2.37) equals m and hence, n>-m+ 1. 

In the general case, additional constraints on D, such as in (2.13) and 
(2.14), also may be added depending on the size of v, since the total 
number of constraints must not exceed m. The general solution to such 
problems is given by Proposition A in the Appendix, so it is not repeated 
here. Note, however, that if the constraints in (3.8) are added to, the 
resulting constraints will not necessarily be compatible. For example, 
the various constraining direction vectors: 

N1 . . . . .  N~, N, E(io), (3.10) 

need not be independent, as Proposition A requires, unless N and E(io) 
are outside the span of {NI . . . . .  N,}, the null space of A r, and are non- 
colinear. 
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B. Two .Asse t  M i n i m i z a t i o n  

Given n=2 assets, the matrix A will then be the m× l column vector: 
[Dl(i0)-D2(io)] T, which clearly has rank 1 for Dl(io)#D2(io). Conse- 
quently, by Proposition 7, there exist rn-1 independent vectors: N~ . . . . .  
N,,_t, which can be used in (3.8) to restrict the resulting target total 
duration vectors, Do(i0), to those actually obtainable by trading the given 
two assets. 

As noted above, these m -  l vectors are in the null space of A r, a 1 × m 
row vector. That is, we seek m - l  vectors that satisfy: 

[ D l ( i 0 ) -  D2(io)] 'Nj=0,  j =  1 . . . . .  m -  1. (3.11) 

For the associated constrained minimization problem, therefore, at most 
one constraint can be added to those in (3.8). For example, the expected 
period return can be constrained as in (2.13) if E(io) is independent of 
the N i, or one directional duration can be constrained as in (2.14), again 
subject to an independence criterion. 

In this extremely constrained case, however, adding this last constraint 
will make the problem trivial, because the resultant constraint set will 
contain a unique vector, so no real risk minimization will occur. 

C. Multiple-Asset Minimizat ion 

As the number, n, of assets increases, in general the number, v, of 
constraints given in (3.8) decreases. For example, given three assets for 
which Dl(i0)-D3(io) and Dz(io)-D3(io) are linearly independent, the rank 
of A equals 2, and there will be rn-2  constraints in (3.8), where the Nj 
satisfy: 

[D~(io) - D3(io)] " Nj = 0 
(3.12) 

[ D 2 ( i o ) - D 3 ( i o ) ] ' N j = 0  for j =  1 . . . . .  m -  2. 

Given n=m+ 1 assets, such that the vectors Dj(io)-Dn(io) are linearly 
independent for j = l  . . . . .  n - l ,  the matrix A will be square and have 
rank equal to m. Consequently, the associated system: 

ArN = 0, (3.13) 

will be solved only by N=0,  and the constraints in (3.8) will be without 
effect. That is, limiting trades to reflect only the given assets does not 
further constrain the minimum value of the objective function in (3.8). 



446  TRANSACTIONS, VOLUME XLV 

Viewed from a different perspective, had any of the constrained min- 
imization problems of Section 2 been solved, a trade of the given assets 
could always have been implemented to achieve the resulting target total 
duration vector, D0(i0). That is, (2.37) could always be solved in this 
case because the rank of A is equal to m. 

D. Applications 
Subject to only the possibility of additional constraints as in (3.8), the 

applications of this approach are identical to those of Section 2. 

4. EXAMPLES OF PORTFOLIO VARIANCE MINIMIZATION 

A. The Portfolio 
In this section, we apply the results of the preceding sections to the 

portfolio exemplified in Reitano [ 11 ]. Recall that the given liability is a 
$100-million GIC payment at the end of year 5. Based on a simplified 
three-point bond yield curve of  i0=(0.075, 0.090, 0.100) at maturities 
of 0.5 years, 5 years, and 10 years and linear interpolation for other 
yields, this GIC payment has a market value of $63.97 million and a 
duration of 4.855. In practice, the yield curve would typically reflect 
more "yield curve drivers" (Reitano [6], [8], [10], [11]), for example, 
at maturities of 1, 3 and 7 years, as well as beyond 10 years. 

Available assets total $71.08 million and are divided between a 10- 
year, 12 percent coupon bond and 6-month commercial paper in such a 
way that the surplus portfolio at time k= 3/2 will be immunized against 
parallel yield curve shifts. Consequently, the current surplus of S(i0)=$7.11 
million requires a duration of 0.482, the duration of a 6-month zero- 
coupon bond. To achieve this, $49.35 million of the $71.08 million total 
is invested in the 6.151 duration bond, purchasing $43.75 million par, 
while the remainder of $21.73 million is invested in the 0.482 duration 
commercial paper, purchasing $22.54 million par. 

The forward value of surplus, Sk(io)=$7.37 million at time k= 3/2, then 
has a duration of 0 and therefore is immunized against parallel shifts. 
The total duration vector of Sk(i0) equals: D(Sk) = (5.26, -46 .21 ,40 .95) .  
Here, as defined in Reitano [8], [11], the forward value of surplus is 
given by: Sk(i)=S(i)/Zk(i), where Zk(i) denotes the price of a $1 par value 
k-period zero-coupon bond. 
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B. Yield Curve Dynamics  Model 

Using treasury data and overlapping 6-month periods from August 1984 
to June 1990, the following mean vector and covariance matrix were 
estimated: 

E = ( - 0 . 0 0 2 9 0 4 , - 0 . 0 0 3 6 4 8 , - 0 . 0 0 3 6 0 6 )  (4.1) 

K = /8 .02453 10.26390 9.30600~ × 10 -• (4.2) 

\6 .79183 9.30600 8 .94903/  

For our example, we assume that these values represent estimates of 
the mean vector and covariance matrix for the distribution of 6-month 
yield curve vector changes, ~i, from the initial value of i0=(0.075, 0.090, 
0.100). That is, we assume E(i0)=E, K(i0)=K. 

Admittedly, in practice one may be more confident of the stability of 
K than E through time, but we make the above assumptions for illus- 
trative purposes. Other numerical estimates for E(io) and K(io) can be 
readily modeled and easily applied, including what might be considered 
the logical ex ante estimator for E(io), E(io)=0. 

C. Statistics Associated with Sk( io), k=  '/2 

Because we are interested in the forward value of surplus, the ratio 
function of interest may not fit exactly into the model of (2.1). That is, 
we may be interested in Sk(io+Ai)/S(io), or the volatility of the forward 
value as a percentage of today's value. However, this is readily accom- 
modated by considering: Rk(~i)=c~(1-D(Sk).~i),  Ck=S~(io)/S(io). 

That is, we can approximate this ratio of interest bY a simple multiple 
of the ratio function in (2.1), applied to Sk(io+Ai)/SAio). In the above 
example, 

ck = S k ( i o ) / S ( i o )  

= 1 Izk(io) 

= 1.0375, 

where Z~(io) is the price (0.96386) of a $1 par value 6-month zero- 
coupon bond and ck is I plus the period return. 

Readily adapting Proposition I, we have: 
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E[Rk(Ai)] = ck[l - D(Sk)" E(i0)] 

= 1.0375 (1 - 0.005633) 

= 1.0317. (4.5) 

That is, the expected 6-month return on surplus of 3.17 percent is less 
than the return on a 6-month zero-coupon bond of 3.75 percent because 
the durational structure of Sk(i0), that is, D(SD, generates relative losses 
of 0.56 percent given the expected shift in yields. 

It is interesting to compare the expected annualized return from (4.5) 
of 6.43 percent to that produced by Formula (5.8) in Reitano [11]. That 
is, letting l~(i0) denote the annualized return, the formula there is: 

E[Ik(i0)] ~ j ( k )  - [1 + j(k)] D(S~) • E(i0)/k, (4.6) 

where j ( k )  equals the annualized return on a k-period zero-coupon bond. 
Applying (4.6) to the above problem, with k=l /2 ,  we obtain: 

E[lk(i0)] ----- 0.0764 - 2(1.0764)(0.005633) = 0.0643, (4.7) 

for the same annualized expected return of 6.43 percent. 
The theoretical relationship between these two approximation methods 

can be readily understood. Equation (4.6) is based on the linear approx- 
imation to the annualized period return: 

[Sk(io + A i ) / S ( i o ) ]  ~/k - 1 --- j ( k )  - [1 + j(k)] D(SD" A i / k ,  

while the annualized return from (4.5) reflects a linear approximation to 
the period return, 

Sk(i0 + A i ) / S ( i o )  = ck(1 - D ( S ~ ) -  A i )  

= [1 + j(k)] k (1 - D(SD" Ai), 

which is then annualized. It is easy to show that if this latter annualized 
formula is linearly approximated, the formula in (4.6) is produced. 

Turning next to the variance of Rk(Ai), we obtain: 

Var[RAAi)] = c~[D(Sk) K(io) D(Sk) r] 

= (1.0764) [0.009667] 

= 0.01041. (4.8) 
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The associated standard deviation is then 0.10201, which translates to 
a value of about 10.2 percent of the initial surplus value of $7.11 million 
per half-year. 

D. Surplus Optimization with  M a n y  Assets 

Dropping the constant ck above for notational simplicity, we now focus 
on the variability of the ratio function in (2. l) applied to P(i)=Sk(i). That 
is, we are interested in the variability of Sk(io+Ai), or the forward value 
of surplus on the future actual yield curve, as a percentage of the forward 
value of surplus, Sk(i0), based on today's yield curve io. We see that, 
for this portfolio with total duration vector D(Sk)=(5.26, -46.21, 40.95): 

Var[R(Ai)l = D(Sk) K(i0) D(Sk)T 

= 0.009667, (4.9a) 

D(Sk)" N = 0, (4.9b) 

D(Sk)" E(io) = 0.005633, (4.9c) 

where R(Ai) is the approximation for Sk(io+Ai)/Sk(io) as in (2.1), and 
N=(1,1,1) is the parallel shift direction vector. From (4,9), we see that 
the standard deviation of the given portfolio is 9.83 percent per half- 
year, while the expected period return is -0 .56  percent. 

Applying Proposition 4, with constraint D.N=0,  and using K~---K, it 
is clear from (2.17) and general reasoning that the minimum variance of 
Sk(i0) is 0, and this occurs by (2.16) with D0(S~,)=0, the zero total du- 
ration vector. For the more general constraint on the modified duration, 
D .N=D,  we obtain: 

D0(Sk) = (1,002, -2.055,  2,052)D, (4. lOa) 

Do K D r = 0 . 0 0 0 0 6 l  D 2. (4.10b) 

Equation (4.10a) implies that given the yield curve dynamics implied 
by K(io), a specific "barbell" configuration in the total duration vector 
is optimal for any positive constraint on the modified duration, while a 
negative barbell configuration is optimal for negative modified durations. 
While the given D(Sk)=(5.26, -46,21,  40.95) has a barbell configu- 
ration, its profile is quite different from that in (4.10a) and hence its 
suboptimality. Based on (4.10b), the given portfolio's variance of 0.009667 
in (4.9a) equals that of an optimal portfolio on the efficient frontier 
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with duration D=12.64. In addition, for this optimal portfolio, 
r=Do(Sk).E(i0) =-0.035594,  implying a positive expected yield curve 
return for 6 months of 3.56 percent, in contrast to that of the given 
portfolio of -0 .56  percent by (4.9c). 

Next applying Proposition 5 with constraint D-E=r ,  the optimum 
portfolio is characterized by: 

Do(Sk) = (-117.935,306.711,  -492.622) r, (4.1 la) 

Do K Do ~ = 6.531447 r 2. (4.1 lb) 

In general, (4.11a) implies that a negative barbell profile is optimal 
for negative yield curve returns (r>0), while a positive barbell is optimal 
for positive yield curve returns (r<0). In particular, for the given port- 
folio's value of r=0.005633, the associated optimal variance equals 
0.000207, for a standard deviation of 1.44 percent per half-year, and an 
associated portfolio duration of -1 .71.  Looked at another way, the cur- 
rent portfolio has the same variance (0.009667) as an optimal portfolio 
with r=  +0.038472 and associated duration of +11.69. 

Finally, applying Proposition 6 with general constraints D-N=D,  
D-E=r ,  the optimum portfolio is given by: 

Do(S~) = (4.643, -8 .251,  4.608) D (4.12a) 

+ (1292.857, -2200.337,907.480) r, 

DoKD0 r = 0 . 0 0 0 4 1 9 D  z + 0 . 2 5 4 8 6 3 D r + 4 5 . 2 5 1 1 0 0 r  2. (4.13b) 

Substituting the actual portfolio constraints, D=0,  r=0.005633, the 
optimal portfolio is seen to have a variance of 0.001436, for a standard 
deviation of 3.79 percent per half-year, compared with that of the orig- 
inal portfolio of 9.83 percent. 

Subject only to D=0,  (4.13b) implies that the actual portfolio variance 
of 0.009667 corresponds to an optimal portfolio with r=+0.014616. 
Subject to only r=0.005633, the actual porttolio variance is seen to cor- 
respond to an optimal portfolio with D = - 6 . 4 6  or 3.04. 

The above analysis shows that the given portfolio is far from optimal. 
Even in the double constraint case, the actual standard deviation of 9.83 
percent per half-year is significantly greater than the optimal value of 
3.79 percent. However, no goal for r was targeted in the original port- 
folio development; the only constraint used was D(Sk)=0. Consequently, 
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the actual portfolio variance should be compared with that of an optimal 
portfolio with that given constraint; that is, it should be compared to an 
optimal portfolio variance of 0. 

E. Asset Trading for  Optimization 
To ensure that any target total duration vector developed above can in 

fact be achieved, a minimum of three assets is required, since three is 
the number of yield points. To also reflect the constraint in (2.35) that 
the trade be cash-neutral, Xaj=0, a minimum of four assets is required. 
For (2.36) to be solvable, these assets also must have total duration vec- 
tors Dj(io), such that {Dj(io)-D4(i0)}, j =  1,2,3 are linearly independent. 

Even though the goal of trading is to change the durational character- 
istics of Sk(i0), or the future surplus portfolio, the actual trading is to be 
implemented in S(io), or the current surplus portfolio. Formally, the tar- 
get total duration vectors for Sk(i0), or Do(Sk), must be translated to tar- 
gets for S(io), or Do(S). Similarly, the current total duration vector for 
S~(i0), D(S~), must be translated to that for S(i0), or D(S). Trades then 
are implemented in S(io) to convert D(S) to Do(S) using (2.36). 

For both translations, we have from Reitano [8], [11] that: 

D(S) = O(Sk) + D(Zk), (4.14) 

and hence, Do(S)-D(S)=Do(St)-D(St). Consequently, in (2.36)-(2.37), 
it is irrelevant whether this translation is made. However, the importance 
of recognizing that trading is performed on current surplus stems from 
the definition of P(io) in these equations. That is, we must have 
P(io)=S(io)=$7.11 million, and not equal to Sk(i0)=$7.37 million. 

The four assets to be used here are: 6-month commercial paper; a 5- 
year, 9-1/2 percent coupon note; a 5-year, 8 percent coupon note with 
equal annual sinking fund payments; and the original 10-year, 12 percent 
coupon bond. The market values per 100 of par and durational structures 
are as follows: 

c.p. 5 year 

Market Value 96.39 102.00 
Dj 0.48 0.02 
D2 0 3.95 
D~ 0 0 

D 0.48 3.97 

5 year S.F, |0 year 

98.64 112.80 
0.79 0.04 
1.76 0.22 
0 5.90 

2.55 6.16 
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As an example, assume that the target total duration vector desired is 
D0(Sk)=(0,0,0), the optimizing value subject to D .N=0 .  A priori, it is 
expected that the trade implied by (2.36)-(2.37) would require the sale 
of 100 percent of the 10-year bonds in the portfolio, since this is the 
only security in the trade group above or in the surplus portfolio that has 
a yield sensitivity to the 10-year bond yield. 

Solving (2.37) and setting 
3 

a4 = - ~ ]  a~, 
j=l 

the following trade is derived: 

a = ( -  15.20, 103.00, -38 .45 ,  -49 .35) ,  (4.15) 

where the components are in the order of the securities in the above 
table. 

Based on (4.15), the trade that will produce D(Sk)=0 is one whereby 
all 10-year bonds in the portfolio are sold, as is $15.20 million of the 
commercial paper, as is $38.45 million of the 5-year notes (short sale), 
and the $103.00 million of total proceeds is invested in the 5-year sinking 
fund note. The resultant portfolio is then: 

Assets Liabilities 

C.P, 6,53 
5-year S,F, Notes 103,00 

109.53 

GIC 63.97 
5-year Note (sho~) 38,45 

102.45 

F. Surplus Op t imi za t ion  with Fewer Assets 

In this section, we consider two applications of Section 3. Consider 
first the case in which only trades between the original 10-year bond and 
the 5-year note above are allowed. Here m=3 and n=2, and the rnx (n -  1) 
matrix A in (2.37) and Proposition 7 is given by: 

A = [Dl(io) - D2(i0)] r = (0.02, -3 .73 ,  5.90) r. (4.16) 
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Here D~(io) and D2(i0) are the total duration vectors of the 10-year bond 
and 5-year note, respectively, and the transpose is used since the Dj(io) 
are identified with row matrices by convention. 

The rank of A is clearly equal to 1, and hence by Proposition 7 we 
seek v=2  independent vectors, so that ArNj=0. Two such vectors are: 

Nt = (0, 1.581769, 1), N2 = ( -295 ,  0, 1). (4.17) 

Finally, to specify the trading constraints as in (3.8), we require 
r j=N/D(SD, and the following minimization problem is produced as in 
(3.7)-(3.9): 

min (D K~ Dr), (4.18a) 

subject to: 

D" Nj = - 32. 143545, (4.18b) 

D 'N2  = 1510.75. 

The solution to (4.18) then will equal the variance-minimizing total du- 
ration vector that can be obtained by trading only between the given two 
assets. 

Applying Proposition 6, the target total duration vector and associated 
variance are given by: 

Do(Sk) = (5.249, -44 .142 ,  37.678), (4.19a) 

Do K D r = 0.009528. (4.19b) 

Comparing (4.19b) to the original portfolio variance of 0.009667 in 
(4.9a), it is clear that even the best such trade has little effect. To de- 
termine the actual trade, we again use (2.37). As noted in Section 4-E 
above, it is immaterial whether D and Do are based on SAio) or translated 
to S(i0) via (4.14); however, the price function on which we are trading 
is P(i0)=S(io). A calculation based on (2.37) produces a ' = - $ 3 . 9 4  mil- 
lion, which implies from (4.16) that $3.94 million of the 10-year bond 
is sold, and a like amount of the 5-year note purchased. 

In (4.18), it is also possible to add a constraint on the modified du- 
ration, such as that of the original value, D . N = 0 ,  where N=(1,1,1).  
This is because the vector N is linearly independent of the Nj in (4.17). 
However, because m=3,  the constraints are satisfied by a unique vector 
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Do, determined by the intersection of the three constraining planes. Be- 
cause the original D(Sk) satisfies these three constraints by construction, 
it is clear that we must then have Do(Sk)=D(S~). That is, the current 
portfolio is optimum if the modified duration is fixed at 0 and if trades 
only between the two given securities are allowed. 

Note that the above conclusion also could have been predicted from 
first principles, since any amount of trading between the given instru- 
ments would change D(S,) from its original value of 0. 

Next assume that a third asset is added to the allowable trading group, 
say, commercial paper. That is, we now seek a cash-neutral trade be- 
tween commercial paper, the 5-year note, and original 10-year bond. The 
matrix A of Proposition 7 is now 3 x2 ,  and given by: 

7 ( - 0 .44  t (D,(io) - D3(i0) t - 0 . 4 6  
A = = 3.95 0.22 , (4.20) 

\D2(it0 D3(io)/ 0 5 .90 /  

where Di(io), i= 1, 2, 3 denote the total duration vectors of the 10-year 
bond, 5-year note and commercial paper, respectively. With a rank equal 
to 2, we seek v= l vector, so that ArN~=0. 

A calculation produces the following vector, as well as associated con- 
straint constant, r~=N~'D(S~), as in (3.3): 

Nj = (1,0.116456, 0.070234), 

rl = 2.7154610. (4.21) 

With no additional constraints, the solution to the minimization prob- 
lem in (3.7)-(3.9) is given by Proposition 4: 

D0(S~) = (3.118, -4 .623 ,  2.493), (4.22a) 

Do K D~ = 0.000182. (4.22b) 

Comparing (4.22b) to the original variance in (4.9a), we observe a sig- 
nificant reduction. 

Solving for the associated trade vector using (2.37), we obtain: 

a = ( -46 .33 ,  77.41, -31.08) .  (4.23) 
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That is, $46.33 million of the original $49,35 million 10-year bond is 
to be sold, as is $31.08 million of the $21.73 million commercial paper 
(netting a short position), and the total proceeds of $77.41 million in- 
vested in the 5-year note. 

G. Establishing the Or ig inal  Asset P o r t f o l i o  

In the above sections, the methodologies of Sections 2 and 3 were 
applied to the problem of optimizing an existing portfolio. However, 
they also can be applied easily to the problem of establishing the initial 
asset portfolio. 

To this end, we begin with a surplus portfolio that reflects the GIC 
liability and the assumption that 100 percent of  the assets are held in 
commercial paper. Naturally, S(i0) and Sk(i0) are now quite different from 
the perspective of the profile of their total duration vectors. For example, 
we now have: 

D(Sk) = (8.36, -47 .70 ,  0), (4.24a) 

D(Sk) = - 39.34. (4.24b) 

A calculation shows that the variance of the above portfolio is given 
by: 

D K D r = 0.175532, (4.25) 

for an implied standard deviation of 41.9 percent per half-year. Not sur- 
prisingly, this value is far in excess of the 9.83 percent standard devia- 
tion of the original portfolio as given in (4.9a). 

Starting with this portfolio, the analyses of the above sections are readily 
repeated. We leave the details to the interested reader, 
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APPENDIX 

P r o p o s i t i o n  A: 

Let K be an m × m  symmetric, positive definite matrix and {Bj} a col- 
lection of p independent m-vectors, so p<-m. Given {rj}P=l, consider the 
problem: 

Min (x r K x) (A. 1) 

subject to: 

xrBj=rj j= I ..... p, (A.2) 

Then a solution xo exists and is given by: 

Xo = Yhj K- ~ Bj. (A. 3) 

where k = ( h j  . . . . .  h:) is the unique solution of: 

C X = r, (A.4) 

Cjk=B~K-IB~. and r=(rl . . . . .  re). 
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Proof." Because K is symmetric, it has real eigenvalues, {ai}, and m- 
independent unit eigenvectors, {Ai}, which are mutually orthogonal. Let 
P denote the m×m matrix with {Ai} as column vectors. The matrix P is 
then an orthogonal matrix, p r = p - t .  Changing coordinates to the {Ai} 
basis, let x=Py;  that is, the components of y are the coordinates of x in 
the {Ai} basis. 

Substituting into (A. 1) and recalling that (py)r=yr  pr, we obtain: 

x T K x = yT(pT K P) y 

= E aiy~, (A.5) 

since pr K P is a diagonal matrix with eigenvalues {a~} along the di- 
agonal. Similarly: 

x r Bj = yr(PrBj) 

= E bjiyi, (A.6) 
i 

where bji= A r Bj. 
In the new coordinates, the above problem reduces to: 

Min E a~y~, (A.7) 

subject to: 

E b j i y i = r j '  j =  1 . . . . .  p. (A.8) 
i 

Let F (y )=E  a~y~ and Gj(y)=Ei bjiy~. By the method of Lagrange mul- 
tipliers, if Yo is a critical value of F(y) subject to the constraints Gj(y0)=rj, 
then there exists constants {hk}, the Lagrange multipliers, so that: 

VF(yo) = E hk VGk(yo), (A.9) 

where VF denotes the gradient of F(y): 

, , , ,  . 

kOyl 
Further, if the function: 

H(y) = F(y) - E kkGk(y), (A. 10) 
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has a Hessian matrix H[H(y0)], which is positive definite on the vector 
subspace: 

Y = {y{y" VGk(yo) = 0, k = 1 . . . . .  p}, CA. 11) 

where: 

02H 
H[H(yo)]0 - OyiOyj' (A. 12) 

then Yo is a minimum of F(y), subject to the above constraints. 
For the above problem, a calculation produces: 

VF(y) = 2(alyt . . . . .  amy,,), 

VGk(y)  = PrBk = (b~t . . . . .  bk,.). (A.  13) 

Hence, from (A.9) we see that if Yo is a critical point of  F(y) under the 
above constraints, we must have: 

hk bki 
k 

Yi - - - ,  (A. 14) 
ai 

which is well-defined since K is positive definite, and hence a i>0 for 
all i. For simplicity, the factor of 2 in (A. 13) has been absorbed into the 
unknown hk. 

The unknowns {hk} in (A. 14) are determined so that Yo satisfies the 
constraints in (A.8): 

b,, bki hk 
2 - rj, j =  1 . . . .  , p .  (A.15) 
i.k ai  

The system in (A. 15) is equivalent to that in (A.4) because the coeffi- 
cient matrix, C, has components: 

b j, bki 
cj ,  = - {VTB,) T {VTK V)- '  ¢VTB,) 

i ai  

= B r K  - '  B~. (A.16) 

The last step in (A. 16) follows because P is an orthogonal matrix and 
hence pT=p-~. 
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To show that (A. 15) has a unique solution, it is sufficient to show that 
C has a non-zero determinant. To this end, consider the bilinear function: 

(x,y)r = x r K  -I y. (A. 17) 

Because K-~ is a positive definite matrix, (x,y)x is a well-defined inner 
product on R". Consequently, the matrix C in (A. 16) is seen to be the 
Gram matrix associated with this inner product: 

Cjk = (Bj, BDx. (A. 18) 

As is well-known, a Gram matrix has a positive determinant when the 
vectors {B)} are linearly independent. 

Consequently, k=(k~ . . . . .  hp) is uniquely determined by (A.4), and 
the critical point Y0 is given by (A. 14): 

Yo = (PrK P)-  t (y. h, PrB~) 

= Y~ hkpTK-IB~. (A.19)  

Since xo=PY0, (A.3) follows. 
To show that the critical point Yo is in fact a minimum of F(y) subject 

to the Gj(y) constraints, consider H(y) in (A.10). A calculation shows 
that: 

02H = {20; i = J  (A.20) 
OyiOyj i ~ j. 

Consequently, the Hessian matrix of H(y) in (A. 12) is equal to 2(prK 
P), which is positive definite everywhere, so in particular, it is positive 
definite on the vector subspace given in (A, 11). [] 

Corollary A.I: 

Under the assumptions of Proposition A, 

Min (x~Kxo) = k r C k 

= r T C  - I  r, (A.el) 

which equals 0 if and only if r=0.  
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Proof" By (A.3), Kxo=EhjBj. Hence, since K is symmetric, 

xS K xo = (E X~.KrIBD r Z hjBj 

= E E  XjX~BjK ~Bk 

= h r C k .  

Now by (A.4), 

~,r C ~ = (C- tr) r r 

= rrC -1 r. 

Because C has non-zero determinant, C- t  is well-defined, proving 
(A.21). 

Finally, C is also positive definite, since all principal minors have 
positive determinants. This is due to the observation that every principal 
minor of C is again a Gram matrix and hence has positive determinant 

T as before. Hence, C-  3 is also positive definite, so x0 K xo equals 0 if and 
only if r=0 .  [] 

Corollary A.2: 

Assume that the {Bj} of Proposition A are linearly independent unit 
eigenvectors of K, Bj=Aj, as in the proof of Proposition A. Then: 

x0 = E r i Bj, (A.22) 

and 

xS K xo = E aj r~, (A.23) 

where {aj} denotes the associated eigenvalues. 
Proof: Because Bj is also an eigenvector of K -j ,  only with eigenvalue 

l / a  . we have K-IBj=Bj/a j ,  and from (A.3): 

XO = ~ hjBj (A.24) 
aj 

Also, because the eigenvectors of K are orthogonal: 

B ~K IBe = ~l/ak j : k ,  C j, 
J [ 0 j # k ,  
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and the matrix C in (A.4) is a diagonal matrix. Consequently, C -j is 
also diagonal with diagonal elements {aj}, so it is clear from (A.4) that 
hj=rjaj. Hence, (A.22) follows from (A.24). Similarly. (A.23) follows 
from (A.21). [] 

Note: For a somewhat different proof of Proposition A, generalized to 
include a linear term in x, see Martin et al. [5, p. 683]. 

Also, denote by B the m ×p matrix with columns equal to the B I vec- 
tors. Then (A.2) can be written: 

xTB = r. (A.2)' 

In addition, the matrix C in (A.4) is seen to equal: 

C = B r K - J  B ,  

and hence, the solution xo in (A.3) can be expressed: 

Xo = K - ~ B ~  

= K -I B ( B r K  -~ B )  -I  r. ( A . 3 ) '  

Similarily, the minimum value of the quadratic form in (A. 1) as given 
in (A.21) of Corollary A.1 can be expressed: 

xorK Xo = rr(B r K -l B) -I r. (A.21)' 

However, the notational convention followed in the paper was chosen 
to better highlight the relationship between the optimizing target total 
duration vector, Do, the constraining direction vectors, N, N~ . . . . .  E(i0), 
and the various constraining values, D, rl . . . . .  r. 





DISCUSSION OF PRECEDING PAPER 

ELIAS S.W. SHIU: 

Dr. Reitano is to be congratulated for publishing this paper, which 
proposes a new theory of  immunization. The following are my com- 
ments, some mathematical and some philosophical. 

1, Different Approximation Formulas 

This paper assumes that the price of an asset or a liability can be given 
as a smooth function of m variables. Thus, the price can be denoted as 
P(i), iER '~. For much of  this discussion, there is no need to assume that 
i is an "m-point yield curve vector." The key assumption is that several 
variables or factors exist that determine the prices of  assets and liabilities 
and that such price functions are at least twice differentiable. The assets 
need not be fixed-income securities as long as one is willing to assume 
the existence of such variables or factors determining their prices. 

Given the current-status vector i0, we are interested in the distribution 
of the changed-price random variable 

g(Ai) = P(i0 + Ai), (1.1) 

where Ai denotes the instantaneous-shock random vector. If the current 
price is not zero, P(io)#0, then the problem of determining the distri- 
bution of  g(Ai) is equivalent to that of  determining the distribution of 
the relative-change-in-price random variable 

g(Ai) P(io + Ai) 
h(Ai) = ~ = (1.2) 

P(i0) P(i0) 

Equations (2.5) and (2.6) of  the paper are approximations to the mean 
and variance of h(Ai) in terms of the fast two moments of  Ai, respectively. 

To estimate E[h(Ai)], the paper approximates h(Ai) with the first two 
terms of  the multivariate Maclaurin series, 

h(Ai) ~ h(0) + h'(0)rAi, (1.3) 

and then takes expectation, resulting in Formula (2.5). However, the 
standard way is to approximate h(Ai) with the first three terms of  the 
multivariate Taylor series expanded at the mean of the random vector 
Ai, E(Ai) [which the paper denotes as E(i0)], and then take expectation. 
The resulting approximation formula is 

463 
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E[h(Ai)] = h(E(io)) + 1/2 tr[h"(E(io))K(io)], (1.4) 

where h" denotes the Hessian matrix and tr, as in the paper, denotes the 
trace operator. 

Formula (1.4) is a generalization of  the following one-dimensional re- 
sult: If X is a random variable with E (X)=~  and Var(X)=cr 2, and q~ is a 
smooth function of  one variable, then 

E[qffX)] ~- q~(Ix) + 1/2 ~"(ix)cr 2. (1.5) 

On the other hand, Formula (2.5) of  the paper corresponds to 

E[q0(X)] ~ qff0) + q~'(0)l.t. (1.6) 

Formula (I .5) is a better approximation formula than (1.6) because it is 
a higher-order approximation and X is probably closer to its mean tx than 
to 0. The standard approximation formula for the variance of tp(X) is 

v a r [ ~ ( x ) l  ~ [,~'(~)]2o-2, (1.7) 

while Formula (2.6) of  the paper corresponds to 

Var[tp(X)] ~ [~0'(0)]2cr2. (1.8) 

Formula (1.7) can also be generalized to the multivariate case; see (3.90) 
on page 72 of  the Elandt-Johnson and Johnson book [1], which for sev- 
eral years was a textbook for one of  the Society Associateship exami- 
nations. (Note that Formulas (3.87) and (3.88) of  [1] contain typograph- 
ical errors.) Consider the random variable 

P(io + Ai) g(Ai) P(io)h(Aio) 

q(Ai) = P(io + E(io)) P(io + E(io)) P(io + E(io))' (1.9) 

it follows from (3.90) of  the Elandt-Johnson and Johnson book [1] that 

Var[q(Ai)] ~ drK(i0)d, (1.10) 

where d denotes the transpose of  the total duration vector evaluated at 
io+E(io), 

d = D(i0 + E(i0)) r. (1.11) 

(In this discussion lowercase boldface letters denote column vectors.) 
The difference between (1.10) and (2.6) of  the paper is essentially the 
same as that between (1.7) and (1.8). 
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2. A s s e t / L i a b i l i t y  M a n a g e m e n t  S t ra t eg i e s  

Formulas (1.4) and (1.10) imply the following asset/liability man- 
agement strategy, if we believe that asset and liability values are smooth 
functions of  several variables. As in the paper, let S(i) denote the surplus 
function. By structuring the assets and liabilities such that the gradient 
of  S at io+E(i0) is the zero vector, 

S'(i0 + E(io)) = 0, (2.1) 

we have 

Var[S(io + Ai)] ~ 0. (2.2) 

At the same time, because 

E[S(i0 + Ai)] ~ S(E(i0)) + 1/2 tr[S"(io + E(io))K(i0)], 

we would want to maximize 

tr[S"(io + E(io))K(io)]. (2.3) 

It can be shown that the trace of  the product of two positive semidefinite 
matrices is non-negative and that the trace of  the product of two positive 
definite matrices is positive. Since a variance-covariance matrix is al- 
ways positive semidefinite, we have 

tr[S"(io + E(i0))K(io)] -> 0 

if the Hessian matrix S"(i0+E(io)) is positive semidefinite. 
The strategy above should be compared with the classical free-lunch 

strategy implied by the assumption that asset and liability values are smooth 
functions of  several variables. The assets and liabilities are to be struc- 
tured such that (i) S(io)=0, (ii) S'(io)=0, and (iii) the Hessian matrix 
S"(io) is positive definite. Condition (i) means that there is zero net in- 
vestment, and therefore the rate of  return due to an instantaneous shock 
is infinite. Condition (ii) is a duration-matching condition similar to (2.1). 
Assuming that we know the first two moments of  the shock random 
vector Ai, we can improve condition (iii) by maximizing 

E[ AirS"(i)Ai] = tr[S"(io)E(Air Ai)]. (2.4) 

Note that 
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E(AirAi) = K(i0) + E(Ai)rE(Ai) 

= K(io) + E(i0)rE(io). (2.5) 

3. A P u z z l e  

It might be useful to future readers if I describe a confusion I en- 
countered when I first read this paper. I think I have now solved the 
puzzle, hut Dr. Reitano might want to further clarify the point in his 
author's review. The random variable 

P(i0 + Ai) 
h(Ai) - 

P(i0) 

gives the relative change in price due to an instantaneous shock Ai, and 
the random variable 

h ( A i ) -  1 

represents the rate of return due to an instantaneous shock. The expectation 

E [ h ( A i ) -  1] : E[h(Ai)] - 1 

is the expected rate of return due to price changes, not interest income. 
One does not earn interest without the passage of  time. The model de- 
scribed above is a model at a single point of  time. 

Let me reformulate condition (2.13) of the paper as 

E [ h ( A i ) ] -  1 ~ - r .  

I was puzzled that, in Section 2-E of the paper, terms such as ~expected 
return of  a five-year bond" and "expected period return" seem to be used 
to describe r. I assumed that the expected return of  a five-year bond 
meant the yield rate of  a five-year bond. However, 

E [ h ( A i ) ] -  1 

merely measures the expected rate of return due an instantaneous shock. 
In other words, it measures only the expected rate of return of capital 
gain and loss, without interest income. I was relieved when I reached 
Section 4 in which I saw the expression for the forward value of  surplus 

Sk(i) = S( i ) /Zk( i ) ,  (3.1) 

and the term "expected yield curve return" used to describe r. 
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4. F o r w a r d  Va lue  

Much of Section 4 of  the paper is based on the distribution or moments 
of  the random variable S,(i0+Ai), k>0.  [Since io is fixed, the problem 
of  determining the distribution of Sk(i0+Ai) is essentially equivalent to 
determining the distribution of Sk(io + Ai)/S(io) or Sk(io + Ai)/Sk(io).] 
Now, Sk(io+Ai) is a forward-value random variable. I do not think that 
the distribution of  the forward value of the surplus at time k is important. 
What really matters is the distribution of the surplus value at time k. By 
(3.1), 

S~(i0 + Ai) = S(io + Ai)/Zk(io + Ai), (4.1) 

which means that, if we want to interpret Sk(io + Ai) as the surplus value 
at time k, we would make the assumption that, after the shock to the 
yield curve at time 0, the yield curve movement up till time k is governed 
exactly by the pure expectations hypothesis, which is not a satisfactory 
hypothesis. However, to build a continuous-time model that would give 
the distribution or moments of the surplus value at time k may not be 
easy because of  the Harrison-Pitbladdo-Schaefer theorem. 

5. P r o p o s i t i o n  A 

Proposition A of the paper is a very useful result. Its applications in 
other areas of actuarial science can be found in papers such as those by 
Gerber and Jones [2], Shiu [4], and Tilley [6]. I would like to present 
an alternative derivation. 

L e m m a :  
Given a ~ R ' ,  consider the function 

~(x) = arx = xra, 

then the gradient of  ~(x) is a,  

V+(x) = a. 

Corol lary:  
Given an m x m  matrix A, consider the function 

+(x) = xrAx, x E R"; 

then 

V+(x) = (A + Ar)x. 

x E Rm; 

(5.1) 

(5.2) 
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The problem posed in Proposition A of the paper is to maximize 

xrKx 

subject to the constraint 

Bx = r .  ( 5 . 3 )  

Consider the Lagrangean function 

H ( x )  = x r K x  - krBx, 

where k is the Lagrange multiplier vector, Applying the corollary and 
the lemma yields 

VH(x) = V(xrKx) - V(krBx) 

= (K + Kr)x - (krB) r 

= 2Kx - Brk,  

from which we get the equation 

2Kxo = Brk, 

o r  

xo = 1/2 K -  IBrk. (5.4) 

Substituting (5.4) in (5.3) yields 

1/2 BK-  IBrk = r ,  

o r  

k = 2(BK- I Br)- I r. (5.5) 

The substitution of (5.5) in (5.4) gives 

xo = K- tBr (BK- tBr ) - l r ,  

which is (A.3)' at the end of the Appendix. 
The lemma and the corollary are two simple, yet very useful results. 

In fact, much of the current Course 165, "Mathematics of Graduation," 
can be simplified by applying these multivariate differentiation formulas. 
I would also add that the theory of Lagrange multipliers is still an ac- 
tively researched area; see Rockafellar [3]. 
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6. Two Inequalities 

I would like to suggest an alternative for Inequality (2.8) in the paper. 
The eigenvalues of a real symmetric matrix are real. Let m and M denote 
the minimum and maximum, respectively, of the eigenvalues of the real 
symmetric matrix K. Then 

mxrx -< xrKx -< mxrx. (6.1) 

One way to prove (6.1) is to invoke the principal axis theorem, as in 
the Appendix of the paper, that there is an orthonormal matrix P such 
that 

p r K p  = D, 

a diagonal matrix. Thus 

xrKx = xrpDpr  x = (prx)rDPrx. 

Inequalities (6.1) now follow from 

mI_< D<_MI 

and 

(prx)rpr x = xrx. 

Since the trace of a matrix is equal to the sum of its eigenvalues, the 
second inequality in (6.1) gives a tighter bound than (2.8) in the paper. 
Also, the first inequality in (6.1) proves the last part of Corollary A. 1 
in the Appendix of the paper. Since K is positive definite, the matrix 

C - I  = B K - I B  r 

is also positive definite and hence its minimum eigenvalue is positive. 
Consequently, the first inequality in (6.1), with K = C  -~, shows that 

r rCr  -< 0 

if and only if r=0 .  

7. A L a w s u i t  

As I read that the Litterman and Scheinkman study would imply that 
three direction vectors might be used effectively to anticipate bond per- 
formance, 1 was reminded of a 1973 lawsuit, as told by the late Nobel 
laureate George J. Stigler [5]: 
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In that year a young man named Dascomb Henderson, a graduate 
of Harvard Business School (1969) and recently discharged as assis- 
tant treasurer of a respectable-sized corporation, sued his alma mater 
for imparting instruction since demonstrated to be false. This instruc- 
t i o n - w e  may omit here its explicit and complex algebraic formula- 
tion--concerned the proper investment of working capital. One of 
Henderson's teachers at the Harvard school, a Professor Plessek, had 
thoroughly sold his students upon a sure-fire method of predicting short- 
term interest rate movements, based upon a predictive equation in- 
corporating recent movements of the difference between high- and low- 
quality bond prices, the stock of money (Plessek had a Chicago Ph.D.), 
the number of "everything is under control" speeches given by gov- 
ernors of the Federal Reserve Board in the previous quarter, and the 
full-employment deficit. It was established in the trial that the equa- 
tion had worked tolerably well for the period 1960-68 (and Henderson 
was exposed to this evidence in Plessek's course in the spring of 1969), 
but the data for 1969 and 1970, once analyzed, made it abundantly 
clear that the equation was capable of grotesquely erroneous predic- 
tions. Assistant Treasurer Henderson, unaware of these later results, 
played the long-term bond market with his corporation's cash, and in 
the process the cash lost its surplus character. He was promptly dis- 
charged, learned of the decline of the Plessek model, and sued. 

This was a new area of litigation, and Henderson's attorney delib- 
erately pursued several lines of attack, in the hope that at least one 
would find favor with the court: 
1. Professor Plessek had not submitted his theory to sufficient em- 

pirical tests: had he tried it for the decade of the 1950s, he would 
have had less confidence in it. 

2. Professor Plessek did not display proper scientific caution. Hen- 
derson's class notes recorded the sentence: ~I'11 stake my reputa- 
tion as an econometrician that this model will not [engage in in- 
tercourse with] a portfolio manager." This was corroborated with 
a different verb by a classmate's notes. 

3. Professor Plessek should have notified his former students once the 
disastrous performance of his theory in 1969 and 1970 became 
known. 

4. Harvard University was grossly negligent in retaining (and hence 
certifying the professional competence of) an assistant professor 
whose work had received humiliating professional criticism (Jour- 
nal of Business [April 1971]). Instead he had been promoted to 
associate professor in 1972. 
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The damages asked were $500,000 for impairment of earning power 
and $200,000 for humiliation. 

I leave it to the interested reader to look up the journal (which also con- 
tains the celebrated Black-Scholes paper) to find out the ending. 
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TIMOTHY C. CARDINAL: 

I congratulate Dr. Reitano on his efforts in examining immunization 
that allows rate changes to be multidimensional (that is, multidirec- 
tional). Multivariate does not necessarily mean multidimensional. Earlier 
papers [6], [7], [8], [9], [10], [11], [12], [13] were essentially one- 
dimensional, albeit in direction N. From a practical perspective, one may 
consider a portfolio immunized if it is immunized in a given finite num- 
ber of directions. However, from a theoretical perspective, the portfolio 
is not immunized. In this paper, the analysis is not limited to a finite 
number of directions. 

Immunization theory by its very nature is dependent on the assumption 
about interest rate movements. It is my perception that Dr. Reitano's 
analysis depends on the assumptions that K is stationary, that interest 
rate movements are independent, and that second moments are finite; 
that is, K exists. Independence is needed only if more than one time 
period is analyzed. 

Part I of my discussion starts with known consequences in using the 
above assumptions. I then inquire what happens if one of these assump- 
tions is relaxed. Part II consists of a statistical examination of empirical 
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data, which suggests that one should not assume that all three assumptions 
hold simultaneously. Becker's results [1] imply a similar conclusion. 

L Assumptions 

Consequences of  Stationarity, Independence, and  Finite 
Second Moments 

Brockett and Witt [2] show that in the traditional stationary indepen- 
dent increments model assuming finite variance, continuous trading and 
continuous price changes, prices must follow a Brownian motion (or a 
lognormal distribution for prices). The modem approach is to use the 
principle of no arbitrage. They relate the historical notions of no arbi- 
trage and the use of martingale models. The main result of their paper 
is very interesting: 

Theorem 3 

Let X(t) denote the price and Y(t)=exp{-~(t)}X(t) the properly dis- 
counted present value of X(t). If the market is efficient in the sense that 
the return process ~(t)=ln[Y(t)/Y(t-1)] is a square integrable, station- 
ary, ergodic process and lnY(t) has the martingale property, then X(t) is 
approximately lognormal. Moreover, the entire price process X(t), O<-t<-T 
is simultaneously approximated by a geometric Gaussian process over 
the entire time interval. 

Finite Second Moments 

If one assumes increments are stationary and independent, then it can 
be shown empirically that a non-normal stable process fits the data better 
than a normal process (see Part lI). A consequence is that, theoretically, 
second moments are infinite. As a result, one must use a bounded utility 
function to produce finite market prices. An alternative, suggested by 
the empirical data, is to truncatc the distribution, resulting in finite mar- 
ket prices without the overhead of utility functions. This model is not 
considered to be theoretically attractive. 

StationariCy 

Section 4.B states " . . .  one may be more confident of the stability of 
K than E through time . . . .  " Although estimates of components may 
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vary between small positive and negative values for different time pe- 
riods, most studies find that E is not significantly different from 0. Usu- 
ally it is the stationarity of K that is questioned. The "lack of confi- 
dence" in the stability of E is due to sensitivity to the time period and 
the interval used to measure changes. One would expect that E is not 
significantly different from 0 for a shorter interval or longer time period. 

Implications 

Dr. Reitano's series of papers on multivariate duration, convexity, and 
immunization have successively solved increasingly more difficult prob- 
lems in more general settings. A process with stochastic volatility (see 
Hull and White [5]) may explain the magnitudes of the second moments 
observed in empirical data. However, immunization then becomes a dif- 
ficult endeavor. I do not see how to extend your results assuming a non- 
stationary process. Interestingly enough, your results may be generalized 
to a stable process (see Part II). 

The assumptions of stationarity, independence, and finite second mo- 
ments imply a normal process. Empirical evidence suggests that changes 
are not governed by a stationary normal process. Stationarity seems to 
be the logical assumption to relax. Of course, it may be reasonable to 
assume stationarity holds for short time periods. If so, your methodology 
will provide valuable insights for financial management. Further empir- 
ical research on the structure of nonstationarity is needed. 

II. Statistical Analysis 

Stable Distributions 

The reader is referred to Feller [4] and Press [7] for more details. The 
normal distribution belongs to a larger class known as stable distribu- 
tions, defined as the class of  distributions that are invariant under con- 
volution. In order that F(x) be a limiting distribution of the sum of in- 
dependent identically distributed (lid) summands, it is necessary and 
sufficient that F(x) is stable. This is known as the generalized central 
limit theorem. Note that the variance of the summands is not necessarily 
finite. Thus, stable distributions retain the properties that make the nor- 
mal distribution attractive for use in modeling. 

Explicit expressions for the probability density function (pdf) or cu- 
mulative distribution function (cdf) of  a general stable distribution are 
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not known, so expansions must be used. Therefore, most analysis is done 
through its characteristic function, defined as 

qbx(t) = E(exp(it 'X)), 

where X is a pX 1 random vector with multivariate p d f f ( x )  and t is a 
p × 1 vector. In the multivariate case, F is symmetric stable if and only 
i f  d~(t) can be uniquely expressed as 

ra 

In d~(t) = i~'t  - V2 E (t'f~kt)~/2' 
k = l  

where each 

is a positive semidefinite matrix of  order p and rank rj, 1 <--ri<- p. The 
distribution is nonsingular if and only if 

tit 

k=l 

is positive definite. It will be assumed that m=  1. The matrix ~ is called 
the codispersion matrix. For a < 2 ,  moments of  order less than c~ exist, 
but moments of order greater than or equal to c~ do not exist. For a 
normal distribution, c~ = 2, ~ = Ix, and Z~'= ~ ftj = E. Marginal distributions 
are given by the appropriate submatrices. In the univariate case, c, is 
used where 

(oii = 22/~'cZi. 

The parameter c (dimension i understood) is called the scale parameter 
and takes a role in measuring risk similar to that of  standard deviation. 

Let Y = A X + b ,  where X is a symmetric stable p ×  1 vector, A is a qXp 
matrix with rank(Aj)=q, and b is a p×  1 vector. Then it is easy to show 
via characteristic functions that Y is symmetric stable with 8 r=ASx+b  
and ~r=Al ' lxA '. The concept of  covariance and correlation can be gen- 
eralized, The codispersion between Xi and Xj is (%, and the association 
parameter P0 between Xi and Xj is p~j=t%/(t%to~) ~12. The familiar prop- 
erties of  p hold except that when [p} = 1, the functional relationship is not 
necessarily linear. 
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E m p i r i c a l  R e s u l t s  

For estimation techniques, the reader is referred to Koutrouvelis's pa- 
per [6] for the univariate case and to Cardinal [3] for the multivariate 
case. Bootstrapping was used to obtain estimates for standard errors. 
Here the distribution of Ai for the three-point yield curve of 0.5-, 5-, 
and 10-year maturities is examined. Results for other "key" maturities 
(0.25, l, 2, 3, 7, and 30 years) are similar. The data set consists of 
weekly yields provided by Salomon Brothers, Inc. for the period January 
2, 1981 to December 23, 1993. To have a larger data size, the data set 
is extended roughly 31/2 years before and after the one considered in the 
paper. 

A common statistical test is testing the stability-under-addition prop- 
erty. Form data sets by taking nonoverlapping sums of size n and label 
the estimates with subscript n. Since stable distributions are invariant 
under convolution, one expects that 

o~. = ~ l ,  c .  = n ll'~ ~'l, and ~ . = n ~ l .  

For a nonstable distribution, the &. should have increasingly larger val- 
ues tending towards 2. Since stability-under-addition holds only for lid 
variables, a second test is employed by first randomizing the original 
data set and then forming sums. Randomization should remove any ef- 
fects of serial correlation and dependency. Failing either test is evidence 
against a distribution being stationary stable, but passing both tests does 
not mean that the distribution must be stable. A mixture of normals may 
pass the first test but fail the second test as 6~ tends to 2 as n increases. 

Tables 1 and 2 present the results of the estimated univariate param- 
eters using weekly changes for four different sum sizes. Table 3 presents 
the results of using overlapping 6-month periods. Standard errors are 
given in parentheses. Note that the standard errors became large as the 

data p for a sum data sets became very small (67 oints size of 10). For 
the original data set, estimates of l0 s~ are - 7 ,  - 1 3 ,  and - 9 ,  respec- 
tively. In the multivariate case, o~= 1.65 and the estimate of the codis- 
persion matrix is given in Table 4. 

For each maturity, the estimates of oL for weekly changes are more 
than 5 standard errors from 2. Thus the hypothesis of normality (a=2)  
can be rejected at the 99 percent level using a t test. For each sum size, 
the hypotheses that an=&t and c , = n i / ~ g l  are not rejected for both the 
original and randomized data sets. The hypothesis that ~=0 cannot be 
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TABLE 1 

WEEKLY CHANGES- -ORIGINAL DATA 

Sum Sizes 

I I , 2 3 . 6 If) 

Matur y i 6 ' "~ d 1026 6 |O'~d 6 I0:d , ,~ 102<: 

6Monihs 1.361 !0.1i34' 1,485 0.1781 1.445 0.2094 1.353 0,3131 1,599 0,4608 
:(0,062) :(0.006) (0,077) (0,018) (0.113) (0.018) (0.174) ',0.046) (0.174) {0,064) 

5Years 1.681 0.1208 1.736 0.1819 1.807 0.2323 1.572 0,3288 1,824 0.4355 
(0.052)i(0.004) (0.079)(0.010) (0.092)(0.015) (0.156): 0.047) (0.123)f0.068) 

10Years 1.695 0.1150 1.750 0.1723 1.803 0.2183 1.592 0.3076 1.744 0,3706 
.(0.046) (0.(~)4) .(0,070) 0.010) (0.089) (0.015) .(0,121) ;0.041) .(0.169) 10.067) 

TABLE 2 

WEEKLY CHANGES--RANDOMIZED DATA 

Sum Sizes 
i 

I 2 3 , 1 0  
? 

MaturiD 6 I0~ & |()2~ fit 102~ & |02t ~ ! ~t lOz~: 
I I I , 

6Months 1.352 0.1125 1.423 0.1881 1.514 0.2539 1.526 10.36241 1.Sz~O 0.5603 
k 

(0,067) (0,005) (0,077) 0.011) (0,083) [0.017) :(0.165)~(0.051) (0.181) 10.077) 
5Years 1.672 0.1186 1.767 0.1904 1.807 0.2279' 1.817 0.31631 1.720 0.4045 

(0.054) (0.005) (0.057) (0.010) (0.090) (0.018) I(0.106):(0.029) (0.188)1(0.064) 
lOYears 1,686 0.1133 1.817 0.1785 1.839 0.21681 1.790 0.2923 1.820 0.4132 

. . . . .  (0.0(:,0) (0.005).(0,069) [0,010).(0.102! I0.017)[(0.121):(0.028)[(0.137) 0.055) 

TABLE 3 

SIx-MONTH CHANGES 

Maturity fit 102( "r |O2t~ 

6 Months 1,660 0.8007 -0.410 
(0.060) (0.036) (0.056) 

5 Years 1 .801 0.7680 -0.375 
(0.062) (0.040) (0.056 

10 Years 1.730 0,6677 -0,315 
(0.066) (0.034) (0.048 

TABLE 4 

WEEKLY CHANGES 

,659,4°7,228, (2.42.53.0) 
10~'0 = /1.407 3.378 1,917 / 1076"n = 2.5 2.4 3.5 

\1.228 1.917 3,032] 3.0 3.5 2.4 
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rejected for either the original or randomized data sets and any sum s ize--  
most estimates are within one standard error of 0, a few within two. 
Finally, a chi-square goodness-of-fit test was performed by using 13 in- 
tervals. The 10-year maturity test used 12 intervals; two intervals had to 
be merged since one interval had less than 5 observations. The results 
are given in Table 5. Normality may be rejected at any reasonable sig- 
nificance level. The stable hypothesis cannot be rejected at the 97.5 per- 
cent significance level for the 6-month or at the 95 percent significance 
level for the 5- and 10-year securities. 

T A B L E  5 

CHI SQUARE VALUES 
WEEKLY CHANGES 

• .,Maturity , , Stable Normal 

6 M o n t h s  2 3 . 4 4  250108 
5 Yea r s  8 .88  210 .41  
10 Y e a r s  11 .15  2 3 2 . 2 3  

For 6-month changes using overlapping intervals, once again the hy- 
pothesis of normality (a=2)  can be rejected. The stability-under- 
addition property cannot be directly tested since the 6-month changes are 
not independent sums of weekly changes. However, the hypothesis that 
6=261/ '~  cannot be rejected at a 95 percent significance level. 

Consequences 
Empirical evidence demonstrates that the simultaneous assumption of 

stationarity, independence, and normality is not appropriate. If interest 
rates are governed by a stable process, measures such as sample standard 
deviation and covariance are meaningless since the second moments be- 
have as if they were nonfinite. These measures can be replaced by the 
scale parameter c and the codispersion matrix ~ .  Risk is measured by 
the scale parameter c (replacing standard deviation) or by c '~ (replacing 
variance). Press [7] shows that a portfolio of assets following a multi- 
variate symmetric stable distribution has an efficient frontier. This is done 
by maximizing 

1 
Xw'6 - ~ (w '~w)  ~/2, 
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where w is a vector denoting the allocation of  assets and h is a weight 
determined by the investor. 

To generalize Dr. Rei tano ' s  results to a stable process,  make  the fol- 
lowing notational changes: 

and 

E(i) ~ ~i, Var[R(Ai)] ~ OR, 

E(R(Ai)) ---, bR, E(io) ~ bo, 

K(io )  ~ ~10. 

To avoid singular distributions, it is assumed 1")0 is positive definite. 
Proposition 1 follows f rom the relationship between parameters  for linear 
transformations given above.  Since ~t0 is positive definite, the rest o f  
the paper ' s  results follow muta t i s  mutand i s .  The minimization function 
becomes 

wO~ + (1 - w)lD(io)l 2, 

where On=DOoD ' is one-dimensional  and is a convex function in D for  
1 - < a - < 2 .  
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(AUTHOR'S REVIEW OF DISCUSSIONS) 

ROBERT IL REITANO: 

I thank Dr. Shiu and Mr. Cardinal for their interesting discussions. 
Dr. Shiu is quite fight that, in general, one is better off expanding 

Taylor series about the mean of the random vector, in this case Ai, and 
then performing mean/variance analyses, rather than simply expanding 
about Ai=0 as I did in my paper. My motivation for this bit of care- 
lessness is my personal conviction that virtually all analyses should be 
performed assuming E(io)=0, which in the case of the forward price 
function model is equivalent to assuming that the future evolution of 
yields proceeds along today's forward structure. The only exception to 
this rule for me are simple what-if analyses. 

I perhaps should have been clearer about my personal bias (I got close 
in Section 4-B), especially since some of my formulas contain E(io); 
however, I convinced myself that practitioners with other biases should 
be presented with the more general results. Alas, Dr. Shiu notes that one 
cannot go halfway on this issue; if we believe E(i0)#0, the Taylor series 
expansions should have reflected this and been handled as he suggests. 

Interestingly, Dr. Shiu's formula for E[R(Ai)] differs from mine even 
in the case when E(i0)=0 [see his Formula (1.4) and my Formula (2.5)], 
in contrast to the case of variance, for which our formulas would agree. 
This is because of his convexity adjustment, which in this case becomes: 

t/2 trtC(i0) K(io)]. 

In general, I think that this refinement in estimates of E[R(Ai)] is worth- 
while if C(io) has been estimated, independent of the practitioner's bias, 
and I have advocated this in another context (see Formula (A. 14) in 
Reitano [5]). However, as noted in Elandt-Johnson and Johnson's book 
[2, p. 72], "often the approximation E[g(x)]~g(E(x)) is used," implying 
that his recommended refinement may not be as commonly used in prac- 
tice as suggested. 

Regarding Dr. Shiu's free-lunch analysis, I have little to add to this 
discussion beyond what I have addressed in my previous author's dis- 
cussions [3, 4]. 

Dr. Shiu's puzzle brings out an important point about the definition 
of return in this analysis; that point being, the definition comes from the 
model. If P(io+Ai) represents the current price of a security after a yield 
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curve shift of Ai, then E[R(Ai)]- 1, with R(Ai) defined in my Formula 
(2.1), approximates the expected instantaneous yield curve shift return 
and will not equal the total return of the security over the given instan- 
taneous time interval. 

However, to represent total returns over a fixed period, a simple change 
in the model is sufficient. Specifically, as in Section 4C, we need to 
redefine the ratio function, R(Ai), to Rk(ai), where k is the length of the 
period of interest. This new ratio function is the ratio of the forward 
shifted price to current price, Pk(io+Ai)/P(io), and it can be factored into 
the product of ck, which reflects the period's "fixed return," and the ratio 
function R(Ai) applied to the forward price function, Pk(io+Ai), which 
reflects the period's expected yield curve shift return. The expression, 
E[Rk(Ai)], then captures total return in the usual sense of the phrase. 
Expressions for annualized total return are also readily derivable (see 
Section 4-C). 

Regarding my notion of forward value, Dr. Shiu is right that this is 
not a perfect model of the future value of surplus at time k, since after 
the shock, the evolution on the forward structure is explicitly assumed. 
However, this notion works very well in practice, especially when k 
reflects one to a few months, and it can be adapted to yield good insights 
on returns over one year. It also works compatibly with an active man- 
agement strategy as discussed in my paper. It is especially gratifying that 
such a simple model works well in light of the Harrison-Pitbladdo-Schaefer 
theorem, which virtually assures us that the real Sk(i0+Ai(k)) is of un- 
bounded variation as a function of k, where Ai(k) is the shift from time 
0 to time k. 

Dr. Shiu provides a compact proof of my Proposition A based on the 
gradient formula (5.2). This is an especially nice approach since the 
cumbersome change of basis methodology I employed is circumvented. 

His inequalities (6.1) also imply a better upper bound for variance than 
does my trace result in Formula (2.8). However, even though I am quite 
familiar with (6.1 .) (see Proposition 12 in Reitano [3]), I could not resist 
the result given since the trace of K is the sum of the individual variances 
of the various yields, whereas the smallest and largest eigenvalues have 
no such pleasing statistical interpretation (of course, the sum of all ei- 
genvalues equals the sum of all variances). It is also worth noting that, 
in practice, the largest eigenvalue of K is 80.percent or so of the trace 
of K, so my result is not as crude as one may first imagine. 
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Finally, Dr. Shiu provides an interesting review of a 1973 lawsuit, 
which he was reminded of by my reference to the work of Litterman and 
Scheinkman. Regarding these authors' principal component analysis, I 
agree with Dr. Shiu's suggestion that more work needs to be done, es- 
pecially with regard to out of sample testing. I share Dr. Shiu's skep- 
ticism and do not believe 1 could have hedged my current endorsement 
of this method further. Of course, I rather prefer the methodology I in- 
troduce in this paper. 

Nevertheless, I genuinely enjoyed the excerpt from George J. Stigler's 
review of the H e n d e r s o n  vs. H a r v a r d  case, enough to look up the rest 
of the story. It is a delight to read, full of  wonderful anecdotes. For 
example, as it turned out, Harvard's defense prevailed in the lower court, 
and ~'Judge Macintosh (Harvard, LL.B. 1938) asserted that university 
instruction and publication were preserved from such attacks by the First 
Amendment, the principle of academic freedom, an absence of precedent 
for such a complaint, and the established unreliability of academic 
lectures." 

Many more amusements follow with the appeal and aftermath, and I 
join Dr. Shiu in encouraging the reader "to find out the ending." 

Mr. Cardinal begins with a delineation of multivariate versus multi- 
dimensional, which I believe is more theoretical than real. In earlier pa- 
pers, I modeled the multivariate yield curve shift by either /tiN or Ai, 
where in the former N is considered fixed and Ai variable, while in the 
latter, Ai is a variable vector. However, this delineation was introduced 
entirely for pedagogical reasons, to help bridge the gap between a truly 
multidimensional/multivariate representation of yield curve shifts and 
the truly one-dimensional representation within the parallel shift model. 
In a sense, I tried to trick the nontechnical reader into thinking of the 
multidimensional model as just a generalized parallel shift model. Of  
course, once results were developed for a given N, all the generality of 
the Ai model was obtained, since one could now define Ai= 1 and let N 
vary. The only missing piece was the general mathematical formulas 
relating the two approaches, which can be developed only within the 
somewhat more challenging Ai model and which I hoped the reader would 
then be motivated to pursue. 

Except for the case of nondirectional immunization (Reitano [4]), which 
requires extremely restrictive conditions on one's portfolios, Mr. Car- 
dinal is quite fight that by their very nature, immunization theories de- 
pend materially on the assumptions one makes about yield curve move- 
ments. For the current paper, the only assumption needed for the theory 
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to apply is the existence of the covariance matrix, K. That is, the theory 
in my paper does not require K to be stationary, nor does it require that 
interest rate movements be independent. Explicitly, I assume that the 
practitioner has a multivariate probability distribution function, f(&i), 
believed applicable over the succeeding fixed period of time and that this 
probability distribution has two finite moments: E and K. 

In practice, such a distribution is often based on some historical ex- 
perience, although the theory does not require it and works equally well 
on hypothetical distributions, or distributions on which one wants to take 
a speculative position. For history to be meaningful, complete station- 
arity is not needed, only what might be called "relative" stationarity. 
That is, if we assume that the variability of the covariance structure is 
smooth, we can develop a reasonable estimate of the future covariance 
matrix from that of the recent past. On the other hand, if one posits that 
this variability follows a jump process, not even recent history is of much 
value. 

Similarly, the use of historical information does not necessitate the 
assumption that {~,i} are independent period to period, but only the weaker 
assumption that some transformation of these shifts are independent ran- 
dom vectors. 

For example, if one subscribes to a log-type model (although the work 
of Becker [1] and others argues against lognormal), one does not require 
the independence of ,~i, but of ln(i~/i0), defined by 

in(il/i0) ~ ( l n ( i ~ l / i o O ,  1n(i12/io2) . . . . .  ln( i ,m/iom))  

where z~i=il-io. Assuming that the above vectors are independent and 
that the implied distribution has a finite second moment matrix, my anal- 
ysis can easily be adapted to a model for Ai over the forthcoming period. 
Specifically, one defines: 

A i  = i ~ ( e  x - 1 )  

=-- ( i o l ( e  x '  - 1), i o 2 ( e  x2 - 1) . . . . .  io , , , (e  x'~ - 1)), 

where i0 is the beginning of period yield curve. 
We then define K on the data developed by drawing X from its as- 

sumed distribution, based on historical observations. Again, we require 
only that this distribution be relatively stationary. 

Regarding the probability distribution of the yield vector, z~i, Mr. Car- 
dinal extends the earlier work of Becker [ 1 ] and others to the multivariate 
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case: that yield vectors are not multivariate normally distributed (that is, 
the affirmative hypothesis can be rejected with high confidence). He fur- 
ther shows that the hypothesis that such Ai follow a multivariate stable 
distribution cannot be so rejected. 

While stable distributions in general have no covariance matrix, K, 
they do have coassociation matrices, which apparently can be used in an 
analogous way in my paper's results, subject to various other reinter- 
pretations. Unfortunately, Mr. Cardinal does not provide sufficient de- 
tails for me to understand clearly all the substitutions made. For ex- 
ample, the proposed minimization function in his last paragraph cannot 
in general be expressed as a quadratic form in D, that is, DKD r, so the 
application of my Proposition A is not apparent. However, this appears 
to be an interesting area for future research. 

On the other hand, I am troubled by Mr. Cardinal's implication that 
my paper makes the assumption that Ai follows a multivariate normal 
distribution, when it only assumes the far weaker condition of the ex- 
istence of a covariance matrix K as noted above. Implicitly, Mr. Car- 
dinal's hypothesis testing, which could not reject the stable distribution 
but could reject normality, leads him to the conclusion that Ai must have 
a stable nonnormal distribution, and hence, K cannot exist. 

In practice, however, sample covariance matrices for the random vec- 
tors, Ai, have been developed by many researchers, on many bases, and 
over many time periods, and these matrices have proven to give valuable 
insights into many problems related to yield vector variability. Given 
that sample K's  have proven to be so useful, I am at a loss to believe 
that, in theory, these K's  do not exist. Perhaps the models used more 
generalization to bring better closure between theory and practice. One 
possibility is Mr. Cardinal's referenced work of Hull and White, which 
deals with stochastic volatilities. 

As noted above, I wholeheartedly agree with Mr. Cardinal's assertion 
that the mean vector E(i0) largely reflects the economic cycle underlying 
the data and that, in general, ~one would expect that E is not signifi- 
cantly different than zero." I always assume this in practice, since any- 
time I assume otherwise, I find that I am able to construct tremendously 
profitable portfolios with modest risks. This conclusion provides me with 
proof positive that a mistake has been made. 

In closing, let me again thank Dr. Shiu and Mr. Cardinal for their 
challenging and thought-provoking discussions. 
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