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ABSTRACT 

The Esscher transform is a time-honored tool in actuarial science. This 
paper shows that the Esscher transform is also an efficient technique for 
valuing derivative securities if the logarithms of the prices of the prim- 
itive securities are governed by certain stochastic processes with station- 
ary and independent increments. This family of processes includes the 
Wiener process, the Poisson process, the gamma process, and the inverse 
Gaussian process. An Esscher transform of such a stock-price process 
induces an equivalent probability measure on the process. The Esscher 
parameter or parameter vector is determined so that the discounted price 
of each primitive security is a martingale under the new probability mea- 
sure. The price of any derivative security is simply calculated as the 
expectation, with respect to the equivalent martingale measure, of the 
discounted payoffs. Straightforward consequences of the method of Esscher 
transforms include, among others, the celebrated Black-Scholes option- 
pricing formula, the binomial option-pricing formula, and formulas for 
pricing options on the maximum and minimum of multiple risky assets. 
Tables of numerical values for the prices of certain European call options 
(calculated according to four different models for stock-price move- 
ments) are also provided. 

1. INTRODUCTION 

The Esscher transform [35] is a time-honored tool in actuarial science. 
Members of the Society of Actuaries were introduced to it by Kahn's 
survey paper [51] and Wooddy's Study Note [79]. In this paper we show 
that the Esscher transform is also an efficient technique for valuing de- 
rivative securities if the logarithms of the prices of the primitive secu- 
rities are governed by certain stochastic processes with stationary and 
independent increments. This family of processes includes the Wiener 
process, the Poisson process, the gamma process, and the inverse Gaus- 
sian process. Our modeling of stock-price movements by means of the 
gamma process and the inverse Gaussian process seems to be new. 
Straightforward consequences of the proposed method include, among 
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others, the celebrated Black-Scholes option-pricing formula, the bino- 
mial option-pricing formula, and formulas for pricing options on the 
maximum and minimum of multiple risky assets. 

For a probability density function f (x) ,  let h be a real number such 
that 

M(h) = f ~  en~ f(x)  dx 

exists. As a function in x, 

f (x; h) - - -  
e~ f(x)  
M(h) 

is a probability density, and it is called the Esscher transform (parameter 
h) of the original distribution. The Esscher transform was developed to 
approximate the aggregate claim amount distribution around a point of 
interest, x0, by applying an analytic approximation (the Edgeworth se- 
ries) to the transformed distribution with the parameter h chosen such 
that the new mean is equal to Xo. When the Esscher transform is used 
to calculate a stop-loss premium, the parameter h is usually determined 
by specifying the mean of the transformed distribution as the retention 
limit. Further discussions and details on the method of Esscher trans- 
forms can be found in risk theory books such as [6], [7], [27], [38], and 
[70]; see also Jensen's paper [49]. 

In this paper we show that the Esscher transform can be extended readily 
to a certain class of stochastic processes, which includes some of those 
commonly used to model stock-price movements. The parameter h is 
determined so that the modified probability measure is an equivalent 
martingale measure, with respect to which the prices of securities are 
expected discounted payouts. 

Our first application of the method of Esscher transforms is formula 
(2.15), which is a general expression for the value of a European call 
option on a non-dividend-paying stock and includes the Black-Scholes 
option-pricing formula, the pure-jump option-pricing formula, and the 
binomial option-pricing formula as special cases. We also introduce two 
new models for stock-price movements; the first one is defined in terms 
of the gamma process and the second in terms of the inverse Gaussian 
process. Formulas for pricing European call options on stocks with such 
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price movements are also given, and numerical tables (calculated ac- 
cording to four different models) are provided. 

In the second half of this paper, we extend the method of Esscher 
transforms to price derivative securities o f  multiple risky assets or asset 
pools. The main result is as follows: Assume that the risk-free force of 
interest is constant and denote it by ~. For t->0, let S~(t),  Sz( t )  . . . . .  Sn(t) 
denote the prices of n non-dividend-paying stocks or assets at time t. 
Assume that the vector 

( ln[S l ( t ) /S~(O)] ,  ln[S2( t ) /Sz(O)]  . . . .  , l n [ S , ( t ) / S , ( O ) ] ) '  

is governed by a stochastic process that has independent and stationary 
increments and that is continuous in probability. Let g be a real-valued 
measurable function of n variables. Then, for "r---0, 

E*[e -~S~(~)g (S I (T ) ,  Sz("O . . . . .  S,(T))] 
= Sj(O)E**[g(S~("r),  Sz(T) . . . . .  S,('r))], 

where the expectation on the left-hand side is taken with respect to the 
risk-neutral Esscher transform and the expectation on the right-hand side 
is taken with respect to another specified Esscher transform. It is shown. 
that many classical option-pricing formulas are straightforward conse- 
quences of this result. 

A useful introduction to the subject of options and other derivative 
securities can be found in Boyle's book [15], which was published re- 
cently by the Society of Actuaries. Kolb's book [52] is a collection of 
44 articles on derivative securities by various authors; most of these ar- 
ticles are descriptive and not mathematical. For an intellectual history of 
option-pricing theory, see Chapter 11 of Bernstein's book [9]. 

In this paper the risk-free interest rate is assumed to be constant. We 
also assume that the market is frictionless and trading is continuous. 
There are no taxes, no transaction costs, and no restriction on borrowing 
or short sales. All securities are perfectly divisible. It is now understood 
that, in such a securities market model, the absence of arbitrage is "es- 
sentially" equivalent to the existence of an equivalent martingale mea- 
sure, with respect to which the price of a random payment is the expected 
discounted value. Some authors ([5], [34], [67]) call this result the "Fun- 
damental Theorem of Asset Pricing." In a general setting, the equivalent 
martingale measure is not unique; the merit of the risk-neutral Esscher 
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transform is that it provides a general, transparent and unambiguous 
solution. 

In the next section we use some basic ideas from the theory of sto- 
chastic processes. Two standard references are Breiman's book [18] and 
Feller's book [36]. 

2. RISK-NEUTRAL ESSCHER TRANSFORM 

For t->0, S(t) denotes the price of a non-dividend-paying stock or se- 
curity at time t. We assume that there is a stochastic process, {X(t)},>_0, 
with stationary and independent increments, X(0)=0, such that 

S(t) = S(O)e x°), t >- O. (2.1) 

For each t, the random variable X(t), which may be interpreted as the 
continuously compounded rate of return over the t periods, has an in- 
finitely divisible distribution [18, Proposition 14.16]. Let 

F(x, t) = Pr[X(t) ~ x] (2.2) 

be its cumulative distribution function, and 

M(z, t) = E[e ~x°)] (2.3) 

its moment-generating function. By assuming that M(z, t) is continuous 
at t=0,  it can be proved that 

M(z, t) = [m(z, 1)]' (2.4) 

([18, Section 14.4], [36, Section IX.5]). We assume that (2.4) holds. 
For simplicity, let us assume that the random variable X(t) has a density 

d 
f (x, t) = ~xF(X, t), t > 0 ;  

then 

M(z, t) = ff,~ e~'f(x,  t) dx. 

Let h be a real number for which M(h, t) exists. (It follows from (2.4) 
that, if M(h, t) exists for one positive number t, it exists for all positive 
t.) We now introduce the Esscher transform (parameter h) of the process 
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{X(t)}. This is again a process with stationary and independent incre- 
ments, whereby the new probability density function of X(t), t>0,  is 

eh~ f (x, t) 
f(x,  t; h) = 

f ehY f (y ,  t) dy 

ehX f (x, t) 
- ( 2 . 5 )  

M(h, t) 

That is, the modified distribution of X(t) is the Esscher transform of the 
original distribution. The corresponding moment-generating function is 

M(z, t; h) = ff= e= f(x ,  t; h) dx 

M(z + h, t) 
- ( 2 . 6 )  

M(h, t) 

By (2.4), 

M(z, t; h) = [M(z, 1; h)]'. (2.7) 

The Esscher transform of a single random variable is a well-estab- 
lished concept in the risk theory literature. Here, we consider the Esscher 
transform of a stochastic process. In other words, the probability mea- 
sure of the process has been modified. Because the exponential function 
is positive, the modified probability measure is equivalent to the original 
probability measure; that is, both probability measures have the same 
null sets (sets of probability measure zero). 

We want to ensure that the stock prices of the model are internally 
consistent. Thus we seek h=h*, so that the discounted stock price pro- 
cess, {e-8'S(t)}t~.o, is a martingale with respect to the probability measure 
corresponding to h*. In particular, 

S(0) = E*[e -~' S(t)] 

= e -~' E*[S(t)], 

where 8 denotes the constant risk-free force of interest. By (2.1), the 
parameter h* is the solution of the equation 



104 TRANSACTIONS, VOLUME XLVI 

1 = e -~' E*[eX(')], 

o r  

e ~' = M(I ,  t; h*). (2.8) 

From (2.7) we see that the solution does not depend on t, and we may 
set t=  1" 

e = M( l ,  l; h*), (2.9) 

o r  

= ln[M(1, 1; h*)]. (2.10) 

It can be shown that the parameter h* is unique [40]. We call the 
Esscher transform of parameter h* the risk-neutral Esscher transform, 
and the corresponding equivalent martingale measure the risk-neutral 
Esscher measure. Note that, although the risk-neutral Esscher measure 
is unique, there may be other equivalent martingale measures; see the 
paper by Delbaen and Haezendonck [30] for a study on equivalent mar- 
tingale measures of compound Poisson processes. 

To evaluate a derivative security (whose future payments depend on 
the evolution of  the stock price), we calculate the expected discounted 
value of the implied payments; the expectation is with respect to the risk- 
neutral Esscher measure. Let us consider a European call option on the 
stock with exercise price K and exercise date -r, "r>0. The value of  this 
option (at time 0) is 

E*[e - ~  (S('r) - K)+], (2.11) 

where x+=x  if x>0 ,  and x+ =0  if x-<0. With the definition 

K = In[K/S(O)], (2.12) 

(2.11) becomes 

e -a" [S(0)e x - K]f(x, ~; h*) dx 

t "  

=e-~'S(O) J~ eXf(x ,"r ;h*)dx-e-~TK[1-F(K,x;h*)] .  (2.13) 

It follows from (2.5), (2.6) and (2.8) that 
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e ¢h*+ '~ f ( x ,  "r) 
eX f ( x ,  r; h*) = 

M(h*,  "r) 

M(h* + 1, "r) 
- f ( x ,  "t; h *  + 1) 

M(h*, "r) 

= M(1, -r; h*) f ( x ,  ~; h* + 1) 

= e ~ f ( x ,  ~; h* + 1). (2.14) 

Thus the value of  the European call option with exercise price K and 
exercise date "r is 

S(0)[1 - F(K, "r; h* + 1)] - e -~" K[I - F(K, "r; h*)]. (2.15) 

In Sections 3 and 4, this general formula is applied repeatedly. It is 
shown that (2.15) contains, among others, the celebrated Black-Scholes 
option-pricing formula as a special case. 

2.1 R e m a r k s  

In the general case in which the distribution function F(x, t) is not. 
necessarily differentiable, we can define the Esscher transform in terms 
of  Stieltjes integrals. That is, we replace (2.5) by 

eh~ dF(x, t) 
dF(x, t; h) = 

J_= e hy dF(y,  t) + 

e ~ dE(x, t) 
- ( 2 . 1 . ] )  

M(h, t) 

(In his paper [35] Esscher did not assume that the individual claim amount 
distribution function is differentiable.) Formula (2.15) remains valid. 

That the condition of  no arbitrage is intimately related to the existence 
of  an equivalent martingale measure was first pointed out by Harrison 
and Kreps [42] and by Harrison and Pliska [43]. Their results are rooted 
in the idea of  risk-neutral valuation of  Cox and Ross [24]. For an in- 
sightful introduction to the subject, see Duffie 's  recent book [32]. In a 
finite discrete-time model, the absence of  arbitrage opportunities is 
equivalent to the existence of  an equivalent martingale measure ([28], 
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[67]). In a more general setting, the characterization is more delicate, 
and we have to replace the term "equivalent to" by "essentially equiv- 
alent to." Discussion of the details is beyond the scope of this paper; 
some recent papers are [4], [5], [23], [29], [44], [53], [59], [68], and 
[69]. 

The idea of changing the probability measure to obtain a consistent 
positive linear pricing rule had appeared in the actuarial literature in the 
context of equilibrium reinsurance markets ([12], [13], [19], [20], [39], 
and [73]); see also [77], [2], and [78]. 

Observe that the option-pricing formula (2.15) can be written as 

S(0)Pr[S('r) > K; h* + 1] - e -~  KPr[S(r) > K; h*], 

where the first probability is evaluated with respect to the Esscher trans- 
form with parameter h*+ 1, while the second probability is calculated 
with respect to the risk-neutral Esscher transform. Generalizations of this 
result are given in Section 6. 

To construct a stochastic process {X(t)} with stationary and indepen- 
dent increments, X(0)=0, and 

M(z,  t) = [M(z, 1)]', 

we can apply the following theorem [18, Proposition 14.19]: Given the 
moment-generating function ~(z) of an infinitely divisible distribution, 
there is a unique stochastic process {W(t)} with stationary and indepen- 
dent increments, W(0)=0, such that 

E[e zwO)] = [~(z) ] ' .  

The normal distribution, the Poisson distribution, the gamma distribu- 
tion, and the inverse Gaussian distribution are four examples of infinitely 
divisible distributions. In the following sections, we consider stock-price 
movements modeled with such processes. 

3. THREE CLASSICAL OPTION FORMULAS 

In this section we apply the results of Section 2 to derive European 
call option formulas in three classical models for stock-price movements. 
These three formulas can be found in textbooks on options, such as those 
by Cox and Rubinstein [26], Gibson [41] and Hull [47]. Note that Hull's 
book [47] is a textbook for the Society of Actuaries Course F-480 
examination. 
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3.1 L o g a r i t h m  o f  S tock  P r i c e  a s  a W i e n e r  P r o c e s s  

Here we make the classical assumption that the stock prices are log- 
normally distributed. Let the stochastic process {X(t)} be a Wiener pro- 
cess with mean per unit time ix and with variance per unit time 0.2. Let 
N(x; ix, 0.2) denote the normal distribution function with mean IX and 
variance 0.2. Then 

and 

F(x, t) = N(x; Ixt, 0.20 

M(z, t) = exp[(ixz + l/z 0.2z2)t]. 

It follows from (2.6) that 

M(z, t; h) = exp{[(ix + h0.2)z + '/2 0.2z2]t}. 

Hence the Esscher transform (parameter h) of  the Wiener process is again 
a Wiener process, with modified mean per unit time 

IX + h0. 2 

and unchanged variance per unit time 0.2. Thus 

F(x, t; h) = N(x; (IX + h0.2)t, 0.2t). 

From (2.10) we obtain 

8 = (IX + h*0. 2) + 1/2 0.2. 

Consequently, the transformed process has mean per unit time 

Ix* = IX + h*0. 2 

= 8 - ( 0 - 2 / 2 ) .  ( 3 . 1 . 1 )  

It now follows from (2.15) that the value of the European call option is 

S(0)[1 - N(K; (Ix* + 0.2)'r, 0.2'0] - e - ~  K[1 - N(K; Ix*T, 0.2"0] 

= S(0)[1 - N(K; (8 + t/z 0.z)r, 0.Lr)] 

- e -~T K[1  - N(K;  (~ - I/2 0.2)% 0.2~)].  ( 3 . 1 . 2 )  

In terms of  the standard normal distribution function ~ ,  this result can 
be expressed as 
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S(0)~(--K + (~ ---+ °2/2)'r)o-~/~T ] - e-a~Kdi~(--K+(8--cr2/2)r)7~" ] ,  (3.1.3) 

which is the classical Black-Scholes option-pricing formula [11]. Note 
that Ix does not appear in (3.1.3). 

3.2 L o g a r i t h m  o f  S tock  P r i c e  a s  a S h i f t e d  P o i s s o n  P r o c e s s  

Next we consider the so-called pure jump model. The pricing of op- 
tions on stocks with such stochastic movements was discussed by Cox 
and Ross [24]; however, they did not provide an option-pricing formula. 
The option-pricing formula for this model appeared several years later 
in the paper by Cox, Ross and Rubinstein [25, p. 255]; it was derived 
as a limiting case of the binomial option-pricing formula. (We deduce 
the binomial option-pricing formula by the Esscher transform method in 
Section 3.3.) A more thorough discussion of the derivation can be found 
in the paper by Page and Sanders [61]. 

Here the assumption is that 

X(t) = kN(t) - ct, (3.2.1) 

where {N(t)} is a Poisson process with parameter h, and k and c are 
positive constants. Let 

e-00 j 
A(x; 0) = E j! 

O<-j<-x 

be the cumulative Poisson distribution function with parameter 0. Then 
the cumulative distribution function of X(t) is 

i'x + ct \ 
F(x, t) = a [ - - - 7 -  ; h t ) .  (3.2.2) 

\ k 

Since 

we have 

E[e m(')] = exp[ht(e z - 1)], 

M(z, t) = E(e zt~c')-c'l) 

__.. eIh(e:~- I)--cz]t (3.2.3) 
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from which we obtain 

M ( z ,  t; h)  = e |xehk(e~k-I)-cz]t  (3.2.4) 

Hence the Esscher transform (parameter h) of the shifted Poisson process 
is again a shifted Poisson process, with modified Poisson parameter he  hk. 

Formula (2.10) is the condition that 

= heh*k(e ~ -- 1) -- c. (3.2.5) 

Thus a derivative security is evaluated according to the modified Poisson 
parameter 

h* = he  h*k. 

= (8 + c ) / ( e  k - 1). (3.2.6) 

For example, the price of a European call option is, according to (2.15) 
and (3.2.2), 

S(0)[1 - A((K + c'r)/k; h*eka')] 

- K e - ~ [ 1  - A((K + c'r)/k; h*'0]. (3.2.7) 

Formula (3.2.7) can be found in textbooks on options such as those by 
Cox and Rubinstein [26, p. 366], Gibson [41, p. 168] and Hull [47, p. 
454]. Note that the Poisson parameter h does not appear in (3.2.7). 

3 . 3  L o g a r i t h m  o f  S t o c k  P r i c e  a s  a R a n d o m  W a l k  

A very popular model for pricing options is the binomial model, which 
is a discrete-time model. Although this paper focuses on continuous-time 
models, we think that it is worthwhile to digress and derive the binomial 
option-pricing formula by the Esscher transform method, because of its 
importance in the literature. Indeed, the two papers in T S A ,  by Clancy 
[22] and Pedersen, Shiu, and Thorlacius [63], on the pricing of options 
on bonds, are based on models of the binomial type. 

The binomial option-pricing formula was given in the papers by Cox, 
Ross and Rubinstein [25] and by Rendleman and Bartter [65]. In their 
paper [25], Cox, Ross and Rubinstein acknowledged'their debt to Nobel 
laureate W.F. Sharpe for suggesting the idea. 
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Here, we assume that the stock price, 

S(t)  = S(O)e x<°, t = O, 1, 2 . . . .  , 

is a discrete-time stochastic process. Let X~, X z ,  . . .  be a sequence of 
independent and identically distributed random variables. Define X(0)=0 
and, for t = l ,  2, 3, . . . ,  % 

X( t )  = X~ + X2 + " "  + X, .  (3.3.1) 

Let l l  denote the set of points on which Xj has positive probability. As- 
sume that 12 is finite and consists of more than one point; let a be its 
smallest element and b its largest. To avoid arbitrages, we suppose that 

a < ~ < b .  

Let us assume that {S(t)} is a multiplicative binomial process; that is, 
l'l consists of exactly two points: 

= {a, b}. 

Suppose that 

and 

Let 

Pr(Xj = b) = p 

P r ( X j = a ) =  l - p .  

O-<j-<x 

denote the cumulative binomial distribution function with parameters n 
and O. Then the cumulative distribution function of X(t) is 

F ( x ,  t) = Pr Xj - x 
\ j = l  

i lx - at  
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Since 

we  have  

where  

M ( z ,  t) = E[e  zx(°] 

= [(1 - p ) e a Z + p e ° Z ] ' ,  

M ( z ,  t; h)  = M ( z  + h ,  t ) / M ( h ,  t) 

= {[1 - "tr(h)]e oz + 'rr(h)ebz} ', 

(3 .3 .2 )  

(3 .3 .3 )  

Accord ing  to (2.15) ,  the value o f  the European  call  opt ion with exerc i se  
pr ice K and exerc ise  date "r is 

; 'r, "tr(h* + 1 ) ) ]  

- K e  -~" I - B b - a ; 'r '  ~ ( h *  , (3 .3 .7 )  

where  

Note  that  it is not necessary  to k n o w  the p robabi l i ty  p to pr ice the opt ion ,  
s ince it is rep laced  by  "rr(h*). 

"rr(h* + I) = 
~r(h*)e b 

[1 - "rr(h*)]e" + 7r(h*)e b 

= 7r(h*)e °-~. 

)I (K -- aT 
S(O 1 - B 

b - a  

p e  bh 

-tr(h) = (1 - p ) e  ah + p e  °h" (3 .3 .4 )  

Fo rm u l a  (2.9)  is the condi t ion that 

e ~ = [1 - 'rr(h*)]e ~ + 7r(h*)e b, (3 .3 .5 )  

f rom which  it "follows that 

e s _ e a 
"rr(h*) - - -  ( 3 . 3 . 6 )  

e b -- e a" 
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4. TWO NEW MODELS 

In this section we present two continuous-time models for stock-price 
movements.  Similar to the pure jump model in Section 3.2, we assume 
here that 

S(t)  = S(O)e x°~ 

= S(O)e r(')-c', 

where c is a constant. The stochastic process {Y(t)} in the first model is 
a gamma process and in the second model an inverse Gaussian process. 
These two stochastic processes have been used to model aggregate in- 
surance claims [33]. Recall that, in the pure jump model,  all jumps are 
of  the same size. However ,  this is not the case in these two models. 

4 .1  L o g a r i t h m  o f  S t o c k  P r i c e  a s  a S h i f t e d  G a m m a  P r o c e s s  

We assume that 

X( t )  = Y(t)  - ct ,  (4.1.1) 

where {Y(t)} is a gamma process with parameters a and 13, and the pos- 
itive constant c is a third parameter. Let G(x; oL, 13) denote the gamma 
distribution with shape parameter a and scale parameter 13, 

_ y,~-I e- f~Ydy,  x > O. G(x;  a ,  13) F(a)  

Then 

and 

F ( x ,  t) = G ( x  + ct; a t ,  13) 

( 13 ']"' 
m ( z ,  t) = \~---z- z,I e-"tz' 

(4.1.2) 

z < 13. (4.1.3) 

Hence ( )°' 13-h 
M ( z ,  t; h)  = '13 - ~ - -  z e -c'z, z < f5 - h,  (4.1.4) 
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which shows that the transformed process is of the same type, with [3 
replaced by [3-h. Formula (2.9) means that 

e~ [3 - h* = e -c. (4.1.5) 
13- h* - 1 

Define 

[3* = 1 3 - h * .  

It follows from (4.1.5) that 

1 
[3* - (4.1.6) 

1 - -  e - ( c + ~ ) / a "  

According to (2.15) and (4.1.2), the value of the European call option 
is 

S(0) [1  - G(K + cr; a'r, [3* -- 1)] 

- -  K e - ~ ¢ [ 1  - G(K + c-r; a'r, [3*)]. ( 4 . 1 . 7 )  

Note that the scale parameter 13 does not appear in (4.1.6) and (4.1.7)i 

4.2 £ o g a r i ~ m  o f  S t o c k  P r i c e  a s  a S h i f t e d  I n v e r s e  G a u s s t a n  
P r o c e s s  

Here, we also assume that 

X(t) = Y(t) - ct, 

but {Y(t)} is now an inverse Gaussian process with parameters a and b. 
Let J(x; a, b) denote the inverse Gaussian distribution function, 

(a J(x; a ,  b) = • + 

+ eZ~Vg .(\~¢~-a V ~ x )  , x > 0, (4.2.1) 

where ~ is the standard normal distribution function. (Panjer and Will- 
mot's book [62], which was published recently by the Society of Ac- 
tuaries, has an extensive discussion on the inverse Gaussian distribution.) 
Then 
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F(x ,  t) = J (x  + ct; at, b). (4.2.2) 

"Since the moment-generating function of the inverse Gaussian distri- 
bution is 

e a(vg- bx/b-~-~), z < b, 

we have 

M ( z ,  t) = e ~'(vg- bx/g'~-~)-c'', z < b. (4.2.3) 

Consequently, 

M(z ,  t; h) = e "( bx/g-~-h- b-x/g-:z~'-~)-"~, z < b - h, (4.2.4) 

which shows that the transformed process is of  the same type, with b 
replaced by b - h .  Formula (2.10) leads to the condition 

8 = a ( V ~ -  h* - ~v/b - h* - 1) - c. (4.2.5) 

Writing b * = b - h * ,  we have 

c + ~  
- ~ -  1 = - - ,  (4.2.6) 

a 

which is an implicit equation for b*. It follows from (2.15) that the value 
of the European call option with exercise price K and exercise date -r is 

S(0)[ 1 - J(K + c'r; a'r, b* - 1)] - Ke-S~[1 - J(K + cr; a"r, b*)]. (4.2.7) 

Note that the parameter b does not appear in (4.2.6) and (4.2.7). 

5. NUMERICAL EXAMPLES 

In this section we present numerical values for various European call 
options for the four continuous-time models. These values illustrate 
quantitatively some of  the verbal statements in Table 17.1 of Hull 's  book 
[47, p. 438]. We thank Francois Dufresne for his computer expertise. 

If we assume that {X(t)} is a Wiener process, only one parameter (o "2, 
the variance per unit time) has to be estimated for applying Formula 
(3.1.3). This is a main reason for the popularity of  the Black-Scholes 
formula. Suppose that, for a certain stock, o.=0.2 and S(0)= 100. Con- 
sider a European call option with exercise price K = 9 0  six months from 
now (-r=0.5). With a constant risk-free force of  interest ~=0.1 ,  the value 
of the European call option according to (3.1.3) is 
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100cI)(l. 1693) - 90e -°°5 di)(1.0279) = 15.29.  

Tab le  1 gives the European call option values for various exercise prices 
K and times to maturity 'r. For option values corresponding to different 
values of 0., see Tab le  14.1 of Ingersoll's b o o k  [48, p. 314].  

TABLE 1 

B L A C K - S C H O L E S  O P T I O N  P R I C E S  

[S(0) = 100, 5=0.1, 0-=0.2] 

Exercise Price l Time to Maturity 
(K) T = 0 .25  T = 0.5 T = 0 .75  "r = 1 

80 
85 
90 
95 

100 
105 
110 
115 
120 

21.99 
17.21 
12.65 
8.58 
5.30 
2.95 
1.47 
0.66 
0.27 

24.03 
19.52 
15.29 
11.50 
8.28 
5.69 
3.74 
2.35 
1.42 

26.04 
21.74 
17.72 
14.07 
10.88 
8.18 
5.99 
4.28 
2.98 

27.99 
23.86 
19.99 
16.44 
13.27 
10.52 
8.18 
6.26 
4.71 

If the logarithm of the stock price does not follow a symmetric dis- 
tribution, the assumption of a Wiener process is not appropriate. Suppose 
that the process {X(t)} has mean per unit time Ix, variance per unit time 
0.2, and third central moment per unit time 03. Let "V=03/O "3 denote the 
coefficient of skewness of X(1). Then 

ln{E[e~X(')]} = ln[M(z, t)] 

= t ln[M(z, 1)] 

= / [~Z  + 0.2Z2/2 + 03Z3/3! + . . . ]  

= l[I..t,Z + 0"2-72/2 + ~0.3Z3/3! + . . . ] .  ( 5 . 1 )  

In the following we assume, as in the Wiener process example, 0.=0.2,  
S(0)= 100 and 8=0.1 .  Furthermore, we assume Ix=0.1 and ~/= 1. 

5.1 Shifted Poisson Process  Mode l  

By (5.1) and (3.2.3), equating the first three central moments in the 
shifted Poisson process model yields the equations 

h k - c =  p,, 

h k  2 = 0.2 
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and 

from which we obtain 

and 

hk 3 = ~ 3 ,  

k =  ~/cr = 0.2, 

k = ~  - 2 =  1 

c = ( c r / ~ / )  - v- 

= 0 . 1 .  (5.1.1) 

The resulting value for h is not needed, since the calculations are done 
for h* in accordance with (3.2.6). Table 2 gives the European call option 
values computed with Formula (3.2.7) for various exercise prices K and 
times to maturity "r. 

T A B L E  2 

POISSON PROCESS MODEL OPTION PRICES 
[ S ( 0 ) = I 0 0 ,  B = 0 . 1 ,  p . = 0 . 1 ,  ¢ r = 0 . 2 ,  ' y = l ]  

Exercise Price [ Time to Maturity 
(K) "r = 0.25 lr = 0.5 "r = 0.75 "r = 1 

80  
85 
9 0  
95 

100 
105 
110 
115 
120 

2 1 . 9 8  
17 .10  
12 .22  
7 . 3 5  
4 . 3 9  
3 . 4 0  
2 . 4 2  
1.43 
0 . 6 0  

2 3 . 9 0  
19 .15  
14 .39  

9 .63  
7 .83  
6 . 1 0  
4 . 3 7  
2 . 6 4  
1.96 

2 5 . 7 8  
2 1 . 1 4  
16 .50  
12.91 
10 .63  

8 .35  
6 . 0 6  
4 . 3 2  
3 .63  

27 .61  
2 3 . 0 9  
1 8 . 5 6  
1 5 . 7 0  
13.01 
10.31 
7 . 6 2  
6 . 4 2  
5 . 3 8  

5.2 Shif ted G a m m a  Process Model  

By (5.1) and (4.1.3), matching the first three central moments in the 
shifted gamma process model yields the equations 

( c ~ / 1 3 )  - c = v - ,  

,~/13 ~ = £ 

and 
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from which it follows that 

and 

20t/[33 = 03 = .yO -3, 

Ot = 4 / ' y  2 = 4 ,  

13 = 2/(~',/) = 10 

c = ( 2 t r / ~ , )  - ix 

= 0.3. (5.2.1) 

The resulting value for [3 is not needed, since the calculations are done 
for [3* in accordance with (4.1.6). Table 3 gives the European call option 
values computed with Formula (4.1.7) for various exercise prices K and 
times to maturity "r. 

TABLE 3 

GAMMA PROCESS MODEL OPTION PRICES 
IS(O)= 100, 8=0.1, I.t=0.1, tr=0.2, "/=1] 

Exercise Price [ Time to Maturity 
( / O  T = 0 . 2 5  r = 0 . 5  'r = 0 . 7 5  T = I 

80 
85 
90 
95 

100 
105 
110 
115 
120 

21.98 
17.10 
12.22 
7.60 
4.66 
2.93 
1.88 
1.23 
0.82 

23.90 
19.15 
14.50 
10.59 
7.61 
5.45 
3.91 
2.82 
2.05 

25.78 
21.18 
16.89 
13.20 
10.18 
7.80 
5.96 
4.55 
3.48 

27.62 
23.24 
19.17 
15.59 
12.55 
10.03 
7.99 
6.35 
5.05 

5 . 3  S h i f t e d  I n v e r s e  6 a u s s t a n  P r o c e s s  M o d e l  

By (5.1) and (4.2.3), matching the first three central moments in the 
shifted inverse Gaussian process model yields the equations 

a b - I / 2 / 2  - c = Ix, 

a b - 3 / z / 4 . =  ~r 2 

and 

3ab-5/2/8 = 03 = ,~0 -3, 
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from which it fol lows that 

a = 3(60. /- /3)  I/2 = 3 (1 .2 )  1/2, 

b = 3 / ( 2 0 - - / )  = 7 . 5  

and 

c = ( 3 0 , / - / )  - p. 

= 0.5. 

The resulting value for b is not needed, since the calculations are done 
for b* in accordance with (4.2.6): 

from which we obtain 

a 

0 .2  

"~v/1.2' 

b* = 81/12o. 

(That b* is a rational number is atypical.) Table 4 gives the European 
call option values computed with Formula (4.2.7) for various exercise 
prices K and times to maturity ,r. 

TABLE 4 

INVERSE GAOSSIAN PROCESS MODEL OPTION PRICES 
[S(0)=I00, ~=0.1, It=0.1, ~r=0.2, ~/=ll 

Exercise Price L Time to Maturity 
( K )  x = 0 . 2 5  -r = 0 . 5  x = 0 . 7 5  "r = I 

80 
85 
90 
95 

100 
105 
110 
115 
120 

21.98 
17.10 
12.22 
7.70 
4.67 
2.88 
1.83 
1.20 
0.80 

23.90 
19.15 
14.56 
10.63 
7.61 
5.41 
3.86 
2.77 
2.01 

25.78 
21.22 
16.95 
13.23 
10.18 
7.77 
5.91 
4.50 
3.44 

27.64 
23.27 
19.21 
15.61 
12.54 
10.01 
7.95 
6.31 
5.01 
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5.4 R e m a r k s  

The four continuous-time models have in common that, in each case, 
all but one parameter can be read off from the sample path of the process. 
The parameters that are not inherent in the sample paths are IX, },, [3, 
and b. In each case the probability measure is transformed by altering 
the respective parameter. 

It can be shown that the limit for T--->0 of each of the models of Sec- 
tions 3.2, 4.1 and 4.2 is the classical lognormal model of Section 3.1. 
In this sense these three models, in particular, Formulas (3.2.7), (4.1.7) 
and (4.2.7), are generalizations of the classical lognormal model and the 
Black-Scholes formula. 

Stock-price models in the form of 

S(t) = S(0)e c'-r('), 

as opposed to 

S(t) = S(O)e m)-", 

are equally tractable. However, they are less realistic, since they imply 
a negative third central moment of the logarithm of stock prices. 

Let us write down Equations (5.1.1), (5.2.1) and (5.3.1) in one place: 

c = ( c r / ~ / )  - Ix ,  ( 5 . 1 . 1 )  

c = ( 2 c r / ~ )  - Ix, ( 5 . 2 .  l )  

c = ( 3 c r / ' , / )  - Ix. ( 5 . 3 . 1 )  

It is interesting to observe how these three formulas for the downward 
drift coefficient c differ. It turns out that these processes are special cases 
of a general family, which has been studied by Dufresne, Gerber and 
Shiu [33] in the context of collective risk theory. For further elaboration, 
see Sections 5 and 6 of our paper [40]. 

Eight months after this paper was submitted for publication, Heston's 
paper [45] appeared. Heston [45] has also introduced the gamma process 
for modeling stock-price movements. His Formula (10a) can be shown 
to be the same as our Formula (4.1.7). 

6. OPTIONS ON SEVERAL RISKY ASSETS 

In this section we generalize the method of Esscher transforms to price 
derivative securities of multiple risky assets or asset pools. Some of the 
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related papers in the finance literature are [16], [17], [21], [37], [50], 
[56], [57], [58], [66], [75], and [76]. An obvious application of such 
results is portfolio insurance, or devising hedging strategies to protect 
portfolios of  assets against losses ([3], [54], [55]). Other applications, 
such as the valuation of  bonds involving one or more foreign currencies 
and pricing the quality option in Treasury bond futures, can be found in 
the cited references. In the actuarial literature, there are papers such as 
[3], [8], [14], [71] and [72]. The papers by Bell and Sherris [8] and by 
Sherris [72] study pension funds with benefit designs offering resigna- 
tion, death and/or  retirement benefits that are the greater of  two alter- 
native benefits. The two alternatives are typically a multiple of  final (av- 
erage) salary and the accumulation of contributions. Such a benefit design 
provides the plan participants an option on the maximum of two random 
benefit amounts. 

For t->0, let S l ( t ) ,  S2( t )  . . . . .  Sn( t )  denote the prices of  n non-dividend- 
paying stocks or assets at time t. Write 

X j ( t )  = l n [ S i ( t ) / S j ( O ) ] ,  j = 1, 2 . . . . .  n ,  (6.1) 

and 

X(/) = ( X l ( t ) ,  X2(t) . . . .  , g n ( t ) ) ' .  

Let R n denote the set of  column vectors with n real entries. Let 

F(x,  t) = Pr[X(t) -< x], x @ R n, 

be the cumulative distribution function of the random vector X(t), and 

M(z, t) = E[eZ'X¢°], z E R n, 

its moment-generating function. In the rest of  this paper we assume that 
{X(t)},zo is a stochastic process with independent and stationary incre- 
ments and that 

M(z, t) = [M(z, 1)]', t --> 0. (6.2) 

For simplicity, we also assume that the random vector X(t) has density 

0 n 
f ( x ,  t) - F(x, t), t > 0. 

OxlOx2 . . .  Ox,  

Then the modified density of  X(t) under the Esscher transform with pa- 
rameter vector h is 
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eh'Xf(x, t) 
f ( x ,  t; h) - 

M(h, t) 

and the corresponding moment-generating function is 

M(z, t; h) = M(z + h , / ) / M ( h ,  t). 

The Esscher transform (parameter vector h) of  the process {X(t)} is again 
a process with stationary and independent increments, and 

M(z, t; h) = [M(z, 1; h)]'. (6.3) 

In the general case where the density func t ionf (x ,  t) may not exist, we 
define the Esscher transform in terms of  Stieltjes integrals, as we did in 
(2.1.1). 

The parameter vector h = h *  is determined so that, for j =  l ,  2, . . . ,  n, 

{e -~' Sj(t)},~0 

is a martingale with respect to the modified probability measure. In 
particular, 

Sj(0) = E[e -~' Sj( t ) ;  h*], t >- 0, j = 1 , 2  . . . . .  n. (6.4) 

(Note that these conditions are independent of  t.) The value of  a deriv- 
ative security is calculated as the expectation, with respect to the mod- 
ified probability measure, of  the discounted value of  its payoffs. 

Define 

lj = (0, 0 . . . . .  0 , 1 , 0  . . . . .  0)' E R", 

where the 1 in the column .vector lj is in thej- th  position. Formulas (6.4) 
become 

e at = m ( l j ,  t; h*) 

= [M(lj, 1; h*)]', t-> 0, j = 1 , 2  . . . . .  n, (6.5) 

by (6.3). The following is the main result in this section. 

T h e o r e m  
Let g be a real-valued measurable function of  n variables. Then, for 

each positive t, 
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E[e -~' Sj(t)g(St(t),  Sz(t) . . . . .  So(t)); h*] 

= Si(O)E[g(S~(t), S2(t) . . . . .  So(t)); h* + It]. (6.6) 

P r o o f  
The proof follows the same line of  argument that we used in deriving 

the European call option formula (2.15). The expectation on the left- 
hand side of  (6.6) is obtained by integrating 

e -~' Sj(O)e xj g(S~(O)e x', . . . ,  So(O)eX")f(x, t; h*) 

with respect to x=(xt  . . . . .  xo)' over R °. Since 

e(h*+lJ)'xf (X, t) 

M(h*,  t) 

M(h* + l j, t) 
= f ( x ,  t; h* + lj) 

M(h*,  t) 

= M(lj ,  t; h * ) f ( x ,  t; h* + lj) 

= e ~t f ( x ,  t; h* + lj), 

the result follows. []  

e xj f ( x ,  t; h*) = 

There is another way to derive the theorem. For k=(kl  . . . . .  ko)', write 

S(/) k = Sl(t) k, ... Sn(t) k°. 

Then 

E[S(t)k g(S(t))e h'x(t)] 
E[S(t)kg(S(t)); h] = 

E[eh'X")] 

E[S( t)kg(S( t) )S( t) h] 

E[S(/) h] 

E[S(t) k÷h] E[g(S(t))S(t) k+h] 

E[S(t) h] E[S(t) k+h] 

= E[S(t)k; h] E[g(S(t)); k + h]. 

Now the theorem follows from this factorization formula (with h = h *  
and k = l j )  and (6.4). 
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One of the first papers generalizing the Black-Scholes formula to pric- 
ing derivative securities of  more than one risky asset is by Margrabe 
[57]. Assuming that the asset prices are geometric Brownian motions, 
Margrabe [57] derived a closed-form formula for the value of an option 
to exchange one risky asset for another at the end of a stated period. In 
other words, he determined the value at time 0 of  a contract whose only 
payoff  is at time % the value of which is 

[ S l 0 " )  - S 2 ( T ) ] + .  

Corollary 1 
The value at time 0 of an option to exchange S2('r) for S~('r) at time "r 

is 

Sl(0)Pr[Sl('r) > S2('r); h* + 11] - Sz(0)Pr[Sl('r) > S2('r); h* + 12]. 

Proof  
The option value at time 0 is 

E(e-~T[SI ('r) - Sz('r)] +; h*). 

Let I(A) denote the indicator random variable of an event A. Then 

[ S , ( ' r )  - S 2 ( ' r ) ] +  = [ S , ( ~ )  - $2('0]I[S,('0 > S 2 ( ' r ) ]  

= Sl(r)l[Sl(r) > Sz('r)] - S2(r)I[SI('O > S2(r))]. 

Thus 

E(e-aT[Sj(r) - S2('r)]+; h*) 

= E(e -~¢ Sl('Ol[Sl(r) > S2('r)]; h*) - E(e -a¢ S2(x)I[SI('r) > S2(r)]; h*) 

= Sl(O)E(l[Sl(r) > S/('r)]; h* + l l )  - S2(O)E(I[SI('r) > S2(r)]; h* + 12), 

by the theorem. Since E[I(A)]=Pr(A), the result follows. [] 

In Section 7 we discuss the geometric Brownian motion assumption 
and show that Margrabe's formula is an immediate consequence of Cor- 
ollary 1. Now we give another derivation for the European call option 
formula (2.15). 

Corollary 2 
Formula (2.15) holds. 
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Proof 
Consider n = 2  with Sl(t)=S(t) and S2(t)=Ke ~('-~). Then 

X(t) = (Xl(t), X2(t))' = (X(t), ~t)', 

M(z, t) = M(zl, t)e '2~', 

and 

M(z, t; h) = M(zt, t; hl)e z2~'. (6.7) 

Since the parameter h2 does not appear in the right-hand side of  (6.7), 
the parameter h~' is arbitrary, and h* =h*.  Thus the value of the European 
call option is 

E*(e-~T[S(-r) - K]+) 

= E(e-~T[SI('r) - S2('r)]+; h*) 

= SI(0)Pr[SI('r) > S2('r); h* + 11] - S2(0)Pr[Sj('r) > S2('r); h* + 12] 

= S(0)Pr[S(r) > K; h* + 1] - e - ~  KPr[S(-r) > K; h*] 

= S(0){l - Pr[S('r) --- K; h* + 1]} - e -~" K{1 - Pr[S('r) --- K; h*]}, 

which is formula (2.15). []  

Margrabe 's  work [57] was extended by Stulz [75], who also assumed 
that the asset prices are geometric Brownian motions. By laborious cal- 
culation, Stulz derived formulas for valuing options on the maximum 
and the minimum of  two risky assets; that is, he found the value at time 
0 of  a contract with payoff  at time "r 

(Max[SI(T), S2('r)] - K)+ 

and the value at time 0 of a contract with payoff  at time "r 

(Min[Sj('r), S2('r)] - K)+. 

These two option formulas of  Stulz were generalized to the case of  n 
risky assets by Johnson [50]. Indeed, one may further ask the following 
questions: How much should one pay at time 0 to obtain (the value of)  
the second-highest value asset at time -r? The third-highest value asset? 
The k-th highest value asset? More generally, what is the value of  the 
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European call option on the k-th highest value asset at time "r with ex- 
ercise price K? Note again that, in the papers quoted in this paragraph, 
the asset prices are assumed to be geometric Brownian motions. 

For a fixed time "r, "r>0, let ~ denote the set consisting of  the random 
variables {Sj('r); j =  1, 2 . . . . .  n}~ Let Stk ] denote the random variable de- 
f ined by the k-th highest value of  5 .  Thus, St l ] and St,, ] denote the max- 
imum and minimum of 5 ,  respectively. 

Corollary 3 
Assume that X(t) has a continuous distribution. Then the option to 

obtain the k-th highest value asset at time "r is worth 
n 

Sj(0) Pr(Sj(,) ranks k-th among 5;  h* + lj) (6.8) 
j = l  

at time O. 

Proof 
The option value at time 0 is 

E(e -~* Slkl; h*). 

Since X('r) has a continuous distribution, we have the identity 
n 

S[kl = ~ Sj(r)I[Sj(r) ranks k-th among 5].  
j = l  

Formula (6.8) now follows from the theorem. []  

Corollary 4 
Assume that X(t) has a continuous distribution. Then the European 

call option on the k-th highest value asset at time -r with exercise price 
K is worth 

t! 

X Sj(O) Pr(Si('r) > K and Sj('O ranks k-th among 5;  h* + 1j) 
j =  1 

- e -s" K Pr(S[kj > K; h*) (6.9) 

at time 0. 
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The proof for Corollary 4 is essentially a combination of the proofs 
for Corollary 2 and Corollary 3. Note that, when K=0 ,  Corollary 4 be- 
comes Corollary 3. 

There are obviously many other applications of the theorem. For ex- 
ample, in a paper recently published in the Journal of  the Institute of  
Actuaries, Sherris [71] analyzed the "capital gains tax option," whose 
payoff  at time "r is 

(S('r) - Max[C(~), K])+, 

where S(t) denotes the price of  a risky asset at time t and C(t) denotes 
the value of an index at time t. Sherris's result follows from the formula 

(S - Max(C, K))+ = S I(S > C and S > K) 

- [ C I ( S > C > K )  + K I ( S > K > C ) ] .  

Let us end this section by showing that an American call option on 
the maximum of n non-dividend-paying stocks is never optimally exer- 
cised before its maturity date. Consequently, the value of the American 
option is given by Corollary 4 (with k= 1). The proof is by two appli- 
cations of  Jensen's inequality: 

E[e -~t (Max{Sj(t)} - K)+; h*] >- (E[e -~' Max{Sj(t)}; h*] - e -~' K)+ 

--- (Max{E[e -~' Sj(t); h*]} - e -~' K)+ 

= (Max{Sj(0)} - e -~' K)+ 

-> (Max{Sj(0)} - K)+ 

For t>0  and ~>0,  the last inequality is strict if the option is currently 
in the money, that is, if 

Max{Sj(O)} > K. 

7. LOGARITHMS OF STOCK PRICES 
AS A MULTIDIMENSIONAL WIENER PROCESS 

In the finance literature, the usual distribution assumption on the prices 
of the primitive securities is that they are geometric Brownian motions. 
In other words, {X(t)} is assumed to be an n-dimensional Wiener process. 
We now show that many results on options and derivative securities in 
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the literature are relatively straightforward consequences of the theorem 
and its corollaries. 

Following the notation in Chapter 12 of  Hogg and Craig's textbook 
[46] for the Course 110 examination, we let IX=(tx~, IX2 . . . . .  tzn)' and 
V=(0.ij) denote the mean vector and the covariance matrix of X(1), re- 
spectively. It is assumed that V is nonsingular. For t>0 ,  the density 
function of X(t) is 

1 
f ( x ,  t) - (2~r), /2ltvlU2 e -(x-'~''(2'v)-'(x-'~'), x E R". 

It can be shown [46, Section 12.1] that 

M(z, t) = exp[t(Z'lX + I/2 z'Vz)], z E R". 

Thus, for h E R n, 

M(z, t; h) = M(z + h, t ) / M ( h ,  t) 

= exp{t[Z'(l~ + Vh) + I/2 z'Vz]}, z E R n, 

which shows that the Esscher transform (parameter vector h) of  the n- 
dimensional Wiener process is again an n-dimensional Wiener process, 
with modified mean vector per unit time 

I x + V h  

and unchanged covariance matrix per unit time V. Equations (6.5) mean 
that, for j =  1, 2, . . . ,  n, 

a = 1;(p. + Vh*) + ~/2 I~Vl), 

from which we obtain 

It + Vh* = ( 5 -  1/2 0.11, 5 -- 1/2 0.22 . . . . .  5 - -  1/2 0...)'. (7.1) 

Consequently, the mean vector per unit time of  the modified process with 
parameter vector h* + 1/is 

I1 + V(h* + li) = (B + 0.1j - 1/2 0.11,  B "}- 0.2j - -  1/2 0"22 . . . .  , 

8 + 0.,j - V2 0.,n)'. (7.2) 

Note that the right-hand sides of  (7.1) and (7.2) do not contain any ele- 
ments of p.. 
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T o  der ive  M a r g r a b e ' s  [57] ma in  result ,  we  evalua te  the expecta t ion  

E(e  -~" [Sl('r) - S2('r)]+; h*) ,  

which ,  by  Coro l l a ry  1, is 

SI(0)Pr[SI(x) > S2('r); h*  + 11] - S 2 ( 0 ) e r [ S l ( T )  > S 2 ( T ) ;  h • -1- 12] 

= SI(0)Pr[Y < 6; h* + l l ]  - S2(0)Pr[Y < 6; h*  + 12], 

where  

Y = X2('r) - Xl('r) (7.3) 

and 

6 = ln[Sl(O)/S2(O)]. (7.4)  

N o w ,  Y is a no rma l  r a n d o m  var iable  with respec t  to any Essche r  trans- 
fo rm,  

E(Y; h* + l l )  = [(8 + 0"21 - I/2 0"22) - -  (8 q- 0"11 - -  I/2 0"11)] 'I" 

= (--1/2 0"11 + 0"21 -- '/2 0"22)'r 

and 

E(Y; h* + 12) = [(8 + 0"22 - -  1/2 0"22) - -  ( 8  + 0"12 - -  1/2 0"11)] T 

= (1/2 0"11 -- 0"12 + 1/2 0"22)'r. 

T h e  var iance  o f  Y does  not  depend  on the pa rame te r  vector ;  it is 

(0"11 -- 20"12 + 0"22)'r. 

With  the def ini t ion 

v2 = 0"~1 - 20"12 + 0"22 

(the var iance  per  unit  t ime  o f  the process  {Xl(t)-X2(t)}), we have  

E(Y; h*  + l l )  = -v2"r/2, 

E(Y; h*  + 12) = v2"r/2 

and 

Var(Y) = vz-r. 

(7.5) 
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Thus the value (at time 0) of the option to exchange S2('r) for St('r) at 
time "r is 

v'V~r ] -  vV~r ,/ '  (7.6) 

which is the formula on p. 179 of Margrabe's paper [57]. 
It is somewhat surprising that (7.6) does not depend on the risk-free 

force of interest, 8. Note also that, if S2(t)=Ke -~('-'), (7.6) becomes the 
Black-Scholes formula (3.1.3). 

Next we calculate the value (at time 0) of the option to receive the 
greater of St(r) and S2(r) at time r. Because of the identity 

Max[St(r), S2('r)] = S2('r) + [St(r) - S2('r)]+, 

the option value is 

$2(0) + e -~  E([Si('r) - S2('r)]+; h*), 

which, by (7.6), is 

= S,(O),(.~ +__v2"r/2~ [ - 6  + v2"r/2'~ 
,,~ /+s~°)*t ;-G ) 

fln[S,(O)l&(O)] + = S,(O)+t. ~ ,,2",/~.) 

[In[S2(O)/S,(O)] + (7.7) + s~(o)+t ~ ~2"/2) 

This result can also be obtained by applying Corollary 3 (with n=2).  
Again, it is noteworthy that (7.7) does not depend on 8. 

Let us also derive the results in Stulz's paper [75] and in Johnson's 
paper [50]. By Corollary 4 (with n=2),  
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E(e-a¢{Max[Sl(a'), Sz('r)] - K}+; h*) 

= E[e -a¢ (Sm - K)+; h*], 

= Sl(0)Pr[St(r) > K and Sl('r) > Sz(r); h* + 11] 

+ S2(0)Pr[S2('r) > K and S2(T ) > SI(T); h* + lz] 

- K e  -a" Pr[St('r) > K or S2('r) > K; h*]. (7.8) 

First, we evaluate the last probability term, 

Pr[Sl('r) > K or $2(~) > K; h*] = 1 - Pr[Sl('r) -< K and Sz('r) <- K;  h*]. 

Similar to (2.12), define 

and 

Then 

K 1 "~-- I n [ K / S ,  (0)] (7.9) 

Kz = l n [ K / S z ( O ) ] .  (7.10) 

Pr[Sl('r) -< K and S2('r) -< K; h*] 

= Pr[Xl('r) - Ki and X2(~) -< Kz; h*]. 

By (7.1) 

and 

E[XI('r); h*] = (8 - V2 ffll)'r 

(7.11) 

and 

Oo = ~ o / ( ~ c r j )  • 

Then the probability defined by (7.11) is 

(7.13) 

E[X2('r); 11"] = (8 - 1//2 o'22)'r. 

Let O2(a, b; p) denote the bivariate cumulative standard normal distri- 
bution with upper limits of  integration a and b and coefficient of cor- 
relation p. (For various properties of  02, see Section 26.3 in the book 
by Abramowitz and Stegun [1]). Write 

cri = ~ (7.12) 



OPTION PRICING BY ESSCHER TRANSFORMS 131 

K, -- (8 -- 0-2/2)'r K2 -- (8 -- 0-22/2)'r '~ 

qb2 ~,G__ ' o'2V"~T ,P,2)  • (7.14) 

To obtain approximate numerical values for (7.14), we can use formulas 
(26.3.11) and (26.3.20) together with Figures 26.2, 26.3 and 26.4 in 
the book by Abramowitz and Stegun [1]. An algorithm to calculate the 
bivariate cumulative standard normal distribution to four-decimal-place 
accuracy can be found in the paper by Drezner [31]. The Drezner al- 
gorithm (with a typo corrected) can be found in Appendix 10B in Hull 's  
book [47, p. 245] and in Appendix 13.1 in the book by Stoll and Whaley 
[74, p. 338]. 

Next, we evaluate the first probability term in (7.8), 

Pr[Sl('r) > K and St('r) > S2('r); h* + ll]  

= Pr[-Xl(~') < --Kl and X2('r) - Xt('r) < ~; h* + l d ,  (7.15) 

where the constants K1 and ~ are defined by (7.9) and (7.4), respectively. 
N o w ,  

E[-Xl('r); h * +  l d  = - ( g  + 0-11 - I/2 0-11) T 

= - - ( ~  "-~ 1/2 0-11)T, 

E[Xz('r) - -  X I ( T ) ;  h* + l l]  = (-1/2 0-Jl + O"12 - -  Ih  0"22) T 

= --102T/2, 

Var[X2(T) - X,(~); h] = (0-11 -- 2Crl2 + 0-22)T 

= 1)2T 

and 

Cov(-X,( '0 ,  X2(~') - Xj(a-); h) = Cov(Xl(-0, Xt(-r) - X2(T); h) 

= ( ~ , ,  - ~,~)~ 

= [0-1(0-! - -  Pl20"2)] 'r ,  

where ~ is defined by (7.5). Thus (7.15) can be expressed as 

- =  (7.16) 
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By symmetry,  we can write down the expression, in terms of the dis- 
tribution qb2, for the second probability term in (7.8). Hence the value 
at time 0 of the European call option on the maximum of two risky assets 
with exercise price K and exercise date "r is 

Sl (0)i~2 ( - K. "[- (B -[- 112 O ' 2 ) T ,  GrlV~T ' ln[S'(O)/S2(O)]+v2"r/2, cr'-_vP_'zcr2 ) ~  " 

"4- 82(0)1~2 (-K2 '1-(~ q-1/20"2)To'2"~//~T ' ln[S2(O)/Si(O)]+vZ'r/2'crz-'vg"i2cri)vv~T 

- K e  -~" 1 - ' 2  0.--i ~ /~  , er2 ~/-~- ,Plz , 

(7.17) 

which is the same as equation (6) in Johnson's paper [50, p. 281]. 
Let us also consider the expectation 

E[e-~(Min[Sl('r), S2('r)] - K)+; h*], 

which by Corollary 4 (with n=2)  is 

SI(0)Pr[K < Sl('r) < Sz('r); h* + l d  

+ Sz(0)Pr[K < S2('r) < St(r); h* + 12] 

- K e  - ~  Pr[K < Sl('r) and K < Sz('r); h*] 

= S,(0)Pr[-XI('r) < --Kl and Xl('r) - Xz('r) < ln[S2(O)/SI(O)]; h* + 11] 

+ S 2 ( O ) P r [ - X z ( ' O  < -K2 and Xz(T)  - Xl( 'r )  < ln[S l (O) /Sz (O)] ;  h* + 12] 

- K e  - ~  Pr[-Xj( 'r) < -KI and -X2('r) < -K2; h*]. 

By a calculation similar to the above, we obtain the value at time 0 of 
the European call option on the minimum of two risky assets with ex- 
ercise price K and exercise date "r: 
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--K, + (~ + '/2 0"2)'1 • ln[S2(0)//S,(0)] - ~2T/2. O,2Gr2-- 0",) 

s , ( o ) ~  0",V~ ' ~ V ~  ' " 

+ + 0, o,-o °2) 

- Ke-~ 'dP2 0"1V~'r ' 0"2V~'r ;9,2 • (7.18) 

This is the same as formula (11) in Stulz's paper [75, p. 165] (both 
0"2k,'q should be 0"2"0 and formula (8) in Johnson's paper [50, p. 281]. 

Because of the identity 

(Max[St('r), S2('r)] - K)+ + (Min[Sj('r), S2('r)] - K)+ 

= [S , (~ ' )  - K ] +  + [S2(-r)  - K ] + ,  

the sum of (7.17) and (7.18) should be 

0"2V'~'r 

We can verify this algebraically by applying the formulas 

~2(a, b; P) + qb2(a, - b ;  -O) = ~(a)  

and 

qb2(a, b; p) - qbz(-a, - b ;  P) = ~ (a )  - qb(-b) 

= ~(a)  + ~(b)  - 1. 

Johnson [50] also gave formulas for European options on the maxi- 
mum and the minimum of n risky assets with exercise price K. These 
formulas are of course special cases of Corollary 4. Let us end this sec- 
tion by showing how to evaluate the first probability term in (6.9) (with 
k = l ) ,  
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Pr[Sl('r) > K and Sl('r) ranks first among $; h* + l j]  

= Pr[Sl('r) > K, Sl(r) > S2('r) . . . .  , St(r) > S,('r); h* + l l ] .  (7.19) 

Write 

W = (0, X2('0, X3(~) . . . . .  X.( '0) ' ,  

1 = ( 1 ,  1 ,  1 . . . . .  1 ) '  

and 

s = ( l n [ S j ( 0 ) / K ] ,  l n [ S i ( O ) / S 2 ( O ) ] ,  l n [ S l ( O ) / S 3 ( O ) ]  . . . . .  In[SI(O)/S.(O)])'. 
Let N.(x; p~, V) denote the n-dimensional normal distribution function 
with mean vector p. and covariance matrix V. Then the probability ex- 
pressed by (7.19) is the same as 

Pr[W - Xt('r)l < s; h* + l l]  

= N,(s; E[W - Xl('r)l; h* + 11], TY), (7.20) 

where "rY=('ry;j) denotes the covariance matrix of the random vector 
W-XI( ' r ) I .  By (7.2), 

E[W - Xl('r)l; h* + 11] = E(W; h* + 11) - E[XI('01; h* + 11] 

= ( 0 ,  8 + O"21 - -  I/2 0"22 . . . . .  8 + O".1 - -  1/2 (inn)' 

- ( 8  + ( I i1  - l/z (Iil)l 

= ( - - 8 ,  O"21 - -  I/2 O"22 . . . . .  (in1 - -  I/2 (lnn)t 

- 1/2 (i l l l .  

To find the matrix Y, which is independent of h*, observe that 

[ W -  Xt ( ' r ) I ] [W-  X,( , ) I ] '  = W W ' - X I ( ~ ) [ W I '  + 1W'] + [Xl('r)]211 '. 

Thus 

~ r i > l ,  

and, for i #  1 and j #  1, 

Yll  = ( i l l ;  

Yil = Yl i  = --( i l l  + (I l l ;  
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Y i j  = Y j i  = o i j  - (O'il "~ %1) "{- o'11. 

As a test of understanding of the method presented in this paper, the 
interested reader is encouraged to work out all the probability terms for 
evaluating the options with payoffs (Stlj-K)+ and Stnl-K)+. Answers can 
be checked against the published formulas in Johnson's paper [50]. 

8. CONCLUSION 

The option-pricing theory of Black and Scholes [11] is perhaps the 
most important advance in the theory of financial economics in the past 
two decades. Their theory has been extended in many directions, usually 
by applying sophisticated mathematical tools such as stochastic calculus 
and partial differential equations. A fundamental insight in the devel- 
opment of the theory was provided by Cox and Ross [24] when they 
pointed out the concept of risk-neutral valuation. This idea was further 
elaborated on by Harrison and Kreps [42] and by Harrison and Pliska 
[43] under the terminology of equivalent martingale measure. 

Under the assumption of a constant risk-free interest rate, this paper 
shows how such equivalent martingale measures can be determined for 
a large class of stochastic models of asset price movements. Any Esscher 
transform of the stochastic process {X(t)} provides an equivalent prob- 
ability measure for the process; the parameter vector h* is chosen such 
that the equivalent probability measure is also a martingale measure for 
the discounted value of each primitive security. The price of a derivative 
security is calculated as the expectation, with respect to the equivalent 
martingale measure, of the discounted payoffs. In other words, after an 
appropriate change of probability measure, the price of each security is 
simply an actuarial present value. 

We hope that this paper helps demystify the procedure for valuing 
European options and other derivative securities. If actuaries can project 
the cash flow of a derivative security, they can value it by using what 
they learned as actuarial students--by discounting and averaging. The 
one difference is that averaging is done with respect to the risk-neutral 
Esscher measure, which this paper shows how to determine. 
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DISCUSSION OF PRECEDING PAPER 

JACQUES F. CARRIERE: 

First, I greatly enjoyed this paper. Second, I want to embellish it by 
showing that the valuation formula (2.15) for a European call option is 
the same as the formula for the American call option because the early- 
exercise privilege has no value. 

Let us give some definitions and facts about martingales, submartin- 
gales and stopping times. Let {e-:a'S,, ~,},~0 denote a discounted price 
process adapted to the history (sub-tr-field) ~,. In this discussion ~,=tr{Ss: 
s<-t}. Let us assume that this process is a martingale with a measure P* 
and an expectation operator E*. From the definition of a martingale, we 
know that E*(e-a'S,l~s)=e-aSS, for all O<-s<-t. The intrinsic value of the 
American option at time t is /,=max{0, S , -K} .  Let us prove that the 
process {e-a'l,, ~,},~0 is a submartingale. This is true because 

E*(e-~' l ,[~) >- max{0, E*(e-~'S,[~) - e-~'K} 

= max{0, e-~SS~ - e-~'K} >- max{0, e-~SS, - e-~'K} 

= e-SSls. 

Let ~ f f t  be the latest time that the option can be exercised and let 
denote any stopping time in the class c~, where ~ is the collection of all 
stopping times with the property that P*(0-<~ ' r )  = 1. Remember that 
is a stopping time whenever [ ~ t ] E ~ , ,  Vt>-0. Intuitively, the class 
represents all the trading strategies available to the investor. Using Doob's 
optional sampling theorem (Wong and Hajek*), we find that 

E*(e-~elel~o) <_ E*(e-~'l , l~o) i 

This means that the optimal stopping time is simply "r because 

sup E*(e-Sele[~o) = E*(e-~'1~]~o). 

In other words, the optimal trading strategy is to hold the call option 
until the latest exercise date r. So the value of the American option, 
denoted as 

*WONG, E. AND HAJEK, B. Stochastic Processes in En.gineering Systems. New York: Springer- 
Verlag, 1985, p. 213. 
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sup E*( e-~l~l~o), 

is equal to the value of the European option, denoted as E*(e-~1,1~o). 
The preceding result in continuous time also holds in discrete time, and 
so the formula for the European call option under the discrete-time bi- 
nomial model, Equation (3.3.7), can also be used to value the American 
counterpart. 

At the end of Section 6, the paper gives an incomplete proof that the 
formula in Corollary 4 can be used to value the American exotic call 
option with an intrinsic value of 

It = max{0, max (S~,,) - K}. 
1 <--j<n 

Let me give a detailed proof that the best early exercise rule is to exercise 
at the last exercise date, "r. Consider the discounted price process {e-~tSt, 
~,}t___0 adapted to the history ~,=~{Ss: s<-t}, where S,=(SI.t . . . .  Sn.,) r. 
Let us assume that there is a measure P* and an expectation operator 
E*, so that the discounted prices are martingales. Using Jensen's in- 
equality twice, we find that the process {e-~tlt, S~,}t_>0 is a submartingale, 
which is a sufficient condition to invoke Doob's optional sampling theo- 
rem and find that 

for all ~E~. 

E*(e-~ ld~o)  <_ E*(e-~'l ,  IS~o) 

SAMUEL H. COX: 

This paper is the beginning of a series of papers ([2], [3], [4]) on 
option pricing, in which the authors use the Esscher transform, optional 
sampling, and other martingale methods to dramatically improve known 
results and establish new ones. It is good to see actuaries making such 
valuable contributions to modern financial mathematics. I congratulate 
the authors of this fine work and thank them for choosing the Trans- 
actions to publish the first part of the story. 

The Gerber and Shiu approach to finding a convenient equivalent mar- 
tingale measure is closely related to recent work by Geman, E1 Karoui, 
and Rochet [1]. They work in a more general setting and obtain some 
formally similar results. For example, they obtain a general formula for 
the option to exchange two assets and a general formula for compound 
options. However, they do not obtain the explicit formulas that flow so 
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easily from the Gerber and Shiu method. For those who are prepared for 
the more general setting, I recommend reading Geman et al. 

Another application of the Gerber and Shiu method is the valuing of 
compound European options. The valuation of these options under the 
usual assumption of lognormal prices is due to Geske [5]. I begin with 
the same framework as the authors and show ultimately that Geske's 
results are a special case, in the same way the authors generalized the 
Black-Scholes formula and other results. 

Consider first a European call option on a European call option. This 
option, and the put option on a call option, is of interest because of the 
interpretation of equity of a levered firm as a call option. This is dis- 
cussed by Merton [6, p. 394] and others. The gist of it is this: When a 

f i r m  issues bonds, the shareholders are in a sense selling the assets of 
the firm to the bondholders for cash. If the firm is successful, the stock- 
holders will pay the principal and interest and reclaim the assets. If the 
firm fails, the stockholders will default on the debt, leaving the bond- 
holders with the assets. When the value of a firm is assumed to be the 
value of a call option in this way, then publicly traded options on the 
firm's stock are compound options. In this way, calls on calls and puts 
on calls become interesting contracts to price. 

Consider a European call option written on the stock with exercise 
price KI at time TI. The value of the call option at time t<-T~ can be 
found by applying (2.11) at time t. In applying the formula, use 

S(TI) = S(t) exp(X(T0 - X(t))  

and the independent and stationary increments properties of X. This al- 
lows us to replace S(0) by S(t) and "r by T ~ - t  and calculate the expec- 
tation at time t. The parameter h* does not change. Hence, according 
to (2.11), the price of the call is 

Cl(t,  S(t)) = E,[e-~rl-t)(S(t)eX~r')-x~') - K0+; h*] 

= E,[e-~<r'-t)(S(TO - Kt)+; h*], 

where the t in the symbol E, means that the expectation is calculated at 
time t conditionally on the value of S at time t. The authors' main result, 
the theorem of Section 6, includes many special cases given earlier in 
the paper, as the authors are aware. For example, if we let g ( s ) = I ( s > K O  
be the indicator function, 0 if s<-K, and 1 if s>K~, then the theorem 
yields Formula (2.15) as follows: 
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C l ( t ,  S ( t ) )  = E , [ e - ~ ( r ' - ° ( S ( T l )  - K0+; h*] 

= E t [ e - ~ ( r ' - ° ( S ( T l )  - K O g ( S ( T I ) ) ;  h*] 

= E t [ e - ~ t r ' - ° S ( T O g ( S ( T O ) ;  h*] - E,[e -~ t r~ - t )K lg (S (TO) ;  h*] 

= S ( t ) E , [ g ( S ( T O ) ;  h *  + 1] - e -~ (T ' - ' )KIE , [g (S (TI ) ) ;  h*]. 

The compound option is a call option written on the call CI with exercise 
price K2 at time T2<T~ .  The discounted option price process e - ~ ' C l ( t ,  

S ( t ) )  is a martingale under the distribution determined by h*. This is clear 
because of the first formula immediately above and the law of iterated 
expectations. This means that we do not need to change h* when eval- 
uating options on the call option. 

The critical stock price, S * ( T 2 ) ,  for exercising the call on the call at 
time T2 can be determined by solving C~(T2,  S ) = K z  for the stock price. 
The events S ( T z ) > S * ( T 2 )  and CI(T2 ,  S ( T 2 ) ) > K 2  are equivalent. Now, ap- 
plying (2.11) again but with C~ in place of S, we find that price of the 
compound call on a call option is 

C2(0, S(0)) = E [ e - ~ r 2 C , ( T 2 ,  S ( T z ) ) I ( S ( T z )  - S*(T2)); h*] 

- e -~T2K2E[I(S(T2)  - S*(T2)); h*], 

where I is the indicator function. Now we can substitute for the call on 
the stock and simplify to obtain 

C2(0, S(0)) = E[e-~r~S(Tz)Er2[I(S(TO - K0; h* + I]I(S(T2) - S*(Tz) ) ;  h*] 

- e-~r 'K~E[Er2[I(S(TO - K0; h*] l (S(Tz)  - S*(Tz)); h*] 

- e-~T2KzE[I(S(T2) - S*(T2)); h*]. 

Now apply the theorem again but use 

g ( s )  = Er, .[I(S(T~) - K~)[S(T2) = s; h*  + l]l(s - S*(T2)) 

in the first term to obtain 
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C2(0, S(0)) = E [ e - a r 2 S ( T 2 ) g ( S ( T , _ ) ) ;  h*] 

- e - ~ r ,  K n E [ I ( S ( T O  - 

- e - a r ~ K 2 E [ l ( S ( T 2 )  - 

= S ( O ) E [ g ( S ( T 2 ) ) ;  h *  + 

- e - b r , K u E [ I ( S ( T O  - 

- e - ~ r 2 K 2 E [ I ( S ( T 2 )  - 

K , ) I ( S ( T 2 )  - S*(T2)); h*] 

S*(T2)); h*] 

l] 

K , ) I ( S ( T 2 )  - S*(T2)); h*] 

S*(T2)); h*] 
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= S ( O ) E [ E r : [ I ( S ( T , )  - K,); h* + 1 ] I ( S ( T 2 )  - S*(T2)); h* + I ] 

- e - ~ r ' K n E [ I ( S ( T O  - K n ) I ( S ( T 2 )  - S*(Tz)); h*] 

- e - S r 2 K 2 E [ I ( S ( T , _ )  - S*(T2)); h*] 

= S ( O ) E [ I ( S ( T , )  - K , ) I ( S ( T 2 )  - S*(T2)); h* + 1] 

- e - a r ' K t E [ I ( S ( T , )  - K , ) I ( S ( T 2 )  - S*(T2)); h*] 

- e - ~ r Z K 2 E [ I ( S ( T 2 )  - S*(Tz)); h*]. 

Now let K , = I n ( K J S ( O ) )  a n d  K 2 = I n ( S * ( T z ) / S ( O ) ) .  These substitutions yield 
a formula that generalizes Geske's formula. It involves the joint distri- 
bution of X ( T O  a n d  X ( T z )  relative to the Esscher parameters h* and h* + 1. 

C2(0, S(0)) = S ( O ) P r [ X ( T O  > K~,  X ( T 2 )  > K2; h *  + 1] 

- -  e - ~ r ' K n  Pr[X(T0 > KI, X(T2) > KZ; h*] 

- e - ~ r 2 K 2  Pr[X(T2) > K2; h*] 

In order to obtain formulas under various distribution assumptions, one 
has to be able to determine the joint probability of the event 

X ( T , )  > K,, X(T2) > K2. 

Under the authors' specifications for {X(t)}, one can calculate this joint 
probability. 

Due to the stationary independent in'crements of X, it is easy to show 
that 

E [ X ( t ) ;  h ]  = t l x ( h )  

Var[X(t); hi = tcr2(h), 
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where Ix(h) and or(h) are constants. For i - 1  and 2, define new stan- 
dardized variables as 

Ix(h) - X(T,) 
Z,(h) - 

c r ( h ) ~ i  

The new variables have zero means and unit variances. Their covariance 
is 

Cov(Z,(h) ,  Z2(h); h) = _ _  Cov(X(T0 ,  X(T2); h) 

B 

o'2(h) TVT-~T~ 
_ _  Cov(X(T2) + {X(T,) - X(T2)}, X(T2); h) 

1 
_ _  {Var(X(T2); h) + Cov(X(T,)  - X(T2), X(T2); h)}. 

¢,2(h) TVT~,r~ 

Because the Esscher transform of  X has independent increments, the sec- 
ond term is zero, so we have 

1 
Cov(Zn(h), Z2(h); h) - cr2(h)T2 

cr2(h) TN/~T~ 

In the case in which {X(t)} is a Wiener process with parameters IX and 
cr 2, the Esscher transform is a Wiener process with parameters Ix+her 2 
and cr 2. The new variables Zt(h) and Z2(h) have a bivariate standard nor- 
mal distribution with covariance parameter V'-T2/TI. The compound call- 
option-on-call-option formula can be written as follows: 
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- e  - V'~l, d 2 -  ~l~l; 

-~r2K2~ d2 , - -  e - 

where ~(x, y; r) denotes the standard bivariate normal distribution with 
covariance parameter r; q~(x) denotes the standard normal distribution; 
and the parameters are determined as follows: 

d I = 
--Ki + Ix(h* + 1)Tl 

 VE, 

d 2 = 
-K2 + ix(h* + 1)T2 

ln(S(O)/Kl) + (8 + ¢rz/2)T, 

 vZi 
ln(S(O)/S*(T2)) + (8 + cr2/2)T2 

S*(T2) is obtained by solving this equation for S: 

So (In(S/K,) + (8 + cr2/2)(T, - T2)) 

_ e_~m_r2 ) ,(!n(S_/K,) + (8 - (r2/2)(T, - T 2 ) ) =  Kv 

In the authors' reference [47], Hull discusses Geske's formula for a stock 
that pays dividends at a constant known rate q. This is actually only a 
slight generalization of the authors' framework. The authors' later work 
applies to stocks with dividends of this type, and this deviation of Geske's 
formula is valid in that generality. The formula for the put option on a 
call option can be obtained easily by applying the put-call parity relation. 
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F. DELBAEN*, W. SCHACHERMAYER* and M. SCHWEIZER*: 

The authors use the wel l -known Esscher transform to give a partial 
solution to the problem of  finding option prices. It is only a partial so- 
lution since, as this discussion will show, there are many other ways of  
obtaining a reasonable price. The technique used in mathematical  finance 
to study a price process is related to martingale theory via a change of 
measure.  The basic papers are Harrison and Kreps [7], Harrison and 
Pliska [8], and Kreps [9]. A general version of  the theorem, which clar- 
ifies how far this change of  measure technique goes, can be found in a 
recent paper  by Delbaen and Schachermayer  [3]. The martingale tech- 
nique is illustrated in this paper by Gerber  and Shiu. 

The paper  considers exponentials o f  processes with stationary and in- 
dependent increments.  The use of  the moment-generat ing function and 
the Levy  formula  is restricted to these processes. The authors then use 
these exponentials to give an interpretation of  the Esscher transform as 
a change of  measure.  The new measure is equivalent to the original mea- 
sure, as stated but not proved. The parameter  is chosen in such a way 
that the price process becomes a martingale under the new measure.  The 
authors explicitly mention the existence of  infinitely many other mea- 
sures such that the original process becomes a martingale. In such a 

*Dr. Delbaen, not a member of the Society, is in the Department of Mathematics, Uni- 
versity of Brussels, Belgium. 

*Dr. Schachermayer, not a member of the Society, is in the Institute for Statistics, Uni- 
versity of Vienna, Austria. 

*Dr. Schweizer, not a member of the Society, is in the Fachbereich Mathematik at the 
Technische Universitat Berlin, Germany. 
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situation, the Esscher transform is one of many ways of assigning a value 
to a European option. 

In the case in which there is only one risk-neutral measure, the case 
of the examples given in Section 3, the choice is obvious. Pricing of 
contingent claims is reduced to taking expectations with respect to this 
unique risk-neutral measure. Even more is true (and this is particularly 
important in risk management); any contingent claim can be hedged! 
This means that an economic agent can construct a portfolio of the risk- 
less asset and of the risky asset in such a way that at the end of the 
horizon, the value of the portfolio gives exactly the same payoff as the 
contingent claim. 

If the set of equivalent risk-neutral measures is not reduced to one 
point, then finding such hedging strategies is no longer possible. The 
initial investment needed to reproduce the contingent claim is not de- 
fined, and in this sense there is no natural price for the claim under 
consideration. This is, for example, the case when dealing with the ex- 
ponential of a shifted compound Poisson process. If the price process is 
of such a form, then a European option has no uniquely defined price, 
and statements as in the second section, Formula (2.11), can be ambig- 
uous. There is no price of the option that is uniquely determined by 
arbitrage arguments. The best one can say is that there is an interval of 
values with the property that as soon as an agent is offered a price outside 
this interval, then she can construct a position consisting of the option, 
the riskless asset and the risky asset in such a way that she can make 
arbitrage profits. The hedging problem calls for new concepts and tech- 
niques that can, for example, be found in work of El Karoui, Frllmer- 
Schweizer, Karatzas, Kramkov, Sh/il, and Schweizer. 

The minimax theorem proved by Delbaen and Schachermayer [4] shows 
the following result: The minimal investment needed to construct a port- 
folio that gives a terminal outcome dominating the contingent claim f is 
given by 

et = sup{Ee[f]la ~ Me(P)}, 

where M*(P) is the set of all equivalent martingale mesaures for the given 
price process. It follows that an agent who has sold the claim f ,  for 
example, an option, and wants to hedge the risk taken will need at least 
the amount or. A smaller investment will not allow her to construct a 
portfolio that yields a final outcome that is at least as big as f ,  that is, 
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is on the safe side. Under certain boundedness assumptions on the claim 
f ,  a similar interpretation can be given for the quantity 

13 = inf{Ee[f][Q E Me(P)}. 

All numbers in the interval [13, ~] represent prices that are feasible and 
do not allow arbitrage profits. A price bigger than a allows the agent 
(1) To sell the option 
(2) To use the amount cz to construct a hedging portfolio that gives an 

outcome of at least f 
(3) To cash the difference between the price of the option and a. 
(4) At the end of the horizon, the constructed portfolio has a value of 

at least f ,  and selling this portfolio covers the position taken and 
possibly gives an extra income. 

If the price is below 13, a profit can in the same way be made from the 
claim - f  by buying the option and selling a hedge portfolio. 

In an economic setting in which utility functions are present and prices 
will be fixed to obtain an equilibrium, the market price will agree with 
a price in the interval [13, ~]. A justification for a particular price does 
not come from arbitrage considerations alone, but from utility consid- 
erations, that is, from the risk averseness of all the agents. 

The three examples in Section 3 have the property that there is only 
one risk-neutral measure. Every contingent claim can be hedged, and the 
price of, for example, a European option is uniquely defined. It is both 
the expected value of the discounted contingent claim with respect to the 
risk-neutral measure and the initial investment needed to finance the 
hedging portfolio. 

In the examples of Section 4, the situation is different. Both models, 
the shifted gamma as well as the shifted inverse normal, have infinitely 
many risk-neutral measures. Even when the property of stationary and 
independent increments has to be preserved, there is still an infinite num- 
ber of risk-neutral measures. Only under the very restrictive assumption 
that the process under the new measure should remain a shifted gamma 
and a shifted inverse normal, respectively, do we obtain uniqueness. The 
paper gives no economic or actuarial argument why this has to be the 
case. The authors mention also that all but one parameter could be re- 
covered from looking at a trajectory. This is indeed the case, but a hint 
as to how it could be done would have been welcome. 
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I~LYETTE GEMAN*: 

The paper by Drs. Gerber and Shiu proposes a new approach to the 
pricing of contingent claims by introducing the Esscher transforms of 
price processes. These Esscher transforms are shown to transform Wie- 
ner processes into Wiener processes, that is, preserve the "canonical" 
assumption in finance on the dynamics of the stock price; the same prop- 
erty holds for a shifted Poisson process. But the main, and important, 
result in the paper is the fact that in the class of Esscher transforms, 
there is a unique one for which the corresponding probability measure, 
the so-called risk-neutral Esscher measure, makes martingales out of the 
discounted prices of the basic securities. 

This property is then extended to contingent claims, just by stating 
that any contingent claim has a unique price equal to the expectation 
under this risk-neutral Esscher measure of the discounted terminal pay- 
off. 

In my comments, I focus more on the economics than on the math- 
ematics. 

The paper, not to be misleading, should state clearly that the proba- 
bility measures associated with these Esscher transforms represent a very 
particular subset of the set of all equivalent measures, and that the 
uniqueness of the equivalent martingale measure holds within this par- 
ticular subset. In the same spirit, a discussion on this new approach would 
have been welcome, as would a discussion of the important work on 
arbitrage pricing started by Harrison and Kreps and by Harrison and Pliska 
and developed more recently by Dalang, Morton and Willinger; Stricker; 
Artzner and Delbaen; and Schachermayer, where the "fundamental theo- 
rem of asset pricing" has precisely been extended to a more and more 
general setting. 

The paper does' not offer an alternative to the notion of self-financing 
replicating portfolios or attainable contingent claims that are fundamental 
for pricing and hedging contingent claims, and this latter problem is in 
fact the crucial one in finance. Consequently, one may conclude from 
the paper that every derivative security has a unique price and that mar- 
kets are complete, while the issue at stake today is the incompleteness 
of real financial markets (stochastic volatility is already an obvious source 
of incompleteness). 

*Dr. Geman, not a member  of  the Society, is a member of honor of  lnstitut des Actuaries 
Francais and Professor of  Finance, ESSEC and the University of  Reims, France. 
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The property of preserving the nature of some classes of stochastic 
processes such as geometric Brownian motions and Poisson processes, 
which could argue in favor of these Esscher transforms, does not appear 
to be fundamental. 

The authors need to assume, a constant interest rate, because the dis- 
counted price process 

{Se  l for S' Sl}:o 
is not of same nature as {S,},;o when interest rates are stochastic (their 
dynamics being driven by any of the models of interest rates that have 
been developed over the last 17 years). 

In 1989, Geman (Doctoral Dissertation, University Paris I), for gen- 
eral models of interest rates, and Jamshidian [7], for Gaussian interest 
rates, independently offered the forward neutral probability (or forward 
risk-adjusted, depending on the author) as a general method for pricing 
a random cash flow under stochastic interest rates. 

This methodology has been used in a great number (see the Bibliog- 
raphy) of problems in finance and insurance, the first one being the ex- 
tension of the Black-Scholes formula to stochastic interest rates. This 
change of probability measure consists in taking as a new numrraire the 
zero coupon bond maturing at time T. The methodology of num6raire 
changes can be successfully extended to the pricing of different types of 
contingent claims (exchange options, quanto options, and so on). Cer- 
tainly, the nature of the price process is changed, but the gain in pricing 
and hedging a given contingent claim by using the appropriate numrraire 
is remarkable, as far as both the mathematics and the economic intuition 
are concerned. For instance, in the option of exchanging an asset $2 for 
an asset St, the important quantity is the price of $2 expressed in the 
numrraire St. This explains why the interest rate does not appear in the 
option price formula (see the remark by Gerber and Shiu, p. 129), and 
consequently why Margrabe's formula also holds under stochastic inter- 
est rates, the relevant volatility being the volatility of S2/St (involving 
in particular the correlation between St and $2). In the same manner, 
floating-strike Asian options are "easily" priced using the stock price 
itself as the num6raire. 

In summary, my point is that: 
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1. These numdraire changes do not preserve the nature of the initial 
price process. 

2. They induce, however, a remarkable simplification in the valuation 
of nonstandard contingent claims (a few lines to prove Margrabe's 
formula in a general setting or to price a cross currencies option or 
a quanto option). 

3. They have a clear economic interpretation, which extends to exhib- 
iting the hedging portfolio. 

In conclusion, I think that in order to make their interesting and well- 
written paper even more convincing, Drs. Gerber and Shiu should put 
more emphasis on the fact that the explicit formulation of the risk-neutral 
Esscher transform may allow one to compute option prices in a frame- 
work less well-known than the one addressed in their paper. This would 
give more power to this elegant manner of  obtaining results fairly clas- 
sical by now. 
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JAMES C. HICKMAN AND VIRGINIA R. YOUNG: 

We congratulate Drs. Gerber and Shiu for ingeniously deriving results 
that usually come from a great deal of messy calculating. Even though 
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the second discussant knew next to nothing about martingales when she 
first read their paper, she was able to follow their reasoning because of 
the elegance of their development. We thank the authors for bringing an 
otherwise inaccessible topic within the grasp of the average actuary. 

The reason we write is to comment on statements of Drs. Shiu and 
Gerber that appear toward the end of their introduction and in Section 
2.1, Remarks. They point out that the absence of arbitrage is "essentially 
equivalent" to the existence of an equivalent risk-neutral probability 
measure, or martingale measure. We discuss this topic only to expand 
on what the authors have written, not to contradict it. Much of what we 
have learned about this equivalence comes from Back and Pliska (ref. 
[5] in the paper), a very illuminating article. In addition to describing 

the  results of Back and Pliska, we comment on how the absence of ar- 
bitrage is connected with the axioms of subjective probability. 

An arbitrage opportunity is an investment strategy that guarantees a 
positive payoff in some contingency with no chance of a negative payoff 
and with no net investment. One may also think of arbitrage as the si- 
multaneous purchase and sale of the same or equivalent security to profit 
from price discrepancies. The no-arbitrage assumption has also been called 
a requirement that the market be internally consistent. 

As Drs. Gerber and Shiu note, in a finite, discrete-time model, the 
absence of arbitrage is completely equivalent to the existence of an 
equivalent martingale measure. Simply stated, an equivalent risk-neutral 
probability measure, or martingale measure, is a probability measure that 
has the same null events as the original measure and for which the value 
of a security is the expectation of its present value, as Drs. Gerber and 
Shiu mention in their introduction. Also, examine their equation at the 
bottom of page 103. 

Back and Pliska consider the care for which the state space is infinite. 
They remark that it is known that the existence of a martingale measure 
implies the absence of arbitrage. They next show that the converse is 
not generally true by giving an example of a market in which there is 
no arbitrage and for which no risk-neutral probability measure exists. In 
their example, the market has a countably infinite number of possible 
trading dates in a finite interval [0, T], T<oo. 

Back and Pliska consider other conditions related to the absence of 
arbitrage and the existence of a martingale measure. For example, "in 
great generality," one can show that the existence of an optimal demand 
for some agent who prefers more to less implies no arbitrage. Such an 
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investor has an optimal demand if there exists a contingent claim such 
that the price of the claim is less than or equal to the initial wealth of 
the investor and if the investor prefers that claim to any other affordable 
claim. Buried in this definition is a utility function that is increasing with 
respect to increasing wealth. 

Also, they show that the existence of a linear pricing rule implies no 
arbitrage. A linear pricing rule is a positive linear function on the space 
of contingent claims such that the value of a contingent claim is its price. 
A linear function is a function that is commutative with respect to sums 
of claims and scalar products of claims. 

Back and Pliska finish by stating conditions under which the absence 
of arbitrage implies the existence of a martingale measure. One set of 
circumstances is that there are only finitely many trading dates and that 
trading strategies are bounded stochastic processes.. Another set of con- 
ditions is given in a rather long proposition, so we will not repeat it here. 
Please refer to their paper for more details. 

When an equivalent martingale measure exists, the price for a contin- 
gent claim that pays 1 unit is simply the probability of the contingent 
event occurring, ignoring the value of time (Harrison and Kreps, ref. 
[42] in the paper). This property and the internal consistency required 
by no-arbitrage call to mind the axioms for personalistic, or subjective, 
probability. Jones [2] introduced the personalistic interpretation of prob- 
ability to the Society of Actuaries. His development is based on work 
by de Finetti, an Italian actuary, mathematician, and philosopher. De 
Finetti proposed that one could elicit a given person's subjective prob- 
ability as follows: The probability, p(E), of an event, E, occurring is the 
amount of money that the person is willing to pay in exchange for 1 unit 
if the event were to occur. Conversely, one requires that the person also 
be willing to accept the reverse bet, that is, pay l - p ( E )  in exchange for 
1 unit if the event were not to occur. 

In addition, the probabilities are to be consistent by not allowing a 
person to set up a series of gambles that guarantees a gain for at least 
one outcome and no loss for any outcome; that is, arbitrage is not per- 
mitted. This absence of arbitrage is a key consistency requirement for 
individuals assigning probabilities and is a characteristic of markets to 
which the developments of this paper are applicable. 

In his survey article, Ellerman [1] points out this close relationship 
between the no-arbitrage assumption of a market and the requirement for 
consistency in subjective probability. On the other hand, one can argue 
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that this resemblance is only superficial because if a martingale measure 
determines the prices for the market, then how can it be a subjective 
probability measure? Does the market somehow "crunch" the subjective 
probability measures of all the market players? Is this "crunching" a 
weighted average according to the money each invests? Or can invest? 

As one can see, our knowledge is limited, but our curiosity is not. 

REFERENCES 

1. ELLERMAN, D.P. "Arbitrage Theory: A Mathematical Introduction," SIAM Re- 
view 26, no. 2 (1984): 241-261. 

2. JONES, D.A. "Bayesian Statistics," TSA XVII (1965): 33-57. 

A.W. KOLKIEWICZ* AND K. RAVINDRAN*: 

Compliments and congratulations to Drs. Hans Gerber and Elias Shu 
for providing yet another alternative and mathematically interesting ap- 
proach to option pricing. Before discussing four major points, we would 
first like to bring to the authors' attention the article by Ravindran [14]., 
which discusses a recreational approach to option pricing. 

As both practitioners and academicians, we would like to add further 
insights to both the valuation and characteristics of  a spread option. A 
spread option can be more generally defined as a derivative security that 
pays off  at the option maturity time, -r, an amount that is max[0,  
Sl( 'O-S2( 'O-c] ,  where c, which is called an offset, can be any real num- 
ber. The uses of this option in practice are given in Ravindran [16], [17]. 
When the offset, c, in a spread option payoff  is set to 0, this option 
simplifies to a Magrabe or an exchange option. References [16] and [17] 
also illustrate the use of  an exchange option in practice. As first shown 
by Magrabe [12], it is easy to obtain an analytical expression to value 
a spread option with zero offset. It is also important to note that when 
this offset is non-zero, it is not possible to obtain a clean analytical 
expression, and as such, one has to resort to numerical methods. See, 
for example, Barrett, Moore and Wilmott [2]. Despite this, we find that 
the valuation and the trading of  a spread option can be made intuitive if 

*Mr. A.W. Kolkiewicz, not a member of the Society, is a doctoral candidate in the De- 
partment of Statistics and Actuarial Science at the University of Waterloo. 

*Dr. K. Ravindran, not a member of the Society, is both an Adjunct Professor in the same 
department and Head of the Customised Solutions Group at Toronto Dominion Securities 
Institute. 
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we employ the concept of conditional expectations, which has been dis- 
cussed by Ravindran [15]. 

Furthermore, the authors make an interesting comment that 8, the risk- 
free force of interest, is not present in the analytical expression at all. 
To intuit this comment, it is easier to think of a bird flying from east to 
west at a speed of x m/sec in a train that is also traveling in the same 
direction at the same speed. Thus, as long as both the bird and train are 
traveling in the same direction at the same speed, the relative speed of 
one to the other will be independent of x. In the same regard, if both 
the assets are growing at a rate of 8, the relative growth of one to the 
other will be independent of ~. This remark is true even if we assume 
that both asset 1 and 2 pay a continuously compounded dividend yield 
of ql and q2, respectively. To intuit this, we should first observe that 
asset 1 grows at a rate of ~-q~ and asset 2 grows at a rate of ~-q2- As 
such, the relative growth of one asset to the other is simply the difference 
ql-q2,  which is again independent of ~. The analytical expression given 
in Hull [9] attests to this intuition. For a non-zero offset, c, however, it 
would be reasonable to expect ~ to contribute to the option premium. 

The Black-Scholes equation, which was discovered 20 years ago, is 
still being used after two decades. Although during this time the deriv- 
atives community has been exposed to more sophisticated and accurate 
models, the Black-Scholes model has withstood its competition and the 
test of time. The reason for this is simply that the Black-Scholes model 
is intuitively very appealing. Although five input variables (that is, cur- 
rent stock price, risk-free rate of interest, strike price of option, maturity 
date of option, and volatility of the stock) are required to value an option 
on a non-dividend-paying stock, in liquid markets, the only source of 
uncertainty is volatility. Furthermore, in such markets, instead of in- 
putting the volatility values to obtain option premiums, traders in prac- 
tice input the market option values into the Black-Scholes equation to 
extract the volatility values. Volatility numbers obtained in this fashion 
are called implied volatilities. The traders then trade volatility by deter- 
mining whether this implied volatility, which is the market participants' 
view of volatility, is in reality correct. The use of a lognormal distri- 
butional assumption therefore allows for the existence of only one source 
of uncertainty. This sort of convenience is sacrificed when one uses the 
Poisson, gamma or the inverse Gaussian distribution. As such, we think 
that in considering the latter distributions, the authors have forsaken 
practical convenience for mathematical finesse. 
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Finally, the methodology presented in the paper can be extended to 
encompass a broader class of stock return distributions. Although stock 
return distributions have been widely studied, no single distribution has 
emerged as a clear winner from these studies, despite the common agree- 
ment that the returns' distributions should have tails that are fatter than 
the traditional lognormal distribution. See, for example, Becker [3], Kon 
[11], and Badrinath and Chatterjee [1]. 

As mentioned earlier, in addition to the lognormal process, the paper 
also discusses option valuation using both the gamma and the inverse 
Gaussian processes. Although the latter process allows for fatter tails, 
both the distributions have tails that decay exponentially. Given the fact 
that this rate of tail convergence is necessary for the existence of an 
Esscher transform, this should not come as any surprise. Such tail be- 
havior constraints, however, can be avoided by considering shifted pro- 
cesses and distributions that are supported, for example, on the domain 
(0, oo). Since this is the approach adopted by the authors for the two 
above-mentioned processes, it still remains to be answered whether 
Equation (2.10), which defines h*, can always be solved for a general 
distribution. Some insight to this question could have possibly been ad- 
dressed by the authors' earlier result (Gerber and Shiu [7]). Because of 
our inability to access this work, we briefly discuss this issue here. 

When discussing heavy-tailed distributions in the context of this paper, 
it is not unreasonable to think about stable Pareto distributions. Stable 
Pareto distributions are prominent members of the class of infinitely div- 
isible distributions that, subsequent to the original works of Mandelbrot 
[13] and Fama [5], have often been used to explain the stochastic b e - : .  
havior of stock prices. The interest in stable distributions is largely due 
to the facts that only stable laws have domains of attraction (generalized 
central limit theorem) and that stable distributions belong to their own 
domain of attraction (stability). From a practical viewpoint, stable laws 
are flexible, empirical models that are capable of explaining the observed 
leptokurtosis and skewness in return distributions. Moreover, they allow 
us to capture the essentials of probability structures when sample mo- 
ments exhibit a nonstationary behavior over time. 

A stable Pareto distribution can fundamentally be described by the 
shape (denoted by et, where 0 < a < 2 ) ,  skewness (denoted by 13, where 
1131_<1), location, and scale parameters. Amongst these, the most influ- 
ential is the shape parameter, which when decreased increases the tail 
probabilities. The interested reader is referred to Feller [6], Zolotarev 
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[18], and Klein [10] for further details on stable distributions. Two ob- 
vious drawbacks of these distributions are the lack of second moments 
(also the first if a < l )  and the absence of explicit expressions for the 
density functions. These disadvantages, however, are not major obsta- 
cles when one considers asset pricing using the notion of risk-neutral 
valuation. This is due to the fact that all that is needed is the knowledge 
of the measure under which the discounted process is a martingale. 

Suppose, for example, that X is a-stable, where 0 < a < 2 .  Then the 
random variable e x has no finite moments except when X is totally skewed 
to the left (that is, 13=-1). It is important to note that in this instance 
when a >  1, the support of this distribution is the interval (-0% oo). Thus, 
when 13=-1 and a > l ,  all moments of e x are finite, and setting the 
location parameter to 0 results in zero expectation. Hence, one can con- 
sider the modeling of the stock price movement using the process 
S(t )=S(O)e x~°, where t->0. 

The value of 13 that was used in deriving the above process also forces 
the right tails of the distribution of X(t)  to decay rapidly, and as a con- 
sequence, the moment-generating function, E(e~X), ~>-0, exists for all 
0<a-<2 and was shown by Gupta and Waymire [8] to be equal to 

exp~- - -~- -}  if a ~ 1 

[2cry In ~/) 
exp,- 

a"lT 

i f a  = 1, whereA = c o s - - .  
2 

Hence, one can now consider the approach proposed by the authors 
for a shifted a-stable process X(t)  = Y(t) + p~t, where Y(t) is a process with 
independent increments and an a-stable distribution with 13 = -  1, shift 
parameter of 0 and scale parameter of ~ (see Breiman [4] for 
definition of such processes). Using notations from the paper and letting 
A be as above, we have that 

M(z,  t) = E(e ~xct') = exp p.z --T-7 I t | ,  where z >- 0 

In particular, when a = 2 ,  we get the classic lognormally distributed 
stock price process. However, this transformed process does not have 
many of the nice properties of a Wiener process because 
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M(z + h, t) 
M(z ,  t; h) - 

M(h ,  t) 

0.2/[( z + h) '~ - h'~]} 
= exp ~zt  - 2 f t  ' where h >- 0, z + h -> 0 

implies that when h¢0 ,  the Esscher transform of a shifted a-stable pro- 
cess is no longer an o~-stable process. Despite this drawback, we still 
have a process with stationary and independent increments whose ex- 
pected values exist for all h - 0 .  Hence, Equation (2.10) now takes the 
form 

O -2 

- ~ [(1 + h * )  ~ - h *~] = ~. 

When a >  1 and h*->0, the above equation has an unique solution only 
if 8->lx-(cr2/2A). Since it is easy to show that ~ - (~2 /2A)  is the e~c- 
pected rate of return on the stock S(t),  we can readily conclude from tile 
last inequality that the risk-free rate of interest, ~, should be greater than 
or equal to the expected rate of return on the security. Intuitively, this 
would mean that it would be reasonable for us to demand compensation 
when we are forced to choose between investing in a risky asset over a 
risk-free asset. Mathematically, this implies that a martingale measure 
for the discounted stock process exists only if the expected rate of return 
on the process is equal to the risk-free rate of interest. Then equality 
(2.10) can only hold when h*=0,  and as such, the process itself is mar- 
tingale under the original measure and ~ is equal to 8+(O-2/2A), where 
the parameters O- and a need to be either estimated from the obs-6~rd 
stock process or implied from the market. It is interesting to note that 
when or=2, the process under the martingale measure is the same as the 
one derived by the authors for the Wiener process, although in this case 
there are no restrictions on the parameters. 

Obviously, the requirement that the parameters of the process satisfy 
the condition 8=p~-(cr2/2A) may in some cases be too restrictive. How- 
ever, it seems that for stable distributions this is the only possible result 
one can get using the Esscher transforms. Thus, it would be interesting 
to apply the method proposed by the authors to other distributions that 
could explain the observed leptokurtosis. 
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FR.qDI~RIC MICHAUD: 

First, I congratulate the authors for a very-well written paper. It shows 
how much actuaries can contribute to finance, and I am certainly looking 
forward to reading other such papers. The intention of this discussion is 
to stress the fact that it is natural to use Esscher transforms for pricing 
options. 

The key idea in option pricing is to replace the objective or physical 
probability measure by another probability measure. This new measure 
has to be an equivalent probability measure that is consistent with current 
market observations. It is the so-called risk-neutral probability measure. 
When searching for such a measure, one has to distinguish two cases. 

The first case is models for which only two outcomes can happen in 
a unit or infinitesimal time interval. This is the case of the models of  
Sections 3.2 and 3.3. In such cases, there exists only one risk-neutral 
probability measure. The model of Section 3.1 also has a unique risk- 
neutral measure, because it can be interpreted as a limiting case of  the 
models of Section 3.2 or 3.3. For these models, the price .of an option 
is unique. 

The second case is the one of "richer" models. For them, there are 
many risk-neutral probability measures. As a consequence, taking ex- 
pected values of the discounted payoff  with respect to such measures can 
lead to different results, and therefore there does not exist a unique "price" 
for the option. Then the following question comes up: Why should one 
choose Esscher transforms? The reason is clearly given in this paper: for 
many important cases, the Esscher transform remains in the same family 
of models as the objective probability measure. Thus it is very natural 
to use the risk-neutral Esscher transform to price an option, even though 
one can argue that a unique price does not exist. 

To illustrate this, we can generalize the model of Section 3.2 by re- 
placing the constant jumps of size k by random jumps. (Esscher trans- 
forms of compound Poisson distribution are discussed in references [6], 
[35] and [38] of the paper.) Let us assume (2.1) and (4.1.1), where the 
process {Y(t);t>-O} is a compound Poisson process with Poisson param- 
eter h and jump size distribution P(.). The moment-generating function 
of X(t) is given by 

M(z, t) = exp[ - c t z  + ht(m(z) - 1)] 

with 
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f0 ~ m(z) = e=dP(x). 

According to (2.6), we find 

[ 
M(z,  t; h) = exPl_-CtZ + hm(h)t  \ .  m-~) 

This shows that the risk-neutral Esscher transform remains in the family 
of compound Poisson processes, with unchanged value of c, new Poisson 
parameter kin(h), and jump amount distribution that is the Esscher trans- 
form of the original jump amount distribution• As with processes, the 
Esscher transform of a distribution remains in the family of the original 
distributions for most important cases. In particular, the gamma, expo- 
nential, normal, inverse Gaussian, negative binomial, geometric, and 
Poisson distributions are examples of such distributions. So not only does 
the process remain compound Poisson under the risk-neutral measure, 
but also the jumps often are in the same family of distributions as the 
original jumps. 

As an example, let us suppose that the jump sizes have an exponential 
distribution with moment-generating function 

[3 
m(z) - 

[3 - z 

From (2.10), we see that the risk-neutral Esscher parameter is implicitly 
defined by the equation 

- c + h  [ 3 - h * -  1 13 

This yields 

x[3 
[3* = [3 - h* = 0.5 + 0.25 + - - .  

~ + c  

Since 
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and 

x[3 hm(h*) = 
13" 

m(z + h*) [3* 
m(h*) [3* - z' 

the risk-neutral Esscher transform is a compound Poisson process with 
parameter h*=h13/13* and exponential jump distribution with mean 1/[3". 
Using (2.15) and G(x; a, [3) as defined as in Section 4.1.1, we get the 
following expression for a price of the option: 

[ ~o e-x*(h*)" 1 3 " 1 ) ]  S(0) 1 - ~.t G(K + ca'; n, - 

- K e  - ~ "  1 - ~.1 G(K + ca.; n ,  13") . 

H A L  W .  P E D E R S E N :  

Drs. Gerber and Shiu are to be congratulated for their insightful and 
instructive paper. In addition to presenting elegant original results, the 
paper offers new insights into several classical option-pricing formulas. 
My study of this paper has impressed me with the computational power 
of the Esscher transform framework. Formulas (2.15) and (6.6) and their 
applications illustrate this point. As the paper shows, the power of these 
formulas comes from the fact that we explicitly know the distribution of 
X(t) under the Esscher-transformed probability measure. 

It is by now a standard result that for complete models of securities 
markets, the price of a European call option on a stock with strike 
price K and expiration date a. may be obtained by the expectation 
EQ[e-r~(S(a.)-K)+], where Q is the unique probability measure under 
which {e-~S(t)} is a martingale. This equation is merely Equation (2.11) 
of the paper in a different notation. The determination of Q by the method 
of Esscher transforms is very elegant and is a nice result in the paper. 
However, I think that one of the more important insights of the paper. 
concerns the calculation of expressions such as EO[e-~(S(a.)-K)+] within 
the Esscher transform framework. Indeed, when one wishes to calculate 
this expression for the Black-Scholes model, one normally uses a formula 
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for the truncated mean of a lognormal distribution. More complicated 
options require even more laborious calculations. Why is it that such 
cumbersome calculations do not arise when one works in the Esscher 
transform setting? The answer lies in Equation (2.15) and the closure 
property of the Esscher transform for the types of processes considered 
in the paper. Equation (2.15) tells us that the price of the option may 
be expressed in terms of the Esscher-transformed distribution functions 
F(x, t; h). Therefore, if we know the form of these transformed distri- 
bution functions, then (2.15) allows us to immediately write down the 
price of the option. On the other hand, if we do not know F(x, t; h), 
then Formula (2.15) is of little practical importance. 

Although we will know the explicit form of F(x, t) for any given model, 
there is no reason to expect that we will also know F(x, t; h). Direct 
calculations of M(z, t; h), which are carried out in the paper, show that 
the form of F(x, t) is preserved under the Esscher transform for the models 
considered in the paper. For the one-dimensional Wiener, Poisson, and 
gamma models, the following table illustrates this point. 

Model F(x, t) M(z, t) 
Wiener N(x; Ftt, tr2t) exp(t[p.z+ V2tr2z2]) 
Poisson A((x+ct)/k; ht) exp(t[h(e :k- l ) - cz ] )  

Gamma G(x+ct; ett, f3) exp(t[ct log ( ~_z)-CZ]) 

Model M(z, t; h) F(x, t; h) 
Wiener exp( t[ (p. + crZh )z + Vztr2z2]) N(x; (l~ + cr2 h )t, trzt) 

Poisson exp(t[he~(e ~-  l ) - cz ] )  A((x+ct)/k; Xehkt) 
f3-h 

Gamma exp(t[etlog(~_--~_z)-CZ]) G(x+ct;ett, f3-h) 

The table emphasises that, for each of these three examples, the effect 
of the Esscher transform is to alter one parameter of the process, X. 
Consequently, F(x, t; h) will be known for any value of the Esscher 
parameter and Formula (2.15) will yield an immediate valuation formula 
for these models. 
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It would be nice to have a proof that for a certain class of distributions, 
the Esscher transform has the necessary closure property. Is it possible 
to use some general theory to establish the closure property of the Esscher 
transform? Is there some common property of the types of processes used 
in the paper that would allow us to conclude ex ante that the Esscher 
transforms of these processes are of the same type? 

We note that Formula (6.6) is another example of the insight that cer- 
tain option prices can be given explicit expressions in terms of Esscher- 
transformed distributions. This is perhaps the most important original 
insight of the paper. Here again, however, the utility of this result de- 
pends on the closure property of the Esscher transform. Although For- 
mulas (2.15) and (6.6) are valid only for the risk-neutral Esscher measure 
parameterized by h*, the factorization formula that is implicit in the proof 
of (2.15) and (6.6) is valid for arbitrary h. 

This paper offers a welcome new perspective on the computation of 
option values. The Esscher transform framework allows the authors to 
write down explicit formulas for option prices that have hitherto been 
computed in a cumbersome fashion. Section 6 of the paper concisely 
illustrates this point. 

WOJCIECH SZATZSCHNEIDER*: 

This paper is a user-friendly option-pricing theory. It deals specifically 
with European call options but can be extended to other derivative se- 
curities. 

The method unifies the theory of Option pricing for known models but, 
moreover, introduces the study of new ones. In the case of geometric 
Brownian motion, the method is equivalent to the one obtained by Dol6ans 
exponential. 

The method applied by the authors to Esscher similar processes [where, 
if process X(t) belongs to some well-defined class of processes, then X" 
( -  being the Esscher transform) belongs to the same class] is applicable 
to more general cases. 

To conclude, there are two questions that spring to mind: 
(1) Is it true that the Esscher transform is the only one that leads to 

the unified theory? 

*Dr. Szatzschneider, not a member of the Society, is Professor of Probability and Risk 
Theory, School of Actuarial Sciences, Universidad Anahuac, Mexico City. 
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(2) 
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What may be done with respect to a-stable processes, where un- 
fortunately, the method is ruled out? By this, I mean through a 
method similar to the one presented and not one analogous to the 
binomial model approach and the weak convergence argument. 

YONG YAO*: 

Drs. Gerber and Shiu have written an interesting paper, giving an el- 
egant and practical method for valuing derivative securities. 

In general, there are two techniques for valuing derivative securities. 
One is to use a no-arbitrage argument to get a partial differential equation 
or system ([1] and [3, Chapters 5 and 10]). The other is by means of 
martingales. The purpose of this discussion is to derive a stochastic ex- 
ponential formula relating the method used in the paper with the cus- 
tomary martingale approach ([3, Chapter 9], [4, Chapter 6], [5]). 

We fix a complete probability space (fl, F,  P) equipped with a filtra- 
tion {Ft}o<_,<_~. By afiltration we mean an increasing family of or-algebras 
{Ft}o<_t<_~ , FsCFt if s<-t. A probability measure Q is said to be equivalent 
to P provided that, for each event A, Q(A)>0 if and only if P(A)>0. 
For a stochastic process X={X(t)},~_o on (1~, F,  P), a probability measure 
Q is called an equivalent martingale measure if Q is equivalent to P and 
X is a martingale with respect to Q. A recent paper on equivalent mar- 
tingale measures is the one by Christopeit and Musiela [2]. 

A stochastic process is called a semimartingale if it is the sum of a 
local martingale and an adapted process with paths of finite variation on 
compact time intervals. A L~vy process is a stochastic process with sta- 
tionary and independent increments. The L6vy processes, which include 
the Brownian motion and the Poisson process as special cases, are pro- 
totypic examples of semimartingales. The stochastic exponential of a 
semimartingale X={X(t)},,_o with X(0)=0, written ~(X), is the unique 
semimartingale {Z(t)},_>o that is the solution of the equation: 

o r  

Z(t) = 1 + f l  Z(s-)dX(s), t > O, 

dZ(t) = Z(t-)dX(t), t > O. 

*Mr. Yao, not a member of the Society, is a graduate student at the University of Iowa. 
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For an introduction to semimartingales and stochastic exponentials, see 
Chapter 10 and Section 11.4 of Dothan's book [3] or Chapters 1 and 3 
of Protter's book [6]. 

The martingale approach is based on the "Fundamental Theorem of 
Asset Pricing," which states that, for certain frictionless securities mar- 
ket models, the absence of arbitrage is "essentially" equivalent to the 
existence of an equivalent martingale measure. There are two important 
elements in this approach: a stochastic process {X(t)},_-o on a complete 
probability space (1~, F, P) with filtration {F,}o__<,_<~ modeling the move- 
ments of the prices of the primitive securities, and an equivalent mar- 
tingale measure, Q, with respect to which the price of any derivative 
security is calculated as the expectation of its discounted payoffs. The 
probability measure, Q, is usually constructed via the Radon-Nikodym 
derivative, d Q / d P .  In the paper, the authors use the Radon-Nikodym 
derivative: 

dQ e hx 

dP E[ehX]" 

The customary martingale approach chooses a stochastic exponential as 
the Radon-Nikodym derivative. 

For a Brownian motion B={B(t)},~_o with mean per unit time 0 and 
variance per unit time tr 2, we have ([3, p. 284], [6, pp. 77-79]) 

1 
~(hB)(t) = exp(hB(t)  - -~ [hB, hB](t)) 

1 
= exp(hB(t)  - - cr2h2t). 

2 

Because 

E[e~(t)] = exp(~ tr2h2t), 

we obtain 

e hB 

E[ehB] -- ~(hB). 
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In general, for a L6vy process X={X(t)},>_o, there exists a local martingale 
V={V(t)},~_o such that 

e hX 
- -  - -  ~ ( v ) .  

E[ e hx ] 

To determine V, we state three lemmas without proof. 

Lemma 1. (It6's Formula) ([3, Theorem 11.21], [6, p. 74, Theorem 
33]). 

Let X=(X ~ . . . . .  X") be an n-tuple of semimartingale, and let f :  R"---~R 
have continuous second-order partial derivatives. Then f (X)  is a semi- 
martingale and the following formula holds: 

. f t  0 i 
f(X(t)) - f(X(O)) = ~ J0 --~xf(X(s-))dX (s) 

i= 1 + 

1 f" O 2 
+ 21 .~.~,, Jo+ ~ f ( X ( s - ) ) d [ X ' ,  XJl~(s) 

{, .o 
+ ( x ( s ) ) - i ( x ( s - ) ) -  

O<s<--t i= I 

Lemma 2. (L6vy Decomposition) [6, p. 32, Theorem 42]. 
Let X be a L6vy process. Then X has a decomposition: 

X(t) = B(t) + ~xt + K(t), 

where B={B(t)},~_o is a Brownian motion with zero drift, and K={K(t)},>_o 
is a pure jump semimartingale. 

Lemma 3. 
Let K={K(t)}t>_o be a pure jump semimartingale, and let 

J(t) = ~ {e harCs)- 1}. 
O<s<--t 

Then J={J(t)},>__o is also a pure jump semimartingale, and 

AJ(t) = e haxu) - 1. 

We are now ready to determine V. Let 
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L(h, t) - E[ehX~O]. 

From Section 2.1 of  the paper (because X is a L6vy process), 

E[e hx~')] = M(h,  t) = [M(h, 1)]' = exp[t In M(h, 1)]. 

Applying It6's Formula (with n=2)  to 

L(h, t) = exp[hX(t) - t In M(h,  1)], 

we have 

L(h, t) - 1 = fo 'L(h,  s - ) [hdX(s )  - In M(h, 1)ds] 

1 ~2h2 fO' + - L(h, s - ) d s  
2 

+ E [L(h, s) - L(h, s - )  - hL(h, s - )~X(s ) ] .  
O<s~t 

From Lemma 2, 

' L(h, s -  ldX(s) = o'L(h, s - )d[B(s )  + Ixs + K(s)] 

= L(h, s - )d[B(s )  + txs] + 

Because of  Lemma 2 and Lemma 3, 

L(h, s) - L(h, s - )  = L(h, s - ) ( e  htuc(') - 1) = L(h, s - ) & l ( s ) .  

For the pure jump semimartingale J ,  we can write 

E L(h, s - ) A J ( s )  = L(h, s - )dJ ( s ) ,  
O<s<--t 

so we get 

E [L(h, s) - L(h, s - ) ]  = L(h, s - )dJ ( s ) .  
O<s<~t 

171 

fo ' L(h, s - )d K( s ) .  
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Similarly, we have 

E L(h,  s - ) A X ( s )  
O<s<~t 

Thus 

L(h,  t) - 1 = 

Let 
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~0 l E L(h,  s - ) A K ( s )  = L(h ,  s - ) d K ( s ) .  
O<s<--t 

1 
L(h,  s - ) d { h B ( s )  + [Ixh - In M(h ,  1) + -  cr2hZ]s + J(s)}. 

2 

1 
V(t) = hB(t)  + [txh - In M(h,  1) + - cr2h2]t + J(t),  

2 

then V={V(t)}t>_o is a semimartingale, with V(0)=0, satisfying 

L(h,  t) - 1 = L(h,  s - ) d V ( s ) ,  

o r  

Because 

hX e 
E[ehX] - ~(V). 

fo " d L ( h ,  s)  

V(t) = L(h,  s - ) '  

V={V(t)},>_o is a local martingale. 
To illustrate the above, we present two examples. In Section 3.1 of 

the paper, 

X(t)  = B(t)  +.l~t, t >- 0; 

then 

V(t) = hB(t) ,  t >- O. 

In Section 3.2 of the paper, 

X(t)  = kN(t) - ct, t >- 0; 
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then 

V(t) = (e h~" - l ) [ N ( t ) -  ht], t >- O. 

REFERENCES 

1. BLACK, F., AND SCHOLES, M. "The Pricing of Options and Corporate Liabilities," 
Journal of  Political Economy 81 (I 973): 637-59. 

2. CHRISTOPEIT, N., AND MUSmLA, M. "On the Existence and Characterization of 
Arbitrage-Free Measures in Contingent Claim Valuation," Stochastic Analysis 
and Applications 12 ( 1994): 41-63. 

3. DOTHAN, M. Prices in Financial Markets. New York and Oxford: Oxford Uni- 
versity Press, 1990. 

4. DuFFlE, D. Dynamic Asset Pricing Theory. Princeton: Princeton University Press, 
1992. 

5. ELLIOT, R.AND KoPP, P. "Option Pricing and Hedge Portfolio for Poisson Pro- 
cess," Stochastic Analysis and Applications 8 (1990): 157-67. 

6. PROTTER, P. Stochastic Integration and Differential Equations: A New Approach. 
New York: Springer-Verlag, 1990. 

(AUTHORS'  REVIEW OF DISCUSSIONS) 

HANS U. GERBER AND ELIAS S.W. SHIU: 

We are grateful for receiving---ten discussions that-add-much breadth 
and depth to the paper. We thank the discussants for their thoughtful 
contributions. Before responding to their comments individually, we clarify 
and review some ideas in the paper, present a model extension to include 
dividend-paying stocks, and discuss an application of  Esscher transforms 
to the classical actuarial problem of  ruin probability. 

Consider a one-period model, in which there are only one riskless asset 
(a one-period bond with force of  interest 8) and one risky asset (a non- 
dividend-paying stock). With the notation in Section 3.3, the stock price 
at time 1 is 

S(1 ) = S(O~e x' . 

Let ~ denote the set of points on which XI has positive probability. 
Assume that 1"~ is finite and consists of more than one point; let a be its 
smallest element and b its largest, with 

a < 8 < b .  
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If f~ consists of two points only, f~={a, b}, then there is exactly one 
equivalent martingale measure; see (3.3.6) in the paper. [In this simple 
model, a martingale measure is a probability measure (indicated by A) 
such that 

/ ~ [ S ( 1 ) ]  = S(O)e ~, 
o r  

E(e -~+x') = 1.] 

If 1) consists of  more than two points, If~l>2, then there are infinitely 
many equivalent martingale measures, and we have an incomplete mar- 
ket model. In terms of linear algebra, the payoffs of the stock and bond 
can be viewed as two linearly independent vectors in the linear space 
R Inl. If  there are more than two states of nature at time 1 one 
bond and one stock cannot span all possible outcomes, as the vectors 
(e ~, . . . .  e b) and (e ~ . . . . .  e ~) can only span a two-dimensional subspace 
in R I~L. In order to obtain a complete market model, or a unique equiv- 
alent martingale measure, the number of independent assets must be the 
same as the number of states of nature at time 1. 

A main theme of the paper is that, for a certain class of stock price 
processes, there is a "natural" equivalent martingale measure. In the first 
part of  the paper we consider a non-dividend-paying stock whose price 
is given by 

S(t) = S(0)e x('), (R. 1) 

where the process {X(t)} has independent and stationary increments. For 
a theoretical "justification" that stock prices should be governed by such 
stochastic processes, see Samuelson [27] or Parkinson [23]. We assume 
that the moment-generating function of X(t), 

M(h, t) = E[ehX(t)],  

exists and that 

The process 

M(h, t) = M(h, 1)'. (R.2) 

{ehX('~M(h, 1)-'} (R.3) 

is a positive martingale and can be used to define a change of probability 
measure. That is, it can be used to define the Radon-Nikodym derivative 
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dQ/dP,  where P is the original probability measure and Q is the Esscher 
measure of parameter h. The risk-neutral Esscher measure is the Esscher 
measure of-parameter h=h* such that the process 

{e-~'S(t)} (R.4) 

is a martingale. The parameter h* is unique; for a proof see Section 2 
of our paper [12]. We reiterate that there may be many other equivalent 
martingale measures. 

In some statistical literature, the Esscher transform is known under the 
name exponential tilting. 

R e p r e s e n t a t i v e  I n v e s t o r  w i t h  P o w e r  Uti l i ty  F u n c t i o n  

Some discussants have raised an important question. When there is 
more than one equivalent martingale measure (incomplete market), why 
should the option price be the expectation, with respect to the risk-neutral 
Esscher measure, of the discounted payoff? This particular choice may 
be justified within a utility function framework. Consider a simple econ- 
omy with only a stock and a risk-free bond and their derivative securities. 
There is a representative investor who owns m shares of the stock and 
bases his decisions on a risk-averse utility function u(x). Consider a de- 
rivative security that provides a payment of 7r('r) at time "r, "r>0; ~r('r) is 
a function of the stock price process until time "r. What is the represen- 
tative investor's price for the derivative security, such that it is optimal 
for him not to buy or sell any fraction or multiple of it? Let V(0) denote 
this price. Then, mathematically, this is the condition that the function 

~('q) = E[u(mS(~) + "q[rr('r) - e~V(0)])] (R.5) 

is maximal for 0=0.  From 

6'(0) = 0 

we obtain 

V(O) = e - ~  E['rr("Ou'(mS('r))] (R.6) 
E[u'(mS('r))] 

(as a necessary and sufficient condition, since d~"('q)<0 if u"(x)<0). In 
the particular case of a power utility function with parameter c>0, 
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f xl-C 
- -  i f c ~  1 

u(x) = ~ 1 - c 

[ lnx i fc  = 1 
(R.7) 

we have u ' ( x )=x  -~, and 

V(O) = e - ~  E[~r('r)[mS('r)]-c] 

E[[mS('r) ]-~] 

= e -~  E[Tr('r)S('r)-C]. 
(R.8) 

E[S(,r) -¢] 

Formula (R.8) must hold for all derivative securities. For ~r('r)=S('r) and 
therefore V(0)=S(0), (R.8) becomes 

S(O) = e -s~ E[S(x)t-c] 

E[S('r)-C] 

M(1 - c, 'r), 
e-S'~S(O) 

M ( - c ,  "0 

o r  

e ~ _ M ( 1 - c ,  1) 

m ( - c ,  1) 

= M ( 1 ,  1; - c ) .  ( R . 9 )  

On comparing (R.9) with (2.9) in the paper, we see that the value of 
the parameter c is - h* .  Hence V(0) is indeed the discounted expectation 
of the payoff ~r('r), calculated with respect to the Esscher measure of 
parameter h* = - c .  

By considering different points in time "r, we get a consistency re- 
quirement. This is satisfied if the representative investor has a power 
utility function. We conjecture that it is violated for any other risk-averse 
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utility function, which implies that the pricing of an option by the risk- 
neutral Esscher measure is a consequence of the consistencY require- 
ment. Some related papers are Rubinstein [26], Bick ([5], [6]), Con- 
stantinides [9], Naik and Lee [22], Stapleton and Subrahmanyam [29], 
He and Leland [15], Heston [17], and Wang [31]. 

E x t e n s i o n  to D i v i d e n d . P a y i n g  S tocks  

The model can be extended to the case in which the stock pays div- 
idends continuously, at a rate proportional to its price. In other words, 
we assume that there is a nonnegative number q0 such that the dividend 
paid between time t and t+dt is 

q~S(t)dt. (R. 10) 

Thus, if all dividends are reinvested in the stock, each share of the stock 
at time 0 grows to e ~' shares at time t. The risk-neutral Esscher measure 
is the Esscher measure of parameter h=h* such that the process 

{e-(~-~)'S(t)} (R. 11) 

is a martingale. (The number ~p may be called the dividend-yield rate.) 
Because, for t->0, 

e hxt') S(t) h 
ehX(t)M(h, 1)-' - E[ehX(O-------- ] -- E[S(t)h], (R. 12) 

we have the following: let g be a measurable function and h, k and t be 
real numbers, t->0; then 

E[S(t)kg(S(t)); h] = E[S(t) k g(S(t)) ehX(')M(h, l)-t] 

E[S(t)h+k g(S(t))] 

E[S(t) h] 

E[S(t) h+k] E[g(S(t)) S(t) h+~] 

E[S(t) h] E[S(t) h+k] 

= E[S(t)k; h] E[g(S(t)); h + k]. (R. 13) 

This factorization formula simplifies many calculations and is a main 
reason why the method of Esscher transforms is an efficient device for 
valuing certain derivative securities. For example, applying (R. 13) with 
k= 1, g(x)=l(x>K), t=x and h=h*, we obtain 
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E[S('r)I(S("O > K); h*] = E[S('r); h*] E[I(S('r) > K); h* + 1] 

= E[S('r); h*] [1 - F(K, ~; h* + 1)]. 

Since (R. 11) is a martingale with respect to the risk-neutral Esscher mea- 
sure, we have 

E[S("r); h*] = S(O)e ¢~-'~)¢. (R. 14) 

Thus we obtain a pricing formula for a European call option on a div- 
idend-paying stock, 

E[e-~(S('r)  - K)+; h*] = E[e-~'(S('r) - K)I(S('r) > K); h*] 

= e-~{E[S('r)l(S('r) > K); h*] 

- KE[I(S('r) > K); h*]} 

= S(O)e - ~  [1 - F(K, "r; h* + 1)] 

- K e - ~ ¢ [ 1  - F(K,  -r; h * ) ] ,  (R.  15) 

which is a generalization of (2.15) in the paper. Formula (R.15) may 
also be used to price currency exchange options, with S('r) denoting the 
spot exchange rate at time -r, ~ the domestic force of  interest, and q0 the 
foreign force of interest. For {S(t)} being a geometric Brownian motion, 
(R. 15) is known as the Garman-Kohlhagenformula .  

The paper also considers the case of n stocks. Again, we can extend 
the model to dividend-paying stocks. For each j ,  j =  1, 2 . . . .  , n, we 
assume that there exists a nonnegative constant tpj such that stock j pays 
dividends of amount 

q~iSj(t)dt 

between time t and t+dt .  Now, the risk-neutral Esscher measure is the 
Esscher measure of parameter vector h = h *  such that, for each j ,  j =  1, 

, . . . ,  n, 

{e-(~-*J)'Si(t)} (R. 16) 

is a martingale. As pointed out in the second proof of the Theorem in 
Section 6, we have the factorization formula: 

E[S(t)kg(S(t)); h] = E[S(t)k; h]E[g(S(t)); h + k]. (R. 17) 

Formula (6.6) in the Theorem becomes 
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E[e-&Sj ( t )g (S ( t ) ) ;  h*] = S j (O)e -* /E[g(S ( t ) ) ;  h* + 1~]. (R. 18) 

Similarly, Corollary 1 (Margrabe option formula) is generalized as 

E[e-S*(Sl( 'r)  - S2('r))+; h*] 

= Sl(O)e-~ 'rPr[Sl (X)  > S2(a'); h* + ll] 

- $2(0) e-~2"Pr[Sl(x)  > S2('r); h* + 12], (R. 19) 

a special case of which is (R. 15). For the n-dimensional Wiener process 
model, Formulas (7.1) and (7.2) are generalized as 

I~ + Vh* = ~1 - (% + Ihcrll, q~2 + 1/20"22 . . . . .  q0 n + J/2crnn)' (R.20) 

and 

I~ + V(h* + lj) 

= ~ 1  - (q~l - O'lj  + I/2o'11,  ~02 

- cr2j + V20"22, . . . ,  % - cy,i + Ihcr,,,)', 

respectively. Here, 

and 

1 = ( 1 ,  1 ,  1 . . . . .  1 ) '  

(R.21) 

b =  (o . . . . .  o, 1 , o  . . . . .  o) ' ,  

where the 1 in the column vector lj is in the j-th position. 

S e m i c o n t i n u o u s  S t o c k  P r i c e s  

The sample paths of the stock prices considered in Sections 3.1, 3.2, 
4.1, and 4.2 of the paper are skip-free downward (jump-free downward). 
A stochastic process {X(t)} with stationary and independent increments 
and skip-free downward sample paths has the decomposition: 

X( t )  = Y(t)  + v2B(t) - ct,  t >- O, (R.22) 

where {Y(t)} is either a compound Poisson process with positive incre- 
ments or the limit of such processes, {B(t)} is an independent standard- 
ized Wiener process (with zero drift and unit variance per unit time), 
and the last term, ct, represents a deterministic drift. The cumulant gen- 
erating function of the random variable X( t )  is of the form 
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{fo } In [ M ( z ,  t)] = t (e z~ - 1 ) [ - d Q ( x ) ]  + v Z z 2 / 2  - cz  , (R.23) 

where Q(x)  is some non-negative and nonincreasing function with Q(o0)=0. 
Because 

ln[M(z, t; h)] = ln[M(z + h, t)] - ln[M(h, t)] 

= t (e ~ - 1 ) e ~ [ - d Q ( x ) ]  

+ v 2 z 2 / 2  - (c  - v 2 h ) z } ,  (R.24) 

under the Esscher measure of parameter h ~X(t)} is a similar process with 
the following modifications: 

d Q ( x )  ~ eh~dQ(x) ,  (R.25) 

v 2 ~ v 2 (unchanged), (R.26) 

c ~ c - v2h.  (R.27) 

To obtain the models proposed in Sections 4.1 and 4.2, let v=0  and 

Q ' ( x )  = - - a x ~ - t e - b x ,  x > 0, (R.28) 

where a>0 ,  b>0  and o r> -  1 are three parameters. [In the context of risk 
theory, we [10] have considered such a Q ( x )  function.] Then {Y(t)} is a 
compound Poisson process for ct>0, a gamma process for or=0, and an 
inverse Gaussian process for a = -  1/2. For a proof of these results, see 
the Appendix of our paper [ 12]. 

Hedging 
Some discussants have stated that derivative securities should be priced 

by constructing hedging portfolios. Since we never addressed this issue 
in the paper and some members of the Society may be unfamiliar with 
the idea, let us give an illustration using the model in Section 3.2, where 
the price of the non-dividend-paying stock is 

S( t )  = S (O)e  ~v~°-",  (R.29) 
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with k and c being constants and {N(t)} a Poisson process. We are to 
determine the price of a derivative security, V(S( t ) ,  t),  from a portfolio 
of  stock and risk-free bond replicating its payoff.  Consider a portfolio 
with the amount 

,q = rI(S(t),  t) (R.30) 

invested in the stock at time t and the amount V(S( t ) ,  t ) - ' q  in the risk- 
free bond. The amount TI is such that the derivative security price and 
the portfolio value have equal instantaneous change. By considering 
whether there will be an instantaneous jump in the stock price, we have 
the following two conditions: 

V(Se  k, t) - V(S ,  t) = "qe k - "q, (R.31) 

and 

V,(S, t) - cSVs(S ,  t) = - c ' q  + 8[V(S ,  t) - "q] 

= 8V(S ,  t) - (~ + c)'q. 

Formula (R. 31) yields 

(R.32) 

V(Se  k, t) - V(S ,  t) 
= (R.33) 

"q e k - 1 

Thus (R.32) becomes 

V,(S, t) - cSVs(S ,  t) = 8V(S ,  t) - h * [ V ( S e  ~, t) - V(S ,  t)], (R.34) 

8 + c  

e k - 1' 

where 

h * -  

the same as (3.2.6) in the paper. 

(R.35) 

Now, let W(S( t ) ,  t) denote the value at time t of  the expected dis- 
counted payoffs of  the derivative security; the expectation is taken with 
respect to the probability measure corresponding to the Poisson param- 
eter h*. Let s be a very small positive number. By the Poisson process 
assumption, the probability that a jump in the stock price will occur  in 
the time interval (t, t+s )  is h * s + o ( s ) .  Thus, conditioning on whether  
there are stock-price jumps in the interval (t,  t + s ) ,  we have 
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W(S, t) = e-~S[(1 - h*s)W(Se -¢s, t + s) 

+ h*sW(Se k-'~, t + s)] + o(s), (R.36) 

o r  

(1 + ~s)W(S, t) - W(Se -c~, t + s) 

= X*s[W(Se k-c~, t + s) - W(Se -c~, t + s)] + o(s). 

Dividing the last equation by s and letting s tend to 0 yields 

~W(S, t) + cSWs(S, t) - W,(S, t) = X*[W(Se k, t) - W(S,  t)], (R.37) 

which is identical to (R.34). Consequently, the price of  the derivative 
security, V(S, t), is calculated as the expected discounted payoffs ac- 
cording to the provisions of  the contract; the expectation is taken with 
respect to the measure corresponding to the Poisson process with param- 
eter h*. 

We note that, in constructing the replicating portfolio, we did not use 
the assumption that {N(t)} is a Poisson process. Thus N(t) in (R.29) may 
be assumed to come from a counting process; the equivalent martingale 
measure is the measure with respect to which {N(t)} becomes a Poisson 
process with parameter h* given by (R.35). A replicating portfolio can 
be constructed because at each point of  time the stock price has only 
two possible movements,  both with known magnitude. 

It is interesting to consider the limiting case where k ~ 0 and c ~ 
such that the variance per unit time of  the exponent in (R.29) is constant: 

~ + c  
h*k z = - -  k 2 = ~r 2. (R.38) 

e k -  1 

This is the classical lognormal model (see Section 3.1). In the limit (R.33) 
becomes 6 

"q = SVs(S, t), 

showing that the ratio, ,q(S(t), t ) /S ( t ) ,  is given by Vs(S(t), t), which is 
usually called delta, A, in the option literature. Also, by  the Taylor 
expansion, 
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X*[V(Se k, t) - V(S,  t)] = X*{(e k - 1)SVs(S,  t) 

+ [(e k - 1)S]ZVss(S, t ) / 2  + O(k3)} 

= (8 + c)SVs(S ,  t) + 0-2SZVss(S, 0 / 2  + O(k) .  

Thus in the limit (R.34) becomes 

0 -2 

Vt(S, t) = ~V(S,  t) - 8SVs(S,  t) - - -  SZVss(S, t). (R.39) 
2 

This partial differential equation was first derived by Black and Scholes 
• [7] with a replicating portfolio argument. 

Some discussants have referred to research papers on hedging. Perhaps 
we can add one more reference. The paper [30] by Stricker is a brief 
survey of some recent results on pricing contingent claims in an incom- 
plete market, where there are multiple equivalent martingale measures 
and therefore multiple "prices" for a general contingent claim; it studies 
the relationship between the maximum price and the existence of hedging 
strategy and gives necessary and sufficient conditions for a contingent 
claim to be representable with respect to the discounted price process. 

Change of Num&raire and Homogeneous Payoff Function 
The remark that there is no interest rate in the European Margrabe 

option formula (7.6) has prompted explanations from two discussants. 
The result may be viewed in a more general setting. Consider the div- 
idend-paying extension of the n-stock model in Section 6. Let the payoff 
of a European option or derivative security with exercise date • be 

I-I(SI(x) . . . . .  S,('r)). (R.40) 

For example, the Margrabe option has the payoff function 

YI(sl,  s2) = (sl - sz)+. (R.41) 

Let E,[.] denote the expectation conditional on all information up to time 
t. For 0-<t-<x, let V(t) denote the price of the security at time t, calculated 
with respect to the risk-neutral Esscher measure, 
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V(t) = E,[e-~'-')I-I(SI('r) . . . .  , S,('r)); h*] 

= E,[e-8~'-')Sj(~)II(SI(r) . . . . .  S,(r))/Skr); h*] 

= Et[e -~(x - t )S j (7 ) ;  h*] Et[II(Sl(r) . . . . .  S,(x))/Sj("r); h* + l j ]  

= e-~J~-°Sj(t)E,[l-I(Sl("O . . . . .  Sn(r))/Sj('r); h* + lj]. 

e~J'SJ( t ) -  - E, e ~ -Sj(r) lq(Sl(r) . . . . .  S,('r)); h* + lj , (R.42) 

from which it follows that, with respect to the Esscher measure of pa- 
rameter vector h*+l j ,  the process 

V(t) ;O<-t<-x  I (R.43) 
e~J'Sj(t) 

is a martingale. In particular, with respect to the Esscher measure of 
parameter vector h*+l j ,  the processes 

e~J,Sj( t) j (R.44) 

and 

{ e~k'Sk(t) ~ 
e~J,Sj(t ) j (R.45) 

are martingales. To explain the denominator e~J'Sj(t), we consider stock 
j as a standard of value or a num~raire. In other words, we consider a 
mutual fund consisting of stock j only and all dividends are reinvested. 
All other securities are measured in terms of the value of this mutual 
fund. 

Now, we assume that the payoff function II is positively homogeneous 
of degree one with respect to the j-th variable, 

II(s~ . . . . .  s,,) = sj 1-l(s~/sj . . . . .  s j_~/s j ,  1, s j+~/sj  . . . . .  s , , / s j ) ,  sj > O, 
(R.46) 

which is a condition satisfied by (R.41) with both j =  1 and j=2 .  Then 
(R.42) becomes 
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 R47 ' e,JtSj(t ) - Et II \e~J,Sj(.O . . . . .  e~Sj( .r )] ,  

The fight-hand side is an expectation, with respect to the Esscher mea- 
sure of parameter vector h*+ lj, of a function of the (n-1)-dimensional 
random vector 

( x , ( ¢ )  - x j ( ¢ )  . . . . .  x j _ , ( ¢ )  - x j ( ¢ ) ,  x j + , ( ¢ )  - x j ( ~ )  . . . . .  x . ( ¢ )  - x ~ ( T ) ) ' .  

(R.48) 

In the case that {X(t)} is an n-dimensional Wiener process, (R.48) is a 
normal random vector, and it follows from (R.21) that its mean does not 
involve the force of interest g, and of course its ( n -  l)-dimensional co- 
variance matrix, which is the same for all h, does not depend on ~. Thus 
the price of the derivative security, V(t), does not depend on g. 

P r o b a b i l i t y  o f  R u i n  

The idea of replacing the original probability measure by an Esscher 
measure with an appropriately chosen parameter has an elegant appli- 
cation in classical actuarial risk theory. Let {U(t)} be the surplus process, 

U(t) = u + X(t), (R.49) 

where u->0 is the initial surplus and X(t) the aggregate gains (premiums 
minus claims) up to time t. We suppose that the process {X(t)} has in- 
dependent and stationary increments, satisfies (R.2), and has a positive 
drift, 

E[X(I)] > 0. (R.50) 

Let 

T = inf{tlU(t) < 0} (R.51) 

be the time of ruin. The probability of ruin before time m, m>0,  is 

t~(u, m) = Prob(T < m) = E[I(T < m)]. (R.52) 

Let a A b  denote the minimum of a and b. By a change of measure, 

~(u, m) = E[I(T < m)e-hX(rAm)M(h, l)r/xm; h] 

= E[I(T < m)e-~X(nM(h, l)r; hi, (R.53) 
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which can be simplified if h is chosen as the nontrivial solution of the 
equation 

For simplicity we write 

It follows from 

M(h, 1) = 1. (R.54) 

M(h) = M(h, 1). 

M"(h) = E[X(I)Ze hx(l)] > 0 

that M(h) is a convex function. Thus Equation (R.54) has at most one 
other solution besides h=0 .  Because 

M'(0) = E[X(1)] > 0, 

the nontrivial solution for (R.54) is a negative h. Following the usual 
notation in risk theory, we write this solution of (R.54) as - R .  (R is 
called the adjustment coefficient.) With h = - R ,  (R.53) becomes 

O(u, m) = E[I(T < m)eRX~r); -R] .  (R.55) 

The probability of  ruin over an infinite horizon is 

~(u) = t~(u, ~) (R.56) 
= E[I(T < oo)eRXCr); -R] .  

Now, 

E[X( 1 ); - R ]  = E[X( 1 )e-RX(I)] 

= M ' ( - R )  

< 0 ,  

because M is a convex function. An aggregate gains process with a neg- 
ative drift means that ruin is certain. Thus, under the Esscher measure 
of  parameter - R ,  

I(T < oo) = 1 

almost surely, and (R.56) simplifies as 

t~(u) = E[eRXtr); - R ]  

= E[eRU~r); - R ] e  -R" (R.57) 
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This approach to the ruin problem can be found in Chapter XII of 
Asmussen's book [1], and he has attributed the idea to von Bahr [3] and 
Siegmund [28]. Formula (R.57) should be compared with (12.3.4) in 
Actuarial  Mathemat ics  [8, p. 352], 

e-gU 

t~(u) = E[e_RU¢r ~ j T < oo]' 

where the conditional expectation in the denominator is taken with re- 
spect to the original probability measure. 

Responses 
We now respond to the discussions alphabetically. Some of our replies 

already appear in the above. 
Dr. Carriere has provided a rigorous proof that an American call option 

on a non-dividend-paying stock is never optimally exercised before .its 
maturity date. In other words, the option is always worth more alive 
than dead. Indeed, his proof also applies to the Margrabe option, whose 
payoff function is given by (R.41). As long as stock 1 does not pay 
dividends, an American Margrabe option is never optimally exercised 
before its maturity date. In other words, the price of an American Mar- 
grabe option is the same as the corresponding European Margrabe op- 
tion, if stock 1 pays no dividends. Similarly, Dr. Carriere's second proof 
can be generalized to the case in which the exercise price, K, is replaced 
by a stock price, S,+~(t). The condition remains that none of the first n 
stocks pays dividends. 

Dr. Cox has presented an elegant derivation of the Geske compound 
option formula. As he points out at the end of his discussion, the formula 
can be further generalized to the case of a dividend-paying stock. This 
provides an excellent exercise for the interested reader, who can derive 
the more general formula by applying the property that (R. 11), not (R.4), 
is a martingale under the risk-neutral Esscher measure. 

Drs. Delbaen, Schachermayer and Schweizer point out that there are 
many ways of obtaining a "reasonable" price for an option. They state 
a minimax theorem defining an interval of option prices that are feasible 
and do not allow arbitrage profit. It would be interesting to know what 
these intervals are for the two models in Section 4 of the .paper. Their 
list of references contains cutting-edge papers on the mathematical theory 
of option pricing. Their last comment concerns how one may recover all 
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but one parameter from a trajectory. Section 4 of our paper [10] shows 
how one recovers such parameters for the gamma process. 

We have already responded to some of Dr. Geman's comments in the 
above. One approach to extending the method of Esscher transforms to 
a stochastic interest rate setting is to start with the assumption that the 
discounted stock price process, 

has stationary and independent increments. The concept of forward neu- 
tral probability or forward risk-adjusted measure is indeed an important 
one for pricing European options. The paper by Pedersen and Shiu [24] 
has used it to price the GIC rollover option. We certainly agree that the 
ease in pricing "a given contingent claim by using the appropriate num6raire 
is remarkable." Indeed, Margrabe [20] applied this change-of-num6raire 
technique to obtain his option-pricing formula. We ([13] and [14]) have 
used the method to derive closed-form formulas for pricing perpetual 
American options whose payoff functions are positively homogeneous 
with respect to two stock prices; the perpetual American Margrabe option 
is a special case. 

Drs. Hickman and Young have given a precise summary of the results 
in the paper by Back and Pliska [2]. They also point out that the principle 
of  no arbitrage is related to the work of de Finetti on subjective prob- 
ability. In a 1937 paper, de Finetti showed that, if odds are posted on 
each set in a finite partition of a probability space, then either the odds 
are consistent with a finite additive measure or a sure win is possible. 
Members of the Society were introduced to the theory of subjective prob- 
ability by Jones [18]. In a complete market, there is a unique equivalent 
martingale measure; if an investor's subjective probability measure is 
equivalent to this measure (that is, there is an agreement on what future 
states of nature are possible), the investor's price of a security is the 
value calculated with the equivalent martingale measure. However, in 
an incomplete market, the investor would use his utility function and 
subjective probabilities to determine acceptable prices. An illustration is 
(R.6), where the expectations are calculated with the investor's subjec- 
tive probability measure. 

Mr. Kolkiewicz and Dr. Ravindran have provided many practical ref- 
erences and argued, by "general reasoning," why the Margrabe option 
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formula involves no interest rate. They also consider modeling the log- 
arithm of the stock price as a shifted a-stable process. It is perhaps im- 
portant to stress that the formulas are for 13=-1; otherwise, E[S(t)]=oo. 

Mr. Michaud demonstrates that the Esscher transform of a compound 
Poisson process is again a compound Poisson process with a changed 
Poisson parameter and a jump distribution that is the Esscher transform 
of the original jump distribution. He has presented an elegant option 
formula for the exponential-Poisson model. In the finance literature, there 
is another approach to pricing options on stocks with a compound Pois- 
son component; see Merton [21] and Kim, Oh and Brooks [19]. 

Mr. Pedersen points out that, to effectively use the method of Esscher 
transforms, one should pick a process {X(t)} with known F(x, t; h). His 
table is a nice summary of results. We do not have explicit answers to 
his questions. However, (R.25) and Mr. Michaud's discussion give a 
partial answer. 

We are not sure what is meant by "the unified theory" in Dr. Szatz- 
schneider's first question. With respect to his second question, the last 
part of the discussion by Mr. Kolkiewicz and Dr. Ravindran provides a 
partial answer; Chapter 15 of Peters' book [25] describes McCulloch's 
work on pricing "European options with log-stable uncertainty." 

Mr. Yao has given several interesting calculations in his discussion. 
Stochastic calculus is now in the syllabus of a Fellowship examination. 
When candidates find such formulas in a future examination, they will 
know who is responsible for giving the examiners the idea. 

We thank all 14 discussants for their thought-provoking comments. It 
is appropriate to repeat Dr. Hickman and Dr. Young's closing remark, 
which we share: "Our knowledge is limited, but our curiosity is not." 
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