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ABSTRACT 

This paper develops a general approach to actuarial calculations in 
applications that~can be modeled as multistate processes. Such situations 
arise when benefits are payable upon a change in the status of the insured 
or while the insured maintains a given status. Examples include life in- 
surance, annuities, pensions, disability income insurance, and certain types 
of long-term-care insurance. 

The method is based on convenient matrix results that are available 
when a continuous-time Markov model with constant forces of transition 
is assumed. In this case probabilities are easily obtained regardless of 
the number of states. This is of considerable benefit because it allows 
us to deal with very complicated actuarial problems. 

Section 1 provides background on the kinds of problems for which the 
approach is suitable. The basic properties of the Markov process are 
presented in Section 2. Considered here are some useful results that hold 
under the assumption of constant or piecewise constant forces of tran- 
sition. Section 3 addresses the situation in which the Markov assumption 
is inappropriate. Rather than using a more general semi-Markov model, 
one can reflect duration dependence by increasing the number of states 
in the model. This is justified by a limiting result and demonstrated by 
an example that applies the approach to select and ultimate mortality. 

1. INTRODUCTION 

1.1 Background 

Some traditional problems in actuarial mathematics are conveniently 
viewed in terms of multistate processes. We assume that, at any time, 
an individual is in one of a number of states. The individual's presence 
in a given state or movement (transition) from one state to another may 
have some financial impact. Our task then is to quantify this impact, 
usually by estimating the expected value of future cash flows. 

The simplest situation involves only two states: "alive" and "dead." 
As shown in Figure 1, an individual may make only one transition. For 
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1 Alive 
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FIGURE 1 

EXAMPLE OF Two*STATE MODEL 

2 Dead 

a simple life annuity, benefits are payable while the annuitant is in state 
1 and cease upon transition to state 2. In the case of a whole life insur- 
ance policy, premiums are payable while the insured is in state 1, and 
the death benefit is paid at the time of  transition to state 2. Approaches 
to calculating actuarial values in these cases are simple and well-known 
(see Bowers et al. [1]). 

A more complicated situation arises for processes with additional states. 
Figure 2 illustrates the three-state process commonly used to describe 
the state of an individual insured under a disability income policy. In 
this case, premiums are payable while the insured is in state 1, and ben- 
efits are payable while the insured is in state 2 (usually after a waiting 
period). Actuarial calculations for this example are more difficult be- 
cause the individual can make repeat visits to each of states 1 and 2. 

FIGURE 2 

EXAMPLE OF THREE-STATE MODEL 

1 Active 

3 Dead 

> 2 Disabled 
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For this reason it is often assumed that transitions from state 2 to state 
1 are not possible. 

A multistate model provides an intuitively pleasing description of the 
possible outcomes in numerous other areas. In examining a long-term- 
care system, we can represent the several levels of care available as states 
of a multistate model. Ongoing costs could then be associated with each 
state. We could use a multistate process in a life insurance context to 
describe the movement of individuals among various risk categories such 
as smoking status and blood pressure grouping; this is discussed by Tol- 
ley and Manton [23]. Pension plans can also be modeled within a multi- 
state framework. In the simplest case, we would require states for work- 
ing plan members, retirees, and those who have died. A more complicated 
model might require a disabled state and three retired states that reflect 
the status of a joint and last survivor annuity. 

Many authors have used multistate models to analyze actuarial prob- 
lems. Much of this work has drawn on the theory of stochastic processes 
to obtain new results of interest and to generalize results of more tra- 
ditional methods. Such models are most tractable when it is assumed 
that the process satisfies the Markov property. Under this assumption, 
Hoem [5, 7] generalizes a number of standard results from life contin- 
gencies. Wolthuis and van Hoek [27] consider the expected value and 
variance of the loss function in a Markov model setting. The stochastic 
properties of the profit earned on an insurance policy are examined by 
Ramlau-Hansen [17, 18], who also analyzes the distribution of surplus 
[19]. Tolley and Manton [23] propose models for morbidity and mor- 
tality that include various risk factors in the model state space. In mod- 
eling the mortality of individuals infected with the HIV virus, Panjer 
[12] and Ramsay [16] use a Markov process with states that represent 
the stages of infection. Waters [24] discusses the development of for- 
mulas for probabilities and the estimation of parameters in a Markov 
model. The use of more general stochastic models is considered by Hoem 
[6], Hoem and Aalen [8], Ramsay [15], Seal [21], and Waters [25, 26]. 

1.2 Ac tuar ia l  Calculat ions  

Premiums and reserves for insurance and annuity contracts that are 
long term are usually based on the present value of payments to be made 
under the contract (both premiums and benefits). Typically, the occur- 
rence, timing and/or amount of each payment is not known exactly in 
advance; it depends on some random outcome. Thus, it is customary to 
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calculate the expectation of this present value. Such expected present 
values are easily Obtained in the two-state case described earlier, since 
the random outcome can be represented as a single random variable, 
T(x) ,  measuring the time until death of an individual currently age x. 
For example, the expected present value of a continuous annuity paying 
1 per annum for the remaining lifetime of an individual aged x is 

;0 ;o E[ar--~] = if,-1 ,Px txx+t dt = vt ,px dt. 

The expected present value of  1 payable upon the death of an individual 
aged x is 

E[v r<x)] = fo ~ v '  ,Px ~x+, dt. 

In the three-state case shown in Figure 2, the expected present value 
calculation is more difficult. Suppose we seek the expected present value 
of  1 payable continuously while in state 2 to an individual currently age 
x in state 1. This can be written 

o=Vtpl2(x, x + t) dt, 

where pu(x, x + t )  is the probability that an individual currently age x in 
state i will be in state j at age x + t .  Unfortunately, this probability is not 
easy to obtain because it must allow for the possibility that the individual 
returns to state 1 one or more times between ages x and x + t .  If we make 
the simplifying assumption that transitions from state 2 to state 1 cannot 
occur, then 

fO I I + 13 p 1 2 ( X ,  X + t) = e- fr(~,u  ¢x+,)du IXx+s12 e-f'~¢~3+~au ds, 

where Ix~ is the force of transition from state i to state j at age y. The 
integrand in this expression can be interpreted as the probability that an 
individual in state 1 at age x moves to state 2 between age x + s  and 
x + s + d s  and remains in state 2 until age x+t .  This "no recovery" as- 
sumption is often made in analyzing long-term disability insurance. 
However, for coverages in which transitions occur more frequently, such 
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an assumption is inappropriate. We therefore need a general method of 
finding the probabilities pij(t,x+t) in multistate models with three or more 
states. 

Keyfitz and Rogers [9] provide a method for determining transition 
probabilities under a Markov process. The approach was developed by 
assuming that forces of transition are constant within age intervals of a 
fixed length. Transition probability matrices can then be calculated re- 
cursively for time periods that are multiples of this age interval. My 
method leads to expressions for the transition probabilities that are more 
convenient for certain types of calculations. I also provide a strategy for 
dealing with duration dependence, an issue not considered by Keyfitz 
and Rogers. 

1.3 Outline o f  Paper 
This paper presents a method for finding probabilities needed for ac- 

tuarial calculations in applications that can be represented as multistate 
processes. Earlier research has focused on finding theoretical results un- 
der various multistate model assumptions. This paper provides trch- 
niques for calculating numerical results that are easily applied to a wide 
variety of problems. The approach is suitable for situations involving an 
arbitrary, but finite number of states. Thus, it may be a useful tool in 
analyzing complicated actuarial problems such as those presented by dis- 
ability income insurance and long-term-care insurance. 

Section 2 begins with a brief review of the properties of the Markov 
process. I then present a key result that exploits the mathematical tract- 
ability of Markov processes with constant forces of transition. I use a 
decomposition of the force of transition matrix that leads to a convenient 
representation of the transition probability matrix. The latter is expressed 
explicitly in terms of the time interval of interest. Furthermore, the prob- 
abilities are linear combinations of exponential functions. Therefore, the 
integration needed to compute expected sojourn times in the various states 
as well as actuarial values can be carried out analytically. This is also 
true when the forces of transition are piecewise constant. Thus, my ap- 
proach avoids the numerical integration required by the method of Key- 
fitz and Rogers [9]. 

The idea of "duration dependence" is discussed in Section 3. Fre- 
quently actuaries encounter applications in which the forces of transition 
should depend on the time since entry to the current state. Such a process 
is called "semi-Markov." Unfortunately, the probabilities we seek are 
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not easily obtained when using a semi-Markov model. However, by cre- 
ating additional states, we can construct a Markov model that approxi- 
mates the semi-Markov model. This approximation is justified by a lim- 
iting result that illustrates the convergence of the approximating Markov 
process to the semi-Markov process. I also provide a numerical example 
that allows for the duration dependence involved with select and ultimate 
mortality by including a third state. The two "alive" states are interpreted 
as "select" and "ultimate." This three-state Markov model with piece- 
wise constant forces of transition yields probabilities that are very close 
to those obtained directly from the mortality table upon which parameter 
values were based. 

Section 4 closes the paper with a brief summary. 

2. THE MARKOV PROCESS 

2 . 1  B a s i c  P r o p e r t i e s  

As discussed in the previous section, we consider actuarial problems 
in which the cash flows depend on the outcome of a multistate process. 
To begin, let X(t) represent the state of an individual at time (age) t->0. 
We then denote the stochastic process by {X(t), t->0}. We assume that 
there are a finite number of states labeled 1, 2 . . . . .  k; that is, the process 
has state space {1, 2, ..., k}. Now, as defined by Ross [20, ch. 5], {X(t), 
t-->0} is a Markov process if, for all s, t->0 and i, j ,  x(u)~{1, 2 . . . . .  k}, 

Pr{X(s + t) = j ~ ( s )  = i, X ( u )  = x (u ) ,  0 <- u < s} 

= Pr{X(s  + t) = j~X(s )  = i}. 

Thus, the future of the process (after time s) depends only on the state 
at time s and not on the history of the process up to time s. 

The reasonableness of the Markov assumption depends somewhat on 
the level of detail in the state description. For example, consider the 
three-state process shown earlier in Figure 2. In this case, the Markov 
assumption may be inappropriate. The future health of a recently disabled 
individual is likely to differ from that of someone of the same age who 
has been disabled for a long time; this is discussed further in Section 3. 

We define the transition probability function 

p o ( s ,  s + t) - Pr{X(s + t) = j ~ g ( s )  = i}, i, j E {1, 2 . . . .  , k}, 

and assume that 
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k 

Z P o ( S , S + t ) =  1 for a l l t ->O.  
j = l  

We also assume the existence of  the limits 

pu(t ,  t+h)  - gi~ 
Ixij(t) = lim , i, j E {1, 2 . . . . .  k}, 

h-*O + h 

where 

if/=  
otherwise. 

If  i # j ,  ixo(t) represents the force of  transition from state i to state j .  It 
is easily seen that, for s, t, u---O, 

k 

pO(s, s + t + u) = Z Pit(s, s + t) po(s  + t, s + t + u), 
I=1 

( 1 )  i, j E { 1 , 2  . . . . .  k}. 

These are known as the Chapman-Kolmogorov equations. 
The transition probability functions are needed in the calculation o f  

actuarial values. The forces of  transition and the transition probability 
functions are related by the Kolmogorov forward and backward equa- 
tions, which are 

k a 
~ pij(s, s + t) = Z Pit(s, s + t) tx,j(s + t), (2) 
O t  /=1 

k 
0 

-~s pij(s, s + t) = - Z Ixit (s) po(s ,  s + t), 
1=1 

(3) 

and 

respectively, with boundary conditions po(s ,  s )=~  o. In general, these 
systems of differential equations must be solved numerically to obtain 
the transition probability func t ions- -a  very tedious task. 

2 .2  C o n s t a n t  F o r c e s  o f  T r a n s i t i o n  

Explicit expressions for the transition probability functions are avail- 
able when we assume that Ixii(t)=tx0 for all t. Such a Markov process is 
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referred to as time-homogeneous or stationary. The assumption of con- 
stant forces of transition implies that the time spent in each state is ex- 
ponentially distributed. Also, the functions pu(s, s+t )  are the same for 
all s->0 and therefore can be written pi~(t). 

It is convenient to express the forces of transition and transition prob- 
ability functions in matrix form. Let Q be the k × k  matrix with (i, j) 
entry ~,-j and P(t)  be the k × k  matrix with (i, j) entry Pij(t). Corresponding 
to Equation (1), the Chapman-Kolmogorov equations are given by 

P(t  + u) = P(t)  P(u).  (4) 

Also, corresponding to Equations (2) and (3), the Kolmogorov differ- 
ential equations can be written 

P' ( t )  = P( t )Q (5) 

and 

with boundary 
solution 

P'( t )  = QP(t) ,  

condition P(0)=I.  Equations 

(6) 

(5) and (6) have the 

P(t)  = e Q' 

Q2t2 
= l + Q t +  + ... 

2~ 

This is of limited use because the series may converge rather slowly. 
However, as noted by Cox and Miller [3], if Q has distinct eigenvalues, 
dl, dz . . . . .  dk, then Q = A D C  where C = A  - I ,  D=diag(dl . . . . .  dk), 
and the i-th column of A is the right-eigenvector associated with di. 
Furthermore, 

P(t)  = A diag(e a~' . . . . .  e a*') C. (7) 

Therefore, the problem of finding the transition probability functions 
is reduced to a problem of determining the eigenvalues and eigenvectors 
of  the force of transition matrix Q. Software for performing this task is 
readily available. The requirement that Q have distinct eigenvalues im- 
poses no practical restriction. In the situations we consider, this will be 
the case for almost all parameter values. 

We can illustrate this in the case of the three-state model shown in 
Figure 2. We have 
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I --(~LI2 dr" 1,/~13) 13,12 ~L.Li3 1 
Q = Ix21 --(~b21 + ~L23) 3 • 

0 0 

The eigenvalues of Q are the solutions of 

d[d 2 + (~LI2 -~ ill 3 '1- ~.Jb21 -~- ~23)d + ~ILI2],.IL23 + ~.JLI3~,L21 -~- ~Jl~13~JI,23 ] = 0 .  

Clearly, 0 is an eigenvalue. Neither of the other two eigenvalues can be 
0, because this would require at least one force of mortality to be 0. 
Thus, if the three eigenvalues are not distinct, the quadratic in square 
brackets must have only one root. That is, 

(~1,12 -{- l-ILl3 "}- ~Jb21 -}- ~JL23) 2 -- 4(~121-1,23 + ~-Ib13~1~21 "}- I,.I,131,,2L23) = 0.  

This implies that, for any choice of three parameter values, the fourth 
must satisfy a quadratic equation. Therefore, at most two values of  the 
fourth parameter will result in eigenvalues that are not distinct. It is then 
quite unlikely that the parameter estimates will result in nondistinct 
eigenvalues. In the event that this occurs, a slight change in one param- 
eter will eliminate the problem. 

If, in dealing with more complicated models, distinct eigenvalues can- 
not be achieved, an analogous decomposition to Jordan canonical form 
is possible (see Cox and Miller [13]). 

From Equation (7), we can now write 
k 

Pij(t) = ~ ain Cnj e an', (8) 
n=l 

where aij and cij are the (i, j )  entries of A and C, respectively. Thus, we 
can express the transition probability functions explicitly as simple func- 
tions of t. 

Note that in the two-state case shown in Figure 1, we have 

A 
Then dl =-1~12 and d2=0. Corresponding eigenvectors are (1, 0)' and 
(1, 1)'. Thus, 
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and 

C = A  -I = [; l'] 
From Equation (7), we then have 

P(t) = A diag(e a'', e d 2 t ) c  

= [;  :] [eo~n' ~] [10 1 1 ]  

[ o ' ; ]  e I~t --1£121 

Hence, as expected, pit(t) = e-r'n~ pl2(t) = 1 -  e-~'2, ' pzz(t)= 1, and p21(t)=0. 

2.3 P iecewi se  Cons tant  Forces 

We assumed above that forces of transition were constant with respect 
to time. This permits convenient representation of the transition proba- 
bility functions. Unfortunately, in many actuarial applications, this is 
impractical. We require forces that vary with age. In the two-state ex- 
ample shown in Figure 1, we clearly need a force of mortality that varies 
with the age of the individual. We can accomplish this, while preserving 
the tractability of constant forces, by using force of transition functions 
that are piecewise constant. We may wish to use forces of transition that 
vary with each year of age. In some instances, though, it will be rea- 
sonable to use broader age groups. 

Let ~Lij(t)=].L (m) if tE[t,,_~, t,,), for m = l ,  2 . . . . .  where to=0. Also, let 
(m) 

P0 (t) be the transition probability function associated with time intervals 
[u, u+t) contained in [tm-l, tin). In matrix form, we have Q(") and P(")(t). 
Now define m, to be the integer such that t,,_~<-t<t,,. Then from Equa- 
tion (4), we have 

e(s, t) = e(ms) (tins __ S) P (ms+l) (tms+l --  t,.) . . .  p(m,) ( t  - tin_l). (9) 

Thus, given s and t, the transition probability matrix can be computed. 
We first determine A (m), O (m), and C(")=(A(r")) -~ from Q(") for each m, 
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as described in Subsection 2.2; P~)(t) is then obtained by using Equation 
(7). Finally, P(s, t) can be found by using Equation (9). 

As mentioned earlier, an advantage of the approach described in this 
paper is that transition probability functions are expressed in a very con- 
venient form. To obtain quantities such as the expected time spent in a 
given state or the expected present value of payments made continuously 
while in a given state, the required integration can be performed 
analytically. 

To illustrate this, consider a Markov process with forces of transition 
that are constant within each year of age. Let tx,~ ° be the force of tran- 
sition from state i to state j for an individual between age x and age x+ 1, 
where x is a nonnegative integer and i, jE{1, 2 . . . . .  k}. These forces of 
transition can be used to construct the matrix Q~x), from which we can 
determine A ~'), C (~), and D ~). Let pl])(t) be the i to j transition probability 
function associated with the age interval from x to x+ 1. Suppose we 
wish to determine the expected time spent in state j between ages 30 and 
40 by an individual in state i at age 30. This quantity is given by 

f; l pij(30, t) dt = p~j(30, t) dt 
0 x = 3 0  . I x  

= x=30 Jx = Pih(30, X) p(h~)(t -- X) dt 

from Equation (1) 

from Equation (8) 

= E E Pih(30, X) a~2 c,j-(x) ed~%-x) dt 
x = 3 0  h = 1 n =  I 

E Pih(30, X) ~tx~ _ix) = "hn c,j e d~x~(t-x) dt 
x = 3 0  h = l  n = l  J X  

39 k k e a~x~- 1 

x = 3 0  h =  1 n =  1 ° 'hn  t ' n j  d(. ~) ' 

where pih(30,X) is the (i, h) entry of 

(10) 
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x - 1  

P(30, x) = l-[ P(y) (1) 
y = 3 0  

x -  I 

= 1--I A(y) diag (ed?', "", ed~;")C(Y); 
y=30 

a(X) is the (h, n) entry of A(X); (x) is the (n, j) entry of C(X); and ,/(~) is the hn Cnj ~,1 

(n, n) entry of D (x). In matrix form, Equation (10) can be written as 

P(30, t)dt = ~ P(30, x) A(X)diag ( e"~'- I C ~~ 
o ~=30 \ d~ x) . . . . .  d~ x) " 

We also find that the expected present value of 1 payable continuously 
while in state j between ages 30 and 40 to an individual now in state i 
at age 30 is 

f34o 3~ ~ ~ C ( ~ ) e d ~ _ ~ _ l  e -~('-3°) Pij(30, t)dt = e - 8 ( x - 3 0 )  Pih(30, X) ~(x) ~hn nj r](x ) -- ~ , 

0 x = 3 0  h = I n =  l ~ n  v 

where 6 is the force of interest. In matrix form, 

~3 
4 0  39  

e -~('-30) P(30, t)dt = E e-~(x-3°) P(30, x) A (x) 
0 x = 3 0  

(ea~-~-I  e a~'-~- 1~ C(X," 
diag \ d~)_~ . . . .  , d~X-- 3 ~_-- ] 

3. DURATION DEPENDENCE 

3.1 Fai lure  o f t  he  Markov  Assumpt ion  

In the previous section I mentioned that, for some actuarial applica- 
tions of multistate models, the Markov assumption is unsuitable. I cited 
the three-state disability case as a situation in which the probability of 
transition out of the disabled state may be influenced by the time since 
disablement as well as the age of the individual. Another example in 
which duration dependence arises is select mortality. In life insurance, 
it is generally assumed that mortality rates depend on the time since the 
individual became insured in addition to the individual's attained age. 
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Lapse rates are also heavily dependent on the duration of the insurance 
policy. 

A stochastic model in which the future of the process depends on the 
time since transition to the current state is referred to as semi-Markov. 
Hoem [6] discusses a number of demographic and actuarial applications 
of semi-Markov models. Some aspects of the use of such models in sick- 
ness insurance are considered by Seal [21], Ramsay [15], and Waters 
[25, 26]. 

3.2 The General  Semt-Markov Mode l  

We can describe the general semi-Markov model in terms of the forces 
of transition. Let ~ij(t, u) be the force of transition from state i to state 
j at time (age) t for an individual who has been in state i for a period 
of time u. We then require-a more complicated definition of the transi- 
tion probability functions, also involving the time since entry to state i. 
Hoem [6] defines these functions and points out a number of useful 
relationships. 

Unfortunately, such a complicated stochastic model does not lead to 
convenient expressions for the probabilities needed to obtain actuarial 
values. Because this is the objective of this paper, we must seek some 
simplification. Seal [21] achieves such simplification in modeling the 
time spent in sickness of young and middle-aged individuals by restrict- 
ing the model to two states. Because mortality rates are low at these 
ages, Seal assumes that mortality transitions can be ignored. He further 
assumes that the forces of transition to and from the sickness state are 
independent of attained age and~ hence, depend only on the time since 
entry to the current state. The resulting stochastic process is called an 
alternating renewal process. The same model is used by Ramsay [15]. 

We wish to deal with more general multistate situations and therefore 
require some other form of simplification of the model. We suggest an 
approach that allows us to use the results for the Markov process dis- 
cussed in the previous section. In particular, we propose the acceptance 
of a more complicated state space in exchange for the simpler Markov 
process. 

3.3 Approximat ion  by a Markov  Mode l  

An alternative approach to reflecting the duration dependence often 
present in actuarial applications is to treat each state as a collection of 
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one or more substates. We then assume that future transitions are in- 
dependent of the time of entry to the current substate. For example, we 
might assume that the "insured" state in a life insurance situation consists 
of two substates: "select" and "ultimate." This is suggested by Norberg 
[11] as a way of explaining select mortality. Norberg shows that, if 
1. Only select lives may enter the insured state 
2. Select lives may move to the ultimate state 
3. Ultimate lives may not return to the select state 
4. The force of mortality for select lives is less than that for ultimate 

lives, 
then, for a fixed attained age, the force of mortality increases with du- 
ration since becoming insured. M011er [10] shows that the result also 
holds if assumption 3 is relaxed, and he explores the selection effect 
using more than one ultimate state. 

The same approach could be used in the disability insurance model 
illustrated in Figure 2. Here we must allow the force of transition from 
the disabled state to depend on the time since disablement. To accom- 
plish this, we can represent the disabled state by two substates, which 
might be interpreted as "unstable" and "stable." The unstable state would 
be the state entered upon disablement and would have fairly high forces 
of transition both to the active state and to the dead state. An individual 
could also move from unstable to stable, a state with lower forces of 
recovery and mortality. If necessary, the disabled state could comprise 
more than two substates. 

The approximation of a semi-Markov process by a Markov process is 
discussed by Cox and Miller [3]. In particular, the method of stages 
allows the approximation of any failure time distribution by a combi- 
nation of stages in series or parallel, where the time spent in each stage 
is exponentially distributed. Below we take such an approach in deve- 
loping a limiting result that justifies the approximation in the context of 
select and ultimate mortality. The result can be generalized to more com- 
plicated processes. 

Let Ix(t), t - 0  be a bounded continuous function representing the force 
of mortality for a given age group, where t is the time since policy issue. 
Also, let 

S ( t )  = e -I'°"ts~ds 

be the corresponding survival function. We can construct a time- 
homogeneous Markov process with a survival function that converges to 
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S(t) as the rate of  transition from each state approaches infinity. To be- 
gin, suppose that an individual moves through a number of  states labeled 
1, 2 . . . .  in sequence until death occurs. Let the total force of  transition 
from each state (mortality and movement  to next state) be given by k at 
each point in time. Also, let the force of  mortality in state i be Ix(i/h). 
Then we must have h>Ix(i/h) for all i. Furthermore, h-ix(i/h) is the 
force of  transition from state i to i+  1. Note that Ix(i/k) equals the true 
force of  mortality at a duration equal to the expected time of  transition 
from state i. 

Since the total force of  transition from each state is k, the Markov 
process can be thought of  as a Poisson process in which, at each event 
time, the individual either dies or moves to the next state. Let N(t) rep- 
resent the number of  events in (0, t] and let l(t) be 1 if the individual is 
alive at duration t and 0 otherwise. Then 

(ht)" e -x' 
Pr{N(/) = n} - 

n! 

Also, 

( 1 

Pr{l(/) = I~V(/)= n} = ~ lr~- r 

( 
X -  ix(i/X) 

h 

n = 0  

n = l , 2  . . . . .  

Therefore, 

e-Xt 

Pr{I(/) = 1,N(t)=n}=l(kt)"e-~t~h-_~( Ix(i/X) 

it 

n = O  

n = l , 2  . . . .  

and 

(ht)" e -at " h -  Ix(i/h) 
Pr{l(/) = 1} = e - ~ ' +  Z n! H h 

n = l  i = 1  

(11) 

We now note that i 
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I"i~= h-~(i/h)} ~ {h-~(i/h)} log = log 

p~(i/h) 
= - ~  - -  + o(1/h) 

i =  1 ~k 

_ ~nl), 
Ix(s)ds + o(1/X) 

- -  - - J 0  

by the definition of a Riemann integral 

= log {S(n/X)} + o ( 1 / h ) .  

It follows that 
n 

I -~ ;k - I x ( i /X )  

i=1 ~k 

_ e l o g { S ( n / X ) } + o ( I / X )  

= S(n/h) e °<l/x) 

= S(nlh){1 + o( l /h)}  

= S(n/h) + o(1/h) .  (12) 

This is a special case of a more general result given by P61ya and Szeg6 
[14, p. 47]. Now since 

~ (ht)"e -xt 
n=0 n! 

is bounded for all h, from Equations (11) and (12) we have 

~ (Xt)" e -x' S(n/X) lim Pr{I(t) = 1} = lim n! 
h---*~ h-.--~e n=O 

= lim E[S(N(t)/h)]. 
h----~ :e  

Now consider the sequence {hr; r = l ,  2 . . . .  }, where hr=r/t. For a 
given r, N(t)/(hrt) can be viewed as the sample mean of r independent 
Poisson random variables with mean 1. By the weak law of large num- 
bers it follows that N(t)/(ht)-->l in probability as h--->~. Hence, 
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N(t)/h---~t in probability as h---~oo. Furthermore, since S(" ) is continuous, 
S(N(t)/h)--~S(t) in probability as h---~oo. Finally, since S(" ) is bounded, 
this implies that E[IS(N(t)/X)-S(t)[]---~O as X---~oo. Therefore, 

lim Pr{l(/) = 1} = S(t). 
h---) o0 

By a similar construction, it is possible to approximate a more gen- 
eral process involving transitions other than death. In this case we 
have IX(t)=Ejix~(t), where Ixj(t) is the force of  transition to state j at dur- 
ation t. 

To examine the select and ultimate mortality model more closely, con- 
sider the setup shown in Figure 3. Suppose that the IXu represent forces 
of  transition for some (attained) age group. According to this setup, the 
probability of surviving a period of  time, t, is 

pll(t) + plz(t) = e -(~'2+~'3)' + e -(p''2+p'I3)x IXI2 e-1~23(t-x) dx 

Ixl2 e-¢23t [1 -- e -<¢tz+¢'3-¢23)t] 
= e-(Oq2+~13)t + 

IX12 -l- ]'I'13 - -  IX23 

(~LI3 - -  IX23) e-(Pq2+P'13)t q- IXI2 e-lx23t 

IXI2 -j- IX13 - -  IX23 

This is clearly a weighted average of the survival functions associated 
with two exponential distributions. The corresponding force of mortality 
is 

d 
dt [p'l(t) + p~2(t)] 

ix(t) = - 
plz(t) + pl2(t) 

(IX23 - -  IXI3)( IXI2 d- IXI3) e - ( l q 2 + l ~ i 3 ) t  - -  IXI2IX23 e-p'23t 

= (IX23 - IX~3) e-(~'2+~'~)' - I x l 2  e - w 2 3 '  (13) 

Thus, IX~2, IX¿3 and IX23 should be chosen so that Equation (13) best rep- 
resents the selection effect for this age group. 

We find that, for any choice of  the three parameter values, there is a 
second choice that produces exactly the same Ix(t). That is, if IX~2=1~.~2, 
IX13=1~1,13, and IX23:~23,  then we can achieve the same IX(t) by letting 
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FIGURE 3 

MODEL FOR SELECT MORTALITY 

1 Select 
~2 _I 

v 2 Ultimate 

•• 
3 Dead 

~12=~23--~13, ~13=~13, and ~23=~12"[-~13. If we restrict our attention to 
the subset of the parameter space for which IX23>I, LI2+IXI3 or Ix23<~12-b[.I,13, 
then, for each Ix(t), the parameterization is unique. In the absence of 
prior information about the parameter values, an arbitrary choice of sub- 
set may be made. Our objective is simply to find the best Ix(t) based on 
this three-state setup. Ordinarily, we have no data on the three transitions 
shown in Figure 3, but only on transitions from states 1 and 2 combined 
to state 3. 

Since the force of transition from state 1 to state 2 is likely to be quite 
large relative to the forces of mortality, it seems reasonable to assume 
that [..L23'~I.LI2"FIXI3. It follows from Equation (13) that limt_,= IX(/)=1,/,23. 
We also have IX(0)=Ixj3. For 0<t<oo, Ix(t) is weighted average of the 
select force, Ix13, and the ultimate force, IX23- The weights are the con- 
ditional probabilities of being in the select and ultimate states at duration 
t given survival to duration t. Tenenbein and Vanderhoof [22] also mod- 
eled the force of mortality as an average of select and ultimate forces. 
However, in their models, the select and ultimate proportions at each 
duration are deterministic. 
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3.4 Numerical  Example 
To illustrate the procedure described above, we use the three-state model 

shown in Figure 3 to describe select mortality. Parameter values are ob- 
tained so that the model reflects the male aggregate mortality in the 1982- 
1988 Individual Ordinary Mortality Table published by the Canadian In- 
stitute of Actuaries [2]. The development of this table is described by 
Panjer and Russo [13]. 

We assumed that the forces of transition are constant within each year 
of age. Thus, for the age range [x, x+ 1], we used the various tabular 
mortality rates for attained age x to determine estimates of ix~(}, ix~ ), and 
I.t~. We first calculated tabular forces of mortality from the mortality 
rates by assuming that, for k=0, 1 . . . . .  14, 

T T 
= - qtx-kl+k) ~L[x_kl+k+l/2 log(1 - 

and 

I~.~r+l/2 = - log(1 - q r). 

The T denotes a tabular value. Although the forces of mortality do not 
appear in the published table, we use the superscript to distinguish them 
from the forces of mortality that result from our Markov model. 

As a function of policy duration (with attained age fixed), the tabular 
force of mortality increases during the 15-year select period and re- 
mains constant thereafter. Our corresponding "fitted" force of mortality, 
Ixtx)(t), determined by Equation (13), does not exhibit this behavior. It 
increases toward its limit as the policy duration approaches infinity. 
We let our estimate of p.~) equal the tabular ultimate force of mortality 
for age x+ 1/2. The estimates of ix~ ) and Ix~ were obtained to minimize 
the squared deviations of ixtx)(t) from the tabular forces of mortality at 
durations 0.5, 1.5, 2.5 . . . . .  14.5. That is, we minimized 

14 

Z [IXtrx-kl+k+l/z - I~X)(k + 1/2)1l" 
k=0 

The resulting i.~(45)(t) is plotted in Figure 4 along with ixt45_,1+ ,. The 
first graph shows only the select period. It demonstrates that, although 
we have used a model with just three parameters, our resulting force of  
mortality function is quite close to that based on the table at nearly all 
select durations. It is only near the end of the select period that our force 
of mortality appears to be significantly lower; this is quite noticeable in 
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FIGURE 4 

COMPARISON OF FORCE OF MORATLITY (AGE 45) 
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the second graph. The reason is that our fitted force of mortality must 
have a much smoother path toward the ultimate level. The second graph 
also shows that the two curves are very close after 30 years and almost 
indistinguishable after 40. The results are similar for other attained ages. 

The parameter estimates obtained for ages 45 through 70 are given in 
Table 1. As we might expect, there is very little variation in the estimates 
of tX(l~2); all lie in the range from 0.163 to 0.174. The estimates of p.~) 
are slightly lower than the duration 1 tabular forces. As indicated above, 
the Ix~ ) estimates are equal to the corresponding tabular ultimate forces. 

TABLE 1 

FORCES OF TRANSITION 

i 

45 0.164 
46 0.164 
47 0. ! 63 
48 0. ! 63 
49 0.163 
50 0.163 
51 0.163 
52 0.164 
53 0.164 
54 0.164 
55 0.164 
56 I 0.164 
57 10.164 

i 

0.00097 0.00225 
0.00107 0.00251 
0.00117 0.00280 
0.00128 0.00313 
0.00140 0.00350 
0.00154 0.00391 
0.00168 0.00437 
0.00183 ' 0.00488 
0.00201 ! 0.00544 
0.00218 0.00608 
0.00238 0.00677 
0.00259 0.00755 
0.00282 0.00840 

i 

58 0.165 
59 0.165 
60 0.167 
61 0.167 
62 0.167 
63 0.167 
64 0.168 
65 0.169 
66 0.169 
67 0.170 
68 0.171 
69 0.173 
70 0.174 

i 

0.00304 0.00933 
0.00329 0.01036 
0.00352 0.01150 
0.00380 0.01274 
0.00410 0.01411 
0.00442 0.01560 
0.00472 0.01725 
0.00503 0.01905 
0.00540 0.02102 
0.00574 0.02318 
0.00609 0.02553 
0.00638 0.02811 
0.00674 0.03093 

The parameter estimates shown in Table 1 can be used to find various 
probabilities of interest. For the age range (x, x +  1), the force of tran- 
sition matrix is 

-ix~ 

0 

Upon finding the corresponding eigenvalues and right-eigenvectors, we 
can obtain the transition probability matrix for time intervals within this 
age range by using Equation (7). If this procedure is repeated for all .~, 
then we can use Equation (9) to determine the transition probability ma- 
trix for any age range. 
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Table 2 shows survival probabilities obtained in this manner. The 
numbers represent the probability that an individual issued insurance at 
age 45 survives each of the next 50 years, that is, 1-Pl3 (45, 45+t).  
These are compared to the probabilities r tP1451, determined from the mor- 
tality table. Table 2 indicates that the survival probabilities obtained by 
using a simple three-state Markov model are very close to those obtained 
directly from the mortality table. 

TABLE 2 
C O M P A R I S O N  OF S U R V I V A L  PROBABILITIES  

t ¢P~51 I - pl3(45,  45 + t) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

0.9989700 
0.9975215 
0.9957659 
0.9936747 
0.9912204 
0.9883657 
0.9850546 
0.9812228 
0.9768171 
0.9717767 
0.9660141 
0.9594548 
0.9520191 

0.9989312 
0.9975511 
0.9958410 
0.9937680 
O.9912964 
0.9883858 
0.9849978 
0.9810886 
0.9766096 
0.9715020 
0.9657210 
0.9591973 
0.9518781 

I 

14 0.9436032 
15 0.9341106 
16 0.9234337 
17 0.9117430 
18 0.8989695 
19 0.8850534 
20 0.8699190 
21 0.8535037 
22 0.8357508 
23 0.8166037 
24 0.7960171 
25 0.7739516 
26 0.7503770 

tP~51 I - pl3(45,  45 + t) 

0.9437097 
0.9346207 
0.9245411 
0.9134101 
0.9011527 
0.8877119 
0.8730093 
0.8569861 
0.8395813 
0.8207379 
0.8004175 
0.7785747 
0.7551810 

Note that many other techniques are available for modeling select and 
ultimate mortality. Examples include those discussed by Currie and Waters 
[4], Panjer and Russo [13], and Tenenbein and Vanderhoof [22]. Select 
and ultimate mortality was discussed in this section because it is a simple 
case involving duration dependence. The techniques developed in this 
paper are most useful in dealing with applications requiring a greater 
number of  states. 

SUMMARY 

This paper describes an approach whereby actuaries can determine 
probabilities required for calculations in applications that are represented 
as multistate processes. We have drawn on some very convenient math- 
ematical results that are available when the process is assumed to be 
Markov with constant forces of transition (that is, a time-homogeneous 
Markov process). The extension to piecewise constant forces is straight- 
forward. In cases involving duration dependence, rather than using the 
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less tractable semi-Markov process, it is possible to approximate the im- 
pact of  duration by including additional states in the model. 
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