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ABSTRACT 

This paper explores the flexibility of kernel estimation as a means of 
nonparametric graduation and relates it to moving-weighted-average gradu- 
ation. Our primary objective is to focus attention on a model that makes 
explicit allowance for the variation in exposure over age. We also consider 
various transformations of the data, cross-validation as an objective method 
for choosing the smoothing parameter, and diagnostic methods for checking 
assumptions. A kernel function for improving the estimate at a boundary is 
discussed, and the results are applied to two mortality tables. 

1. INTRODUCTION 

Sets of mortality rates, in the form of mortality tables, are widely used 
by actuaries to calculate life insurance premiums, annuities, reserves, and so 
on. Producing these tables from a suitable set of crude (or raw) mortality 
rates is called graduation, and this subject has been extensively discussed in 
the actuarial literature. To be specific, given a set of crude mortality rates, 
c~i, for each age x;, we wish to systematically revise these initial estimates 
to produce smoother estimates, c~, of the true but unknown mortality rates, 
q~, where i=1 . . . . .  n. The crude rate at age x i is typically based on the 
number of deaths recorded, d~, relative to the number of policy-years or 
person-years initially exposed to the risk of death, e i, for a homogeneous 
cohort over a certain time interval. By reducing the unit of time from a year, 
we could alternatively consider the instantaneous rate of mortality, which is 
called the force of mortality, also known as the hazard or intensity rate in  
survival analysis. Intuition and practical convenience lead us to believe that 
a smooth sequence of graduated rates will more closely reflect the variation 
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due to age in the unknown, true rates of mortality compared to the crude 
rates. Some nonparametric models reflect this belief by allowing the amount 
of  smoothing to vary over a continuous range. 

There are a variety of possible uses of nonparametric methods. A larger 
class of possible regression surfaces can be considered, reflecting the pos- 
sibility that the graduated rates may not follow a neat parametric formula. 
We can use a nonparametric approach to choose the simplest suitable par- 
ametric model, to provide a diagnostic check of a parametric model, or to 
simply explore the data. The power of  modern computers and software has 
made nonparametric smoothing more feasible and consequently more pop- 
ular. Some of the more popular statistical methods are nearest-neighbor 
smoothing [12], spline-smoothing [26], [56], and kernel-smoothing, which 
is discussed in this paper. Kernel-smoothing is not new. For a scatter plot 
of bivariate data, X and Y, Watson [59] suggests estimating the conditional 
mean E(YIX) from nonparametric kernel estimates of the joint density of X 
and Y and the marginal density of X. Kernel smoothers are also suggested 
by Nadaraya [47]. Scott [54] offers an introduction to kernel density esti- 
mation and regression. 

A mortality table can be viewed as a bivariate scatter plot of mortality 
against age, in which the true mortality rates can be estimated from the 
mean regression function by using kernel estimators. Although age is a con- 
tinuous variable, it is typically truncated in some way,. such as age last 
birthday. Thus, the data consist of e i observations at age xi, of  which d,. die 
and e i - d  i survive. Given the discretized nature of a mortality table, it is 
natural to pool the data by using the average dile ~ at each age. This reduces 
the computational burden and leads to a fixed design model, in which we 
have a single observed mortality rate at equally spaced ages. In later sections 
of  this paper, we consider how to adjust the model to reflect the amount of 
exposure at each age. Because the data may not have a constant variance, 
we may need to consider transforming it to satisfy the model, which is 

,~ = ~ + r~, for i = 1 . . . . .  n, (1) 

where t denotes some transformation and the residuals r~ are assumed to be 
independently, identically distributed random variables, with zero mean and 
a constant, finite variance. We need to ensure that these assumptions are 
reflected in the data and, if not, to make appropriate adjustments. Although 
c)~ is treated as a random variable, we adopt the standard actuarial notation 
for mortality by using a lowercase letter. Once the graduation process is 
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complete, the transformation is reversed to obtain the graduated rates on the 
original scale. 

The Nadaraya-Watson kernel estimator of the true mortality rate is 

4~ I¢~,(x, - xj) 
~/ = j=±l , for i = 1 . . . . .  n. (2) 

~ ,  K~(xi - xj) 
j=l 

For convenience, Kb(X)-b-lK(x/b) is used throughout. The function K, 
called a kernel function, is any function for which f=_~ K(x)dx= 1; thus, any 
probability density function is a kernel function. Frequently, but not always, 
kernel functions are non-negative, K(x)>---O. A common example is the stan- 
dardized normal or Gaussian kernel 

KU(x) = (271") -tl2 e x p { - ~ / 2 }  = d~(x), for -oo < x < ~. (3) 

The bandwidth b acts as a smoothing parameter. Choosing a small bandwidth 
means that only nearby points are influential; choosing a large bandwidth 
means that information is averaged over a larger region, and consequently 
individual points have less influence on our estimate. At the point at which 
estimation is to take place, xi, we first use the kernel function, K, and the 
bandwidth, b, to decide which of our n observations lie nearby; then we fit 
a constant to these points by averaging. This is our estimate of the curve 
at x i. 

Ramlau-Hansen [49] discusses the motivation for using this estimator to 
calculate mortality rates, and its advantages over a related estimator used by 
Copas and Haberman [16] and by Bloomfield and Haberman [4] are dis- 
cussed by Gavin, Haberman, and Verrall [25]. It is also the estimator used 
in this paper, but there are other well-known kernel regression estimators in 
the statistical literature [43]. A well-known rival to the Nadaraya-Watson 
estimator is an integral-based estimator due to Gasser and Miiller [23]. All 
kernel estimators have their relative advantages, and which is more suitable 
for graduation is currently an open question. The recent paper by Chu and 
Marron [11] comparing the Nadaraya-Watson and Gasser-Mtiller estimators 
is highly recommended. We provide a detailed list of references with the 
aim of generating a greater interest in the application of kernel estimation, 
and nonparametric methods in general, in actuarial science. However, this 
has been an active area of research in recent years, so our bibliography is 
not complete. 
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Kernel graduation is very similar to moving- (or local) weighted-average 
graduation (MWA), which is applied to equally spaced observations such as 
mortality rates or time series. The traditional problem with MWA is that it 
does not produce smoothed values at the ends of the table. However, in 
recent years this problem has been addressed in a series of papers by Greville 
[28], [29], [30] and also by Hoem and Linnemann [39]. In addition, London 
[45] and Ramsay [50] consider relaxing the assumption of constant variance 
in an MWA graduation. The kernel estimator in Equation (2) can be viewed 
as a continuous form of MWA graduation by expressing it as 

,~ Kb(x i - x )  
~ = ~.~ S,~ t ) j ,  where Sij = & , (4) 

j = l  
~,  gt,(xl - x )  
j=  1 

so that Z~=~ Sij=l. This suggests that kernel graduation is very similar to 
MWA graduation. Although Equation (4) produces graduated rates at the 
ends of the table, we need to consider the properties of the estimator in those 
regions. Also, kernel graduation is not restricted to equally spaced crude 
rates, and it can be used to interpolate the mortality rate between the ages 
for which we have crude rates. In this way, it reflects the fact that age is a 
continuous variable, whereas MWA treats age as being discrete. However, 
unequally spaced observations may result in an increase in bias in the 
Nadaraya-Watson estimator, depending on the distribution of the observed 
data and on the curvature of the true mortality curve (Chu and Marron [11], 
Gavin et al [25]). Another contrast with MWA is that the bandwidth param- 
eter in kernel graduation can be varied continuously, whereas the range of 
a MWA graduation is varied discretely. 

It can be shown that the Nadaraya-Watson estimator leads to biased es- 
timates of the true mortality rate [54]. However, the increase in bias leads 
to a reduction in variance, and so a trade-off between the two can be made 
through the bandwidth. This governs the amount of smoothing in the grad- 
uation process, in a continuous manner. The value for b may be a subjective 
choice, or it may be chosen as a function of the data. Too large a value for 
the bandwidth produces a smooth set of graduated rates at a cost of a lack 
of fidelity to the data. If the bandwidth is too small, then the converse is 
true. Cross-validation is one method for choosing an objective value for the 
bandwidth, and it is defined in Section 2.3. In the related problem of density 
estimation, Scott [54] discusses various other ways of selecting a value for 
the bandwidth. One disadvantage of Equation (2) is that the bias increases 
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near the ends of the mortality table. This problem is addressed in Section 
3. Notice that the bandwidth in Equation (2) is fixed across the entire age 
range. A more general approach is to allow the bandwidth to vary with age. 
For example, the bandwidth could be inversely related to the sample size 
for that age; this leads to a variable or adaptive l~ernel estimator, which is 
the main topic of this paper. 

The paper is set out as follows: Section 2 discusses the basic ideas needed 
for kernel graduation; Section 3 describes a method for improving the 
Nadaraya-Watson estimator near a boundary; Section 4 defines and discusses 
more general adaptive kernel estimators that allow the bandwidth to vary 
with age; two mortality tables are considered in Section 5; and finally we 
summarize our conclusions in Section 6. 

2. KERNEL GRADUATION 

We start by considering transformations of the data. Thereafter the 
graduation process is carried out on the transformed scale before back- 
transforming is used to obtain the graduated rates. In Section 2.2, we discuss 
the graduation process in detail and in Section 2.4 provide an illustration. 
Also in this section, we briefly consider the use of diagnostic tests, standard 
tables, duplicate policies, and measures of smoothness. 

2.1 Transforming Mortality Data 

Before the model is applied, a key part of any data analysis is to consider 
transforming the data into a more tractable form that reflects the strengths 
of the model or that more clearly reveals the structure of the data. In para- 
metric graduation, for example, it may be easier to transform the data and 
work with a linear model than to graduate the raw rates using a more math- 
ematically demanding nonlinear model. The same philosophy applies in non- 
parametric graduation. In this section, we consider transforming the crude 
rates before graduating and then back-transforming to obtain our estimate 
of the true rates. 

Several transformations were considered, such as taking logs of the mor- 
tality rates and ages separately and combined and using the logit, Weibull, 
Gompertz, and sin- i (V'qi) transformations. For example, if the transformed 
crude rates broadly follow a straight line, then this may lead to reduced bias 
over much of the age range, if the data are also evenly spaced. We consider 
this effect in more detail in Section 3. Because of the relatively large dif- 
ferences in mortality rates across the age range, the transformed data also 
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result in a more evenly spread scatter plot. In this case, we are aiming 
to ensure that the residuals in Equation (1) have a constant variance. Niel- 
sen [48] offers a decision theoretic approach to bias reduction via 
transformations. 

From Equation (1), E(~lilXi) is the expected proportion of lives aged xi who 
died during the period of investigation. A commonly used transformation, t, 
in binary analysis is the logit (or log-odds) transformation. For our appli- 
cation, we have 

with back-transform 

q~ = In qi 
(1 - q3 

t~i = 

1 + exp So. q~ 
=1 

for i = 1 . . . . .  n. By smoothing on a logistic scale and then back-transforming, 
we are guaranteed that 0-<~/-<1. This transformation also reflects the fact 
that small changes when the mortality rate is near zero are as important as 
larger changes when the mortality rate is much higher. Renshaw [51] pro- 
vides further motivation for this transformation, based on the theory of gen- 
eralized linear models. Note that binary data are often assumed to be inde- 
pendent, but this may not be the case for mortality data due to migration 
between ages during the period of investigation. This leads us to look for 
smooth relations between neighboring rates by merging information from 
individuals with similar ages. 

For the Gompertz transformation, we fit ln(- ln(1-qi))  to x/, and for the 
Weibull, we fit ln( - ln(1-qi ) )  to ln(xi), where i=1 . . . . .  n. Now the x-axis 
no longer has evenly spaced observations, but this does not present any 
computational problem for the kernel method, unlike the related MWA grad- 
uation. However, this transformation will induce some bias when we fit a 
local constant because more of the observations will now lie in the interval 
(x/, xi+b) than in (x/-b, xi) [25]. 

Many other transformations are possible ([9], [17], [18]), but their rela- 
tive merits are beyond the scope of this paper. Overall, the choice of 
transformation remains subjective, and the relative success of a particular 
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transformation seems to depend on the data set. For the examples in Section 
5, we have chosen the logit transformation. 

2.1.1 Crude Rates with No Deaths 

One potential problem with transformations that involve taking logs is 
that the transformed crude rate is not defined for ages at which no deaths 
are recorded, d/=0. This often happens at older ages, with small data sets. 
A solution applicable to any transformation is to group together ages for 
which there are relatively few deaths. The cumulative number of deaths and 
amount of exposure for the group could be attributed to the midpoint of the 
group [4]. 

2.2 Bui ld ing  a Smoother  

One way of implementing the Nadaraya-Watson estimator, given in Equa- 
tion (2), is to place a kernel function at the point for which we wish to 
estimate the true rate of mortality and then form a weighted average over 
all the crude rates, where the weight attached to each crude rate is the value 
of the kernel function at that age. 

The kernel has the same basic shape at each age x i. Let the weight attached 
to the point xj to estimate the true curve at xl be denoted by So=cKb(X~-X ) ,  
where c-t=Ej'=~ Kb(Xi--x ) is a normalizing constant. This gives the l × n  
matrix of weights needed to estimate the true value of the curve at x~. By 
sliding the kernel function along the x-axis and centering it at every point 
for which we wish to estimate the mortality curve, we fan build up a matrix 
S = {So:j= 1 . . . . .  n}. The i-th row of the matrix contains the n weights al- 
located to the transformed crude rates, to estimate the true mortality rate at 
that age. The matrix has a row for every point at which we wish to estimate 
the true curve. Without loss of generality, we constrain the set of estimated 
ages to be the same as the set of observed ages, because this is often the 
case for mortality data. This gives an n×n matrix of weights that we call a 
smoother matrix (or a hat matrix). To help produce smooth graduated rates, 
we use weights that decrease smoothly towards zero as Ix,-xjl increases. So 
if we le t / !  t be the n-dimensional vector of transformed crude rates and q' 
be the vector of transformed graduated rates, then the smoother S defines 
the relationship between them as 

~'= S~I', 
where S has been renormalized as in Equation (4), so that ~"j'=l So= 1, for 
i= 1 . . . . .  n. Thus, the transformation from the crude to the estimated rates 
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is achieved by filtering the crude rates through the smoother. This equation 
succinctly summarizes kernel graduation. In particular, for the i-th element 
of ~', we get Equation (2). Notice that the kernel smoother is linear (or 
distributive); that is, S(av~+bv2)=aSvl+bSv2, for constants a and b and 
vectors v~ and v 2. So from Equation (1), if we believe that the transformed 
crude rates consist of the transformed, unknown true rates q plus a vector 
of residuals r, we arrive at ~l'=Sit'=S(q'+r)=Sq'+Sr. We believe that by 
graduating the error term Sr, we reduce it in a way that more than compen- 
sates for any induced bias, which we define as the difference between the 
true and estimated mortality rates on the transformed scale. 

Many other nonparametric smoothers are also linear such as the running- 
mean, running-line, cubic smoothing spline (Whittaker graduation), regres- 
sion spline, and locally weighted running line, but there are also nonlinear 
smoothers such as the running median smoother. Hastie and Tibshirani [38, 
chapters 2 and 3] offers an excellent introduction to nonparametric smooth- 
ers, drawing out the similarity between these methods. Verrall [58] views 
Whittaker graduation as a dynamic generalized linear model. 

2.2.1 Choice of Kernel Function 

Some kernel functions such as the Epanechnikov kernel [19], 

= [3(1 - x 2 ) / 4 ,  f o r l x l - 1 ;  
g(x) 

- L0 otherwise, 

have greater theoretical justification than others. This particular kernel min- 
imizes the mean squared error asymptotically. Another potential kernel is 
one that minimizes the variance of the estimated curve, in some sense, and 
one such kernel is explored in Gavin, Haberman, and Verrall [24]. The cur- 
rent literature indicates that the choice of kernel function is not as influential 
as the value of the bandwidth. So for convenience, we use the standardized 
normal kernel defined in Equation (3) throughout this paper. In general, it 
would be computationally cheaper to use a truncated kernel such as the 
Epanechnikov kernel. 

2.3 Bandwid th  Selection 

The choice of bandwidth in Equation (2) is important. Although it is 
informative to choose the bandwidth by trial and error, it is also convenient 
to have an objective, risk-based method for selecting the best value for b. 
The literature on data-driven methods for selecting the optimal bandwidth 



GRADUATION BY KERNEL AND ADAPTIVE KERNEL METHODS 181 

is vast and continues to grow. Cross-validation [57] is jus t one such method 
that is commonly used and simple to understand. This technique has been 
used by Brooks, Stone, Chan, and Chan [7] to smooth some mortality tables 
using Whittaker graduation, and Gregoire [27] offers a more rigorous 
approach. 

Working on the transformed scale, cross-validation simultaneously fits and 
smooths the data by removing one data point at a time, estimating the value 
of the curve at that missing point, and then comparing the estimate to the 
omitted, observed value. So our cross-validation statistic or score, C V ( b ) ,  is 

C V ( b )  = n - ' ( i t '  - (~I'){-i)) r (it' - (~,)~-0) = n- '  ~ (,~/ - (~)~-i))2, (5) 
i= I 

where (~/){-0 is the estimated value at age x~ computed by removing the 
crude rate at that age on the transformed scale. It is sometimes called the 
jackknifed fit at xi. It is easy to calculate (,~)<-0: set the i-th weight in the 
i-th row of S to zero and renormalize the weights. That is, 

s,j - x ?  
j=l j=l 
j~i j~i 

= - -  = (6) 
(0~)(-i) (1 - -  Sii ) ~ gb(x i -- x)). 

j= l  
j¢i 

To further speed computation, we can use the relation ~ - ( ~ ) t - ° = ( ~ - ~ i ) /  
(1-Si;). The bandwidth that minimizes C V ( b )  is referred to as the cross- 
validation bandwidth, bey, and we find it by systematically searching across 
a suitable bandwidth region. So we need to balance the benefit of getting 
close to the optimal bandwidth against the cost of a detailed search. Scott 
[54] suggests that getting to within + 15 percent often suffices. For conven- 
ience, the bandwidth is always selected by cross-validation in this paper, 
although some evidence suggests that it may undersmooth the data ([32], 
[34], [53], [54]). 

2.4 Example 1 

The techniques outlined in Sections 2.2 and 2.3 are illustrated in Figure 
l b, which shows a scatter plot of 20 evenly spaced points where 
Y~sin(X)+N(0, 0.05). No transformation is needed in this simple example. 
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FIGURE 1 

A CURVE IS FITrED TO SOME RAW DATA, USING CROSS-VALIDATION TO SELECT THE SMOOTHING 

PARAMETER. THE CROSS-VALIDATION SCORE IS SHOWN IN PLOT A). PLOT B) SHOWS THE RAW DATA, 

THE TRUE CURVE AND THE FITTED CURVE. THE WEIGHTS IN THE SMOOTHER MATRIX, S, ARE SHOWN 
IN PLOT c). 
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The bandwidth used in Figures lb and lc is chosen by cross-validation. 
Figure la shows the cross-validation scores for about 20 evenly spaced band- 
width values. The optimal cross-validation bandwidth is about bc~=0.4. In 
Figure lb, the true curve and the best fit using a normal kernel and the best 
cross-validation bandwidth are shown. Six normal kernel functions have 
been superimposed on the bottom of this plot to show the relative weights 
attached to each of the observed values when estimating the true curve at 
the six points indicated by arrows. Each arrow is connected to its corre- 
sponding kernel and observed data point. At both ends, the normal kernel 
overlaps the boundary, but the denominator in Equation (2) is now summed 
over fewer data points, forcing the kernel to rise slightly. This reflects the 
fact that we have less information at the boundaries. 
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The kernel function associated with the i-th point is used to calculate the 
weights in the i-th row of the 20×20 smoother and is shown in Figure lc. 
The weights are shown as the height along the i-th row of the surface. For 
values in the central region the weights form a normal kernel, but as the 
point at which we are estimating the true curve moves towards the bound- 
aries the kernel overlaps the boundary. This causes the height of the kernel 
to increase because fewer observations are available. Notice that all the 
weights in the smoother are non-negative. For evenly spaced data and a 
kernel with bounded support, there can be computational savings when the 
data in the center of the table are estimated, because the denominator in 
Equation (2) is constant. 

2 . 5  D i a g n o s t i c  C h e c k s  

Having produced graduated rates on the transformed scale, we now con- 
sider diagnostic plots of the results to help confirm that the assumptions 
made by the model, in Equation (1), are valid. 

We need to check that the estimator is unbiased with a constant variance. 
The former assumption means that we require the residuals to have a mean 
of zero. Plotting the residuals from Equation (1) against the estimated mor- 
tality rates on the transformed scale and against age should reveal no clear 
pattern. One way to check this is to smooth the residuals and get a fairly 
fiat line about zero. 

Alternatively, after graduating the crude rates and back-transforming, we 
can use the mean and variance of the binomial distribution to calculate the 
standardized deviation between actual and expected deaths, 

(di - e'qi) for i=  1 . . . . .  n, (7) 
~/e ,~ i (1  --  qi)" 

on the grounds that most of the samples at each age are large. We expect 
this statistic to have a mean of zero and most of the values to be less than 
two. Note that the distribution may not be normal. If a suitable standard 
mortality table is available, then we might use that in the denominator of (7). 

We also require independent crude rates. One diagnostic check is to ex- 
amine plots of the estimated autocorrelation of  the residuals. To do this, we 
need equally spaced residuals, so the transformation of the data must be 
restricted to the mortality rate and not age as well. 

Several other diagnostic plots and nonparametric tests could be considered 
([2], [13], [21]). 
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2.6 Reference to a S t a n d a r d  Mortali ty Table 

We may wish to standardize the data relative to a suitable graduated mor- 
tality table so that the standard table acts as a prior assumption. This infor- 
mation can be incorporated into a Whittaker or a Bayesian graduation ([44], 
[46]). One simple way to use this prior knowledge in a kernel graduation is 
to subtract the crude rates from the standard rates, smooth the residuals, and 
add the smoothed residuals to the standard table to get the kernel graduated 
rates, all on the transformed scale ([4], [l 6]). Subtracting the standard table 
rates from the crude rates may filter out much of the curvature in the true 
rates, assuming that the standard table rates are similar in shape to the true 
rates. This may mean that the residuals are scattered about a simple curve, 
such as a constant or a straight line. When we investigate the bias of the 
Nadaraya-Watson estimator, in Section 3, we see that it has a relatively small 
bias in such situations. 

Using a standard table is one way of ensuring that the graduated results 
reflect known theoretical or empirical models. For example, a small company 
might want to adjust a standard table to reflect the company's own particular 
circumstances, such as underwriting practices or geographical location. It is 
also possible to ensure that monotonicity in the standard table is reflected 
in the graduated rates by choosing a large enough bandwidth. Unfortunately 
this is a rather trivial case, because we would simply be adding a constant 
to the standard table. However, imposing a monotonicity constraint on a 
relatively simple nonparametric method and expecting good results is being 
rather optimistic. In Section 5, we consider using a standard table when 
measuring the relative difference between select and ultimate mortality rates. 

2. 7 Duplicate Policies 

For duplicate policies, an additional complication may arise if the data 
are based on policy-years rather than person-years. This occurs when a pol- 
icyholder buys multiple policies, perhaps from different life offices at dif- 
ferent times, and consequently is counted more than once in the investiga- 
tion. As a result, the residuals in Equation (1) may not be independent. This 
area presents considerable difficulty, because there is little information avail- 
able that can be justifiably used to filter this undesirable effect from the data. 
For ultimate data, it could have a potentially significant influence on the 
number of observed deaths. One possible approach ([14], [40]) is to adjust 
the data by age, using a variance ratio to reduce the amount of exposure, 
and Renshaw [51] provides a more recent discussion of this topic. Another 
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possible problem is that correlated observations can affect the cross- 
validation score. Hart and Wehrly [36] and Altman [1] offer some adjust- 
ments to the score statistic for resolving this problem. The issue is not 
pursued further in this paper, partly for simplicity but also because the adap- 
tive bandwidth, used in Section 4, does not depend heavily on the choice of 
global bandwidth. However, in Section 4, we briefly mention an adjustment 
that might be made to one of the adaptive kernel models to help compensate 
for duplicate policies. 

2.8 Choice o f  Smoothness  Criterion 

Smooth graduated rates are a primary objective. There are various ways 
of measuring this criterion, but ultimately it is a subjective choice that de- 
pends on the context in which the results are to be used. With the original 
scale, a traditional actuarial approach is to repeatedly calculate differences 
of the graduated rates and confirm that the third or fourth differences are 
random and small by using standard statistical tests. Bloomfield and Haber- 
man [4] define a relative measure of smoothness, which expresses the k-th 
difference of the graduated rates relative to the graduated rates, as D k= 
(Cti/IAk~il) Ilk, where A k is the usual forward differencing operator applied 
repeatedly k times. Other measures of smoothness ([5], [8]) require mono- 
tonically increasing or increasing-convex rates over some region of the age 
range. The former measure requires that 

{qi -<qi+l f o r i  = 1 . . . . .  n - 1}, 

and the more stringent, latter measure requires graduated rates that satisfy 

qi - q~-i <- qi+l - qi for i --- 2 . . . . .  n - 1, (8) 

excluding the first year of life and males in their 20s. In general, a kernel 
graduation cannot be guaranteed to preserve monotonicity, unless this prior 
information is built into the kernel model. Referring to a standard mortality 
table may be one way of doing this. 

3. EXPLICIT ALLOWANCE FOR T H E  BOUNDARIES 

3.1 A Boundary-Correcting Kernel  

Figure lb shows that values in the middle of the age range enjoy full 
support, for all practical calculations. However, as the normal kernel slides 
towards young or old ages, it increasingly overlaps the ends of the table and 
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the resulting truncated kernel leads to an increase in bias. For example, at 
the youngest and oldest ages, half the kernel function will extend beyond 
the ends of the table. 

To consider this problem further, we need to calculate the bias of our 
estimator. We start with a Taylor series expansion of the Nadaraya-Watson 
estimator in Equation (2), 

E(~[) = q[ + ~,~%~(xj - x~)Kb(x ~ -- xi) (q[), + R, (9) 
~;=1 Kb(Xj - -  X i )  

where (q~)' denotes the slope of the transformed true curve at age x i and R 
is a remainder term consisting of higher-order derivatives. For an age xi in 
the middle of the table, the coefficient of the (q~)' term is zero if the crude 
rates are evenly spaced. However, when estimating rates at the youngest and 
oldest ages, all the other crude rates will lie to the right and to the left, 
respectively. As a result, the xj-x~ term in the coefficient of (4) '  has the 
same sign for j =  1 . . . . .  n ,  so that this coefficient is non-zero. This means 
that there is increased bias near the ends of the table. A comparison between 
the bias in the Nadaraya-Watson and the related Copas-Haberman kernel 
estimator is considered in Gavin, Haberman, and Verrall [25]. 

To improve the estimate at the boundaries, Hall and Wehrly [33] suggest 
reflecting the data so that the original data lie in the interior of an enlarged 
data set. In this way, the original data are less influenced by boundary effects. 

We use an alternative method suggested by Rice [52]. Rice's extrapolation 
method is based on a linear combination of two different kernels with dif- 
ferent bandwidths to eliminate the first-order bias. Suppose our two estimates 
are ~ and ~/:; then from Equation (9), we get 

E ( ~ )  = qi  + Clq~ + Rl 

E(q 2) = qi + C2q; + R2, 

where C 1 and C 2 are the coefficients of the first-order terms and RI and R 2 
are the remainder terms for ~ and ~ ,  respectively. Notice that C~ and C 2 
depend on age and not on the true mortality curve, so by a suitable linear 
combination of the two estimates, we can eliminate the q~ term. This means 
that the bias of our estimator at the boundary does not depend on the slope 
of the mortality curve but only on higher-order terms such as curvature. In 
the same spirit but in the context of density estimation, Jones [42] suggests 
redefining the kernel function to be a linear combination of K(x) and xK(x). 
This leads to a kernel function for the right-hand boundary 
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K~(x) = [a2(P) - al(p)x]Kb(x) (10) 
ao(p)a2(p) -- a~(p) ' 

where al(p)=fP_~ uIKb(u)du and p=xlb, which can be used to reduce the 
bias near the upper boundary. The variable p measures the distance from the 
point at which we are calculating the mortality rate to the right-hand bound- 
ary in units of bandwidth. The variable x measures the distance from the 
point at which we are calculating the mortality rate to each of the n crude 
rates, again in units of bandwidth. Substituting the normal kernel from Equa- 
tion (3) for Kb in Equation (10), we get 

K~(x) = [~(P)  + (x -p)~(p)]d~(x) (11) 
• (p ) [~ (p )  - p~b(p)] - ~2(p), 

where ~(x)=f~dp(y)dy and ~b(y) is as defined in Equation (3). For ages 
that are closer to the left-hand boundary, that is, younger ages, some obvious 
adjustments to the formula yield 

{[1 - ~ (p ) ]  + (p - x)4,(p)}4ffx) (12) 
K~g(x) = [1 - ~(p)]{[1 - ~(p) ]  + pdp(p)} - ¢b2(p)" 

The transformed kernel functions, K~ and Kb R, both behave like the stan- 
dard Gaussian kernel in the middle of the age range. That is, if p > 2 ,  then 
ao(p)--'l and al(p)--,0, so K~-.K~ and K~-.K~. As the age at which wea re  
estimating the curve moves closer to the boundary, the weights change 
shape, becoming asymmetric and negative over some regions, as is shown 
in Example 2. 

3.2 Implementing the Boundary-Correcting Kernel 

It is possible to combine the two kernel functions, Kb L and K~, into a single 
smoother by first deciding which boundary is closest to the point at which 
we are estimating the curve. This approach worked satisfactorily for several 
data sets. However, if the distance from the center of the data to the bound- 
aries is roughly two bandwidths or less, then a kink develops in the grad- 
uated rates as the smoother switches from using Kb L to Kb R, moving from left 
to right across the age range. Example 3 in Section 5.1 has a small age 
range, and cross-validation chooses a large global bandwidth. This results 
in a noticeable jump in the graduated rates at the central ages. 

An ad hoc solution to this large boundary problem is to smooth the data 
using the left-hand and right-hand kernels, Kb L and Kb R, separately. This gives 
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two sets of graduated rates that are blended linearly. So at the left-hand 
boundary, weights of 1 and 0 are given to the left-hand and right-hand 
boundaries, respectively. The weights change linearly across the age range 
to become 0 and 1, respectively, at the right-hand boundary. Benjamin and 
Pollard [3] mention other ways of blending the data, but this simple linear 
approach is adequate for our purposes. However, a referee has drawn our 
attention to a recent paper by Hart and Wehrly [36], which describes kernels 
that deal with large boundary regions, and these models may be more suit- 
able in this context. 

3.3 Example 2 

Figure 2a shows the data from Figure lb fitted by using a linear combi- 
nation of Kb L and Kb R, instead of just K~. The cross-validation curve arising 
from the boundary-correcting smoother is similar in shape to that given in 
Figure la, so it is not shown. It results in be,,=0.5. However, the fitted values 
and the kernel functions superimposed on the bottom of Figure 2a are quite 
different from those in Figure 1. The kernel functions shown are those used 
to estimate the curve at the same six points as in example 1. For x~5, the 
kernel is almost the same as that of a normal kernel, but at x 2, x 3 and xm9 
the function becomes more truncated and its mode increases. When esti- 
mating the curve at both boundaries, xm and X2o, and moving towards the 
interior, we see that the weights attached to the other observations decrease 
rapidly, becoming negative and then gradually increasing back towards zero. 
So the smoother can take negative values. 

If we consider the value of the weights in the smoother matrix S to be 
the height of a surface above a plane, then we can plot the surface using a 
mesh, and this is shown in Figure 2b. The view in Figure 2b has Sit as the 
closest point on the surface and S,, as the furthest away point. The weights 
needed to estimate the i-th age come from the i-th row of the smoother. For 
example, the last row of the matrix in Figure 2b contains the weights needed 
to estimate X2o, and these weights are drawn in the bottom-right corner of 
Figure 2a. For values in the central region, the weights form a normal kernel, 
but as the point at which we are estimating the true curve moves towards 
the boundaries, the kernel becomes asymmetric and some of the weights are 
negative. From Equation (10), we can see that p measures the distance be- 
tween a given point and the boundary in units of bandwidth, so ages for 
which p-->2 have kernel functions that are almost the same as a standardized 
normal, with asymptotic equality as p - - ~ .  
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FIGURE 2 
PLOT A) HAS THE SAME DATA AS IN FIGURE IB), BUT HERE THE DATA ARE SMOOTHED USING A 

LINEAR COMBINATION OF g ~  AND gff. PLOT B) IS A SURFACE PLOT OF THE BOUNDARY-CORRECTING 

SMOOTHER. PLOTS C) AND D) SHOW THE BENEFITS OF REDUCING FIRST-ORDER BIAS IN THE 

NADARAYA-WATSON ESTIMATOR BY USING A BOUNDARY ADJUSTMENT. 

a) b) 

>. 

i iL i i,i  ' 
-1.5 -~ ~ 1 15 

c) d) 

,] 

The benefit of allowing the kernel to take negative values at the boundary 
is that we can reduce the first-order bias term in Equation (9) by building a 
kernel from Equations (11) and (12). So if the transformed, true curve is 
approximately a straight line, we can produce better estimates even at the 
boundary. Figures 2c and 2d show a true curve, which is a straight line at 
the boundaries. The data are observed without noise, so any error in esti- 
mation is due to bias. Fifty evenly spaced observations (not shown) are used, 
so we might expect any reasonable estimator to do well under these ideal 
conditions. Both estimated curves use the Nadaraya-Watson estimator from 
Equation (2). Without adjustment the Nadaraya-Watson estimator is notice- 
ably biased at the boundary in Figure 2c, and this bias increases as the 
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bandwidth increases. The boundary-correcting kernel in Figure 2d can cor- 
rectly estimate the straight line part of the true curve, even at the boundary. 
From Equation (9), we know that both estimators have second-order bias 
terms, so they both incorrectly estimate the curvature in the middle of the 
graph, underestimating peaks and overestimating troughs. 

If we are interested only in graduating the interior of the age range and 
the bandwidth is small, then the bias caused by the boundary may be neg- 
ligible. If this is not the case, then the effort required to reduce the extra 
bias at the boundary complicates the Nadaraya-Watson estimator. This is 
analogous to the complications that arise when MWA is adjusted to produce 
graduated rates at the ends of the table ([28], [29], [30], [39]). Example 3 
in Section 5.1 suggests that if the age range is small, then the extra bias due 
to the boundaries may be serious. In such cases, using one of the techniques 
mentioned above to reduce this bias may be well rewarded. Some authors 
have argued that other kernel estimators can be adjusted more easily than 
the Nadaraya-Watson to allow for boundary problems. Chu and Marron [11 ] 
offer a very readable comparison between the two most popular kernel es- 
timators, namely, the Nadaraya-Watson and the Gasser-Mtiller estimators. 

Another possible complication is that the boundary problem may force 
cross-validation to select a smaller bandwidth at the boundary to reduce the 
bias, but this may lead to undersmoothing in the middle of the table. Using 
an adaptive kernel estimator allows the bandwidth to vary across the table, 
so it may help to alleviate this problem. 

4. AN ADAPTIVE KERNEL ESTIMATOR 

In previous sections, the kernel functions have always had a fixed or global 
bandwidth, so once b is chosen, it remains constant. Rather than restricting 
the bandwidth to a fixed value, a more flexible approach is to allow the 
bandwidth to vary according to the reliability of the data. Thus, for regions 
in which the amount of exposure (sample size) is large, a low value for b 
results in an estimate that more closely reflects the crude rates. For regions 
in which the exposure is small, such as at old ages, a higher value for the 
bandwidth allows the estimate of the true rates of mortality to progress more 
smoothly. This means that at older ages we are calculating local averages 
over a greater number of observations, which reduces the variance of the 
graduated rates but at a cost of potentially greater bias. This technique is 
often referred to as a variable or adaptive kernel estimator. 
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4.1 Some Adapt ive  Models  

We can build our knowledge of the amount of exposure into the basic 
model in Equation (2) in a number of ways: 
• We can calculate a different bandwidth for each age at which the curve 

is to be estimated. Using that bandwidth, we then measure the distance 
from the age at which the curve is to be estimated to each of the observed 
ages. For example, assuming that the age to be estimated is x,., we mea- 
sure the distance from x; to xj using b i, for j =  1 . . . . .  n. So the model is 

Kb,(x , -- xj) 
~ii = z.., Sly ¢j, where Sij = ~_,n g b i ( X i  __ (13) 

for i= 1 . . . . .  n. If the age to be estimated is not one of the observed ages, 
then we could smooth the empirical probability density estimate of age, 

ei 
- ~- for i = 1 . . . . .  n. (14) 

j=l  

• Alternatively, we can calculate a different bandwidth, bj, for each ob- 
served age x~, for j =  1 . . . . .  n. Then for each observed age, use the cor- 
responding bandwidth to measure the distance from that observed age 
to the age at which the curve is to be estimated. For example, assuming 
that the age to be estimated is x~, we measure the distance from x i to xj 
using bj, for j =  1 . . . . .  n. This results in a new smoother 

Cl~ = ~ Sij t)j where S/j = Kbj(x i -- xj) (15) 
j=, 2;=~ Kb/xi - xj) 

for i=1 . . . . .  n. 
The local bandwidth at each age is simply the global bandwidth multiplied 

by a local bandwidth factor, b~=bl~ for i= 1 . . . . .  n. The variation in exposure 
between different tables and between young and old ages within a table can 
be enormous. To dampen the effect of this variation, we have chosen 

l ~ ] / - s  f o r i =  1 . . . . .  n and 0 - < s - < l ,  (16) 

where s is a sensitivity parameter. Choosing s = 0  reduces both models to 
the fixed bandwidth case, while s=  1 may result in very large bandwidth 
variation, depending on the particular table. For convenience, we have cho- 
sen the inverse of max{ffs:i  = 1 . . . . .  n} as the constant of proportionality in 
Equation (16), so that 0 < / ~ 1 ,  for i=1 . . . . .  n. If  there is a small amount of 
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exposure at age x i, then li ~ is large. This increases the size of the effective 
bandwidth, which in turn reduces the weight attached to the crude rate for 
that age. This allows us to apply more smoothing at those ages. The converse 
is true if the amount of exposure is large. The first example in Section 5 
uses the model defined in Equation (13), and the second uses Equation (15) 
to graduate some mortality tables. 

Once the local bandwidth factors are chosen, they remain fixed in both 
models, regardless of the location of the age that we are trying to estimate. 
So another possibility is to choose 

l,~ = ( e J e y ,  for i, j = 1 . . . . .  n. (17) 

The sensitivity parameter is still necessary to dampen the extreme variations 
that can arise. In this case, the relative exposure is used to adjust the global 
bandwidth when a weight is attached to the j-th crude rate to estimate the 
true rate at the i-th age. This leads to 

(18) 
Kb,~(x, x j) 

~ = S 0. LI~, where Sij = ~ .  _ 
.i=, j=, Kb,~(x i xj)' 

where b~=bl~  and i, j =  1 . . . . .  n. This model also offers the possibility of 
building in a variance ratio to allow for duplicate policies [15]. 

Clearly there is room for other models to be developed. In theory, we 
could try taking account of the shape of the true curve by using 

l~ = ([(q~)"lf~)-'. (19) 

Consider the true curve in Figures 2c and 2d to provide some motivation 
for this model. A formula such as/~=(l(¢,)"lf,) is saying that to improve 
the estimate in the center of Figure 2c, we should decrease the bandwidth 
as the amount of  curvature in the true mortality curve increases, provided 
that the crude rates in that region are reliable. The true morality rate, qi, is 
unknown, so an initial estimate is required. We can use f,., as defined in 
Equation (14), as an estimate of f~. Second differences could be used to 
approximate curvature, and we do not distinguish between positive or neg- 
ative curvature. 

We expect explicit allowance for exposure to be a beneficial feature in 
the models, because this factor directly influences the variability of the crude 
rates and exposure may vary enormously across the age range. It is worth 
asking whether models that allow for the shape of the true mortality curve 
as well as the amount of exposure are worthwhile. This would seem to 
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depend on the purpose of the graduation. If we are merely exploring the 
data, then the additional information derived might not justify the effort. 
However, if we wish to use a kernel estimator to check on a parametric 
graduation [2], then a more detailed model may be worth the effort. This is 
especially so for large tables where considerable time and effort have been 
invested in gathering and validating the data. 

We do not consider models like Equation (19) further in this paper. Nor 
do we derive the properties of an adaptive kernel estimator that are more 
complicated than those of the fixed-bandwidth estimator [31]. Jones [41] 
considers an alternative approach using a model of the form 

wj qj Kb(x i -- xj) 
~', = J=, 

n 

wj Kb(xi - x )  
j=l  

where w~ are weights that could depend on the amount of exposure. 

4.2 Choice  o f  P a r a m e t e r  Va lues  

For each of the models in the previous section, two parameters need to 
be considered: sensitivity, s, and global bandwidth, b. 

The sensitivity parameter could be chosen by cross-validation. However, 
as s increases from zero, the adaptive kernel becomes more sensitive to the 
variation in exposure. The amount of variation in exposure can be very large 
for some mortality data sets, ranging from thousands of person-years at 
younger ages down to single figures at the oldest ages. In such cases, a large 
value for s may be unreasonable, because it might result in bandwidths for 
some ages being several times the age interval covered by the data. There- 
fore, this parameter is chosen subjectively. Once s has been chosen, cross- 
validation is still used to choose b. 

5. SOME PRACTICAL EXAMPLES 

In this section we illustrate how the adaptive kernel model might be used 
to graduate two mortality tables. These two tables were chosen because the 
first has relatively little variation in exposure over the age range, while the 
second has a much greater variation. For both tables, we consider letting the 
bandwidth vary across the age range. Trial and error indicates that a doubling 
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of the bandwidth, from a minimum at ages with high exposure to a maxi- 
mum for ages with the lowest exposure, gives reasonable results. 

5.1 Example 3 

Figure 3a shows a bar plot of the amount of exposure for the crude mor- 
tality rates taken from Broffitt [6]. Broffitt adopts a Bayesian approach to 
graduation. The same data set has subsequently been considered by Carlin 
[8] using the Gibbs sampler to implement a Bayesian model. The data cover 
only a small age range, for which it might be expected that the true mortality 
rates are monotonically increasing. The decrease in exposure with age is 
typical of mortality tables reflecting the fact that there are relatively fewer 
older people and that whole-of-life and endowment policies are less likely 
to be sold to older people, in the case of the females table (Figure 3b). In 
comparison to the second table, the first has a relatively small amount of 
exposure and the variation in exposure over age is relatively small. The 
boundary-correcting kernel discussed in Section 3 along with the adaptive 
kernel defined in Equation (13) are used to graduate this table. 

FIGURE 3 
BAR PLOTS OF A) THE AMOUNT OF EXPOSURE FOR THE DURATION SIXTEEN-OR-MORE, MALE ULTI- 
MATE DATA TAKEN FROM BROFFITT [6] AND B) THE AMOUNT OF EXPOSURE FOR THE DURATION 

TWO-OR-MORE, FEMALE ASSURED LIVES 1 9 7 5 - 7 8  TABLE [14].  

a) b) 

~ o 

Age Age 
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The exposure in Figure 3a decreases with age, though in a less dramatic 
fashion than is often the case with mortality tables. The resulting local band- 
width parameter values, 11, for various values of the sensitivity parameter, s, 
are shown in Figure 4a. The observed exposures decide the shape of the 
local bandwidth curves, but the sensitivity parameter, s, determines the mag- 
nification of that shape, becoming more pronounced as s---*l. Notice that for 
s=0  the local bandwidth curve has a constant value of 1. In this case we 
are ignoring the variation in exposure, which gives a fixed-width estimator. 
From Figure 4a, where s=0.5, the minimum local bandwidth factor is about 
0.5, at age 40. This means that the bandwidth at the oldest ages is about 
double that at the younger ages. A bandwidth that approximately doubles 
across the age range produces reasonable results. 

After the data have been transformed using the logit transformation, dis- 
cussed in Section 2.1, cross-validation is then applied to select the optimal 
bandwidth, be,, For s=0  and s=0.5, the cross-validation score, from Equa- 
tion (5), is calculated for a range of global bandwidths, using the smoother 
defined in Equation (13). The results are shown in Figure 4b. The cross- 
validation curve for s=0  suggests that there is little to choose between band- 
width values up to about 6. This provides some support for using a subjective 
choice in or about this value, if desired. By using s=0.5, the cross-validation 
bandwidth is larger. Because we have already obtained the shape and mag- 
nification of the local bandwidth factors, this process of cross-validation 
decides the global value at which the bandwidth curve, from Figure 4a, is 
located. 

The smoother for the case s=0.5 is shown in Figure 4c. The basic shape 
is the same as that of Figure 2. However, row 1 has a smaller effective 
bandwidth than row 30. So in row 1 the weights decrease rapidly to zero 
but in row 30 the weights decrease more slowly in order to smooth the older 
ages more. Rows in the middle of the smoother correspond to ages in the 
middle of the table and are approximately normal in shape. For example, 
for element S~I of the smoother, we have bcvl~3~s~8 ×0.6, but for $3o 30, we 
have bcJ~5~-8×l ,  giving weights of 0.34 and 0.19, respectively. So the 
weights in row I decrease more slowly than the weights in row 30, because 
each row is standardized to sum to one. As a second example, consider the 
center of the surface where SIs ~5~0.08. This is the weight attached to the 
crude rate at age 50 when the true rate at age 50 is estimated. It can be 
calculated from a global bandwidth of about 8 and a local bandwidth factor 
of about 0.6 for age 50, giving a weight equal to a normal density with 
mean 0 and a standard deviation of 8×0.6 evaluated at 0. 
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HGURE 4 

A MORTALITY TABLE TAKEN FROM BROFFI'IT [6] IS GRADUATED USING EQUATION (13). PLOT A) 

SHOWS THE LOCAL BANDWIDTH FACTORS /s FOR DIFFERENT VALUES OF THE SENSITIVITY PARAME = 

TER, PLOT B) SHOWS CROSS=VALIDATION SCORES FOR EACH OF THE CASES $ = 0  AND S = 0.5. THE 

SMOOTHER FOR THE CASE $ = 0 . 5  IS SHOWN IN PLOT C). PLOTS D) AND E) SHOW THREE SETS OF 

KERNEL GRADUATED RATES ON THE LOGIT AND ORIGINAL SCALES, RESPECTIVELY. FINALLY, PLOT 

F) SHOWS THE RESIDUALS FROM FITTING A STRAIGHT LINE TO THE TRANSFORMED CRUDE RATES IN 

D) AND SMOOTHED RESIDUALS USING EQUATION (13). 
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This data set is unusual in that bey is relatively large compared to other 
data sets that were tested, especially considering that the age range is quite 
small. As a result, the distance from age 49 to the left-hand boundary and 
from age 50 to the fight-hand boundary is approximately twice bey, when 
s=0.5. Consequently, many of the kernels in the center of the table are not 
quite normal in shape. This gives a notable discontinuity in the fitted values 
unless the graduated rates are blended in some way. An ad hoc solution is 
explained in Section 3.2. 

The results of the two graduations, using s=0  and s--0.5, are shown on 
the transformed scale (logit) in Figure 4d and on the original scale in Figure 
4e. For comparison, a natural, cubic, smoothing spline graduation is shown. 
It also has a smoothing parameter chosen by cross-validation. The curve 
labeled "orig. scale" in Figure 4e is from the adaptive kernel model but 
fitted without first transforming the data. With s--0, the graduated rates are 
smooth, meeting the increasing convex condition in Equation (8), except at 
the oldest ages. For s=0.5, the graduated rates are lower than those for s=0,  
at the youngest ages. This appears to be due to greater weight being attached 
to the crude rates for ages 37 to 39, where the exposure is greatest. At the 
oldest ages, the graduated rates for s--0.5 lie below those for s=0,  due to 
the larger bandwidth under s -0 .5  at those ages. 

The possibility of building in prior knowledge is discussed in Section 2.6. 
In the absence of a suitable prior table, we have fitted a straight line by least 
squares to the crude rates, on a logit scale. This requires the additional 
assumption of normally distributed residuals. In Figure 4f, the residuals from 
fitting the straight line are smoothed by using Equation (13) with s=0  and 
s= 1. The smoothed residuals for s = 1 are then added to the straight line to 
get the graduated rates labeled "line and s = l "  in Figures 4d and 4e. 
Diagnostic plots of the residuals are satisfactory except that the quantile- 
quantile plot [10] suggests that the residuals are too scattered in the middle 
of the table. This might indicate the need for further investigation of the 
normality assumption. Otherwise, we might conclude that fitting a straight 
line by least squares on the logit scale gives a satisfactory graduation without 
any kernel adjustment, because the smoothed residuals in Figure 4e are 
almost zero at all ages. Azzalini and Bowman [2] offer a more formal ap- 
proach to this problem by using a ratio test to measure the distance between 
a parametric and a nonparametric model. In this case, we have used a kernel 
smoother simply as a way of exploring the data before using a parametric 
model to estimate the mortality rates. 
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For comparison with the kernel graduations, another nonparametric grad- 
uation is also shown in Figures 4d and 4e. This curve is fitted using a well- 
known statistical method called natural cubic smoothing splines ([26], [56]). 
It produces results similar to Whittaker graduation [44, chapter 5], but it 
uses a slightly different smoothness penalty. We refer to this method as the 
spline graduation, and it is the set of graduated rates that minimizes the 
function 

('~I - ql) 2 + b ((0])") 2 dx,  (20 )  
i= 1 I 

where (~)" is the second derivative of the graduated, transformed rates and 
b is again chosen by cross-validation. So as b--..o% we fit a straight line by 
least squares and as b--*0, we fit an interpolating, twice differentiable func- 
tion. A spline graduation has been chosen for comparison, because Silver- 
man [55] calculates an asymptotically equivalent kernel for this smoother, 
and he also shows that it is an adaptive as opposed to a fixed-width smoother, 
so the two methods are consistent in this respect. As can be seen from Figure 
4d, the spline graduation is very smooth. After Figure 4e has been back- 
transformed, this graduation is increasingly convex at all ages. 

In plot Figure 4e, the curve labeled "orig. scale" is from the adaptive 
kernel model fitted without first transforming the data. The spline graduation 
fitted without transforming the data produces a similar result (not shown). 
This illustrates the importance of a good transformation before a nonpara- 
metric method is applied. 

5.2 Example 4 

The data are taken from a report by the Continuous Mortality Investigation 
Bureau [14], which contains the crude rates for all causes of death for du- 
rations 0, 1, and 2 or more of the Female Assured Lives 1975-78 Table. 
This mortality table arose from the experience of contributing U.K. life 
offices from whole-of-life and endowment policies on female lives during 
the years 1975 to 1978. The boundary-correcting kernel discussed in Section 
3 along with the adaptive kernel defined in Equation (15) are used to grad- 
uate this table. The results for the adaptive kernel defined in Equation (13) 
were similar. 

Figure 3b shows the exposure for this data set. The overall shape is similar 
to that of Example 3 in Section 5.1, but the range of exposures is much 
greater. The small exposures for the oldest ages are likely to result in large 
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variations in the crude rates. The model incorporates these variations using 
the local bandwidth factors that are shown in Figure 5a, for various values 
of the sensitivity parameter. The variation in exposures is dampened by 
reducing the sensitivity parameter to s--0.1 in this case. The minimum local 
bandwidth factor at s=0.1 is about 0.5, so the bandwidth at age 94 is about 
double that at age 30. Thus, the variation in bandwidth is similar to that of 
the previous example. 

After transformation, cross-validation results for a range of global band- 
width values are shown in Figure 5b. For clarity and comparison with Figure 
4c, we only show a surface plot of the last 30 ages in Figure 5c. Despite 
appearances, the maximum weight over this part of the smoother is 
$6464~0.2, which is the weight attached to the crude rate at age 64 when 
the true rate at age 64 is estimated. $64 64 is the point on the surface that is 
closest to the viewer. This can be calculated from a global bandwidth of 3.3 
and a local bandwidth factor of about 0.6 for age 64, giving a weight equal 
to a normal density with mean 0 and a standard deviation of 3.5X0.6 eval- 
uated at 0, which is approximately 0.2. 

Because we are now using Equation (15), the smoother in Figure 5c has 
a different shape from that in the previous example. To estimate ~, the i-th 
row of the smoother shows the weights attached to the crude rates, where 
each weight is a function of the bandwidth b i associated with that crude rate 

for j =  1 . . . . .  n. One effect of this is that none of the weights are negative. 
The calculations for Figure 5d are carried out after the logit transformation 

has been used. However, so we can see the graduated rates at the younger 
ages in greater detail, the results are presented by using a log transformation 
of the x-axis. Using a logit transformation in Figure 5d, a sensitivity value 
of s=0.1 allows the graduated rates to follow the crude rates more closely 
at younger ages while smoothing more heavily over the older ages, relative 
to the fixed-bandwidth graduation. Again, for comparison, a natural, cubic, 
smoothing spline graduation is fitted with the cross-validation used to choose 
the smoothing parameter. The spline and the s=0.1 graduations are both 
very similar at the youngest ages, but both kernel graduations are less 
smooth than the spline graduation at the very oldest ages. The published 
rates, which were produced using a parametric graduation, are also shown. 

An interesting aside is that both the adaptive kernel with s=0.1 and the 
spline graduation indicate a fall in mortality rates with increasing age, for 
females in their 20s (see Figure 5d and 6e). This suggests that like males, 
females also suffer from an "accidental hump" but at later ages and to a 
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FIGURE 5 

DATA FROM THE FEMALE ASSURED LIVES 1975-78  TABLE ARE ANALYZED IN A MANNER SIMILAR 

TO THAT SHOWN IN FIGURE 4, BUT USING THE MODEL DEFINED IN EQUATION (15) WITH S ~ 0  AND 

S=0.1 .  PLOT B) SHOWS THE CROSS-VALIDATION SCORES FOR S = 0  AND S=0 .1 .  PLOT C) SHOWS THE 

SMOOTHER FOR S=0.1  FOR THE OLDEST THIRTY AGES, 64--94. THE FITS ON THE TRANSFORMED 

SCALE ARE SHOWN IN PLOT D) ALONG WITH A SPLINE GRADUATION AND THE PUBLISHED RATES. 

PLOT E) SHOWS THE RESULTS FROM PLOT D) AFTER BACK-TRANSFORMING. THE STANDARDIZED 

RESIDUALS FOR S = 0. l ARE SHOWN IN PLOT F). 
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much lesser extent [4]. This feature is not present in the published tables, 
which are fitted by using a parametric method [14]. 

Much of this detail is lost when the rates are redrawn onthe original scale 
in Figure 5e, which is one of the reasons for transforming the crude rates. 
On the original scale, the differences between the spline graduation and the 
crude rates at the oldest ages are magnified. Figure 5f shows that the stan- 
dardized residuals, defined in Equation (7), for s=0.1 are well scattered. The 
residuals can also be smoothed by using a kernel approach, in which case 
we expect to see a fairly fiat line about zero. 

5.3 Example 5 
Next we consider using the published table for duration two-or-more to 

graduate the crude rates for duration 1. 
In effect, the duration 2 or more table acts as a prior assumption and thus 

influences the shape and level of the graduated kernel rates for duration 1. 
This approach is motivated by the fact that both tables are based on the 
same population, but the duration two-or-more table has a total of 4,616 
deaths out of a total of 2,042,853 policyholders exposed to risk during the 
period of investigation. The corresponding figures for duration 1 are much 
less at 334 and 459,068, respectively. So having graduated the larger table, 
we might want to incorporate that knowledge into the graduation of the 
smaller table. 

The procedure is the same as in Figures 4d-4f: subtract the crude rates 
from the standard table, smooth the residuals using the smoother defined in 
Equation (13), and then add the smoothed residuals to the standard table. 
By approaching the problem in this way, we are emphasizing the relative 
differences in mortality rates among the durations rather than the absolute 
mortality rates. 

Figure 6a shows the crude rates for duration 1 and the published rates for 
durations two-or-more. The residuals, shown on a logit scale in Figure 6b, 
are the differences between these two sets of rates. The residuals are 
smoothed in a similar manner to that in Example 3. In the middle of the 
age range, both kernels in Figure 6b are fairly constant. This suggests that 
mortality rates are consistently lower for the lower-duration table, in that 
part of the table. At both ends of the table, the fixed-bandwidth kernel is 
affected by the high residuals. However, the adaptive kernel ignores the high 
residuals at the oldest ages because the exposure is low, but the relatively 
high exposures at the youngest ages suggest that the upward trend is real, 
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at that end of the table. For example, the exposures at the two youngest ages 
are 18,018 and 19,408 and the exposures at the two oldest ages are 61 and 
48. To ensure a monotonically increasing table, the actuary might decide to 
ignore this feature. In fact, the published rates for durations 0 and 1 are 
based on an adjustment to the published rates for durations two-or-more. 
Adding the smoothed kernels to the durations two-or-more published rates 
gives the two kernel graduations shown in Figure 6a. For s=0.3, the smooth- 
ness of the graduated rates at the oldest ages is partly due to the large 
bandwidth, but it is also due to the smoothness of the standard table. The 
published rates for duration 1 are also shown in Figure 6a. 

This example shows how a nonparametric approach to graduation can 
provide qualitative information about the bias present in subsequent para- 
metric graduations. 

5.4 Example 6 
As a final application, we consider using the model defined by Equation 

(18) to smooth the crude rates of the duration two-or-more table. 
For this model, we have a vector of local bandwidth factors for each crude 

age, which results in a matrix, {l,~} where lij=ej/ei, for i, j =  1 . . . . .  n. Figure 
6c shows this matrix as a surface plot. For s=0.05, the local bandwidth 
factors vary from 0.7 to 1.42. This results in a doubling of the bandwidth 
across the age range, which like the previous examples gives reasonable 
results. The diagonal from the nearest to the furthest point in Figure 6c has 
ll;= 1, for i= 1 . . . . .  n, and the shape of any row is similar to each of the lines 
in Figure 5a. The last 30 rows and columns of the resulting smoother are 
shown in Figure 6d. The shape of this smoother is similar to that in Figure 
4c. Notice that the far corner of the smoother is more peaked; this results 
in graduated rates that rise more sharply at the oldest ages. Figure 6e also 
shows the results from example 4 in Section 5.2 based on Equation (15), 
for s=0.1. For clarity, the crude and published rates are not shown. At the 
youngest ages, the graduated rates from Equation (18) are as smooth as the 
results from Equation (15) with s---0, while at the oldest ages the graduated 
rates are similar to those of the spline graduation. For the duration two-or- 
more mortality table, the graduated rates from Equation (18) give the 
smoothest of the three kernel models that we consider, but further work is 
needed to test these results on other tables. The standardized residuals, in 
Figure 6f, show no clear pattern. 
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FIGURE 6 

PLOT A) SHOWS THE CRUDE AND PUBLISHED RATES FOR DURATION ONE, THE PUBLISHED RATES FOR 

DURATION TWO-OR-MORE AND TWO KERNEL GRADUATIONS OF THE DURATION-ONE CRUDE RATES. 

THE RESIDUALS IN PLOT B) ARE THE DIFFERENCE BETWEEN THE CRUDE RATES FOR DURATION ONE 

AND THE PUBLISHED RATES [:OR DURATION TWO-OR-MORE. THE SMOOTHED RESIDUALS USING EQUA- 

TION (13), WrrH s = 0  AND S=0.3, ARE ALSO SHOWN. PLOT C) SHOWS THE SURFACE GENERATED 

FROM EQUATION (17) FOR S ~ 0 . 0 5  AND THE LAST 30 ROWS AND COLUMNS OF THE CORRESPONDING 

SMOOTHER FROM EQUATION (18) ARE SHOWN IN PLOT D). PLOT E) SHOWS THE RESULTS FROM 

EXAMPLE 4 IN SECTION 5.2 BASED ON EQUATION (15), FOR $=0 .1 .  THE STANDARDIZED RESIDUALS 

ARE SMOOTHED IN PLOT F). 
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6. DISCUSSION 

We start with a bivariate scatterplot of age against mortality, but as the 
data are grouped by age, we simply average within each group to produce 
a set of equally spaced observations. This eliminates the first-order bias of 
the Nadaraya-Watson estimator in the interior of the table. Transforming the 
data helps to stabilize the variance and to reduce the curvature. This means 
that the second-order bias, due to curvature, is reduced. The second-order 
bias may be further reduced by using a suitable, standard mortality table to 
filter out some of the curvature of the true mortality rates. Also, a boundary 
correction helps to reduce the extra bias encountered at the ends of the table. 
Thus, pooling and transforming the data, using prior knowledge of the shape 
of the curve and an adjustment at the extreme ages all help to validate the 
assumptions of residuals with zero mean and constant variance in the model. 
The requirement of independent residuals is more difficult to achieve, but 
Equation (18) combined with possible adjustments [15] may help to alleviate 
this problem. Finally, some diagnostic plots, discussed in Section 2.5, offer 
an easy means of assessing the validity of the assumptions made. 

A kernel function that makes explicit allowance for the boundary is de- 
fined and illustrated in Section 3. Complications such as the extrapolation 
method ([42], [52]) applied to the Nadaraya-Watson estimator or the large 
boundary adjustment [36] applied to the Gasser-MUller estimator subtract 
from the intuitive appeal of kernel models. However, the extra effort required 
to specify the kernel does improve the results in the examples shown and 
for other mortality tables not reported here. This is because the variable 
bandwidth in our estimators usually increases for older ages because of 
lower exposures at those ages. 

The adaptive kernel model in Section 4 allows the estimated rates of 
mortality to include explicitly the extra information provided by the chang- 
ing amounts of exposure, in addition to the information from the crude rates 
themselves. A sensitivity parameter allows the user to control the degree of 
emphasis placed on the changing exposures through the local bandwidth 
factors. The global bandwidth parameter is used to control the absolute level 
of the bandwidth curve. If desired, its value can be chosen objectively using 
cross-validation or some equivalent method. 

Although our applications have been restricted to the more traditional 
application of constructing a single-decrement life table, other applications 
are conceivable, such as transition intensities or probabilities in multiple- 
decrement and multiple-state models. 
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Throughout this paper, we have adopted a heuristic approach to kernel 
graduation, but a more theoretical perspective may offer deeper insight into 
the connection between this method and MWA graduation. Because of the 
adaptive bandwidth, both the number of crude rates and the corresponding 
weights vary in the estimation of the transformed, true rate at each age. In 
contrast, the range of a MWA is often kept fixed and only the weights are 
allowed to vary. In this respect, kernel models may offer a more flexible 
approach to local smoothing. In addition, this paper has concentrated on the 
Nadaraya-Watson kernel estimator only, but there are many others [43]. Fur- 
ther work is needed to assess their relative merits for graduation. 

An alternative model that is closely related to kernel-smoothing is to fit 
low-order polynomials locally. So instead of fitting a constant, we now fit a 
straight line or a quadratic using least squares. This approach was popular- 
ized by Cleveland [12]. Hastie and Loader [37] review the recent statistical 
literature on this subject and argue that higher-order models result in a lower 
order of bias without a corresponding increase in variance. Fan and Marron 
[22] have pointed out that fast implementations of kernel and local poly- 
nomial methods have recently emerged, and they claim speeds comparable 
to those of smoothing splines. For mortality applications, this model has the 
advantages of automatically adjusting at the boundaries to reduce the bias. 
It also provides more reliable estimates of the derivatives of the mortality 
curve than the Nadaraya-Watson estimator. In the actuarial literature, Ren- 
shaw [51] considers generalized linear and nonlinear graduation. 

Another area of future interest is robustness. Some of the examples in 
Section 5 appear to be influenced by outliers, because the Nadaraya-Watson 
estimator offers no explicit resistance to unusual observations. An influential 
point may also affect the choice of bandwidth when an automatic selection 
method is used, such as cross-validation. Cleveland [12] extends his model 
to include robust iterative estimation. In fact, any smoother can be made 
robust by using more resistant local averaging, such as the mode or 
median [54]. 

The potential uses of a nonparametric approach, listed in the introduction, 
suggest that they have much to offer as part of the actuarial toolkit. Note 
that we are not advocating that a nonparametric model should always be 
used instead of a parametric one. A nonparametric model should be viewed 
as an exploratory step towards the final model choice, which may be para- 
metric because of its inherent smoothness. Differences between the best 
parametric and nonparametric graduations will highlight the extent of the 
actuary's desire for smoothness, at a cost of lack of fit to the data. 
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