
Inside
Letter from the Chair
by Paula M. Hodges ______________ 2

Scenario File Format Project Update
by Carl J. Nauman ________________ 3

Why We Think That We Think
by Carol A. Marler ________________ 4

Program Well and Live
by Mary Pat Campbell ____________ 8

Actuarial Value Ladder
by Meg Weber__________________ 13

T E C H N O L O G Y S E C T I O N
“A KNOWLEDGE COMMUNITY FOR THE SOCIETY OF ACTUARIES”

CompAct Electronic Newsletter • Issue No. 24 • July 2007 • Published in Schaumburg, Ill. by the Society of Actuaries

CompAct

Technology Section Newsletter
Issue Number 24
July 2007

Published quarterly by the Technology Section
of the Society of Actuaries

475 N. Martingale Road, Suite 600
Schaumburg, IL 60173
phone: 847.706.3500
fax: 847.706.3599

World Wide Web: www.soa.org

Nariankadu D. Shyamalkumar
CompAct Editor
Assistant Professor
Statistics and Actuarial Science
241 Schaeffer Hall
The University of Iowa
Iowa City, IA 52242-1409
phone: 319.335.1980
fax: 319.335.3017
e-mail: shyamal-kumar@uiowa.edu

Technology Section Council
Paula M. Hodges, Chairperson
Kevin J. Pledge, Vice-Chairperson
Joseph Liuzzo, Secretary/Treasurer

Council Members
Van Beach, Council Member
David Minches, Council Member
2007 Annual Meeting Coordinator
Carl J. Nauman, Council Member
Timothy L. Rozar, Council Member
2007 Spring Meeting Program
Committee Coordinator
N.D. Shyamalkumar, Council Member
Newsletter Editor
Dean K. Slyter, Council Member
Web Coordinator

BOG Partner: Mark Freedman

Staff Partner: Meg Weber
mweber@soa.org

Staff Support: Susan Martz
smartz@soa.org

Graphic Desinger: Angie Godlewska
agodlewska@soa.org

Facts and opinions contained in these pages
are the responsibility of the persons who
express them and should not be attributed
to the Society of Actuaries, its committees,
the Technology Section or the employers of
the authors. Errors in fact, if brought to our
attention, will be promptly corrected.

Copyright© 2007 Society of Actuaries.
All rights reserved.
Printed in the United States of America.

Letter from the Chair
by Paula M. Hodges

W e are coming upon a very important time of the year—
our board and council elections! The candidates
have been recruited, the ballots drawn; now it’s your

turn to vote!

But … maybe you had been considering putting your name on
the ballot, and somehow didn’t get it done. Maybe you’re con-
sidering running for council next year. Well, it’s never too late—
or too early—to get involved. Our council met last October,
intent on building opportunities for networking, improving com-
munications, enabling information sharing, providing publica-
tions and enhancing technology education. We have so much
we can do, but we can only succeed if we have more volunteers
from our general section membership. So, we’d love to get you
involved now! It would be an excellent “campaign” for your
election to the council in 2008.

If you don’t know how to get involved, you can read our
TechUpdate e-mail. We send it out every two months and it has
lots of information on the activities of the section. We send the
update to let you know what your section is doing on your
behalf, and also letting you know where we need help. If you
would like to review the latest editions, you can find the
TechUpdate e-mails on our Web site at http://soa.org/
news-and-publ icat ions/newsletters/technology/pub-
technology-section-updates-details.aspx. Or, just call one of
the council members to see where you’d find the best volunteer
opportunity for you.

I hope you take me up on this volunteer opportunity. The expe-
riences of participating actively in the
Technology Council have been extremely
rewarding to me in so many ways.
Participating actively in a section of the SOA
provides exposure to so much more than just
your section’s interests. By getting involved,
doors will start opening up to you, in ways
you never dreamed possible. I strongly
encourage you to become involved. Then,
when the time is right, put your own name
on that council ballot.

Good luck to this year’s candidates and wel-
come to this year’s new volunteers! :

Paula Hodges
Chair - Technology Council

Paula M. Hodges,

FSA, MAAA, is

senior manager-

product

management with

Allstate Financial in

Lincoln, NE. She

can be reached at

Paula.Hodges@

allstate.com

http://soa.org/news-and-publications/newsletters/technology/pub-technology-section-updates-details.aspx.
http://soa.org/news-and-publications/newsletters/technology/pub-technology- section-updates-details.aspx
http://soa.org/news-and-publications/newsletters/technology/pubtechnology-section-updates-details.aspx
http://soa.org/news-and-publications/newsletters/technology/pub-technology-section-updates-details.aspx

• Scenario File Format Project Update •

T
he Standard Scenario Format Working

Group is continuing to develop a tool for

actuaries to store and exchange eco-

nomic scenarios using a standard format. The

last update can be found in the January 2007

issue of CompAct.

We now have a tentative XML format for sce-

narios. Some minor adjustments may need to

be made during the development of the utility

program. It will provide for yield curves at var-

ious bond qualities, equity returns and other

economic indicators, all for multiple countries.

Our main focus over last few months has been

the utility application. Initially, it will be for

reading, writing and viewing the scenarios. The

first phase of the development is nearing com-

pletion at which time we will begin testing.

We also have been writing documentation for

the standard format and the utility. To date,

progress has been steady and the project is

proceeding smoothly. :

CompAct • 3

Scenario File Format Project Update
by Carl J. Nauman

Carl J. Nauman,

ASA, is a consulting

actuary with GGY

AXIS in Toronto,

Ontario. He can

be reached at Carl.

Nauman@ggy.com.

4 • CompAct

D
ouglas Hofstadter ’s 1979 book,

“Gödel, Escher, Bach: An Eternal

Golden Braid,” won a well-deserved

Pulitzer Prize. In it, with youthful exuberance,

the author displayed a wide assortment of para-

doxes, self-references and symmetries that

exist within and among the fields of music,

mathematics, literature and art.

Twenty-eight years later, an older, sadder and

perhaps wiser Douglas Hofstadter again tack-

les the difficult questions of systems so com-

plex that they are able not only to refer back

to themselves but also to analyze what they

themselves may mean. In “I Am A Strange

Loop,” Hofstadter again explores the meaning

of Gödel’s proof, while also considering the

implications of consciousness, his academic

area of specialization.

The book begins with a reflection on

Hofstadter’s choice to become a vegetarian,

and how his guidelines for what not to eat

have evolved over time. He uses this medita-

tion to explore the idea that consciousness is

not a binary phenomenon, but rather has

fuzzy boundaries. Some conscious beings,

such as humans, clearly have a more exten-

sive repertoire of consciousness than those

animals commonly considered to be “lower” in

some way, such as dogs, cows, goldfish, snails

and mosquitoes.

As before, he takes the reader through an

explanation of Gödel’s proof which requires no

sophisticated mathematical knowledge. He

then goes on to conclude that any sufficiently

complex self-referencing system has the capa-

bility of being conscious. In fact, he concludes

that this emergent property, consciousness,

arises automatically from the fact of its use of

self-referencing symbols. Such a conclusion is

not new, and may not even be controversial …

until it is applied to inanimate systems.

Part of his book works hard to debunk the the-

ories of those, such as John Searle, who

believe that only organic beings have the

“right stuff” to attain consciousness. One of

his most telling counter-arguments is the

audience reaction to characters such as R2D2

and C3PO, which are clearly mechanical, but

are readily accepted, in context, as thinking,

conscious beings. In part, his argument for

why we feel this way is that these cute robots

exhibit emotions. When they look and act

fearful, we do not say to ourselves that they

are merely programmed to react in that way;

we simply go to the idea that their behavior

(as much as same behavior by humans)

means that they in fact are fearful.

Book Review:

Why We Think That We Think
by Carol A. Marler

• Why We Think That We Think •

Personally, I am not convinced that is it sim-

ply a matter of displaying emotion. A key ele-

ment in storytelling is that the audience will

care about the subjects of the story because

of the way in which their experience produces

change in them. The mere fact that these

robots show fear or other emotions is not

enough; the audience relates to them as they

respond to the fearful situation, for example,

by overcoming their fear and taking necessary

action (to advance the storyline). To me, this

change must be the result of a choice made by

the protagonist.

And here is where the author and I part com-

pany. Hofstadter concludes that his explanation

of consciousness has no room for free will.

Whatever we do is an outcome of our innate

desires. If there is a conflict, one or the other

desire is stronger and thus is certain to be

acted upon. If we change, you see, it is because

we want to change. It’s all presented in a deter-

ministic context. I’m as uncomfortable with his

rejection of free will as he is dismissive of the

idea that will could ever be “free.”

His argument in part involves a rejection of

dualism—that there is something to a human

“mind” other than the brain and its symbols,

including the self-referencing symbols of “self”

and “mind.”

In addressing this whole issue, he finds it nec-

essary to consider the activities of a brain at

two levels. One level, the symbolic, is driven

by the underlying molecular elements of brain

chemistry (which he, unfortunately does not

really explore) and the fact that such molecu-

lar reactions are actually mediated by sub-

atomic particles which behave in a manner

both probabilistic and boundaryless. The

probabilistic element may be familiar to actu-

aries (at least those who have studied finan-

cial economics) as the equations of Brownian

motion. The boundaryless feature, at the

quantum level, means that any subatomic

particle can be influenced by other subatomic

particles regardless of distance.

In his view, all that happens at the “lower”

level is essentially meaningless. Nevertheless,

this subatomic particle soup is what drives all

the activity at the “higher,” symbolic level,

where our thoughts and perceptions take

place. I could have wished for a closer look at

some of the intermediate levels, where much

research is currently being done on both the

biochemical aspects of neural activity and the

physiological structures of nerves and brains.

Maybe this will appear in another book.

Along with free will, of course, Hofstadter also

rejects the notion of a separate “soul” or “spir-

it” which can continue in existence in the

absence of the physical structure of the brain.

How, then, does Hofstadter deal with the

tragedy of his wife’s premature death, when

their older child is only five years old and the

younger one is two? His philosophy regarding

this is explored at some length in Chapter 16,

which is made up of excerpts from some e-

mails he wrote to a good friend and fellow

consciousness researcher, Daniel Dennett as

he came to grips with this personal tragedy.

The ideas expressed are actually those that

Hofstadter had consid-

ered even before his

family was touched by

this death. What he

concludes is that the

personality of an indi-

vidual is carried in sim-

plified form in the mind

of those who knew her

(or him), and that so

long as those concepts remain in memory, the

person still exists. His philosophy is not new—

it is explored in literature of at least 40 years

ago, such as a short novel by Romaine Gary

which I read as a college student.

Hofstadter also considers another loopy idea.

Self-awareness includes, of course, awareness

of the fact of self-awareness. Since he

believes that there is no separate “being” to

CompAct • 5

(continued on page 6)

“Part of his book works hard
to debunk the theories of
those, such as John Searle,
who believe that only organic
beings have the “right stuff”
to attain consciousness.”

6 • CompAct

experience this aware-

ness, he somehow con-

cluded that the whole

thing is a kind of mental

illusion. Through the

magic of perception,

Hofstadter sees us as

mirages who perceive

ourselves. As he expre-

sses the idea in his

concluding section, “In

the end, we self-perceiving self-inventing

locked-in mirages are little miracles of

self-reference.”

For the reader seeking parallels with the ear-

lier book, there are certain playful insights

and gems of self-reference to be found. For

instance, many chapters begin with an illus-

tration of something forming a loop. One of

my favorites features a grinning Douglas

Hofstadter and 10 other people who are

arranged in a circle facing clockwise. Each

person is sitting on the lap of the person

behind him or her.

In support of his idea that our self-perception

is a mirage, he presents an illusion that he

once experienced with a box of envelopes.

Grasping them all in order to take them out of

the box, he became convinced that they con-

tained a marble somewhere within. After

examining each envelope, and finding no mar-

ble, he realized that the feeling of something

solid in the middle was the result of multiple

copies of the triple point where envelope flaps

are glued together. Even knowing that this was

what caused the feeling, he still had the dis-

tinct impression of something hard and round.

He recounts this experience in a lecture, and

one of the people in the audience is so taken

with the image that she goes home and writes

a poem about the illusion. The poem makes

its way into Hofstadter’s hands, and he (with

permission of the author) includes the poem

on page 94.

Footnotes, as it happens, are located in the

back of the book. On page 376, a penultimate

footnote refers to a certain literary device

used on page 361. The form is called paeonic

meter and consists of 40 repetitions of the

basic “foot” which is simply three unstressed

syllables followed by a stressed fourth sym-

bol. The two paragraphs on page 361, refer-

enced by the footnote are in this form … so is

the footnote, and also the final footnote,

which refers to page 376, and in particular

that previous footnote.

This book reiterates the basic concepts of

Gödel’s proof, and gives a bit of the mathe-

matical background. About a century ago,

Alfred North Whitehead and Bertrand Russell

set about to establish a completely rigorous

foundation for mathematics, in which all the

logical principles used for basic arithmetic are

set forth and the operations of addition are

derived as theorems therein. The book

they published was called “Principia

Mathematica(PM).” Their purpose was to

assure users of mathematics that the struc-

ture was secure—that it was a complete

system and that it was internally consistent.

What they did not realize was that complete-

ness and consistency are mutually incompati-

ble, just as Heisenberg’s uncertainty principle

tells us that it is impossible to know exactly

both the location and the motion of an

“elementary” particle.

What Gödel accomplished was to show that

the logic of PM could also be applied, not just

to basic mathematics, but also to PM itself. By

high-level logic, he constructed a way of mak-

ing a theorem that essentially declared, “This

theorem cannot be proved within the system

of PM.” To quote Tevye, “Sounds crazy, no?”

The key implication of this proof for mathe-

maticians is that mathematical statements

exist which are true, but which cannot be

proved. And, of course, it is impossible to

know which unproved statements might actu-

ally be the unprovable ones.

• Why We Think That We Think • continued from page 5 •

“Along with free will, of
course, Hofstadter also rejects
the notion of a separate “soul”
or “spirit” which can continue
in existence in the absence
of the physical structure
of the brain.”

• Why We Think That We Think •

Like Hofstadter, I enjoy the alternate formula-

tion of the theorem, which is worded only

slightly differently, “I cannot be proved within

PM.” Can a theorem truly speak in the first

person? How many of us, kicking off a com-

puter program that will run for some time,

refer to it as “looking” for the answer to the

problem? Do we ever speak of an Excel goal

seek operation as “wanting” to find the num-

ber that fits our criteria? I am not suggesting

that there are computers today that are con-

scious. No, the degree of complexity and self

reference has probably not yet been achieved.

But it is interesting to reflect on just what sort

of advance might allow us to construct a

mechanical entity that really does think, rea-

son and even recognize itself as a being that

thinks and reasons.

If such speculations seem airy and meaning-

less to you, then there is no reason to read

this book. But, if like me, you have often

reflected on the meaning of consciousness

and how it relates to complexity and self-ref-

erence, you will want to add this book to your

collection. You can put it next to Lewis

Carroll’s Alice in Wonderland, and to Gödel,

Escher and Bach. :

CompAct • 7

Carol A. Marler, FSA

MAAA, is associate

actuary at

Employers

Reassurance

Corporation,

Indianapolis IN.

She can be reached

at carol.marler@

ge.com.

8 • CompAct

The End is Nigh!

I
n looking for articles on actuarial pro-

gramming habits, I came across

“Document or Die,” by Jim Toole from the

February 1995 issue of CompAct. “That’s a bit

harsh,” I thought, noting from my own experi-

ence that documentation was pretty thin on the

ground, and yet plenty of computing was get-

ting done. If nothing else, dead programs

weren’t littering our directories. Just as kids ig-

nore parents after excessive warnings of “You’ll

poke your eye out!” and “Your face will freeze

that way!” the lack of calamity in general means

most actuaries will ignore the exhortation

“Document or die.”

My actuarial modeling experience (all four

years of it) has been that if I write a program

or some code for Excel, the primary user

is going to be me. If I’m documenting my

code, the likely audience for said documenta-

tion is me, some months after I had last

changed the code. I don’t particularly want or

need to step through paragraphs of documen-

tation within my own code. Generally, if I am

picking up a program again, it is because I am

changing the code to use it for another pur-

pose, or updating it for another year’s worth

of experience. It takes very little documenta-

tion to achieve this, and I will show how and

why here.

This article is for those who have to do a lot of

custom programming, such as with modeling,

and for those who are managing actuarial stu-

dents doing serious numerical programming

for the first time in their lives.

Goals of Actuarial
Programming
• In numerical programming I have various

goals to attend to: The program calculates

what it’s supposed to.

• The program does its job in as short

amount of time as possible, using the

fewest possible resources.

• The program is easy to modify.

• The program has “mobile code.”

The first goal is the sine qua non. If the code

doesn’t do its primary task, all is for naught.

This usually is the easiest part of program-

ming—many with little programming knowl-

edge and experience can accomplish this goal.

As that’s the immediate goal of any

programming task—and few want to read

• Program Well and Live •

Program Well and Live
by Mary Pat Campbell

other people’s code—most are not required to

go beyond this goal.

The second goal—optimizing the runtime or

memory use—is more difficult, and requires

more knowledge of compilers, algorithms and

the like. Sometimes you can optimize your

problem before it even hits the computing

stage (such as scenario reduction in Monte

Carlo modeling for ALM). It’s usually a good

idea to take some formal courses in numeri-

cal algorithms or computer science to learn

this, which is not something that’s easily con-

veyed in a short article. As well, with the

spread of distributed computing, some might

not even have to optimize much as long as

they’ve got hundreds of idle PCs available.

The last two goals—making the code easily

modifiable and portable—are what makes

your future jobs easier, and what this article

is about. You don’t want to spend time coding

if you already have perfectly good code from

an old problem that can be copied for current

use. Also, if your original problem changes,

and you have to alter the code, you don’t

want to be spending time trying to hash out

what you did the first time; you might as well

program from scratch.

If you cultivate good programming habits,

you can spend more time analyzing and opti-

mizing, and less time coding and debugging.

Following are some tips I have come across

and have tried incorporating into my own

code.

Tips for Good Numerical
Programming
1. Organize your programming flow

well.

This will go a long way in preventing prob-

lems and will help with achieving the first two

goals of efficient and working code.

You want to avoid the dreaded disease of

“spaghetti code” where you have gone off

programming before thinking through the

logical flow and parts of solving your prob-

lem. I’ve seen code where variables are

declared and initialized

in the middle of the

code right before they

were used; I’ve boggled

at incomprehensible or

redundant logical tests;

and I’ve gritted my

teeth at loops with

escapes built deep

inside (dangerous!). If

such code ever does work correctly, it is unal-

terable. Try to change one line and the whole

structure can fall apart.

So think before you code. You may not need

to use a flowchart, but you do need to have

an overall flow of what is calculated when,

and it’s also best to group together steps by

category. For example, even if files are used

much later in the code, I usually open all of

them at the very beginning and initialize all

variables at the start. That way, if I have to

remove or add a file or variable, I can do that

easily.

2. Create self-documenting code with

good style and naming conventions.

The first time I wrote a program with three

nested loops, I used the names “Hickory,”

“Dickory” and “Dock” for my loop indexing

variables—very cutesy. My excuse: I was 12

years old. (I went on to use “Rikki,” “Tikki,”

“Tavi,” “Bibbity,” “Bobbety,” “Boo,” and

“Helter”, “Skelter.” It took me a while to fig-

ure out why I couldn’t use “snap,” “crackle”

and “pop,” which goes to show the danger of

using regular words as variable names.)

These variable names told nothing of what

they were looping through; at best, I could

tell the outer loop, the middle loop and the

inmost loop. It’s all very well to have non-

descriptive variable names for a school

(continued on page 10)

CompAct • 9

“In short, simply name your
variables according to what
they are, the procedures as to
what they do and functions as
to what they return.”

10 • CompAct

assignment, but it becomes untenable when

you have real problems to solve. Suppose you

have to loop through age, issue year and set-

tlement year cells when projecting liabilities.

In which code would it be easier to confuse

the looping variables: the one with variables i,

j and k, or the one using variables AgeIdx,

IssueYrIdx and SettleYrIdx?

On top of my bad variable name habits,

I would name procedures thusly: “DoStuff,”

“DoMoreStuff,” and “DoStuffThree_TheReck-

oning.” Again, very cute, but not very enlight-

ening. To be sure, I dutifully commented the

procedures as to what

they did and what

inputs they took, but

any time I had to use

one of them, I’d have to

look it up to see which

one I wanted.

In short, simply name your variables according

to what they are, the procedures as to what

they do and functions as to what they return.

Some examples of names I’ve used follow:

RowIdx (loop variable for looping through rows)

IntPayt (variable that will take interest payment)

CFRow(Year, Month, Day) (function that returns

the row a particular cash flow is to be

entered in)

CashflowLoad(RunOpt) (procedure that loads

up cash flow, with different run options

indicated by variable RunOpt)

The parenthetical statements above would

seem ideal for comments in the code itself,

but they are mainly superfluous. The names

are self-documenting in that respect.

In addition to naming things appropriately,

make sure you have a consistent naming style

so you don’t create confusion. As just shown,

I like the InterCapitalizationStyle of variable

names, whereas others prefer underscores_

between_words. It’s a matter of taste. As

well, many people like to use all caps to indi-

cate constants, and might like to use different

prefixes to indicate variable type; for exam-

ple, “sFile” would be a string, “nFile” would be

an integer and “dFile” would be a double-pre-

cision float. Having such prefixes helps when

you’re dealing with a language that is strict

about variable type casting.

Finally, it is important to have a consistent

style with regard to indentations for subblocks

of code or line continuations, and think about

putting spaces between “paragraphs” of code.

The idea is to make readable code, where the

structure is evident from the shape of inden-

tation and spacing. The more readable you

make your code, the fewer comments you will

need to put in to help someone understand

what it’s doing.

3. Make it modular.

If you do the same sort of thing more than

once, spin it off as its own procedure or func-

tion. This makes your code easier to read.

Consequently, if a step in the procedure

changes, you will only have to change it in one

place as opposed to all the places where it

occurred. This makes your code portable in

that you will be able to call on the procedure

more times with a single line of code, as

opposed to copying, pasting and changing

variable names in the appropriate places.

Here’s a recent example from my own code. I

had an Excel VBA macro that was supposed to

load up asset cash flows from two separate

scenario files. The original code looked like

this (in very simplified pseudo-code form):

Open ScenarioFile1

Find asset CUSIPIdx

Find cash flow output columns for scenario 1

Pull out cash flows (loop)

Open ScenarioFile2

Find asset CUSIPIdx

Find cash flow output columns for scenario 2

• Program Well and Live • continued from page 9 •

“The first goal is the sine qua
non. If the code doesn’t do its
primary task, all is for naught.”

Pull out cash flows (loop)

The code worked fine as just shown, but I

modularized it so it was easier to read:

Call LoadSingleScen(ScenFile1, CUSIPIdx,

OutputColn1)

Call LoadSingleScen(ScenFile2, CUSIPIdx,

OutputColn2)

Later, I had to alter my runs so that I was

comparing the output of four separate sce-

nario files instead of just two. Boy, was I

happy that I had modularized my code earlier.

It was just a matter of adding a few more pro-

cedure calls and I was good to go.

In addition to setting off certain lines of code

into their own procedures or functions, it’s

helpful to group procedures and functions

together in their own files that can be popped

on and off as needed. In VBA for Excel, you

can have separate modules which you can

export and import as needed. In C or C++ you

can have linked files and libraries. I found this

helpful in programming when I might have dif-

ferent models for partial withdrawals on a vari-

able annuity with guarantees—I could remove

the file with my baseline assumption function

for withdrawal rates and link up the file with

the new assumption. This makes it very easy

to mix-and-match modeling structures.

4. Don’t hardcode anything.

By hardcoding, I’m referring to having items

such as parameters, file names, directory struc-

tures and specific Excel cell locations explicitly

referenced in the body of the code. The only

numbers that should appear in your code are 0

or 1 … maybe 2, but that’s pushing it.

The reason for avoiding hardcoding is two-fold.

In the case of Excel, it can be pretty obvious—

the cell, row or column you want to reference

may have moved. You get used to formula ref-

erences in Excel updating when cells move

around, but alas, the VBA code will not change

with it. To get around this, I often use named

ranges or read in column and row numbers

from a worksheet where I’ve put a bunch of

row() and column() references. References

going obsolete due to spreadsheet change

may seem limited to Excel, but it happens to C

programs, too—input files can get moved to

different directories or might get renamed.

The most common form of breaking this rule

is hardcoding parameters for models into the

code. Of course, it’s highly unlikely that

parameters will remain unchanged throughout

all versions, so hardcoding parameters means

you’re going to have to sift through the code

to find the numbers that need to change with

model modification. You can’t count on any

parameter staying the same over time. Also, if

the parameters that need changing appear

more than once in the code, you have a

chance for some really hideous results if only

one line of code gets changed and the others

are left untouched.

There are two ways around hardcoding: (1)

have the relevant items defined as constants

at the top of the code (or in its own constants

module), or even better, (2) read them in as

input items.

5. Have some sort of version control.

In this category, I’ve not been as good as I

should be. I’ve started documents where I

have kept track of my

ever-evolving versions

of spreadsheets and

codes, but over time I

don’t keep up with it.

When it comes to any

type of documentation

for a program, if the

documentation is sepa-

rate from the code itself, it’s too easy to for-

get to update.

CompAct • 11

“You don’t want to spend time
coding if you already have
perfectly good code from an
old problem that can be
copied for current use.”

• Program Well and Live •

(continued on page 12)

12 • CompAct

• Program Well and Live • continued from page 11 •

So now I put version descriptions “up front.”

In C programs, I put it in comments in the

section where I declare my constants. In

Excel, I add an extra worksheet to note the

code and worksheet

changes I’ve made.

Also, I make version

notes cumulative. That

way if I have to look for

a previous version, the

history is in my latest

version and I can easi-

ly find it.

It’s good to keep previous versions because

sometimes you need to replicate an earlier

run, and using the earlier version of the code

is easier than trying to hack your current code

to its original form. Also, sometimes I have to

scrap later work and go back to an earlier ver-

sion, because product design has changed, or

a particular business decision has been made.

It’s much better to be able to backtrack than

to start from scratch.

Enjoy Programming
The results from cultivating these program-

ming habits should pay off quickly, at least in

terms of reducing the amount of time you

spend replicating earlier programs or trying to

interpret your own code.

I have included some Web sites that contain

additional programming tips, though they

come from more general programmers, and

some of the tips may be language-specific.

Most of them are coming from the perspective

of programs that will be used by other people,

but may still be helpful for those who are the

sole producer and consumer of their own code.

Moser, Kim. “Good Programming Practices:

What to Do (or Not)”

http://www.kmoser.com/articles/Good_Progr

amming_Practices.php

Moser, Kim. “Formatting Your Code: Why Style

Matters”

http://www.kmoser.com/articles/Formatting_

Your_Code.php

Chu, Philip. “Seven Habits of Highly Effective

Programmers”

http://www.technicat.com/writing/program-

ming.html

Zainvi, Syed Feroz. “15 Good Programming

Habits”

h t t p : / / e z i nea r t i c l e s . com/?15-Good-

Programming-Habits&id=45825

So pass these tips on, incorporate them into
your own work and you’ll have living (instead of
dead) programs. Enjoy! :

Mary Pat Campbell,

ASA, is a senior

actuarial associate

at TIAA-CREF.

She can be

reached at

marycampbell@

tiaa-cref.org.

“… it is important to have
a consistent style with
regard to indentations for
sub-blocks of code or line
continuations. …”

http://www.kmoser.com/articles/Good_Progr amming_Practices.php
http://www.kmoser.com/articles/Formatting_Your_Code.php
http://www.technicat.com/writing/programming.html
http://ezinearticles.com/?15-Good-Programming-Habits&id=45825
http://ezinearticles.com/?15-Good-Programming-Habits&id=45825

• Actuarial Value Ladder •

CompAct • 13

A t the 2006 SOA Annual Meeting, the
first prototype of the Actuarial Value
Ladder was shared with the members

of our profession. The concepts of this profes-
sional development tool are being incorporat-
ed in our 2007 Spring and Annual Meetings to
assist attendees planning their sessions.

The Actuarial Value Ladder is a project of the
SOA Marketplace Relevance Strategic Action
Team (MRSAT) led by Chair Dan McCarthy.
This career path tool articulates the value of
the contribution actuaries can make and the
competencies required across a full range of
professional roles. As it matures, the Value
Ladder becomes a powerful means to commu-
nicate the importance of the profession with
employers. It also plays a vital role with
regard to assisting actuaries in self assess-
ment and developmental plans.

Each session at SOA meetings is aligned to a
specific stage on the Value Ladder. As meeting

attendees register, they
can develop a “confer-
ence curriculum” that
matches where they are
in their careers and
where they aspire to be
at various points in
their professional lives.
The Value Ladder iden-
tification in meeting
brochures, along with section sponsorship
information, provides keys for registrants to
ensure they get the most out of any event.

As indicated, the Value Ladder is a prototype.
It is being used at these events as part of a
series of “clinical trials.” The MRSAT will be
responding to feedback to improve the model.
The development of more specific models to
correspond to a wider range of actuarial
careers is also planned. :

Actuarial Value Ladder: Insurance Market Model
by Meg Weber

“This career path tool
articulates the value of the
contribution actuaries can
make and the competencies
required across a full range
of professional roles.”

Meg Weber is

director of section

services at the

Society of Actuaries

in Schaumburg, IL.

She can be reached

at mweber@soa.org.

	Letter from the Chair
	Scenario File Format Project Update
	Book Review: Why We Think That We Think
	Program Well and Live
	Actuarial Value Ladder: Insurance Market Model

