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Mr. Mark D.J. Evans:  The first speaker will be Jacek Zurada, who will be talking
about neural networks.  Our second speaker will be Fred Watkins, who will be
talking about fuzzy logic.

Jacek Zurada is the professor of electrical engineering at the University of
Louisville, where he holds the position of Fife Alumni Professor.  He received his
Ph.D. in electrical engineering from the Gdansk University of Technology in Poland.
He is currently editor-in-chief of the IEEE Transactions of Neural Networks.  He is a
fellow of the Institute of Electrical and Electronics Engineers (IEEE), and he has also
written books on neural networks.

Dr. Jacek Zurada:  I am very thankful to have the opportunity to talk about neural
networks to the community of actuaries.  I have heard much about actuaries, and I
have always had a high opinion of them. I will give you a perspective of neural
networks.  I'll discuss how they can be used in a very versatile way, and   I will try
to steer away from mathematics.

Many of you have heard about neural networks.  Neural networks are parallel
computing machines that are organized in cells called neurons, which are densely
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interconnected.  Each of these cells performs relatively simple operations—color
product computation and nonlinear squashing, nonlinear mapping of the scalar
product into a real variable. A real variable between –1 and 1 is the output of a
neuron.  We are mapping the space of real numbers through one single neuron;
however, dimensionality of the input vector can be mapping into an open interval
from –1 to 1.  However, out of this rather naïve concept comes tremendous
opportunity for building a family of models, identifying stationary processes,
identifying time discrete processes and time series, computing probabilities and
clustering, and many other things.  I am going to go through these things gradually
and show a few applications.  Some of them are not very relevant for actuaries, but
some of them are, especially  for an expert system.

There are no algorithms behind neural networks except for an algorithm for
learning  based on data that represents a certain problem.  One might think that
neural networks, as we know them today, are very biologically oriented but, in fact,
they are not.  This is a class of mathematical models that builds on statistics,
mathematics, and a little bit on neural physiology.  It is probably more on statistics
than anything else.  They can provide very efficient solutions of the same or better
quality as other very specialized techniques for signal processing, for expert system
building, and so on.  They are widely applicable especially in pattern recognition.

We typically don't use neuron networks in the form of specialized hardware or
microelectronic chips, because they can be very expensive.  They are available, but
overly costly.  We would rather simulate them on general-purpose computers.
There's a lot of software out there in both the business field and the public domain
that supports neural network learning.  How do neural networks differ from
computers? For neural network development, we need a set of representative
examples followed by training.  The computation takes a form of parallel collective
processing and the whole knowledge in the neural network is stored in weights that
are very imprecise.  So there is no specialized algorithm, no need for programming,
and no need for sequential computation.

For us engineers, it is very essential that neural networks handle very difficult
tasks, like building an autonomous driver.  That was done was by Pomeroy.  This
neural network collects visual images from the camera that is sitting on top of a
van, and this information is processed and issues a signal for the driver to turn left,
right, or drive straight.  There's one example.  Another example that also merges
the problem of control and vision is balancing a pole.  A neural network is very
simple in fact. We can issue a balancing force that would make the pole stand
vertically, and the whole system would be in balance by merging visual fields that
can be captured from the camera.  Once neural networks are able to solve such
problems, which are rather difficult, combining vision, recognition, and control, they
can solve simpler problems like handling data and making sense out of them.

Why do we have interest in using neural networks for data analysis?  We use them
in order to develop profiles and ratings scores to reveal hidden information such as
risk and fraud and to build if-then rules from certain acquired knowledge.  We are
often interested in getting an explanation of the reason for the decision behind
certain computations. We support them with if-then rules, which can be also
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retrieved from neural networks.  Among many application areas are medicine,
repairs, maintenance, diagnostics, agriculture, chemical analysis, and pattern
recognition.  A large sector of applications is in the financial area in banking.  I
don't have the direct knowledge about it, but I have seen reports about financial
management using neural networks for risk evaluation, investment planning, and
portfolio management. It has also been helpful in the loans and insurance business
for credit assessment, loan evaluation, and evaluation of profitability of insurance.
Towards the end of my presentation, I'm going to get closer to how to approach
certain problems that might be of special interest to this audience.

What do neural networks do in laymen's terms?  They can associate a certain object
with an input.  One very important function or mission of neural networks is to
classify input as belonging to one of the classes that are memorized and stored
within it.  Here a binary vector is usually available at the output of a neural
network, which indicates a class number and recognition of classification when the
input is distorted.  One very important function of a neural network is to compute
output vector O based on input vector X.  It is essentially a computer of a vector
variable based on an input vector variable.  The beauty of that very basic model is
that these Xs and Os, (entries of these vectors can be either real or binary
numbers) can be uncertain or missing information. Neural networks are, to a
degree, free-wheeling models, that are very nonrigorous about the form of these
entries of input vectors, both as input and output.  That's why we can put anything
out here on the input and output.  Vector O consists of "M" components and
computes, for instance, classification or the posterior probabilities that we are
dealing with in class C when X is present at the input, which is already a very nice
task of performing a classification.

With multivariable approximations, we have "M" approximations of "N" variable
functions.  We develop them based upon examples in a situation where the model
O of X does not exist.  I grabbed one or two books at this meeting, and I found out
that some authors were trying to find out formulas or a power series  to model
certain economical phenomenon and insurance phenomenon.  The basic product of
a neural network is that you do not need any analytical facility or any analytical
description of a model.  You need data that represents input and output vectors to
develop the model, and this model will actually be described with no formula but it
will have certain algebraic formulas.  These can be used to compute O1, O2,
through OM.  If we enrich this model into Xs, which are spread in time, like X1 is at
the time 1 week, and X2 is at the time 2 weeks, we can model time sequences as
well in that general arrangement.  So we can build predictors or models of
input/output sequences, which is essentially solving difference equations.  Neural
networks can cluster information, compress data, and can finally extract features,
which is a very important and very unique task.  It allows us to see some patterns
in the big cloud of data.

Where does the computing power of neural networks come from?  As I mentioned,
learning is responsible for storing the information in the network and capturing the
relationship that is present in data.  Let's discuss the computation of output vector
O in response to input vector X.  We call it regal but regal is a very trivial phase.



Hot Technologies                                                                                                                            4

The real trick in neural networks is in organizing the learning.  As complicated as
learning can be, it is philosophically very simple because the learning can take one
of two forms.  In one form, it can be a supervised learning with a teacher present
who knows the answers that a network is supposed to produce.  If the answers that
the teacher knows do not agree with the network response, the teacher issues a
modification signal for this adaptive neural network, and this process in a feedback
loop of learning goes through many steps and many cycles.  In a pervasive form,
the teacher punishes and rewards the network by issuing weight corrections that
usually go in a negative radian descent through stochastic approximation methods.
I don't want to go into it.  It's the subject of a graduate course in engineering or
maybe statistics.  A little bit more evasive learning takes place in an unsupervised
model because, in that case, the teacher is absent.  There are data at the input and
something that can be seen as a feedback.  When new data are put in, they can
learn from their previous occurrences and previous histories through the learning
rules that are embedded in the network.  The weights can adjust themselves and
arrange themselves in order to detect classes or capture principal component
values present in the data.

The heart of any neural network is a very simple arrangement.  It's a scalar product
computer that multiplies input vector X times real coefficients Ws. We are
computing the value NET as X times transpose times W.  That scalar product, called
by three letters, NET, is either processed through a signum function, so plus or
minus one is stripped out of the scalar product only, or a soft activation function is
present in the neuron, which maps again in that open interval, the whole space of
n-dimensional real numbers. So In this n-dimensional real number, each value is
real, and we are getting on the output only an open interval –1 to 1. There is a big
processing power in that.

Once we arrange neurons in layers, and I show neurons generally as circles.  That
is a single layer feet-forward network that computes O based upon X.  There is a
linear computation and a linear computation mixed together, and all of them are
analog.  Although we can model it in a digital way, it's not a big deal.  The single
layer architecture is very rigid and doesn't allow us to do many things, so we
employ two-layer architectures. We have a so-called hidden layer and an output
layer.  This network is trained by an error back-propagation algorithm, and it's
capable of these complicated approximations non-linear relationships, classification,
and predictions.  For instance, for classification purposes, we would train this
network for binary values of the vector O, which manifests itself as a membership
to a class (one or two or three).

For function approximation, we have K different functions to be approximated
because each output produces one function.  We would have to have these values
normalized because a neuron responds to values between plus or minus one.  But
this network is just purely instantaneous, and it computes output based upon input.
At the same time, it is not able to model recurrences or a time series, but if we
insert delays, we can model any time sequences in a pretty accurate way.  How do
we model them?  We first have to know the sequences, or inputs and outputs, and
then perform multi-step training by submitting data for which we know outputs.
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Then the weights are being trained into that system so that we can identify this
discrete time model.  There are a few architectures that do that.

There are a lot of mathematics behind the learning of these architectures.  I would
like to go over them.  Essentially, learning is adjusting a single weight.  There are
typically hundreds of weights, if not thousands of weights, around the network.  So
depending on what we try to learn, how we try to learn, we implement the delta-W
operation; delta W is computing the increment of the weight vector of the ith

neuron, as a product of three components.  One is the input vector, learning signal,
and a constant.  I don't want to go into details. The analytical justifications and
theory for learning is mathematically well-founded.  The learning has one prevailing
concept behind it: delta-W the weight increment of a single neuron is always
proportional to the input vector. Delta-W is a vector, so each weight increment is a
product of constant times another number.  That is a real number, times the input
vector.  That's one paramount feature of neural network learning.

There are many learning rules.  Depending upon whether it's supervised or
unsupervised learning, we use either perceptron, hepion, winner take all, and the
delta learning, or Arabic propagation learning, which is generalized delta learning.  I
don't want to go into it, but there is one complete learning algorithm.  It will be
given, I believe, at the end.  It's a complete learning algorithm for Arabic
propagation learning.  It is the most famous, the most needed, the most used
algorithm.  It refers to this architecture, and it continues through two subsequent
pages. I am highlighting this algorithm  because this is probably the only example
of an algorithm that is put in a box and ready to program for a moderately skilled
programmer.

You can develop a training algorithm for this entire very rich network by following
these steps and implementing the Arabic propagation training algorithm.  Again,
you would probably not like to do it.  My graduate students have to do it to pass
the course.  Once you have written this algorithm, you have an understanding of
how this network learns and how it works.  There are many packages, that can do it
for you, and they are already pre-programmed.

I would like to discuss the application issues because they are very attractive.
First, one can easily show that the neural network behaves in a way similar to the
computation of an integral.  The problem is that neural network produces this
approximation.  There is this staircase to learning and not by hand or other
numerical integrations.  So you can teach the network to produce that wavy curve
by imposing an architecture on the network and producing a few examples of pairs.
That all amounts to producing training pairs.  This is, of course, a single variable
function, but if we have n-dimensional real numbers into N functions, then we have
to have pairs of vectors for multivariable inputs and examples of functions.

We have done a very large project that actually modeled a multidimensional semi-
conductor manufacturing facility, which cannot be described by any mathematical
equation.  They simply do not exist.  No one even dares to find out what the output
is with respect to the input because you cannot model this thing.
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There is  a great deal of measurement data that allow us to develop a good model
for the purpose. I want to show an example of a classifier and go into expert
systems, which can be very interesting to actuaries.  Classification is a very popular
engineering application and very useful.  You can use pixel maps as input and
classify whether the character is one or B or A and build class files that work
completely free of mistakes.  By shoving inputs and outputs repetitively to a
network, you can develop 100% correct classification on at least printed characters.
For handwriting, it's not as perfect because handwriting is not always very clean.

Here is an expert system story.  I think it's a big success story, and I would count
that probably some of you either have been thinking about something similar or
maybe you are working on neural network aspects of the expert system already.
We'll discuss a medical expert system that I have described in my book.  The
expert system takes symptoms, processes them through a neural network in a
trained way, and produces one of the K diseases at the output.  We are able to
differentiate among K diseases.  In a simple example, one has taken 200 patients,
and has developed a very good expert system in Scotland for distinguishing among
four back pain diseases.  Back pain diseases are very difficult to diagnose. The
authors have claimed a great success because neural networks that are shown here
have outperformed the fuzzy logic expert system, as well as teams of doctors that
had a diagnosis rate of only 70%.  These networks were developed based on
symptoms and post-mortem diagnoses.  Post-mortem diagnoses were used
because one had to know for sure whether the disease was 1 or 2 or K.  We had to
deal with four possible diagnoses because there are four diseases that amount to
low back pain.

Another project that was developed in San Diego  by Bachst, was for imminent or
incoming heart attack diagnoses for patients that arrive at the emergency room
with heart pain.  He took 20 symptoms, the history, examination results, and EKG
findings.  He listed them, trained the neural network on several hundred patients,
and has produced an expert system that performs better than doctors, once again.

I wanted to extrapolate what would come out if I were working in the actuarial
area.  I would repeat that neural network, which provides a very versatile,
multivariable modeling, again with no restrictions on Xs and Os. We can use real or
binary numbers or certain values that we doubt. The network at the output can
compute risk evaluation, scores, and rating, or quality assessment or return value
or lifespan, or whatever economic factor or financial factors we invent.  However, it
only makes sense to try to model this if we don't know any analytical formula, or if
they do not exist.  It is best to have sufficient historical records available that would
be able to produce input/output pairs.

There is one aspect behind this particular mode of computation.  Once the network
computes O values, We sometimes need the reasons for the answer so we can
justify to our boss, why we have to do this or that.  That is another topic.  I have
been working on so-called rule extraction from these knowledge-based expert
systems.  In order to do the rule extraction, you have to evaluate what the
mappings are here.  Make them a little bit coarser and a little bit cruder, and then
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evaluate the if-then rule.  Based upon the accuracy that is required, we can
produce 3, 5, 15, or 20 rules that are logic rules in terms of human language.

I can give you one example of a logic rule behind an expert system that is from a
very bizarre area.  My colleague in Japan got me into it.  He developed a classifier
of poisonous mushrooms.  The story is not very trivial because you want to see
which mushroom is poisonous or edible.  You have a database of different samples
of mushrooms.  You can see the mushroom, how it smells, how big it is, and so on.
You would enter these attributes and get a very rich connection within that neural
network.  We need to simplify it, trim down the neurons, and trim the weights to
get some explanations.  After he developed that expert system, it turned out that
the logic rule for an edible mushroom is merging odor and spore print color.  This is
the logic value for an edible mushroom. There are only 24 errors produced if you
use this rule on a big population of mushrooms.  There are 24 errors.  No one can
be perfect, but this was pretty impressive.

Imagine we have 16 animals. Suppose we have a topographical or component map
of animals.  How was this map produced?  Each animal has about 12 attributes,
including, the number of legs, whether it has feathers, what it eats, how big it is,
and whether it is domesticated.  So we list these 12 attributes and compress the
closeness of animals into a sheet of paper.  As you can see, the duck and goose are
related but they were originally characterized in 12-dimensional space.  The duck
and goose are related.  The horse and zebra and cow are related.  These are grass
eaters.  Predators are in another area.   There is one more example that I wanted
to add—compression of multidimensional data into very pervasive 2-D space.  Out
of 10,000 or 20,000 dimensional relationships, you can dump something on a piece
of paper and convince your boss that Mary is similar to Joe.

I am running a test in my class.  I have 30 students typically in a class, and I ask
each student to characterize himself/herself with respects to 30 aspects.  So they
rate themselves from 0 to 10.  Then I develop a similarity map on the plane, so you
can see that Mary is similar to Joe, Jim is similar to John, but let's say Steve and
Raymond are very dissimilar.  Steve drinks beer and Raymond drinks only milk.  So
it's a compression of data into the extreme.  You cannot simplify it more.  It gives
very nice results as well.

The best business use of neural networks  is to access good data records that you
might have.  Don't attempt to build a model because models do not exist in many
situations. Identify input and output variables.  Choose a suitable neural network
model.  This is not very hard to do because that one, two-layer model is pretty
flexible.  Split data into training, testing and validation sets.  That already relates to
the technique of good training.   Train neural networks toward the validated
input/output process modeling on specific data or modeling specific data.  If
needed, extract logic rules that are behind certain problems that would provide
justification as to why the decision has to be such and such, and not the other.
Order form factor analysis.  When new evidence comes, you need to re-train the
network and update the models, so you can start from scratch and re-train the
network.
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Mr. Evans:  Our next speaker is Fred Watkins.  He runs HyperLogic Corporation in
Escondido, California.  He has a bachelor's degree in mathematics from Louisiana
State University (LSU), a master's degree in mathematics from LSU and a master's
degree in computer science and engineering from Tulane.  He also has a Ph.D. in
electrical engineering from the University of California at Irvine. His firm works
primarily in the area of fuzzy logic, primarily doing consulting.  He also provides
some software tools in that area.

Dr. Fred A. Watkins:  The name of the game for me is fuzzy logic, even if it
doesn't necessarily do as well as Dr. Zurada's neural networks.  We might square
off one day, you know.  What is fuzzy logic?  It's the business of deciding what
follows from what when the what's are vague or ambiguous.  That is the key that
distinguishes the kind of logic that this is from the standard Aristotelian or Boolean
logic.  So here's an example of fuzzy logic.  There's light rain outside, whatever that
means.  Rain here is always breezy, whatever that means.  From that, you can
conclude that if it's raining outside lightly, then it's probably breezy outside as well,
at least to some degree.  As soon as we try to quantify all this stuff , we get into a
mire.  If we try to be too rigorous in our logic, that is  if we try to be too
Aristotelian, we're liable to get gummed up in a hurry.  Nonetheless, everybody
seems to be able to understand what it means,  and they agree that there's a
certain amount of truth, plausibly at least, in this fuzzy modus ponens.

It is about logic in the face of ambiguous concepts.  We normally, to make it
manageable, translate the logic into truth values.  Once we have truth values, that
is to say numbers, then we can ask our computing machinery to deal with those
numbers and save us the trouble of dealing with them ourselves.  It gives a certain
amount of insulation.  Years ago, when the Gulf War was going on, Dan Rather had
a fellow on his show.  At that time, Saddam was burning all the oil wells.  It was a
big mess over there.  Dan Rather asked this fellow, "Well, what about the ecology
of the region?"  The guy said, "It's ruined.  The place will never be the same.  It will
be one hundred years or more before it recovers."  Six months later, of course, Red
Adair and his boys cleaned up the place, and Dan brought the fellow back.  Dan
said, "You told me six months ago that the place was going to be a mess forever,
and it's not.  What is the excuse that you can give us?"  The guy said, and this is a
classic response, "I told you what the model said."  This is a good reason not to use
models or a good reason to use models because, if you have one, you can always
hide behind it when it fails.  If it succeeds, then it's you, but if it fails, then it's the
model.  That's real good.

Let's get back to the subject.  Here are some grains of truth.  The kind of thing that
we want to do is we want to associate numbers between 0 and 1 with degrees of
truth.  This is not necessarily the same as believability or  abstract knowledge or
anything else.  It's just truth.  The undefined term.  We like to say, If it's 1, then
whatever we're talking about, if that's the truth value, then that thing is absolutely
right or absolutely certain.  Absolutely means always was, always will be, now and
forever, with no exceptions, no how, no way, anytime, anywhere.  True.  That's
what it means to be true in the Boolean sense.  This is a serious thing.  I can't
stress it enough.  What happens is, sometimes people say "Oh yes, that's true."
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You might say, "Well, what about X?"  They say, "Oh, well, yeah, forget that."
That's not true.  Truth is absolute.

Now that we have our truth reduced to numbers, we have to find a way of
combining truths because we want to combine the concepts to which they refer.
Here are the rules.  This is how it's done.  For every truth, or every statement that
you make, . all the truth values sit between 0 and 1.    Sometimes you want to say,
" I have this concept and  that concept.  They each have a truth value.  I'd like to
know what's the truth value of the thing that you get when you say this and that."
Table 1 is a mapping of a syntactical construct, A and B, and we want to be able to
take the truth of A and B.  Here's how you do it.  You use the min, the smaller one.
Conversely, when you have A or B, one uses the max.  Of course, there's also that
word not.  We give the truth of not A, 1 minus the truth of A.

TABLE 1
FUZZY LOGIC OPERATIONS

In short, fuzzy logic and probability are different.  We also see the word, implies,
which is very important.  A implies B.  How do you know the truth of the
implication, and not the result or the implication itself.   What is the truth of A
implies B if you know the truth of A and you know the truth of B.  There is at least
one way of saying what it is.  Actually, there are a lot of ways to say what it is.  We
just write that down, and we are done with it.  Tell it to the computer and let it do
its thing.

Another thing that's important to know is that the truth values distribute.  Here is
some heavy duty math,  If you have A  and then open the parentheses in your
head,  you have B1 or B2 or B3 or B4, all the way out to BN.  You get the same
value using the rule that I just gave you.  It's the same value as  A and each of the
Bs.  Get all those truth values and take the maximum of them.  That will be the
same number that you get if you take the min of the truth of A and the truth of that
whole.

That's just how it works.  The two things to take from Table 2 are the "and" and the
"or's. " They have a relationship to each other with respect to the truth values they
distribute.  This is also true of the "not."

Domain:

AND:            = min T

OR: = max T
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TABLE 2
"DEMORGAN" RULES

Chart 1 is the DeMorgan rule illustrated.  Let's look at the union of the A and the
Bs.  The common parts are slashed.  Chart 1 is just a pictorial explanation of how
the DeMorgan rules work.

Here's the heart of the matter.  A proposition is properly fuzzy if it's neither
absolutely true nor absolutely false. In other words, a fuzzy thing is and is not
simultaneously.  Fuzziness is the interplay between is and is not.  Anytime you start
trying to describe something by asking, Is it that? and the answer is "yes and no,",
then you're really in the realm of the fuzzy.  Formally, fuzzy logic denies Aristotle's
primary principle of Boolean type precepts, the law of the excluded middle, and the
law of noncontradiction.  The law of excluded middle says that something is either
true or false.  There's nothing in between, hence the name.  The law of non-
contradiction says something cannot be true and not true at the same time.  So in
those cases in which you're tempted to say yes and no, that's ruled out.  You are
pushed aside and ignored by Boolean logic.  It doesn't mean it's not there; it just
means that Boolean logic does not cover it.

Mathematicians love to say "in the limit."  When all the truth values that you're
discussing go to the limit values 0 or 1, using the rules I have given you, then the
results you get by using the fuzzy logic methodology to calculate truth values
match what you get from regular Boolean logic.  So the fuzzy logic people like to
say, "Fuzzy logic generalizes Boolean logic."  There's a little bit of a trap there that
I'm not going to go into.  However, in this sense of the mathematics, reducing to
the Boolean case in the case where the arguments of the discussion are Boolean all
works out very well.  We say then that the fuzzy logic generalizes the Boolean logic.
So it has that nice property.  It tells you that if you have a fuzzy system, that's
doing something and you push the system into a region where everything is well
defined, then the system would be doing the same thing that logic would be doing
for you in that case.  I think that is what you'd want. It's certainly what I would
want if I was building a machine like that.
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To calculate the truth value of the and of two propositions, you use the min of their
truth values.  In fact, there are other things you could use, like t-norms.  What's a
t-norm?  I'm not going to tell you.  You will have to look it up.  Suffice it to say it's
a lot like min.  Among all the t-norms that there are, min is the biggest.  If you
have a t-norm and an A and a B, and you apply the t-norm to the A and the B, and
you apply the min to the A and the B, the number you get from the min will be no
less than the number you got from that t-norm.  So min is the largest t-norm.
Conversely, max is the smallest t-conorm.  Instead of max and min, you can use a
t-norm and its corresponding t-conorm.  I just tell you this for completeness.  It's
only of interest to some people who make their living writing papers for fuzzy
journals.  They dwell on this kind of thing.   I saw one article by a famous fellow
from Europe.  He spent 16 pages on all these t-norms.  The article was done in 10-
point type, single-spaced. It's a matter of some interest to some people.

What I've told you up to now is all you need to know if you want to do fuzzy logic.
Now you probably want an application.   By and large, unless you're doing A, B, A
implies B, and the truth of A or the truth of B is something other than 0 or 1, we're
not really using fuzzy logic.  We're doing fuzzy systems, and that's different.

If fuzzy systems will let us do something intelligent with information that is
available to us, then so be it.  We will consider using it.  At least I would.  So if
we're going to use a system, we're going to need a way to map the things that
happen in the world into truth values.  If you don't have those truth values, you
can't give them to the machine.  If you can't give them to the machine, you can't
crank out the numbers.  This is a no-brainer, right?

So how do you get truth values from events that happen in the world? We have
nomenclature, T sub A is the truth of A, whatever it is.  Truth and probability can
coincide.  In fact, some people like to think that probability is belief.   Of course,
there's a problem there.  If that's the truth, then without people, there's no
probability.  So if you don't believe it, then it's not.  Anyway, it's possible that
fuzziness can coincide with probability, but it doesn't have to.  The primary reason
for that is that fuzzy numbers need not be summable but a probabilistic number
must be summable.  That's the big difference.  I say fuzziness and probability differ
because probability is dealing with things that sum and fuzziness need not.

Have you ever heard of L1?  That is a mathematician's name for all the things that
integrate to a finite value.  Among other things, the things that integrate are the
probability densities.  There is no fuzzy density.  The fuzzy density could be, if you
want to call it that, the line that is one, all the way across the reals.  That does not
integrate, and it is not summable.  Therein is the difference.  Everything else is the
same.

Let's discuss a definition of fuzzy set.  Why would we want to think about a fuzzy
set?  It's the case that Boolean logic, standard mathematical set theory, and lattice
algebra are all the same. They are what we call isomorphic. I claimed that the
circles in Chart 1 were sets or something.  The reason that you can claim that a
circle and a set are the same, and you can deal with them similarly is because of
this isomorphism.  You can say that something is a set, and you can have the
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intersection of these things defined.   The intersection of two sets is  the and of sets
and is also the conjunction of notions represented by those sets.  The fact that you
can do that is given by this isomorphism.

If we can deal with things in a set-wise context, so much the better for us because
set-wise things are logical.  Logical things can be handled by the computer.  Then
we can spend our time past this curtain.  A fuzzy set, by definition, is any function
that maps any place, which we'll call the universe of discourse, into the closed unit
interval.  It is any function whatsoever.  Now, if you're mathematically trained, then
you know some of those functions can be real nasty.  The ones you see in papers
written by me or anybody else will not be so nasty, but they could be.  The way we
define the operations on the fuzzy sets is to define them point-wise.  Functions are
defined at point values in the universe of discourse, so we can compute the
maximum, given two functions that are in that range. That is to say, the function
which is point-wise the maximum of the two, or the minimum of the two, or the one
minus of any one of them.  You can set up an algebra of these functions.  Whoops,
did I say algebra?  Just a little while ago we said set algebra and so on.  We're
doing set theory with functions instead of actual round things on planes.  This is the
same game.

Chart 2 is a picture of a fuzzy set.  The fuzzy set is Tall. Tall describes a
measurement, usually in feet and inches.  Let's say the numbers down at the
bottom are in feet.  I already said that a fuzzy set was a function from 0 to 1 and
therefore the vertical axis is 0 to 1.  And if you know what tall means, then you
know that something that is 0 inches tall is not very tall.  If someone is ten feet tall,
he or she is tall.   Chart 2 is a picture of how tallness increases with the
measurement of somebody's height, the truth of tallness. Take the truth value of
the statement "X is tall" where X is what you're measuring.  X is tall is true,
according to this, if you're seven feet or more.  X is tall is false if it is zero.  X is tall
is, like say, a half, if you're at the three-and-one-half foot mark.  This graph
pictorially describes the meaning of the word tall,  according to the person who
drew it. We're moving from words on the one hand to computational units on the
other.

If inflation is low and gold is low, then you ought to buy some gold.  If inflation is
low, then it might go up.  If it goes up, then gold will be more valuable.  Besides
that, if it's cheap now, it might be more expensive later, so buy now. We have a
hypothesis, and a dual-pronged antecedent.  There is something about inflation on
the one hand and something about the price of gold on the other.  We have a
consequence, which is what follows the word then.  This is all syntactically
analyzable, and so a computer, in principle, can not only do the arithmetic of the
fuzzy logic part, but it could actually parse the sentence and do the whole thing
from regular English. We define the truth of this rule as the truth of its antecedent.
Now here you have an antecedent consisting of two parts with an "and" in between.
I've already told you how to calculate the truth of two parts that have an "and" in
between.  You use the min or some t-norm.  So the truth of this implication is this
much.  If you match that against the real world, you might get the truth value of
the result.  The consequence is the inducement for you to buy gold.
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A fuzzy system will contain several fuzzy sets that describe a given quantity,
whatever the quantity is.  This might be tallness, and we might be trying to come
up with some kind of decision rule for people based on their height.  For actuaries,
it's more like their age.   So we'll probably put that in instead.  Age can be small or
large, depending on age.  The degree to which you are any of those things is given
by these functions.  Plug in an age, get a value of smallness, largeness, and
mediumness.  What those functions look like is up to you.  It's what it means to
you, if you're going to use the system.  Nonetheless, once you've committed, then
you have an automatic way of saying how much is this person, low age, medium
age, high age, and what kind of consequences can I infer from that?

Let's suppose that the bottom axis is age and the left axis is output.  Let's suppose
that that is suitability for insurance.  I'm real simple-minded when it comes to that.
You want to insure somebody if you think you're not going to have to pay off.
We're selling life insurance now.  If the age of the subject is low, they're probably
not going to keel over in the next couple of days or years, and the suitability for
insurability should be very high.  There could be all sorts of special codicils in the
policy that might invalidate that conclusion, but I'm trying to simplify.

On the other hand, as people age, then it becomes more likely that you have to pay
off.  Finally, I don't know this for sure, but there's probably some age beyond which
nobody in his or her right mind would take the policy or sell it.   Maybe you can't do
that.  Maybe the law doesn't allow that.  Nonetheless, from a practical point of
view, by the time somebody gets to be at the end of the graph, things are looking
pretty dicey.  You  will probably not be so  anxious to sell somebody a long-term
life insurance policy because this is a bad time to do things like that

Recall the example in which we discussed small, medium, and large.  If we knew
what the truth values are for something that is state of nature in terms of small,
medium, large, we could say that we're computing with words.  The input is small,
medium and large to some degree, and our machine will take the degree to which
we're small, the degree to which we're medium, the degree to which we're large,
and come up with something.  You can go a little further, as  Chart 3 demonstrates.

Mr. Watkins: So you can spend a lot of time reading books about how to say
very and somewhat and a little bit and medium lukewarm and so on in a
mathematical way.  You can make this all pretty precise.  Now whether you believe
it is another matter, but you can do this kind of stuff.  Many people have done that
to an appallingly lengthy degree.

Now I'm going to tell you how to put it all together. You take the state of nature,
and you measure the world.  In your case, that may mean reading the form.   You
find some information from the world somehow, and you get numbers.  You array
these numbers in a vector of inputs.  We could try that on a neural net, and
hammer on it with a neural net.  Instead, what we're going to do is weight the
fuzzy sets in our fuzzy system according to the degree to which our state of nature
matches each of the words that show up in those fuzzy set rules.  We will, from
each rule, get a fuzzy set output.  Remember, if the price of gold is low  and if
inflation is low, then buying gold is high, and we're talking about fuzzy sets. The
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output of a rule is that consequence of the rule, and it's a function.  A function that
always sits between 0 and 1  is a thing that can be added to other like-styled
things.  In the end, you get this function, which is a sum of all your rule outputs.  If
you want to, you can divide that by the number of rules that you put into the sum.
That will leave you with a function between 0 and 1.

You can compute the centroid of that function. The centroid is where the graph of
the function balances.  It's the single number that contains basically all the
information in the function.  It uses it all.

You get an output, a value, or a number that you can apply to a machine, or to this
business of yes or no decisions.  If it's bigger than one-half, you say yes, if it's less
than one-half, you say no, and if it's actually one- half, which would never happen,
you would need to do it again. You keep doing that until you're happy with the
answers or you just keep doing it in general.  The thing just runs and does for you
what it's supposed to be doing.

We do this kind of procedure to control temperature.  We sample the temperature;
we decide whether it is hot, or tepid, or cold?   It's all of those to some degree.  We
have rules that state, if it's hot, turn up the air conditioner, if it's medium, leave the
air conditioner be, and if it's cold, turn down the air conditioner.  Put all those rules
together, and you get a setting for the thermostat.  You just keep doing that.  It
works.  The good thing about it is, it is not computationally expensive.  This stuff is
fast.  Here is the output of the rules from a fuzzy system.  That's the place where it
balances.  That's the number you get out; it is the X value that corresponds to that.

Mathematically, you're assuming that there is a real function somewhere.  You
don't know what it is.  You pass from the place where you started up to this place
of fuzzy sets. You think of the fuzzy sets in the other place, and you pass across
from fuzzy set to fuzzy set.  That's the job done by the fuzzy system.  Somehow
you get from the fuzzy set back down to the real world.  That's what the centroid
does for you.  Mathematically, we say we have a commutative diagram, which is for
only the mathematically inclined (Chart 4).

This last little thing is for fun.  It's called the fuzzy cognitive map.  It has nothing to
do with all that other stuff we've been talking about, but it's fun to use.  It's
basically a way of letting influences combine.  So I'm not going to say much about
these descriptions of it.

Let's take a look at the marijuana game (Chart 5).  There are the narcs, the
growers, and the rip-offs.  These are the guys that you sometimes hear about going
up into Humbolt County and being blown up by hand grenades set by the growers.
They're out there to steal.  There's one more player.  How much money can you get
for some standard unit of the goods?  I've put arrows in the Chart.  If the sale price
is going up, then the rip-offs are going to go up because they're going to go out
there and try to get some of the stuff and do some sales of their own.  The more
sales value there is, the more growers there will be.  That's obvious supply and
demand.  The more growers there are, the more narcs there will be, at least as
long as funding is there.  Then, the more narcs there are, the less growers there'll
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be, unless there's a whole bunch of bribery going on.  Presumably, the more narcs
there are, the more likely they are to catch those rip-offs.  Anyway, you get the
picture.  The arrow is plus 1 if one bubble influences the other bubble, the target
bubble, in the positive or aggrandizing direction and minus 1 otherwise.  If there's
no effect, then we just don't draw an arrow.  You can take those arrows and
translate them into a matrix.

In a set of initial conditions, we might find no narcs, no rip-offs, some growers, and
some profit.  What is the motive?  You run that vector through this matrix in the
standard way, and you get a vector.  If the result of a number was bigger than 1,
you make it 1, or bigger than 0, you make it 1.  If it's less than 0, you make it 0,
and if it is 0, you leave it alone.  The theory is that if you keep the value from last
time, you will eventually get  what we call a limit cycle.  There will be some set of
vectors that just keep coming up, one after the other.  In fact, sometimes it's just a
single vector.  That's the equilibrium state of nature.  If the mechanics or the
dynamics of the fuzzy cognitive map are the same as the dynamics of the world
that it's trying to model, then you have an accurate picture of what's going to
happen.  Of course, the model and reality rarely agree, and that's something you
have to keep working at.  That's why people have jobs in which they correct these
models. This is how you do it.

Bart Kosko, who's a big gun in fuzzy logic, or Rod Taber took some situations from
South Africa before the end of apartheid and made a big cognitive map out of that.
They made some conclusions and they matched up remarkably well with comments
from Henry Kissinger.  I don't know what you think about Henry Kissinger, but
everybody has to agree that the guy is smart.  Moreover, his opinions about the
state of nature in the world should not be taken lightly.  This thing matches up with
his opinion.  Here's how you do it.  How do you combine the knowledge of
everybody in this room on some question?  I could ask you to draw one of those
cognitive maps for some thing.  Let's say it is some complicated social problem.
Should we have taxes or something?  You might say you don't want taxes or you do
because you want that road repaired in front of your house. You would write down
all these little things that would make you decide one way or the other.  You would
have the little bubbles and draw all the arrows.  Having done all of that I would
take up the papers and I would convert them all to matrices.  Wherever the labels
coincided I would combine the numbers and end up in the end with a big matrix.
Then I would divide by the number of people, and I would have a cognitive map.  I
would have the opinions of all of you in that map.  I can do that in a very simple,
straightforward way.  Whether it works or not remains to be seen, but that's the
game.

I'll finish up with four simple statements.  First, fuzzy logic is the business of
inference with vague data. This is the most important point.  Second, fuzzy logic
rejects the law of the excluded middle.  That's really statement number one
rephrased for the purists.  Fuzzy logic operations can be arithmetized.  This
pertains to  t-norms and all that, but just remember max and min.  Finally, let us
consider the practical applications.  The cognitive map and the additive system that
I showed you do not involve fuzzy logic.  The people that make them and the
people that write about them tend to call them fuzzy logic, but they are not fuzzy



Hot Technologies                                                                                                                          16

logic.  They were spawned by fuzzy logic but they are not fuzzy logic.  If you're
going to use fuzzy logic to make a decision, as an actuary, you will use a system
like this in some degree.

Mr. Thomas P. Edwalds:  I'm trying to get my arms around what you guys were
presenting here.  I thought if I gave you an example, you could tell me what your
techniques would do.  What if we were going to collect data from 25 insurance
companies?. Let's say we have the underwriting information for everybody that
they considered for insurance, including  blood pressure, height and weight,
cholesterol readings, and the history of cancer.  We must also know whether they
issued the insurance or not and even what class they put them in.  There might be
a whole bunch of preferred classes or whatever.  We also have a history of  how
many of these people are still alive and how many died and what they died of.  How
would we use either the neural networks or the fuzzy logic to help us decide what's
the proper price to charge for an individual, given a particular vector of information
that an individual comes in with?

Mr. Watkins:  I can comment on that.  In the end, what you ask for is an input/
output relationship.  There are numbers you put in, and numbers you want out.
Somebody has to know what that relationship is to write down the rules that say
how to get that stuff.  That is presumably what you learn when you become an
actuary.  Somebody has to know how to do it or else somebody has to know when
you're doing a good job.  If somebody already knows, then mostly you'd look in my
direction.  If somebody merely knows when you're doing a good job, you might
look to neural networks.  Either way, you'll have to look at these numbers, either
expressed by the rules or not.  The key thing that came up in the first talk was that
the neural system is model free.  That was the big deal.  If you don't have the
model, then you really have no option but to try a neural technique.  It is a
statistical thing that will work in the absence of a model, and if you don't have a
model, you can't use normal statistics.  There's no way to do regression with one of
those putative lines in there or curves or whatever.  That would be how I would
react to you.  Do you know the reaction, or the function that you want?  Is it
expressed as either rules or as a description?  A machine can be taught to learn
what it is, or we can tell it what it is in the rules and polish the rules over time.

Dr. Zurada:  Essentially, you have a lot of input data from the records, and then
you have to wisely define what your outputs are.  The outputs might be risk
categories: very low, low, medium, high, very high, extremely high.  Based on
historical records, you know which candidates for certain policies have fallen into
certain categories.  You need to use historical data.  You can build that model.
Then, when you have a new candidate for a policy.  You consider him an input, then
you are going to compute one of the six outputs.  One of the six outputs in the
training process is high, and the others are low.  You can have 20 outputs
depending upon very tiny shades of the risk, right?  Perhaps five or six outputs is
what you need.  So the new candidate is the new input. If the neural network is
properly trained, it will produce the risk value for this particular fellow.  You don't
need to look at 100 input factors because you are going to get the class of this
particular applicant in terms of risk.  So that was the point that I was trying to
make.
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Mr. Evans:  Let me add to that.  You were talking about underwriting criteria.
Let's take a possible application of fuzzy logic to say, preferred underwriting.
Typically, with preferred underwriting, you have a set of rules and either you meet
each individual rule or you don't. Unless you meet them all, you don't get the
preferred underwriting classification.  What if each of those rules or each of those
characteristics, whether it be cholesterol, blood pressure, weight, whatever, was a
fuzzy variable?  You'd use some of this fuzzy arithmetic that Fred was talking about
to come up with a decision that took into account all these fuzzy variables.  At the
end of the day, you would produce a risk classification.

Dr. Zurada: The subtle differentiation between the fuzzy and the neural network is
that  you have to have a lot of experiential training data to conceive either of the
two.  You don't have to have an analytical formula that is underlying both things.
With a lot of historical data, you can certainly do both.

Mr. David B. Atkinson:   I'm intrigued by that last question.  Can you carry that a
little bit farther? In our business, whether someone lives or dies is what's
important.  That  would have a 0 or 1.  It's just the opposite of fuzzy.  There is no
in-between state of being, like not dead and not alive at the same time.  So can
this then apply?  Can you apply fuzzy logic to that kind of outcome?

Mr. Watkins:  This will never vary.  There will be four inputs in either words or
number for the measurements.  We're going to replace the word with numbers
based on the current state of nature.  Then there's going to be some computation
that occurs and out of that computation will come a number.  We can arrange it so
that the number that comes out is something between 0 and 1, but it is always
very close to 0 or very close to 1 except in the most improbable cases.  what
probability people like to call measure 0 event, where we just can't decide.  If it
turns out the machine can't decide, then you just have to live with that.  You can
make the probability of that event small, and then if it can decide, this decision
might be 0.9 instead of 1.0, but 0.9 is the same.  You're going to disambiguate in a
very natural way.  Even the neural net can't always do 0 and 1 if its actual outputs
are graded between 0 and 1.  There's always some set of circumstances that'll
make it sit right on the cusp.  If it's continuous, it's guaranteed by the math, and it
has to be.

Mr. Atkinson:  I probably expressed that incorrectly.  The inputs are 0 and 1 the
experiential data of whether people lived or died.  Maybe that's where I'm a little
confused.

Dr. Watkins:  What do you infer from the fact that they lived or died?  What
happens next?

Mr. Atkinson:  Let's say you put in a whole body of data, for example, 100,000
people.  All these underwriting factors alluded to their cholesterol, their height and
weight, their blood pressures, and so forth.  I might try to draw some averages out
of all of the interactions of all those variables.  If you list the things underwriters
look at, you'd see that there are probably 10 or 20 chief variables that are all kind
of artfully put together to assess the risk.
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Dr. Watkins:  Then you have data.  Where's the teacher?  You have all the
actuarial data you've collected and aside from that, you also have the Boolean
outcome.  By using the actuarial data, you can tell the neural net or the fuzzy logic
system, if you knew the rules, what the outcome is. Is the guy alive or dead now?
The answer might be good or bad..  If it turns out that it gives you a good answer
most of the time, then you can use that as an aid.  If it doesn't, then you either
abandon it or you go and train it some more and try to get it to give better
answers.  In the end, that's what it is with every real system that we build, unless
it's one of these things that happens to sit on some abstract mathematical
threshold, and we can just crank it out.  In other words, if you want something that
will calculate the area of the circle, and if we suppose that the input given is
precise, then the output should be pretty precise.  That's the end of that.  But if it's
real world stuff, all that certainty goes out the window, and you'll never have a
system that gives, in advance, 100% reliability.  That cannot be done.  The future
is under no obligation to obey the past.

Mr. Evans:  The application to mortality might make more sense if you expect the
output of the neural network or fuzzy logic process to be a probability of mortality
for a given individual rather than zero or one.
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