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Abstract
ANNUITIES FOR THE AGED
by
Cecil Nesbitt and Marjorie Rosenberg

This paper began with a study of the duality of individual risk theory
for annual premium whole life insurance and for amortization of a unit loan

by annual payments of —%— while (x) survives. We refer to this annuity
X

process as survivorship amortization. Actually, any annuity can be

regarded as a set of periodic amortization payments, to be made while a

given status exists, in order to discharge the obligation for an initial

provision of capital. This idea could lead to a paper by itself but will

be explored only briefly in the Introduction.

The possibility of converting property of an aged individual into a
life income (from a survivorship annuity) appealed to the authors as being a
matter of increasing public interest. That led us to consider individual
risk theory for various forms of annuities for the aged.

Section 2 shows a tabular and graphical representatior of
probabilities of death in successive years for individuals initially aged
65,75,85 and 95. The probabilities are derived from the Blended 1983
a-D-Mortality Table.

Individual risk theory for whole life annuities issued at ages
65,75,85 and 95 is discussed mathematically, and illustrated, in Section
3. Some analysis is extended to annuities payable while a
Joint-and-last-surviveor status exists. This is followed in Section 4 by
individual risk theory for annuities modified by certain-periods.

Essentially, the paper is an individual-risk-theoretical examination
of annuities for the aged. Some initial conclusions from this analysis
appear in Section S. Through retirement systems, social security, and
insurance plans, annuities for the aged are a very significant matter, and
worthy of inquiry from many view points. We hope our paper will stimulate
such inquiry.
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ANNUITIES FOR THE AGED
BY
CECIL NESBITT AND MARJORIE ROSENBERG
1. INTRODUCTION
In reviewing Hans Gerber's Life Insurance Mathematics (4, Gerber,
1990}, Cecil Nesbitt wrote the following paragraph concerning the whole
life insurance reserve ka

"This can take a number of different forms, such as

Y =1 - —% , (1.1)

which the author regards as being of somewhat less importance. The right
hand member, however, has an inferesting interpretation in terms of

survivorship amortization of a loan of 1 by annual payments of —é— at
x

the beginning of each year while (%) survives. By taking account of both

interest and survivorship, one can see that the outstanding principal for a

a a
: . X Kk
survivor at age x + k is ——§1~— , and its complement, 1 - s

x X

is the

amount of principal considered to be repaid for a survivor at age x + k
For whole life insurances, these two gquantities are the net amount at risk
in the kth policy year, and the reserve at the end of k policy years,
respectively. Survivorship amortization could have practical significance
fer the aged in the disposition of property.”

That quotation provided the origin and set the initial direction for
this paper. However, in the interest of brevity and relevance, the review
editor omitted the whole paragraph!

To explore the duality between whole life insurance from age x , and

survivorship amortization by payments ; , we consider the random

x
variable, J , the curtate future lifetime of a survivor aged x + k ,
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and two loss variables, namely:

Je1

kLl =v - anjrfl (1.2)
and
a
L . (1.2)
k2 a
x
J=0,1,2,... . Here, kL1 expresses the random present value of the net

future pay-out to a survivor at age x + k under a whole life insurance of

1, and kL2 similarly expresses the random present value of the future

pay-out under a whole life annuity with payments of ; , for a
survivor who has attained age x + k .

We arranged (1.2) as

1 - 5Jo:

3 ’
x

=1 - kL . (1.4)

2
Further, we have from [1,[5.4.3)] that

xok

® ..
a
K2 3 h
h=0 x

the actuarial present value of the future

payments of —%— for a person aged x + k .
x

= the outstanding principal at age x + k

under the survivorship amortization.
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Also,

™
*
=
-
[
Ll
-
L}
m
L3
Nt“
)

=1-— , (1.5)

Finally,

1 )2 (2 2
(T fre- 1) e

by (1, (7.4.3) and p. 99]. Note that

1 x
3z = 1*-g— ad A s

calculated at rate of interest [(1+1)% - 1].

We were intrigued that the complementarity of the loss random

variables, kL1 and kL2 , carries through to complementarity of the

4
functions kV and f’k , and their complements, 1 - ka and

F * x
1 - ;‘“ , all of which have distinctive interpretations in their whole

x
life insurance or survivorship amortization settings. The complementarity
also implies equal variances of kL1 and kLz‘
If we think of ﬁy as providing an amortization annuity with payments

of 1 during the survival of (y) , we have
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a =1+ vpa
py

¥+l

—
]

a -vpd
y pv y+1

(v + d) ay - vpyay“

"

di + v(p +q) & - d
%y R

L}

da + vqd +vp la - i 1.7
%y 9%y pv[ y y¢1] ( a)

If we consider that the annuitant is the borrower of a loan of éx
from an annuity organization, and is amortizing the loan by payments of 1
at the beginning of each year while the annuitant survives, we can
interpret the payment at attained age y to consist of the sum of:
(1) Interest-in-advance, déy , on the remaining loan;
(2} The net single premium to provide, in case of death during the
year, the discharge of the loan balance, §y~

(3) The pure endowment single premium to provide, in case of survival
over the year, for the reduction of the loan balance from ﬁy
down to &

yol
If we consider that the annuity organization has received a deposit of
éx and at the beginning of each year pays 1 to (x) while {x)
survives, then the payment of 1 at attained age y to the annuitant can
be considered to be the sum of:

(1) Interest-in-advance, diy , on the remaining deposit,

(2) The present value of the expected discharge of the deposit in the

case (y) dies in the year;

(3) The present value of the expected decrease in the deposit in case

(y) survives the year.
Note that in {(1.7a) interest-~in-advance is paid on the outstanding
principal at the beginning of the year, and that unlike in the reserve
situation where the initial reserve is ﬁy - 1, the outstanding principal

here remains at Ey until the end of the year when it is either cancelled
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because of death or is reduced to §y+1 in case of survival. Multiplying
{(1.7a) by 1 + i , and using ﬁz =1 + az ., 2=y ,y+ 1, yields
1 =1 + (1+a)+pfla -a )} (1.7b)
. ay qy 4 py y y+1
which is interesting to interpret. It indicates again that survivorship

amortization is different from annuity reserve theory.

Other arrangements of (1.7a) , such as

1 =da + v[é - a ] +vq d (1.7c)
y y y+1l v y+1l

and

1= v[i + qy]éy + vpy[ﬁy ~ ay“] (1.7d)
give modified interpretations. Formula (1.7d) indicates on increasing
yield rate [i + qy] on the decreasing annuity value ﬁy . In fact, for
Yy = w -1, where w 1is the limiting age, the yield rate is 1 + i , but
on a balance that has decreased to 1 !

These ideas are more or less familiar. 1In the present setting they may
provide new insights, since survivorship amortization for converting
property into annual income may be of interest to seniors. For a
contrasting approach to home equity conversion see [3, Diventi and Herzog].
We have also realized that all annuitles can be 1nterpreied as providing
survivorship amortization over a term defined by the continued existence of
some status. This is not the usual approach to life annuities, to which we
now return. In the next section, we take a look at some of the probability

functions that may be useful for valuing annuities for the aged.
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2. PROBABILITY FUNCTIONS FOR THE AGED
Our purpose here is to illustrate the probabilities that are basic 1o
the mathematical formulas to follow, rather than to present numerical
probabilities judged to be realistic for a particular group. We first

examine the probability function (p.f.)

1
q = x+h x+hel , 2.1

on the basis of the Blended 1983 a-D-Mortality Table [S, Johansen, 1987].
Figure 2.1 displays a graph of these functions for x = 65 , 75, 85 and 95
_Table A.1 in the Appendix exhibits these probability functions numerically.

We next consider the p.f., hlqry , where

hlq!y = hqu + hlqy - hquy . (2.2)

Formula (2.2) does not require an independence assumption. If independence

is assumed, then

hfq!y = he+l qx - hqx * holqy - hqy

- [hpx ' hpy - hﬂpx : hdpy] *

= q . q - gq . q , (23)

provides a simple means of computation.
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The p.f.'s, h{qx and n‘qxx are compared graphically in Figure 2.2
for x = 65 , and in Appendix Figures A.1, A.2, and A.3 for x = 75 , 85,
and 95. Figure 2.3 displays a graph of hlq‘! for x =65, 75, 85, and
95 .Numerical values of h[qn are tabulated in Table A.2.

Figure 2.1 is related to {1, Figure 3.2] and to (6, McCrory, Figure
1]. While McCrory examined the distributions of present values of life
annuities for various groups of lives, we shall use the probability
functions to study individual risk theory for various individual annuities.
By both approaches, variance estimates can be made for individual and
group annuities, but our emphasis will be on individual risks,

especially at the higher ages.
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3. RISK THEORY FOR ANNUITIES DEPENDING ON LIFE STATUSES ONLY
With Section 7.10 of Actuarial Mathematics at hand, we review
individual risk theory in regard to an annuity-due of 1 per year payable
during the survivorship of (x) . As overall loss, we have
L3=5m -5‘ (3.1)
where K 1is the random variable denoting the curtate future lifetime of

(x) . We allocate to the (h+1)th year, the loss (gain) valued at time h ,

namely
Q K=xh-1
A = {~d + 1 K=h (3.2)
h x+h
va - a + 1 Kzh+1
xeh+ x+h

Here Ah is based on the concepts that at the beginning of the year a
payment reduces the reserve to & w 1 ; if (x) dies during the year,
x

such initial reserve is released and provides a gain; and if (x) survives

the year, the initial reserve must be built up to ﬁnh” . One calculates

E[Ah] = hpx[[_axoh * l]qxth * [vsxohu - a):oh * l)pxoh]

-& + 1+ a
hpx[ x+h va0h xohol]

that

=0 (3.3)

2 2
Var [Ah] = hpx[[—ax«m * 1] qxoh * [vsxohol - é‘xoh * 1] pxoh]

2 2
= hpx[[_vpxﬁ; ax#hol] qxoh * [quohaxohOI] px¢h]

Also,

2. 2
- hpx [v ax#h»l pxon qth] (3.4)
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As in [1, Section 7.10], we consider the sum

«© k-1 «©
h
VA = A+ VA 4 vPA
h h K h
h=0 h=0 h=K+1
K-1
h . K
=Z [ - ‘1]*v[—a *1]‘*0'
sehel x+h x+K
h=0

since in the first sum, hsK -1, or K=z h + 1 ; and in the second sum,

h=K+ 1, or K=h-1, so that Ah=0. Then,

© k-1
h h+l,, h,. h K.. K
vA = v a - va + v -~ va + v
h x+hel x+h x+K
h=0 h=
K-1
h,.
= Alva - va
x+h K+1 x+K
h=0
K
= v i - v e
ax*h K+ x+K

that tis,

Z V“Ah =L (3.5)

Proceeding as in the proof of [1, Theorem 7.10}, one can show that

a. Cov[A.A]=0,h“j
h J

oo var 1] < 3 v 1]

h=0
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Then Var[LB] can be calculated directly by the formula

@
_ .2 a2
Var[L:’] = Z am h{qx i, (3.6)
n=0

or indirectly by the formula

el

]
-
o
-
—
-
|
<
A
*
-
[}
f
x
ed

I
<
o
=

—

<
o =
+
I

[ W)

. [2A —Az] . (3.7)
2 x

Alternatively, one can use
o
Var[L] = Z v Var[/\]
3 h

o
2h 2.2
. .8
= Z v hpx[v axﬂwl pxohqxoh] (3.8)

>
1]
o

To interpret (3.8), let us consider the year of age (y,y+1)
Let My be a random variable denoting the present value at the beginning

of the year of the annuity reserve required at the end of the year. Then
{0 with probability q,
M =
y

vayn with probability py

It follows that

a 3.9
vé P ( )

i

2
v = a 3.1
ar [My] [vayﬂ] pyqy ( 0)

and

It is convenient to denote Var[Hy] by V(y,y+1) . Then formula

(3.8) can be written as
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m
2
Var[L ] = z: v p. V(x+h,x+h+1) (3.11})
3 nx

h=0
Formula {3.11) indicates that the overall Var[La] is the sum of the
one-year variances modified by appropriate interest and probability
factors.

We can generalize (3.8) and (3.11) in various ways. As in Section

7.10 of {1}, we can show that the variance of the loss, xLa , in respect to

the years following attainment of age x + k is given by
«
Var[L] =) v®p  V(x+k+h,x+k+h+1) (3.12)
k3 h' x+k

h=0
Let us denote the annuity variance, discounted to age y , in respect to
the interval from age y to age y +m by V(y,y+m) . Setting

y =x + k and z = x + k + h , we can rewrite (3.12) as

(-]
Viy,=) = sz""’ p Viz,z+1) . (3.13)
z-y Yy
7=

y

Also, V(y,y+m) = V(y,w) - vz'_pyv(y+m.w)

y+m-1
= Z vy p Vliz,z+1) . (3.14)
z-y ¥
2=y
[c.f. 1,(7.10.10)]. Formula (3.14) is a convenient means for estimating

discounted variances for various intervals at various stages in the term of
an annuity. Using the fact that Cov[l\h ,'A)] =0, h# j, the reader can

verify from (3.4} and (3.10) that V(y,y+m) is the variance of the loss
1

variable }: s Ah , where h 1is here duration from attainment of age y .
h=0
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Figure 3.1 graphs V(iy,y+1) for y =65 to y= 115 , while

Figure 3.2 graphs the cumulative varlances for x = 65, 75, 85, 95 .
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Examples of the use of formula (3.14) are:

V(65,75) = 13.058 V(65,85) = 18.948 V(65,95) = 20.309 V(65,w)

]

20.403

V(75,85) = 15.218 V(75,95) = 18.735 V(75.=) 18.976

v(85.95)

12.273 V{85,w) = 13.114

V(9S,w)

6.580
How far is it reasonable to take this analysis if the annuity is

payable while the status ¥y survives. The overall loss, L‘ , 1s given by

L‘ = am - a” , (3.15)
where now K is the curtate duration of ® . For x =y , we can use

Table A.2 to calculate Var[L‘] by means of the formula

[
2 2
Var[L‘] = Z [Em] hlq” - [éu] R (3.16)
h=0
or, indirectly by the formula
2
1 2 2
Var[L‘] = [—d—] [A” - Axx] . (3.17)

We have tested formulas (3.16) and (3.17) for x = 65 , and on the basis of
interest at 4 percent, find Var[L‘] = 8.575 .

The allocation of loss to individual annuity years is complicated by
the fact that at the time of the first death, the annuity changes from one
depending on the survivorship of wxx to one depending on the survivorship
of the remalning single life. This implies a discrete change in the
annuity reserve, and also in the loss function. After these changes, the
allocation of loss to future annulty years can proceed by the methods
developed earlier in this section. At this point, It does not seem
worthwhile to analyze the allocation of loss to the annuity years

preceding the first death.
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4. RISK THEORY FOR ANNUITIES INVOLVING A CERTAIN-PERIOD
Here we consider an annuity-due of 1 per annum payable during the
survivorship of the status x:T . This annuity can be considered as an

annuity-certain with present value 5:1 , plus a life annuity-due deferred

n years, with actuarial present value & = vipd . The only
n x n X X+n

mortality risk pertains to this latter annuity, and we define

0~ |& K<n
L = nnx (a.1)

Then

™
-
r
R
"
~1 8
—_
<
2
W
-4
*
x
)
o
»
T
a
£ 3
'y
-4
| ———
13
a3
[
t 3

1
<
o ]
o
x
™7
o
E
*
M
-
£
x
+
2
1
x
*
Bl

h=0
-0 (3.2)
- n 2 2
Var[Ls] = Z [[v am] P, h{q“n] - [nlax] (4.3a)
h=0
o =2 2 2
= VP, }: [am] w e~ [ oPx ]
h=0
®©
= v E} ? | - & +v®pad |1-
npx m h qxon X+n n x xX+n npx
h=0
"znéi Lt PG VP Vixem, @), (4.3b)
+ X n x n x

where V{(x+n,m) 1is defined by (3.13).
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Formula (4.3b), which exhibits the variance in respect to the deferred
annuity is made up from the varlance arising from the uncertainty of (x)
surviving to age x+n with probability P, and reward, v"ﬁx.n , and the
variance appropriately discounted under interest and survivorship, with
respect to the annulty represented by i-i’"n . For V(x+n,m) , we can use
the analysis and formulas of the preceding section.

Thus, for i , on the basis of the Blended 1983 a-D-Mortality

10i 65

Table with 4% interest, we have

20,2 20
Var[Ls] Y %6 10Pss 10%s TV 10Pes VTS, =)

= 13.272 .

For , we have

3
20' 65

40,2 40
Var[Ls] Y %5 20Pss 20765 T ¥ 20Pss Vi8S, =)

= 3.656 .
In Figure 4.1, these variances are compared with Var[L]] for
x = 65. Appendix Table A.3 gives numerical comparisons of Var[La] and
Var[LS] for x = 65, 75, 85 and 95 .

A relation between Var{Ls] and Var[Lz] 1s easily obtained. We

have
n-1 ]
Var[l.] = Z v p V(x+h,x+h+1) + Z v p V(x+h,x+h+1)
3 hox h x

h=0 h=n
n-1 [ )

- 2n 2n 23 R .

= v hpr(x+h,x+h+1) M E: v )px'nV(x¢n+J,x*n+J+1)
h=0 =0
n-1

= E: vm’p V{x+h,x+h+1) + va‘p Vix+n,w) . (4.4)

hox n x

h=0
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Comparing (4.4) and (4.3b), we see that

n-1
Var[L] = Var{L] - ZVZh p Vix+h,x+h+1) - sl P q
s 3 h x Xen NnOX N oOx
h=0

The expression in braces in the right member of (4.5) represents the

reduction in annuity variance that results from specifying the annuity

shall be certain for n-years.

(4.5)

For an annuity-due of 1 per annum payable during the survival of the

status & the loss function is more complicated. Again, we can split

off the annuity-certain portion, and consider that the mortality rate

pertains to annuity payments from time n . These payments have actuarial

present value, |&_ , where
n' Xy

ae n o 1 . n .
& =v pi + v pia -v p & .
Xy nox xen Ny yn N Xy x¢nly+n

(4.6)

If the random variable K now denotes the curtate duration of the status

®y , the loss function, L6 , can then be defined as
0- |4& . for K < n ;

, for K& n .

The probability that K <n is - q - nqy if an independence

n x

assumption is used. Also, without independence, we have for given

Prik=n+jl = p ja_+ p Ja__ - p |q

n x §' xen ny §' ‘yen nxy §' xen;yen

but with independence this can be reduced to

Prik=h] = h'qu hdqy - hqx hqy
where h=n+j . For y=x , this becomes
Pr{K=h] = q2 - qz

hel 'x h 'x
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We can now verify that

il -

For Var[LG] , we have

L]
2 2
n.. _ _ w
Var[Ls] = E [v am] Pr{K=h] [n,aw] (4.10)

h=n

For x = 65 , Var o

| e |

L] = 7.848 when n = 10 , and Var[Ls] = 4.006 for

n

n=20 . For x 75 , these varlances were 8.093 and 1.238 ,
respectively. Graphical comparisons of Var[l_‘] and Var[Lﬁ] for
n =10, 20 , are made in Figure 4.2 for x = 65 . Appendix Table A.4
gives numerical comparisons of Var[L‘] and Var[l_a] for x =65, 75, 85
and 95 .

In using formulas such as (4.8), we encounter the question as to
whether the survival of (x) and of (y) can be considered as independent
in the probability sense, or whether some allowance should be made for

dependence. This is a whole topic in itself. For some insight into this

question, the reader is referred to {2, Carriere and Chan, (1986)].
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FIGURE 4.1
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Comparison of Var[L3] and VarjLg]
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FIGURE 4.2

Comparison of Var{L,] and Var[Lg]
when n = 10 and n = 20
Age 65

9.000 [ 8.575
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Var[L“] Var[LG) Var[L6]
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S. COMMENTS
5.1 Computations. The formulas in the preceding mathematical development
have been illustrated and valldated by extensive computations done by Beth
Kirk. Beth is a University of Michigan actuarial student whose work on the
paper was partially funded by a Research Experience for Undergraduates
grant from the National Science Foundation. Such grants, from the National
Science Foundation, or other sources, can help the growth of both actuarial
students and actuarial knowledge.

The end products of the computations were E[LJ] and Var[L)] ,
j=1,2,...6 . Particularly, for single-life annuities, there was a choice
of formulas and procedures, and by utilizing this choice fully, we were
able to verify the results. The Appendix remarks briefly on the
computations that were completed.

5.2 General Observations. The paper began with an exploration of
survivorship amortization. This was indicated for single-life annuities
but the concept could be extended. The survivorship amortization theory
appears to be different from the more usual approach to annuity theory in
Sections 2-4. At this stage, we are not sure how much the survivorship
amortization concepts should be developed, but there appears to be
considerable possibilities for further exploration.

A second observation is that Hattendorf Theory presents difficulties
for annuities with initial certain-periods or annuities payable during the
existence of a last-survivor status. For such annuities, we used only
basic formulas, and not the more complex analysis of Hattendorf Theory.

A third observation is that our theory can be used to assess the risk
undertaken by an individual purchaser of an annuity, as well as to estimate

the risks borne by an annuity organization covering groups of annuitants.
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It is noteworthy that a loss for an individual annuitant is a gain for the
annuity organization, and vice-versa a gain for the indlvidual is a loss
for the organization. In the case of an individual purchaser, there is the
possibility of restricting the risk by a suitable choice of annuity-form.
5.3 Standard Deviations and Coefficients of Variation.

The coefficient of variation, the ratio of the standard deviation of
a random variable to the mean value of the variable, is a useful
summarizing index of the variation that one may experience for that
variable. Before tabulating such coefficients, we display the more
complete analysis of annuity risk that can be made for whole life
annuities. This is given in the folloiwng Table 5.1 of standard deviations
for risk-periods running from issue to various attained ages.

TABLE 5.1
Standard Deviations for Whole Life Annuities with Risk-Periods

from Age at Issue to Attained Age®*, **

Age Attalned Age
at
Issue 75 85 95 W

65 3.61 (80.0%)|4.35 (96.4%){4.51 (99.8%)|4.52 (100%)

75 3.90 (89.6%)|4.33 (99.4%)4.36 (100%)
85 3.50 (96.7%)(3.62 (100%)
95 2.57 (100%)

* The standard deviation equals vV(x,x¢k) .

** The percent figures are relative to the full-range standard deviation.
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To show the impact on annuity risk of initial certain-periods or of
last survivor-status in place of single-life status, we present
TABLE 5.2

Coefficients of Variation [—E—]

Initial] Whole |Annuity for|Annuity for|Annuity for Last Survivor of
Age Life 10 years 20 years pair with Equal Ages, and having

Annuity{Certain andjCertain andja Certain-Period of n vyears.

Life Life n=0 n=10 n=20

65 32.9% 25.7% 12.2% 18.0% 17.2% 12.0%
75 43.4% 25.T% S5.9% 26.5% 22.3% 7.5%
85 55.6% 16.6% 1.1% 37.3% 19.2% 1.5%
95 63.7T% 4.9% 0% 45.9% 6.7% Q%

For whole life and last survivor annuities, both without an initial
certain-period, the coefficients of variation increase with initial age.
With certain-periods, the coefficients generally decrease with advancing
initial age. For a given initial age, the coefficients of variation
decrease with lengthening of the certain-period.

5.4 Variable Annuities. The TIAA-CREF organlzations have been leaders in
providing variable annuities for retirees from academic institutions. The
CREF-type variable annuity is based on common stock investments, and is
expressed as a fixed number of annuity units, the dollar value of which is
determined on March 31 of each year. Since 1980, the annuity unit has
increased from $26.27 to $99.44 with only two set-backs (in 1982 and in
1988). This is a strong argument for a portion of an individual’s
retirement income to be based on broadly diversified equities.

For the discussion immediately following, it is assumed that mortallty
and expense assumptions remain unchanged. The TIAA-type variable annuity
(called a graded benefit annuity) is based on fixed income securities and

an Assumed Investment Return (AIR) of 4 percent per year. The additional
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investment income (in excess of the AIR) is used at the end of the calendar
year [k,k+1] to adjust the annual annuity income, from the level, bk ., to
bxn for the next calendar year (k+1,k+2) . Whether one considers doing

this by the purchase of an incremental annuity at time k+1 , or proceeds as

in (1,{(16.5.4)] by the adjustment formula

1417

b . =b bl

k+1 k 1.04 (5.4.1)

the result on the (k+1,k+2)~year annuity income is the same. Provided
the investment return exceeds the AIR, the graded benefit annuity income
will steadily increase from its initial value. The TIAA variable annuity,
as for the CREF variable annuity, is based on an AIR of 4 percent. Its
progress will be less dramatic than for the CREF variable annuity. A 1982
TIAA graded benefit annuity is predicted to have an increase of 114 percent
by 1992, for an annual compound rate of increase of 7.9% . What rate of
increase will be maintained for the 1992-2002 decade?

How do coefficients of variation behave for varying annuities. Our

preliminary conclusjon is that for attained age x+k+1 , the expressions

b VVix+ks1,w) and b i would be in the same ratio, namely
kel kel x+kel
VWikekel, @)
o - (fokol,m) (5.4.2)
K xokel

as they would have been before the annuity income was adjusted. The
equality of the ratios holds provided that the mortality basis has remained
unchanged.

Through [6, McCrory, 1990] and this paper, annuity risk for
individuals and groups has been explored from several viewpeints. In cne
form or another annuities are becoming an increasingly significant part of

retirement income. Recent concepts such as variable annuities and
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survivorship amortization are still immature, and promise more future
development. We hope ideas in this paper may lead to further contributions
to our understanding and operation of annuity systems.

REFERENCES
1. Bowers, N.L., Gerber, H. U., Hickman, J. C., Jones, D. A. and Nesbitt,

C. J., Actuarial Mathematics, Itasca, Ill: Society of Actuaries, 1986.

2. Carriere, J. F. and Chan, L. K., "The Bounds of Bivariate Distributions
that Limit the Value of Last-Survivor Annuities,"” TSA XXXVIII(1986),
S1-70.

3. Diventi, T. R. and Herzog, T. N., "Modeling Home Equity Conversion

Mortgages", forthcoming in TSA.
4. Gerber, H. U., Life Insurance Mathematics, Springer-Verlag, 1990.

S. Johansen, R. J., "Blended Mortality Tables-Life Insurance and

Annuities”, TSA XXXIX(1987), 41-106.

6. McCrory, R. T., "Mortality Risk in Annuities", TSA XXXVI(1984),
309-338.

281



APPENDIX

The purpose of the computations was to illustrate the application of
the various formulas. The main mathematical formulas were all tested by
this process. For straight 1life annuities for a single individual,
extensive analysis was available through application of Hattendorf theory.
For annuities invelving a last-survivor status or an initial-certain
period, only basic formulas were developed.

The mortality table used was the Blended 1983 a-D-Mortality Table
[S, Johannsen, 1987]. This is a life table blended from the 1983 Table a
individual annuity mortality tables by requiring at pivotal age 65 the male
lx to be S50% of the total lx . We were concerned with individual annuitant
risk but our calculations are only illustrative and not necessarily
applicable to a given situation. The calculations are focused on ages 65
and greater, and we did not project mortality improvements that may emerge
in the next 20 to S0 years. The effective annual interest rate was taken
at 4 percent to allow considerable margin for variable annuities. Some
varjance calculations involved net single premiums such as zAx , with
effective interest at (1.04)2 - 1 = 0.0816 , or equivalently, at force of
interest 28 = 2 log(1.04)

A "basic"” spreadsheet was employed for interest functions, commutation
columns, and net single premiums. The last were checked by relations such
as 1 = déx + Ax

An “"Attained Age" spreadsheet, with durations measured from initial
ages 65, 75, 85, and 95 , was used to compute means and variances of the
loss functions developed for various annulity forms, as described in the
preceding text. Much cross-checking was available by comparing

computational results for different formulas or different loss functions.
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The spreadsheets that were utilized did not lend themselves to
interest rates varying by duration. Considerable programming would be
encountered to allow such variation, and it did not seem justified for our
illustrative purposes.

APPENDIX TABLES AND FIGURES
TABLE 4.1 h{qx for x = 65, 75, 85 and 95 .
TABLE A.2 h]q“ for x = 65, 75, 85 and 95 .
FIGURE A.1 Comparison of Single Life and Last Survivor Probabilities,
x =75 .

FIGURE A.2 Comparison of Single Life and Last Survivor Probabilities,
x = BS

FIGURE A.3 Comparison of Single Life and Last Survivor Probabilities,
x = 95 .

TABLE A.3 Comparison of Var [L3] and Var [Ls]

TABLE A.4 Comparison Var[l_‘] and Var[Ls]
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TABLEA 1

hi qx
h x = 65 x = 75 x = 85 x = 95
0 .010 027 076 180
1 on 029 o8 458
2 012 032 .078 136
3 013 034 .078 15
A 04 036 orr 096
5 015 .039 .075 078
6 017 041 o7t 063
7 018 043 067 050
a 020 045 .082 038
9 .021 047 087 029
10 023 .048 05 o021
1" 025 049 044 014
12 Q27 049 038 9.36E-03
13 029 049 032 5.76E-03
14 o3 048 027 3.27E-03
15 033 047 Q22 168E-03
16 035 045 08 7.55E-04
17 .036 042 014 2.86E-04
18 .038 039 .on 8.57E-05
19 040 036 8.00E-03 1.8QE-0S
20 .041 03z 5.78E-03 1.99E-06
21 .041 .028 4.006-03
22 042 024 2.62603
23 042 020 1.61E-03
24 041 017 9.16E04
25 .040 014 4.70E04
26 .038 .on 212ED4
27 036 8.75E-03 B8.02E-05
28 033 6.73E-03 2.40E-05
29 030 5.03E-03 5.05E-06
30 .027 3.63E03 5.57E07
at 024 251E03
a2 020 1.65E-03
13 D17 1.01E03
34 014 5.75E04
a5 012 2.95E-04
36 9.42E-03 1.33E-4
a7 742E03 5.04E05
38 5.70E-03 1.51E-05
39 4.26E-03 3.17E-06
40 3.08e03 3.50€-07
4 2.13E-038
42 1.40E-03
43 8.55E-04
44 4.88E.04
45 2.50E-04
a5 1.13E-04
47 4.27E-05
48 1.28E-05
49 2.69€-06
50 297E-07
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TABLE A2

n 9%

h x = 85 x =75 x = 85 x = 95
Q 000 001 .006 033

1 000 002 .ot8 082

2 001 1005 030 an

3 001 007 042 a23

4 002 010 054 22

5 002 014 063 114
6 003 .018 orn .100

7 004 022 076 085
8 005 027 079 068
9 .00 .032 078 053
0 .008 038 075 .039
n .009 .043 .070 .028
12 011 049 .064 018
13 014 053 .056 011
14 .017 057 048 6.51E-03
15 020 060 041 3.34E-03
16 023 061 033 1.51E-03
17 027 061 .027 5.72E-04
18 031 060 021 1.71E-04
19 .035 057 016 3.60E-05
20 040 053 o1 3.97E06
21 .044 048 7.83E-03

22 .048 043 5.22E-03

23 .051 .037 3.22E-03

24 054 032 1.83E-03

25 055 026 9.39E-04

26 .056 021 42304

27 085 017 1.60E-04

28 053 013 481E-05

29 080 010 101E-05

30 047 7.20E-03 1.11E-06
3 042 4.99€-03

32 037 3.28E-03

33 .032 2.02E03

34 .027 1.15E03

35 022 5.90E-04

3 .018 2.66E-04

ar 015 1.01ED4

38 01 3.02E-05

39 8.44E-03 5.34E-06

40 6.11E03 6.99E-07

41 4.24E-03

42 2.79E-03

4 1.7T2E-03

44 9.75E-04

45 5.00E-04

46 2.25E-04

47 8.556-05
43 2.56E-05

49 5.37E-06
50 5.93E07
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TABLE A.3

Comparison of Var [La] and Var [Ls]

Age L3
[§9) n=10 n=20
Var Var %(1) Var %(1)
65 20.403 13.272 65.0% 3.656 17.9%
75 18.976 8.285 43. 7% 0.732 3.9%
8s 13.114 2.336 17.8% 0.023 0.2%
95 6.580 0.177 2.7% 0.000 0.0%
TABLE A.4
Comparison of Var[L‘] and Var[l.s]
Joint
Age Ll
(1) n=10 n=20
Var Var %(1) Var %{(1)
65 8.57S 7.848 91.5% 4.006 46.7%
75 11.051 8.093 73.2% 1.238 11.2%
85 10.277 3.565 34.7% 0.046 0.4%
95 6.255 0.336 5.4% 0.000 0.0%
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