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Cecil Nesbitt and Marjorie Rosenberg 

This paper began with a study of the duality of individual risk theory 
for annual premium whole life insurance and for amortization of a unit loan 

by annual payments of ~I while (x) survives. We refer to this annuity 
a 
x 

process as survivorship amortization. Actually, any annuity can be 
regarded as a set of periodic amortization payments, to be made while a 
given status exists, in order to discharge the obligation for an initial 
provision of capital. This idea could lead to a paper by itself but will 
be explored only briefly in the Introduction. 

The possibility of converting property of an aged individual into a 
life income (from a survivorship annuity) appealed to the authors as being a 
matter of increasing public interest. That led us to consider individual 
risk theory for various forms of annuities for the aged. 

Section 2 shows a tabular and graphical representation of 
probabilities of death in successive years for individuals initially aged 
65.75,85 and 95. The probabilities are derived from the Blended 1983 
e-D-Mortality Table. 

Individual risk theory for whole life an/~uities issued at ages 
65,75,85 and 95 is discussed mathematlcally, and illustrated, in Section 
3. Some analysis is extended to annuities payable while a 
joint-and-last-survivor status exists. This is followed in Section 4 by 
individual risk theory for armuities modified by certain-periods. 

Essentially, the paper is an individual-risk-theoretical examination 
of annuities for the aged. Some initial conclusions from this analysis 
appear in Section 5. Through retirement systems, social security, al%d 
insurance plans, annuities for the aged are a very significant matter, and 
wor thy  of  i n q u i r y  f rom many view p o i n t s .  We hope o u r  pape r  w i l l  s t i m u l a t e  
such  i n q u i r y .  
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ANNUITIES FOR THE AGED 

BY 

CECIL NESBITT AND MARJORIE ROSENBERG 

1. INTRODUCTION 

In reviewing Hans Gerber's Life Insurance Mathematics [4, Gerber, 

]990], Cecil Nesbitt wrote the following paragraph concerning the whole 

life insurance reserve V : 
kx 

"This can take a number of different forms, such as 

x÷k 
V = 1 ( 1 . 1 )  

k x  ~ ' 
x 

which the author regards as being of somewhat less importance. The right 

hand member, however, has an interesting interpretation in terms of 

survivorship amortization of a loan of 1 by annual payments of .--=-I at 
a 
x 

the beglnnlng of each year while (x) survives. By taking account of both 

interest and survivorship, one can see that the outstanding principal for a 

x + k  x ÷ k  
survivor a t  age x + k is ~ , and its complement, I - ~ is the 

x x 

amount of principal considered to be repaid for a survivor at age x + k . 

For whole llfe insurances, these two quantities are the net amount at risk 

in the kth policy year, and the reserve at the end of k policy years, 

respectively. Survlvorship amortization could have practical significance 

for the aged in the disposition of property." 

That quotation provided the origin and set the initial direction for 

this paper. However, in the interest of brevity and relevance, the review 

editor omitted the whole paragraph! 

To explore the duality between whole llfe insurance from age x , and 

1 
survivorshlp amortization by payments T , we consider the random 

x 

variable, J , the curtate future lifetime of a survivor aged x + k , 
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a n d  two l o s s  v a r i a b l e s ,  n a m e l y :  

L 
k l  

J + l  
= v - Px~--~j.ll {1.2) 

a n d  

L -- J . l ]  ( z .3 )  
k 2 ~i 

x 

J = 0,1,2 ..... Here, kLz expresses the random present value of the net 

future pay-out to a survivor at age x + k under a whole life insurance of 

I , and L similarly expresses the random present value of the future 
k 2 

I 
pay-out under a whole life annuity with payments of ~ , for a 

x 

s u r v i v o r  who h a s  a t t a i n e d  a g e  x ÷ k . 

We a r r a n g e d  ( 1 . 2 )  a s  

= 1 - a J * - ~  
x 

= 1 - kL2 . 

F u r t h e r ,  we h a v e  f r o m  [ 1 , ( 5 . 4 . 3 ) ]  t h a t  

CI.4) 

~i x ' 

h----'O 

X*k  

x 

= t h e  a c t u a r i a l  p r e s e n t  v a l u e  o f  t h e  f u t u r e  

1 
p a y m e n t s  o f  ~ f o r  a p e r s o n  a g e d  x + k . a 

x 

= t h e  o u t s t a n d i n g  p r i n c i p a l  a t  a g e  x + k 

u n d e r  t h e  s u r v i v o r s h i p  a m o r t i z a t i o n .  
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Also, 

E[L]~,- E[,L2] 
x ÷ k  

- 1 

x 

(1.s) 

Finally, 

= V 
k x 

-~[,~,]. ~[,~] 

o ,,. r ~ ]  
t a j '  

: {%}~,~,, [,,,-,] . 

_ - [%]~ [~.,....- ,:.,.] (1 .6 )  

F 
1 x 2 A 

by [I, (7.4.3) and p. 99]. Note that d~ - I + -~ and ,*k 
x 

calculated at rate of interest [(I+I) 2 - I]. 

is 

Ne were intrigued that the complementarity of the loss random 

variables, L and L , carries thro~h to complementarity of the 
k l  k 2  

functions 

x ÷ k  

x 

x÷k 
V and - -  and their complements, 1 - V and 
kx a. ' k x 

x 

• a11 of which have distinctive interpretations in their whole 

life insurance or survivorship amortization settlnEs. The complementarity 

also implies equal variances o f  kil and kL2 . 

If we think of ~ as providing an amortization annuity with payments 
y 

of 1 during the survival of {y) , we have 
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= I  + v p ~  
y y y * l  

1 = ay - vpyay.l 
= (v  + d} ~ - "" y Vpyay .* .  l 

= d~ + v { p  + q ) ~ - vp 
y y y y y y ÷ l  

f % 

= d ~ i  + "" + Vpy[~.y[, - ~ iy . . , . l [ )  Y Vqyay ( l .Ta}  

If we consider that the annuitant is the borrower of a loan of 
x 

from an annuity organization, and is amortizing the loan by payments of 

at the beginning of each year while the annuitant survives, we can 

interpret the payment at attained age y to consist of the stun of: 

( I )  Interest-ln-adveLnce, d~ . on the remaining loan; 
y 

(2) ]'he net single premium to provide, in case of  death during the 

year. the discharge of  the loan balance, ~ ; 
y 

(3) The pure endowment single premium to provide, in case of survival 

over the year, for the reduction of the loan balance from 
y 

down to i 
y.1 

I f  we consider that the au~-nuity organizat ion has received a deposit o f  

and at the beginning of  each year pays I to (x) while {x) 
X 

surv ives,  then the payment of  1 at a t ta ined age y to the annuitant can 

be considered to be the sum of: 

( I )  In terest - in-advance,  d~ , on the remainin E deposit ,  
y 

(2) The present value o f  the expected discharge of the deposit in  the 

case (y) dies in the year; 

(3) The present value of  the expected decrease in the deposit In case 

(y) survives the year, 

Note that  in ( I .7a)  in terest - ln-advance is pa id  on the outstanding 

principal at the beginning of the year, and that unlike in the reserve 

situation where the initial reserve is ~ - 1 , the outstanding principal 
y 

here remains at ~ until the end of the year when it is either cancelled 
y 
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b e c a u s e  o f  d e a t h  o r  i s  r e d u c e d  t o  ~ i n  c a s e  o f  s u r v i v a l .  M u l t i p ] y i n  8 
y ÷ l  

( I . 7 a )  by  1 + i , and u s i ~  ~ = I ÷ a . z = y , y + 1 , y i e l d s  
Z Z 

1 = i a y  + qy (1 + ay }  + p y ( a y  - a y . l )  ( i .  Tb ]  

which is interesting to interpret. It indicates again that survivorship 

amortization is different from a~uity reserve theory. 

Other arrangements of (I.Ta) , such as 

I - "" / + " ' a  1 vq a . ,  ( 1 . T c )  I = d~y + v ~y 

and 

give modified interpretations. Formula (l,Td) indicates on increasing 

yield rate [i + qyl °n the decreasing a~uity value g In fact, f ° r y  

y = w - I , where w is the limiting age, the yield rate is i + i , but 

on a balance that has decreased to 1 ! 

~ese ideas are more o r  l e s s  familiar. In the present setting they may 

provide new insights, since survivorship ~ortization for converting 

property into a~ual income may be of interest to seniors. For a 

contrasting approach to home equity conversion see [3, Diventi and Herzog]. 

We have also realized that all a~uitles c~ he interpreted as providing 

survivorship amortization over a term defined by the continued existence of 

some status. Dis is not the usua] approach to life a~uitles, to which we 

now return. In the next section, we t~e a look at some of the probablllty 

f~ctions that may be useful for valui~ annuities for the aged. 
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2. PROBABILITY FUNCTIONS FOR THE AGED 

Our purpose here is to illustrate the probabilities that a r e  basic to 

the mathematlcal formulas to follow, rather than to present numerical 

probabilities judged to be realistic for a particular group. We first 

examine the probability function (p.f.) 

i -I 
hlqx,  = x÷h x+h+ l  I ' ( 2 . I )  

x 

on the basis of the Blended 1983 a-D-Mortality Table [ 5 ,  Johansen, 1987]. 

Figure 2.1 displays a graph of these functions for x = 65 , 75, 85 and 95. 

Table A.] In the Appendlx exhlblts these probablllty functions numerically. 

We next consider the p.f., hlq~ , where 

. 1 %  = .Iqx ÷ .1% - . 1 %  

Formula (2.2) does not require an independence assumption. 

is assumed, then 

hI~ = h** qx - hq~ + h.~qy - hqy 

hPx " hPy - h,~lPx " h + l P y )  ' 

(2.2) 

If independence 

-~,x ~,x.~,, h , , / '  h,x)[~ h,,} 

[ ,  ~,x} C' . , . }  

= h,  l q x  " h~ lqy  - hqx  " hqy  , 
( 2 . 3 )  

provides a simple means of computation. 
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The p.f . 's ,  h(qx and hlc~ are compared graphically in Figure 2.2 

for x = 65 , and in Appendix Figures A.1, A.2, and A.3 for x = 75 , 85, 

and 95. Figure 2.3 displays a graph of hlq~z for x = 65 , 75, 85, and 

95 .Numerical values of hlq~ are tabulated in Table A.2. 

Figure 2.1 is related to {I, Figure 3.2] and to [6, McCrory, Figure 

I]. While McCrory examined the distributions of present values of life 

annuities for various groups of lives, we shall use the probability 

functions to study individual risk theory for various individual annuities. 

By both approaches, variance estimates can be made for individual and 

group annuities, but our emphasis will be on individual risks, 

especially at the higher ages. 
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3. RISK THEORY FOR ANNUITIES DEPENDING ON LIFE STATUSES ONLY 

where 

(x) . 

namely 

With Section 7.10 of Actuarlal Mathematics at hand, we review 

ibdividual risk theory in regard to an annuity-due of i per year payable 

during the survivorship of [x) . As overall loss, we have 

= ~ - ~ (3.1) L3 ~ x 

K is the random variable denoting the curtate future l l fe t ime of 

We a11ocate to the (h+l)th year, the loss (gain) valued at time h , 

I 
O 

= _-. 
A h ax+ h + 1 

[ V a x + h +  1 - atx+h + I 

Ksh- 1 

K=h 

Kah + 1 

(3.2) 

Here A is based on the concepts that at the beginning of the year a 
h 

payment reduces the reserve to ~ - 1 ; if (x) dies durlnE the year, 
x÷h 

such initial reserve is released and provides a gain; and if (x) survives 

the year, the initial reserve must be built up to ~ One calculates 
x ÷ h + 2  

that 

E[Ab] = hPx[[-~ix÷h + l}qx.h ÷ [V~ix÷h+ I - a ' x + h  ÷ 1}Px.h] 

= hPx[-ax+h + 2 + VPx+h ax+h+1] 

= 0 (3.3) 

Also, 

2 2 

+ 1 qx+h ÷ - a'x.,.h 

2 2 

FV 2~ 2 qx+h] = hPx L x+h+l Px+h (3.4) 
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As i n  [ I ,  S e c t i o n  7 . 1 0 J ,  we c o n s i d e r  t h e  sum 

vhA h = vhA h + VKA K + vhA h 

h:=O h=(] h=K+ 1 

K-% 

=~ vhlv, h. ' -,.. ,} .v,{, .,} .0 
h=O 

since in the first sum, h s K - I , or K ~ h + I ; and in the second sum, 

h ~ K + 1 , o r  K s h - I , s o  t h a t  A = 0 . T h e n ,  
h 

'z'rr ,,,,,,.~} ] = v h + I g  _ + V h _ Vl~ + V [ 
VhAh ~ x*h÷1 x*K 

h=O h=O 

K-1 
"Z °(v"~..~l" ' ~ -  v'~x., 

h=O 

Vhax÷h i 

= a~-T~ - ~ix 

that is, 

Z VhAh = L 3 

h=O 

(3.5) 

P r o c e e d i n g  a s  i n  t h e  p r o o f  o f  [ 1 ,  T h e o r e m  7 .  I 0 } ,  o n e  c a n  s h o w  t h a t  

a .  COV[Ah , A j ]  = 0 , h ~ ~ 

b. Var [ LL3 = 
h=O 
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Then Var[L3] can  be  c a l c u l a t e d  d i r e c t l y  b y  t h e  f o r m u l a  

Var L 3 = ah--~ h lqx  - x ' 

h=o 

(3.6) 

o r  indirectly by the formula 

d - ~ix] 

r vK+ll 
= ] 

- :, 

ALternatively, one can use 

h=O 

ah r 2..2 
= v hpxL v ax÷h+ 1 Px+hqx+h ] . 

h=O 

( 3 . 7 )  

( 3 . 8 )  

Let 
y 

of the year of the annuity reserve required at the end of the year. 

M = {0 w l t h  p r o b a b i l i t y  qy 

Y v~y.~ w i t h  p r o b a b i l i t y  ~ . 

To I n t e r p r e t  ( 3 . 8 ) ,  l e t  u s  c o n s i d e r  t h e  y e a r  o f  age  ( y , y + l )  . 

M be a random v a r i a b l e  d e n o t i n g  t h e  p r e s e n t  v a l u e  a t  t h e  b e g i n n i n g  

Then  

I t  f o l l o w s  t h a t  

E[M]y = v~iy+ipy ( 3 . 9 )  

and  

I" "1 
I t  i s  c o n v e n i e n t  t o  d e n o t e  Var[My] by V ( y , y + l )  . Then f o r m u l a  

( 3 . 8 )  can  be w r i t t e n  a s  
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[ ] ~ 2" v(×÷h'x+h+1).px (3.11] V a r  L s = v 

h=O 

Formula {3.11) indicates that the overall Var[L3] is the s~ of the 

one-year variances modified by appropriate interest and probability 

{actors. 

We can generalize (3.E) and (3.11) in various ways. As in Section 

7.10 of [I], we can show that the variance of the loss, wL3 , in respect to 

the years following attai~ent of age x + k is given by 

Vat kL3 = v 

h=o 

Let us denote the a ~ u i t y  var iance,  d i s c o ~ t e d  to age y , in respect  to 

the i n t e r v a l  from age y to age y + m by V{y,y÷m) . Se t t ing  

y = x + k and z = x ÷ k + h ,  we c ~  rewr i t e  ( 3 . 1 2 ) a s  

V(y ,~ )  = ~ v2(Z-Y)z_yp V(z,z+1)  . (3.13) 

z=y 

Also, V(y,y+m) = V{y,m) - v ~ p V(y+m,~) 
my 

y*m-I 

= ~ v2lZ-Y)z_ypyV(z,z÷1) . (3.141 

z = y  

( c . f .  I , ( ? . 1 0 . 1 0 ) ] .  Formula (3.14) is  a convenient  means f o r  es t ima t ing  

disco~ted vari~ces for various intervals at various stages in the term of 

[A,] annuity. Using the fact that Coy A h , = 0 , h ~ j , the reader can 

verify from (3.4) and (3.10) that V{y,y+m) is the vari~ce of the loss 

m-I 

variable T ~ ~ ' where h is here duration from attai~ent o£ age Y m 

h~ 
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F i g u r e  3 . 1  g r a p h s  V ( y , y + l )  f o r  y = 65 t o  y = 115 , w h i l e  

F i g u r e  3 . 2  g r a p h s  t h e  c u m u l a t i v e  v a r i a n c e s  f o r  x = 6 5 ,  75 ,  8 5 ,  95 . 
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Examples of the use of formula (3.14} are: 

V(65,75) = 13.058 V(65,85) = 18.948 V(65,95) = 20.309 

V(75,85) = 15.218 V{75,95) = 18.735 

V(85.95) = 12.273 

V(65,=} = 20.403 

V(75,m) = 18.976 

V(SS,m) = 13.114 

V(9S,®) = 6 . 5 8 0  

How far is it reasonable to take this analysis if the annuity is 

payable while the status ~7 survives. The overall loss, L 4 , is given by 

L4 : aE+-~T~ - as~, ' ( 3 . 1 5 )  

where now K is the curtate duration of ~7 For x = y . we can use 

Table A.2 to calculate Var[i4] by means of the formula 

h=O 

o r ,  i n d i r e c t l y  by t h e  f o r m u l a  

t d ) t ~ 

We have tested formulas (3.16} and (3.17) for 

interest at 4 percent, flnd Var[L] = 8.575 . 

The allocation of loss to individual annuity years is complicated by 

the fact that at the time of the first death, the anJnuity changes from one 

depending on the survivorship of l~ to one depending on the survivorship 

of the remaining single llfe. This implies a discrete change in the 

annuity reserve, and also in the loss function. After these changes, the 

allocation of loss to future annuity years can proceed by the methods 

developed earlier in this section. At this point, it does not seem 

worthwhile to analyze the allocation of loss to the annuity years 

preceding the first death. 

(3.17) 

x = 65 , and on the basis of 
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4. RISK THEORY FOR ANNUITIES INVOLVING A CERTAIN-PERIOD 

Here we consider an annulty-due of  I per annum payable durlng the 

survlvorship of the status xi~ This annuity can be consldered as an 

arunuity-certain with present value ~ , plus a llfe aru%ulty-due deferred 

n years, with actuarial present value nl~x = VnnPx~x. n . The only 

mortality risk pertains to thls latter annuity, and we define 

I° n- ~I ~x K < n L s = (4.1) 

Then 

h=O 

J n ° 

[h=O 

= 0 ( 4 . 2 )  

h=O 

(4.3a) 

m 

2n ~'~ 2 n 2 

h=O 

oo 

= a h l q x + ,  x , n  + v P x a x + n  l - r i p  x 

2 n , . 2  2n 
= v a • + v P x V { X + n , ® )  x÷n nPx nqx (4.3b) 

where V(x+n,m) is de£ined by (3.13). 
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Formula (4.3b), which exhibits the variance in respect to the deferred 

annuity is made up from the variance arising from the uncertainty of {x) 

surviving to age x+n with probability p= and reward, vn~ , and the 
x+n 

variance appropriately discounted under interest and survivorship, with 

respect to the annuity represented by ~ For V(x÷n,m) . we can use 
x÷n 

the analysis and formulas of the preceding section. 

Thus, for lOl~es. , on the basis of the Blended 1983 a-D-Mortality 

Table with 4% interest, we have 

ILl 20_2 + v 20 V[75,.) 
VarLjs = v aTs I0p6 S 10q65 10p65 

For 

x=65. 

Var [Ls] 

have 

= 1 3 . 2 7 2  . 

2oi a6s  , we h a v e  

r ] 40..2 + v 40 v(85,w) 
Var L JL$ = v aBs 20P6 S 20q65 2op6 S 

= 3. 656 . 

In Figure 4.1, these variances are compared with Var[L3] for 

Appendix Table A.3 gives numerical comparisons of Var[L3] 

for x = 65, 75, 85 and 95 . 

o _ 1  

var[LJ :Zv pvcx.h,x.h.l . v pV x.h,x h.l  
h=O h=n 

a n d  

We 

Z VZhhPxV(X+h,x+h+t + 2n = v np x v2JjPx÷nV(x+n+ J,x+n+j+1 ) 

h=O J=O 

n-1 

= Z v2hhpxV{x+h'x+h+l ) + vaa~PxV{X+n'~°) " 

h=O 

{ 4 . 4 )  
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Comparing (4.4) and (4.3b), we see that 

The expression in braces in the right member of (4.5) represents the 

reduction in annuity variance that results from specifying the annuity 

shall be certain for n-years. 

(4.5) 

For an annuity-due of 1 per annum payable d u r i n g  the survival of the 

status ~:~ , the loss function is more complicated. Again, we can split 

off the annuity-certain portion, and consider that the mortallty rate 

pertains to annuity payments from time n . These payments have actuarial 

present value, nI~RT, , where 

= "" v n ~ - vnnpxy'ax÷.: (4.6) nla~'Y VnnPxax÷n + nPy y+n y÷n 

If the random variable K now denotes the curtate duration of the status 

~n] , t h e  loss function, L 
6 

, can then be defined as 

IO - nl~x7 , for K < n ; 

L = ~v"ax-n - -Y~  _ nla~"~ . f o r  K ~ n . 

The probability that K < n is .qx " nqy if an independence 

assumption is used. Also, without independence, we have for given n , 

PrLK=n÷j] = . p  jlq~÷~ + .Py 3Jqy.. - .P~y j lq~÷.:y.n 

but with independence this can be reduced to 

PrIK=h] = h , , q  x h ,  xqy - hq x hqy 

(4.7) 

(4 .8)  

where h=n+j . For y=x , this becomes 

2 2 
P r [ K = h ]  = h.lq x - hq x (4.9) 
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We can now verlfy that 

For Vat[L6] , we have 

h f n  

(4.10) 

rl r l 
For x = 65 , Var 6 

n = 20 , For x ffi 75 , these variances were 8.093 ~Lnd 1.238 , 

respectlvely. Graphical comparlsons of Var[L] and Var[L6] for 

n = 10 , 20 , are made in Figure 4.Z for x = 65 . Appendix "fable A.4 

g i v e s  

a n d  9 5  . 

In using formulas such as (4,8), we encounter the question as to 

whether the survival of (x) and of (y) c~n be considered as independent 

in the probability sense, or whether some allowance should be made for 

dependence. This is a whole topic in itself. For some insight into this 

question, the reader is referred to |2, Carriere and Chan, [1986)]. 
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FIGURE 4.1 

Comparison of Var[L 3] and Var[L5] 

when n = i0 and n = 20 

Age 65 

20,403 
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10 
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0 
Var[L 3 ] 

13.272 

Var[L 5 ] 

n = I0 

I 
Var[L 5 ] 

n = 20 

2 7 5  



FIGURE 4.2 

Comparison of Vat[L4] and Vat[L6] 

when n = 10 and n = 20 

Age 65 

9.000 
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S 7.OOO 

q 
6.000 

D 5.000 
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I 4.000 
I 
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s 2.000 

1.000 

.000 

Var[L 4 ] Var[L  6 ] 

n = i 0  
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I 
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5. COMMENTS 

5.1 Computations. The formulas in the preceding mathematical development 

have been illustrated ~u,~d validated by extensive computations done by Beth 

Kirk. Beth is a University of Michigan actuarial student whose work on the 

paper was partially funded by a Research Experlence for Undergraduates 

grant from the National Science Foundation. Such grants, from the National 

Science Foundation, or other sources, can help the growth of both actuarial 

students and actuarial knowledge. 

The end products of the computations were E[Lj] and Var[L)] p 

j = l,Z .... 6 . Particularly, for slnEle-llfe arunulties, there was a choice 

of formulas and procedures, and by utilizing this choice fully, we were 

able to verify the results. The Appendix remarks briefly on the 

computations that were completed. 

5.2 General Observations. The paper began with an exploration of 

survivorship amortization. This was indicated for single-life a/%nuities 

but the concept could be extended. The survivorshlp amortization theory 

appears to be different from the more usual approach t o  annuity theory in 

Sections 2-4. At this stage, we are not sure how much the survivorship 

amortization concepts should be developed, but there appears to be 

considerable possibilities for further exploration. 

A second observation is that Hattendorf Theory presents difficulties 

for annuities with initial certain-periods or annuities payable durin E the 

existence of a last-survivor status. For such aLnnuities, we used only 

basic formulas, and not the more complex analysis of Hattendorf Theory. 

A third observation is that our theory can be used to assess the risk 

undertaken by an individual purchaser of an annuity, as well as to estimate 

the risks borne by an annuity organization covering groups of annuitants. 
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It is noteworthy that a loss for an individual annuitant is a gain for the 

annuity organization, and vlce-versa a gain for the individual is a loss 

for the organization. In the case of an individual purchaser, there is the 

possibility of restricting the risk by a suitable choice of annuity-form. 

5.3 Standard Deviations and Coefficients of Variation. 

The coefficient of variation, the ratio of the standard deviation of 

a random variable to the mean value of the variable, is a useful 

summarizing index of the variation that one may experience for that 

variable. Before tabulating such coefficients, we display the more 

complete analysis of annuity risk that can be made for whole llfe 

annuities. This is given in the folloiwn E Table 5.1 of standard deviations 

for risk-periods running from issue to various attained ages. 

T A B L E  5.1 

Standard Deviations for Whole Life Annuities with Risk-Periods 

from Age at Issue to Attained Age•, •" 

Age 
at 
Issue 

65 

75 

85 

95 

Attained Age 

75 85 95 w 

3.61 (80.OX} 4.35 (96.4X} 

3.90 {89.6X) 

4.51 (99.8X) 

4.33 (99.4Z} 

i3.50 (96.7Z) 

4.52 (lOOX) 

4.36 {100Z) 

3.62 (100Z) 

2.57 (100Z) 

• The standard deviation equals ~ . 

"" The percent figures are relative to the full-range standard deviation. 
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To show the impact on annuity risk of initial certain-periods or of 

last survivor-status in place of single-llfe status, we present 

TABLE 5.2 

Coefficients of Variation ( + )  

llnitial 

Age 

65 

75 

85 

95 

Whole 
Life 

Annuity 

32.9% 

43.4% 

55.6% 

63.7% 

Annuity for 
10 years 
Certain and 
Life 

25.7Z 

25.7% 

16.6Z 

4.9% 

Annuity for 
20 years 
Certain and 
Life 

12.2Z 

5.9% 

1.1X 

OZ 

Annuity for Last Survivor of 
pair with Equal Ages, and having 
a Certain-Perlod of 

n=O n=10 

18.0% 17.2Z 

26.5% 22.3% 

37.3% 19.2% 

45.9% 6.7Z 

n years. 
n=20 

12.0Z 

7.5% 

1.5% 

OZ 

For whole life and last survivor annuities, both without an initial 

certain-period, the coefficients of variation increase with initial age. 

With certain-periods, the coe£ficients generally decrease with advancing 

initial age. For a given initial age, the coefficients of variation 

decrease with lenEthenin E of the certain-perlod. 

5.4 Variable Annuities. The TIAA-CREF organizations have been leaders in 

providin E variable annuities for retirees from academic institutions. The 

CREF-type variable annuity is based on common stock investments, and is 

expressed as a fixed number of annuity units, the dollar value of which is 

determined on March 31 of each year. Since 1980, the annuity unlt has 

increased from $26.27 to $99.44 wlth only two set-backs (in 1982 and in 

198S). This is a strong argument for a portion of an individual's 

retirement income to be based on broadly diversified equities. 

For the discussion immediately following, It is assumed that mortality 

and expense assumptions remain unchanged. The TIAA-type variable annuity 

(called a graded benefit annuity) Is based on fixed income securities and 

an Assumed Investment Return (AIR) of 4 percent per year. The addlt lonal 
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investment income (in excess of the AIR) is used at the end of the calendar 

Ik,k+l) to adjust the annual annuity income, from the level, b k , to year 

b for the next calendar year (k+l,k+2) . Whether one considers dolr~ 

this by the purchase of an incremental annuity at time 

in [1, (16.5.4)] by the adjustment formula 

i+i 
b = b ~,.1 ( 5 . 4 . 1 )  

k** k 1 . 0 4  

the resu l t  on the (k+l,k+2)-year annuity income is the same. Provided 

the investment return exceeds the AIR, the graded benef i t  annui ty income 

wlll steadily increase from its initial value. The TIAA variable annuity, 

as for the CREF variable annuity, is based on an AIR of 4 percent. Its 

progress will be less dramatic than for the C'REF variable annuity. A 1982 

TIAA graded benefit annuity is predicted to have an increase of 114 percent 

by 1992, for an annual compound rate of increase of 7.97. . What rate of 

increase will be maintained for the 1992-2002 decade? 

How do coefficients of variation behave for varying annuities. Our 

preliminary conclusion is that for attained age x+k÷l , the expressions 

b (~x~k.~.m} and b ~ would be in the same ratio, namely 
k * l  k ÷ l  x ÷ k ÷ l  

cr _ W(x÷W÷I,®)" (5,4.2) 
P x÷k÷l 

a s  t h e y  w o u l d  h a v e  been  b e f o r e  t h e  ~ m u i t y  income was a d j u s t e d .  The 

e q u a l i t y  o f  t h e  r a t i o s  h o l d s  p r o v i d e d  t h a t  t h e  m o r t a l i t y  b a s i s  h a s  r e m a i n e d  

u n c h a n g e d .  

T h r o u g h  [6,  McCrory,  1990] and t h i s  p a p e r ,  a n n u i t y  r i s k  f o r  

i n d i v i d u a l s  and  g r o u p s  h a s  been  e x p l o r e d  f rom s e v e r a l  v i e w p o i n t s .  I n  one 

form or another annuities are becoming an increasingly significant part of 

retirement income. Recent concepts such as variable annuities and 

k+l , o r  p r o c e e d s  as  
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survivorship amortization are still immature, and promise more future 

development. We hope ideas in this papeF may lead to further contributions 

to our understanding and operation of annuity systems. 
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APPENDIX 

The purpose of the computations was to illustrate the application of 

the various formulas. The main mathematical formulas were all tested by 

this process. For straight life annuities for a single individual, 

extensive analysis was available through application of Hattendorf theory. 

For annuities involving a last-survivor status or an inltial-certain 

period, only basic formulas were developed. 

The mortality table used was the Blended 1983 a-D-Mortality Table 

[5, Johannsen, 1987]. This is a life table blended from the 1983 Table a 

individual annuity mortality tables by requirin E at pivotal age 65 the male 

I to be 50Z of the total 1 We were concerned with individual annuitant 
x x 

risk but our calculations are only illustrative and not necessarily 

applicable to a given situation. The calculations are focused on ages 65 

and greater, and we did not project mortallty improvements that may emerge 

in the next 20 to 50 years. The effective annual interest rate was taken 

at 4 percent to allow considerable margin for variable annuities. Some 

variance calculations involved net single premiums such as 2A , with 
x 

effective interest at (I.04) 2 - I = 0.0816 , or equivalently, at force of 

Interest 2~ = Z log(l.04) . 

A "basic" spreadsheet was employed for interest functions, commutation 

columns, and net sinEle premiums. The last were checked by relatlons such 

as 1 = d~ + A 
X x 

An " A t t a i n e d  AEe" s p r e a d s h e e t ,  w i t h  d u r a t i o n s  measured f r om  i n i t i a l  

ages 65,  75,  85,  and 95 , was used  t o  compute means and v a r i a n c e s  o f  t h e  

l o s s  f u n c t i o n s  d e v e l o p e d  f o r  v a r i o u s  a n n u i t y  f o r m s ,  as d e s c r i b e d  i n  t h e  

p r e c e d i n  E t e x t ,  Much c r o s s - c h e c k i n E  was a v a i l a b l e  by  compar i ng  

c o m p u t a t i o n a l  r e s u l t s  f o r  d i f f e r e n t  f o r m u l a s  o r  d i f f e r e n t  l o ss  f u n c t i o n s ,  
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The spreadsheets that  were u t l l i z e d  d id  not  lend themselves to  

interest rates varying by duration, Considerable programming would be 

encountered to allow such variation, and it did not seem justified for our 

illustratlve purposes. 

APPENDIX TABLES AND FIGURES 

TABLE A. | h l q x  f o r  X = 65 ,  75 ,  85 and  95 l 

TABLE A.2 h lC~ for x = 65, 75, 85 and 95 

FIGURE A. I Comparison of Single Life and Last Survivor Probabilities, 

x = T S  . 

FIGURE A.2 Comparison o£ Single Life and Last Survivor Probabilities, 

x = g S  . 

FIGURE A . 3  Comparison of Single Life and Last Survivor Probabilities, 

x = 9 S  . 
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TABLE A. 1 

h l q x  

x = 8 5  x = 7 5  x = 8 5  x : 9 5  

0 
1 
2 
3 
4 
5 
6 

8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
2o 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
3t 
32 
33 
34 
35 
36 
37 
38 
39 
40 
4'f 
42 
43 
44 
45 
4.6 
47 
48 
49 
5O 

.010 
011 
012 
013 
.014 
015 
.017 
.018 
.02O 
.021 
.023 
.025 
027 
.029 
031 
.033 
.035 
.036 
.038 
,040 
.041 
041 
042 
.042 
.041 
.040 
.038 
036 
.033 
.030 
,027 
.024 
.0~0 
D17 
.014 
.012 

9 42E-03 
7.42E-03 
5,70E-03 
4.25E-03 
3.06E-03 
2 131E-03 
1.40E-03 
8.59E-04 
4.88E.04 
2.50E-04 
1,13E-04 
4.27E-05 
1.28E-05 
2.69E,06 
2.97E-07 

.O27 
,029 
032 
.034 
,036 
.039 
,041 
.043 
045 
047 
0.48 
,049 
,049 
049 
,048 
,047 
045 
,042 
,039 
036 
032 
.028 
.024 
.020 
.017 
.014 
,011 

8.75E..,03 
6.73E,.03 
5.03E.03 
3.635-03 
2,51E-03 
1.65'E-,03 
1,01 E-03 
5.75E4)4 
295E-04 
1,33E-04 
5 04E-05 
1,51E~05 
3.17E-06 
3.50E..07 

.O76 

.o"r8 

.078 

.O7'8 

.077 
.075 
071 
.067 
.062 
057 

044 
.008 
.o32 
.027 
.~2 
o18 
o14 
.011 

8,O0E-03 
5.78E..03 
400E-03 
2 62.E-03 
1 61E,.03 
9.16E-04 
4.70E-04 
212E-04 
8.02E-05 
2 40E-05 
505E-06 
5.57E.07 

,180 
.~58 
.136 
,115 
,096 
078 
.063 
.050 
.038 
029 
.021 
.014 

g36E-0.3 
5,76E.,03 
3.27E.,03 
1.68E-03 
7,55E,,~1 
2,86E-04 
8.57E,,05 
1 .~E..05 
1.99E-06 
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TABLE A.2 

X = 6 5  x = 7 5  x =  85  x = 9 5  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
2,6 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
4O 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

.000 

.000 

.001 

.001 

.002 

.002 

.000 

.004 

.005 

.006 
008 
.000 
.011 
.014 
.017 
.020 
.023 
.027 
.031 
.035 
.040 
.044 
.048 
.051 
.054 
.055 
.056 
.055 
.053 
.060 
.047 
,042 
,037 
.032 
.027 
.022 
.018 
.015 
,011 

8.44E,.03 
6,11E-.03 
4.24E*03 
2.TgE..03 
1.72E-03 
9.75E-04 
5.00E-04 
2.25E..0,4 
&.55E-05 
2.56E-Q5 
5.37E,.06 
5.93E,-07 

.001 

.002 

.005 

.007 

.010 

.014 

.018 

.022 

.027 

.032 

.038 

.043 

.049 

.053 

.057 

.060 

.061 

.061 
060 
.057 
.053 
.048 
.043 
.037 
.032 
.026 
.Q21 
.017 
.013 
.010 

7.20E-03 
4.g~E-03 
3.28E-03 
2.02E-03 
1,15E-03 
5.00E-04 
2.66E-04 
1.01E,04 
3.02E-05 
6.34E-.06 
6.g~,E..07 

.0O6 

.018 

.000 
,042 
,054 
.063 
.071 
.076 
.079 
.078 
.075 
.070 
.064 
.056 
,048 
.041 
.033 
,027 
.021 
.016 
.011 

7.93E-03 
5.22E-03 
3.22E-00 
1.83E-03 
9.39E-04 
4.23E-04 
1.00E-04 
4.81E-05 
1.01E-06 
1.11E"06 

,O33 

.111 

.123 

.122 
~114 
.100 
.085 
068 
.053 
.039 
.028 
018 
.011 

6,51E-00 
334E-03 
1.51E-03 
572E-04 
1.71E-04 
3.60E-05 
3.97E-06 
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Comparison of 

TABLE A. 3 

A~e 

65 

75 

85 

95 

L 
3 

(1) 
Vat  

2 0 . 4 0 3  

18.976 

1 3 . 1 1 4  

6.580 

L 
5 

n = I 0 n = 20 
Var 

13 .272  

8 . 2 8 5  

2 .336  

0.177 

65.OX 

43.7M 

1 7 . 8 ~  

2 .7X 

Var 

3.656 

0.732 

0.023 

0 . 0 0 0  

X(1) 

17 .9~  

3.9% 

O. 2~ 

0 . 0 ~  

TABLE A. 4 

Comparison of Var[i4] and Vat [L6] 

Joint 
Age 

65 

75 

85 

95 

L 

(1) 
Vat  

8 . 5 7 5  

11 .051  

1 0 . 2 7 7  

6.255 

n=lO 
Var X(1)  

7 . 8 4 8  91 .5X 

8 . 0 9 3  7 3 . 2 X  

3 . 5 6 5  34 .7X 

0 . 3 3 6  5 .4X 

n=20 
Var ~.11) 

4. 006 46.7~, 

1. 238 I I. 2~, 

0. 046 0.4Y, 

O. 000 0.0~, 
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