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We propose asymptotically correct two-sided bounds for random s,,mR (where 
the number of sllrnmands has an arbitrary distribution) which can be viewed 
as ruin probabilities or accumulated claim sizes in various risk processes. The 
bounds are fairly new and they reveal the real accuracy of some well-known 
and widely used asymptotic formulas. It turns out that this accuracy can be 
poor and the range where these formulas give appropriate approximations de- 
pends on the shape of the tail distribution of the snmm~tnds. This dependence 
is examined in the research. We also propose some routines which can be used 
in actuarial practice. They give bounds of the probability of ruin which are 
fairly close to the real ruin probability. 

The report consists of three sections. Section I gives a general oversight 
of the results obtained during the research. Section 2 is designed for readers 
interested in mathematical aspects of the work. Section 3 contains numerical 
routines and corresponding numerical results illustrating our approach. 
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1 Scope  of  the  research and the results  obta ined  

1.1  R i s k  m o d e l s  

Actuarial science deals with the random level of risk, depending on the frequency 
and the severity of claims, to be covered by the insurer (see Panjer and Willmot 
[32]). In order to study the insurer's risk, various risk models were proposed (see 
[1, 2, 9, 12, 32]). All these models use various assumptions concerning the claim 
occurrence process, income (premium) process, severities distributions, etc., but all 
they incorporate the following characteristics which are of special importance for the 
insurer. 

(i) The accumulated claims 

c,= }2 (1.1) 
k<Nt 

for an accounting period t, where Nt is the total number of claims that occurred 
before time t, and Zk is the kth claim size. 

(ii) The insurer's surplus R(t) at time t which is defined as "the excess of the income 
(with respect to portfolio of business) over the outgo, or claims paid", see [32, 
p. 357]. This characteristic reflects the solvency of the insurer. 

(iii) The probability of ruin 

• ( x ) = P ( i n f R ( t ) < 0 l R ( 0 ) = x ) ,  x>_O, (1.2) 

which is the probability that the insurer's surplus reaches a fixed minimal level 
(taken as 0 for simplicity)" provided that the initial reserve (or capital) is x. 
The probability of ruin reflects the volatility inherent in the insurance business, 
and it "serves as a useful tool in long range planning for the use of an insurer's 
funds" (see [32, p. 357]). It is possible to say that the ruin probability measures 
the risk level of the insurer having the initial capital x. 

In practice, we are interested in the probability P(C, > x) that the accumulated 
claims exceed a high level x. In other words, we are interested in asymptotic behavior 
of the right tail of the accumulated claims distribution. Similarly, we are interested 
in small values of ruin probability ~(x) which corresponds to the case of large initial 
capital x. These characteristics represent the principal interest for the risk theory. 

Mathematical analysis of both the distribution of the accumulated claims and 
the probability of ruin is quite similar. Because of this, let us explain the problems 
solved and the results obtained in the research taking the probability of ruin as the 
illustration. 
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As we have noted, only small values of the ruin probability corresponding to large 
values of the initial reserve are of practical interest. The following dual problems are 
usually under consideration in risk theory. 

(i) To find the risk level (measured as the value of the probability of ruin fi(x)) 
provided that the initial capital x of the insurer is fixed; 

(ii) Given the risk level fit* to find the initial capital z securing the ruin probability 
below the prescribed level fi* that is, fi(x) < fi*. 

Both these problems can easily be solved if the exact expression of the ruin probability 
is known. But this is not the case for even rather simple models. Because of this, 
it is necessary to use various approximations of ruin probabilities. This necessity is 
well-known, it has been discussed widely, and a variety of approximations has been 
proposed, see [1, 2, 6, 8, 10, 12, 13, 15, 16, 20, 32, 35, 36]. 

1.2 Two asymptotic approximations of ruin probabilities 
Let us mention two famous approximations which are valid for the so-called classical 
risk model in which claims occur in accordance with the Poisson process and claim 
sizes (severities) are independent and identically distributed (i.i.d.). If the claims are 
"small" (that is, their moment generating function is finite - this is true, for example, 
for exponential, mixed exponential, gamma, and other distributions), then, typically, 
the following Cramdr-Lundberg asymptotic formula is valid 

fi(x) ~., fiCL(X) = kcL exp(--¢CLX), (1.3) 

where eCL > 0 is the Cram4r exponent called in actuarial practice the adjustment 
coe~cient, and kCL is the Cram4r-Lundberg constant. The notation fi(z) ~ ficL(x) 
means that 

• (x) ÷I as x -~ oo. 
ficL(z) 

In this case, the ruin typically results from the accumulation of relatively small claims 
and formula (1.3) shows that the probability of ruin decays asymptotically as an 
exponential function when the initial capital tends to infinity. Approximation (1.3) 
is discussed in many sources, see, e.g., [9, 10, 12, 13, 15, 16]. 

The second approximation refers to the case of so-called large claims with sever- 
ities having Pareto, Weibull, lognormal, loggamma, and other distributions. These 
distributions emerge when one models claims occurring from damages caused by hur- 
ricanes, tornados, earthquakes, floods, fires, etc., and they are called subezponential 
because they have no finite exponential moment (their moment generating function 
is infinite); see [9] and Section 2 for more precise definitions. Denote by B(u) the 
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severity distribution function (d.f.) and let bl be the mean severity value. In the pres- 
ence of large claims, the ruin probability typically results from only one extremely 
large claim that is, the mechanism of ruin differs dramatically from the case of small 
claims. In the case of large claims the probability of ruin has another asymptotic 
representation which is 

• (=) ~ = (1  - B ( , , ) )  d , , ,  ( 1 .4 )  

where g stands for the relative safety loading, see [9, 10]. One can see that the 
asymptotic approximation (1.4) is proportional to the integrated tail of the severity 
distribution and it decreases slower than any exponential function. For instance, if 
B is the Pareto distribution, this expression decays as a power function. 

As we have mentioned, the exact values of the probability of ruin can rarely be 
obtained analytically. But, for large initial reserves, we can use the known asymptotic 
approximations instead of unknown exact formulas: (1.3) in the case of small claims 
and (1.4) in the case of large claims. The idea is quite reasonable. However, imme- 
diate implementation of approximations (1.3) and, especially, (1.4) can cause serious 
practical problems which actually inspired this research and which are discussed in 
the following subsections. 

1 .3  A c c u r a c y  p r o b l e m  a s  t h e  m o t i v a t i o n  o f  t h e  r e s e a r c h  

Let us assume, for a while, that we use approximations (1.3) and (1.4) instead of 
the unknown exact formulas. Both these approximations formally mean that either 
the probability of ruin decays exponentially fast (in the case of small claims), or it is 
proportional to the integrated tail of the claim size distribution (in the case of large 
claims). But, strictly speaking, both these relations say nothing about their conver- 
gence rates. For example, if one wants to be sure that the error of the approximation 
(for definitness, of ~s~)  is within 10% of the exact value ~, then it is necessary to 
be sure that, for a prescribed initial reserve x, 

0.9 ~sE(x) <_ ~(x) < 1.1 ~sE(X). 

But the relation (1.4) (as well as (1.3)) does not provide this information. In such 
a situation, the asymptotic approximations are, to say the least, practically useless 
and, to say more, can be misleading in actuarial practice. This discussion clears up 
the necessity to examine the accuracy of the asymptotic approximations. 

During the last decade, a lot of attention has been paid to the accuracy problem of 
the CramSr-Lundberg approximation. Let us refer to [12, 13, 15], where the reader can 
find further references. Our previous research [16] (supported by CKER) was partly 
devoted to this problem and the basic conclusion was that the Cram~r-Lundberg 
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formula has nice accuracy and therefore, the asymptotic approximation (1.3) can be 
used in actuarial calculations without fear to make large errors. 

In this research we deal with large claims where the situation is not so optimistic. 
So far, the accuracy problem of formula (1.4) has not been examined thoroughly. 
Only a few works (see [15, 20, 35, 36] where a few additional references can be found) 
were devoted to bounding of ruin probabilities in the presence of large claims. In 
our previous research [16] (see also [20]) we showed that the approximation (1.4) can 
lay far away from real values of ruin probabilities. Just to give an impression, let 
us consider the case where the severity has the translated Pareto distribution of the 
form 

( B(u) = i - I + 

and the relative safety loading ~ = 0.01. Then the approximation (1.4) gives 

• sm(600) ~ 3.7.10 -6, 

whereas the real value ~I'(600) lies in the interval (8.9.10 -4, 6.6- 10-3). The relative 
error of the approximation (1.4) is more than 20000% ! Evidently, this level of 
"accuracy" is out of common sense and, in this case, the approximation (1.4) cannot 
be recommended for practical use. 

Such exciting facts inspired this research which is partly devoted to the accuracy 
problem of the approximation (1.4) and also to the related approximation of the 
accumulated claim size distribution. 

In order to state it more precisely, let us say that the approximation k~sE has a 
relative accuracy 6 = 6(x) at point x if the unknown genuine ruin probability kg(x) 
satisfies the inequalities 

(1 - ~) ~sm(x) <_ ~(x) <_ (1 + ~) ~sm(x). (1.5) 
This research is intended to solve the following two closely related problems: 

(i) For a prescribed relative accuracy level 6* (e.g., 6" = 0.1 corresponds to the 
10%-error), find the value x* of the initial capital above which all values 6(x) 
do not exceed 6" that is, 

< 6" for all x > x'.  (1.6) 

If the relation (1.6) holds, then the application of the asymptotic approximation 
(1.4) leads to a relative error which is not greater than 6" provided that the 
initial capital x is greater than or equal to x ' .  

(ii) For a prescribed level x" of the initial capital, find the value 6* of the relative 
accuracy such that (1.6) holds. This gives us the opportunity to judge whether 
the approximation (1.4) is workable for the given level x" of the initial reserve, 
or not. 
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An additional requirement of practical importance is the computability of the relevant 
quantities. 

Another problem consists of the following: "If the approximation ~sE(X) is not 
acceptable, then how can we approximate the unknown ruin probability?" We also 
deal with this problem and propose some bounds which are not asymptotically correct, 
in general, but give reasonable accuracy for desired values of the initial reserve and 
can easily be calculated by computer routines. 

The following subsections contain an outline of our approach and explain its basic 
features. 

1 .4  A s y m p t o t i c a l l y  c o r r e c t  b o u n d s  a n d  t h e i r  u s a g e  

Let us assume that  we constructed functions (two-sided bounds) k~-(x) and ~+(x) 
such that they embrace both the unknown genuine ruin probability and its known 
asymptotic approximation that is, 

• -(x)  < ~(=) < ~+(x), (1.7) 

~- (~)  < ~s~(~) < ~+(=). (1.8) 

Assume additionally that these two-sided bounds are asymptotically correct in the 
sense that 

- - ~ I  as x -~ co. ~-(=)  

It follows, in particular, that 

gl-(x) ,,~ t~+(x) ,.~ t~(x) ~ gls~(x). (1.9) 

In subsection 2.4 we shall show how to construct such bounds for the probability of 
ruin and, in subsection 2.6, how to generalize the construction to the case of accumu- 
lated claim size. Some hints to this construction will be also given in subsection 1.5. 
The construction itself requires sophisticated mathematical results and the reader 
interested in the details is referred to Section 2. 

We explain now how the bounds k~- and ~+ satisfying (1.7) to (1.9) can be used 
to answer the questions stated at the end of the preceding subsection. Define the 
following relative deviations of the bounds from the known approximation ~SE: 

A-(x)  = ~ s E ( X ) -  ~ - ( x )  (1.10) 
' ~ s ~ ( z )  ' 

A+(x  ) = kD+(x) -- @SS(X) (1.11) 
' ~ s ~ ( z )  ' 

Since we know all the quantities ~ - ,  if2 +, and ~SE, we can easily find both A-  and 
A+. Using (1.9), 

~ - ( z )  ~ 0 as z -~ oc 
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and 
A + ( z )  --+ 0 as z ~ c~. 

Furthermore, by (1.10) and (1.11), 

• -(x) = cs~(x) (1 -  A-(x)), (1.12) 
• +(x) = ~s~(x) (1+ A-(~)). (1.13) 

Therefore, by (1.7), we have the following accuracy estimate 

(1 - A-(x))  ~s~(X) < ~(x) < (1 + A+(z)) ~SE(X) 

which can easily be reduced to (1.5) by taking 

6(x) = max (A-(x), A+(x)). 

As both A-(x)  and A+(x) tend to 0 when x -+ oo, the value ~(x) defined above also 
tends to 0 as x --+ oo. This makes it possible for us to solve the problems posed at 
the end of the preceding subsection. Namely, let 6" be a prescribed relative accuracy 
of the approximation fftSE. Take 

x* = inf{x : 6(u) <_ 6" for all u > x}. (1.14) 

This value x* is the minimal level of the initial capital above which we can use the 
approximation q/sE with the given accuracy. Note that, typically, 6(x) is a monoton- 
ically decreasing function and, in such a case, we can find x* from a simpler equation: 

x* = inf{x : 6(x) <_ 6"}. (1.15) 

Similarly, if we are given the required level of the initial capital x*, then the accuracy 
of the approximation qtsE is equal to 6" = 6(x*). 

1 .5  M a t h e m a t i c s  b e h i n d  t h e  a s y m p t o t i c a l l y  c o r r e c t  b o u n d s  

In this subsection we outline how to find the quantities A- and A+ defined in (1.10) 
and (1.11). We do not give all relevant details here (the reader is referred to subsec- 
tions 2.2 to 2.6 for the details) and we restrict ourselves to the classical risk model 
and to the corresponding ruin probability which has the asymptotic representation 
(1.4) in the case where the severity d.f. B is such that the auxiliary d.f. 

F(~)  = V~ (1 - B ( z ) )  dz (1.16) 

is subexponential (see subsection 2.2 for exact definitions). Denote by 

F ° ( ~ )  = 1 - F ( ~ )  

257 



the complement to F which is also called the tail of the distribution F. Then the 
quantity A- (x )  can readily be obtained analytically (Theorem 2): 

A-(z )  = F°(x) 
+ Fo(z)' 

In order to find the upper relative deviation A+ (see (1.11)), we should use more 
sophisticated arguments. These arguments are based on the following characterization 
of a subexponential distribution: the d.f. F is subexponential if and only if some 
function ~f(x) constructed below in (2.22) tends to 0 as x ~ oo (Corollary 1 to 
Theorem 1). The function ~f  can readily be constructed if we know F or even some 
of its general properties. What is actually interesting and new is the fact that the 
relative error A+ can typically be estimated in terms of ~f:  

A+(x) < (1.17) 

where th~ constant C + can also be calculated. We write "typically" as in all con- 
sidered case (Pareto, iognormal, Weibull, and others) the formula (1.17) is valid (see 
subsection 2.5). However, we cannot guarantee that this is true in a general case. 
But we state also a general result in Theorems 3 (for ruin probability) and 6 (for the 
general scheme and, in particular, for the accumulated claim size distribution). 

The estimate (1.17) and its generalizations is a new mathematical result obtained 
in the course of this research project. 

The function fiR can readily be obtained from the severity distribution (the distri- 
bution of claim sizes). Therefore, in order to estimate A+, it is sufficient to find C +. 
Analytically, we only prove that such a constant exists. The proof of the existence of 
C + actually shows us how to build a routine to find C + numerically. 

To conclude this subsection, let us emphasize that we elaborated an approach 
allowing us to obtain both analytically and numerically two-sided bounds for the ruin 
probability, ~ -  and k ~+, satisfying the properties (1.7) to (1.9) or, equivalently, to 
estimate the relative errors of the bounds, A-  and A+, defined in (1.10) and (1.11). 
These quantities allow us to answer the questions (i) and (ii) posed at the end of 
subsection 1.3 about the accuracy of the approximation of glSE. 

1 .6  T r u n c a t i o n  m e t h o d  

As we have already mentioned, the approximation g2s~ is not accurate, in general. 
Therefore, it is necessary to find alternative approximations for the probability of 
ruin. One of such approximations is proposed in this research. It can be readily 
calculated in the range of the initial capital that is of interest in actuarial practice. 
This approximation is not asymptotically correct, in general (at least, we cannot 
prove this property), but leads to appropriate numerical routines for bounding the 
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ruin probability in the case of large claims. The idea of the approach is simple. We 
just note that the value of the probability of ruin, for a prescribed initial reserve 
x, does not depend on the values taken by the distribution F(u) defined in (1.16) 
for u > x and truncate the distribution F at level x. The truncated d.f. satisfies 
the Cram4r condition and staightforward arguments (see subsection 2.7) imply the 
desired estimate, which is valid for all values u <_ x: 

(1 - q)rc(x) (1 - q)FC(x) 
< ,Z,(u) < + e - ' ( :% (1.18) 

q + (1  - q)Fo(x )  q + (1 - q )Fo(x)  

where e(x) is the adjustment coefficient for the truncated d . f . F .  

1 . 7  N u m e r i c a l  r e s u l t s  a n d  b a s i c  c o n c l u s i o n s  

Section 3 contains numerical results illustrating qualitative and quantitative proper- 
ties of the estimates listed above. These results can be summarised by the following 
main conclusions. 

(i) 

(ii) 

(iii) 

(iv) 

The lower bound ~- defined in (1.12) is pretty close to the approximation g2SE. 
But it can be far from the actual ruin probability ~. 

In some cases, the upper bound ~+ defined in (1.13) is close to the actual value 
but it is necessary to do an additional investigation when this is the case. 

Conclusions (i) and (ii) mean that the approximation gAs~ is typically inaccurate 
and cannot be recommended for practical usage, in general. 

The truncation approach gives satisfactory approximations for moderate values 
of the initial reserve x (typical for practice) but its implementation for large x 
(having a theoretical rather than practical interest) can be inaccurate. 

(v) The truncation method can indicate when the approximation @sE or bounds 
@- and ~+ can be used. 

These conclusions are not too encouraging but they are realistic. The reason behind 
them can be explained as follows. The subexponential property of probability distri- 
butions is defined as a tail property (see subsection 2.2). This means that whether 
a d.f. F belongs to the class of subexponential distributions depends on the limiting 
behavior of the tail of this d.f. In particular, the behavior of the d.f. over any finite 
interval says nothing about its subexponentiality. But, in reality, we deal with finite 
values of random variables. In such a situation, the subexponentiality is a sort of 
abstraction which can or cannot fit the reality. And even if the subexponentiality 
hypothesis is reasonable, the approximation q2s~ can be poor for the values of the 
initial reserve which are of interest to practice. 
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1 . 8  P r e s e n t a t i o n  

The results of the research were widely discussed at various scientific meetings. Here 
is the list of the most important presentations: 

1. International Conference "Actuarial Science: Theory, Education, Implementa- 
tion", October 1997, Moscow, Russia; 

2. Seminar on Probability Theory, Moscow State University, December 1997, Mos- 
cow, Russia; 

3. Third St.-Petersburg Workshop on Simulation, June 28 - July 3, 1998, St.- 
Petersburg, Russia; 

4. International Seminar on Stability Problems for Stochastic Models, September 
1998, Vologda, Russia; 

5. International Conference on Probability Theory and Mathematical Statistics, 
August 1998, Vilnius, Lithuania; 

6. Scientific seminar of the Dept. of Computer Science, University of Trier, May 
1998, Trier, Germany; 

7. Scientific Seminar of Mathematical Dept., Institute fiir Angewandte Mathe- 
matik und Statistik, University of Wiirzburg, May 1998, Wiirzburg, Germany; 

8. The Dobrushin Mathematical Seminar, Institute for Information Transmission 
Problems, Russian Academy of Sciences, April 1998, Moscow, Russia; 

9. Scientific Seminar of the Dept. of Mathematical Sciences, University of Aarhus, 
September 1998, Aarhus, Denmark. 

The list of publications contain 4 papers [27, 26, 28, 29], 3 proceedings [22, 24, 25], 
and 3 preprints [17, 21, 23]. The material of preprints [17] and [21] was included into 
paper [27], and preprint [23] was updated for paper [28]. Papers [26, 29] are written 
in Russian. We provide the translation of crucial pieces of [29] and attach it to this 
report together with a copy of the manuscript of the paper. Paper [26] is a sort of 
survey and contains the results presented in [27, 28]; because of this, its translation 
is not necessary. 

I m p o r t a n t  r emark .  Our preliminary results were presented to CKER in the form 
of two technical reports [18, 19]. As we continued working on the project until the 
last moment and as we tried to simplify our preceding results, the notation used in 
this report is slightly different than the one used in [18, 19]. This should not create 
any inconvenience since the final report is self-contained. 
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2 Mathematical  background 

2 .1  M a t h e m a t i c a l  m o d e l  

We start with some assumptions concerning the dynamics of the risk portfolio and 
the insurer's surplus, and introduce useful notations. 

State these assumptions in the form of a risk model described as follows. Let R(t) 
be the surplus of an insurer at time t and assume that its initial capital is x that is, 
R(0) = x. Let c > 0 be a constant gross premium rate, {gi}i>l be successive claim 
sizes, {Ti}i>l be successive occurrence times, {0i}i>1 be successive inter-occurrence 
times: 0x = 7'1, 0k = irk -- Tk-h k >_ 1, and Nt be the number of claims until time t. 
The dynamics of the insurer's surplus R(t) is then described by the equation 

R(t)  = x + c t -  zk .  (2.1) 
k<N~ 

Since {T~} and {Zi} are usually random, {R(t)}t>o is a random process. Such a 
model is called the Sparre Andersen risk model (see Grandell [12] and Kalashnikov 
[15]). Let ak = EO k and bk = EZ k, k > l, be the corresponding power moments of 
inter-occurrence times and claim sizes respectively. We assume also that the relative 

safety loading ca1 
~= - - - 1  

bl 
is positive, which guarantees the positive drift of the surplus which is a necessary 
condition for any successful insurance business. 

One of the characteristics of our interest is the ruin probability ~(x)  defined 
in (1.2). The following representation of the probability of ruin as the right tail 
distribution is well-known (see Beekman [1] and Feller [11]) and it is crucial: 

~(x) = P (k~< Xk > z )  , x >_ O, (2.2) 

where {Xi} is a sequence of i.i.d.r.v.'s having a common d.f. F(u) = P(Xi  _< u) and 
where the r.v. u is independent of {Xi} and has the geometric distribution 

P ( v - - k ) = q ( 1 - q ) * ,  k_>0. (2.3) 

If N~ is the Poisson process with the papameter A, then both probability q and the 
d.f. F can easily be expressed in terms of initial data: 

(2.4) 
q - I+~' 

/: 1 (I - B(z)) dz (2.5) F(u) = P(X~_<u)= 
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(see [1, 12, 15]). Note that formula (2.5) is the same as formula (1.16). This model 
(called classical) is of special importance since the Poisson process Nt can often be 
justified in the case where occurrence times are formed as a superposition of compar- 
atively rare individual claims. 

If one considers a general S. Andersen model, then the main conclusion is the same, 
except that Nt does not have a Poisson distribution anymore, and the expressions of 
q and F differ from those given in (2.4) and (2.5) (this difference has already been 
discussed in details in our report [16]) and, actually, cannot be written explicitly. 

If there exists ¢e > 0 such that 

E exp(ec(Zi - 8,)) = 1, (2.6) 

then the constant 6c is called the adjustment coefficient or the Cramdr-Lundberg 
exponent. The relation (2.6) is called the Cramdr condition. It necessarily requires 
that a generic claim size Z has an exponential moment, at least. Such claims are 
called small. 

Under the Cram4r condition, the probability of ruin has the nice Cram4r-Lundberg 
asyptotic approximation figCL (see (1.3)), where the Cram4r-Lundberg keL is typically 
close to 1. It turns out (see [12, 15]) that real values of ~(x) are pretty close to their 
asymptotic values kcL exp(-EcX) even for moderate initial values of initial capital x. 
This is why the asymptotic approximation (1.3) can be used in actuarial calculations 
without fear of making large errors. 

In this research, we confine ourselves to the case of d.f.'s F called subexponential 
which are of special interest in insurance: severities arising from catastrophes such as 
tornados, earthquakes, floods, etc. can typically be described by subexponential dis- 
tributions (SE-distributions), see [9]. Leaving precise definitions of SE-distributions 
for subsection 2.2, we note here that, for SF_,-distributions, one can derive an asymp- 
totic formula which replaces, in a way, the Cram4r-Lundberg approximation (see 
[9, lO, 15]): 

fig(x) ..~ 1 -____qq FC(x). (2.7) 
q 

This formula is a generalization of (1.4) and it is still simple and can easily be incor- 
porated into numerical routines. But, as we have already mentioned, the accuracy 
of the approximation (2.7) can be poor for the values of initial capital which are of 
actuarial interest (see [20]). 

Now, let us consider the accumulated claim distribution. Let C~ be the total 
i.i.d, claims accumulated during the accounting period t and defined in (1.1). The 
number N~ of occurrences is random, in general. For example, it has the Poisson 
distribution for the classical risk model. If the severity distribution is SE (the case of 
our interest), then the following asymptotic formula is valid 

P(Ct > x) ,.. Egt  Be(z), (2.8) 
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where B is the common d.f. of claim sizes (see [9]). Formula (2.8) is valid if there 
exists p > 1 such that Ep N' < oo, which is a non-restrictive condition. Accuracy 
estimates of the relation (2.8) are also more than desirable. 

We see that both the probability of ruin and the accumulated claims distribution 
can be represented in the same form 

T(x) = P ( ~  Xk > x)  , (2.9) 
\ k < v  

where {Xk} is a sequence of i.i.d.r.v.'s having a common d . f .F .  We assume that F 
is an SE-distribution throughout the research, and v is an integer r.v. independent of 
(Xk} and having the distribution 

Pk -- P (v  = k). (2.10) 

Actually, we regard T(x) as the basic mathematical model to be studied. 
When investigating the ruin probability, we assume that the distribution (p~} is 

geometric of the form (2.3). In general, we only assume that an arbitrarily distributed 
v has a finite mean 

"= Z < (2.11) 
k=O 

and satisfies the condition 
oo 

Z:p  < oo (2.12) 
k=O 

for some p > 1. The condition (2.12) (which, in particular, implies (2.11)) requires 
that probabilities Pk decrease exponentially fast, at least, which is the case for many 
practically used distributions, for example, the Poisson one. If the r.v. v is the number 
of clams occurred within a finite accounting period, then the condition (2.12) is always 
true. In this case, the asymptotic relation 

T(x) ~ #F¢(x) -- TsE(x) (2.13) 

holds (see [9]) which is a generalization of both (2.7) and (2.8). 

2 . 2  S u b e x p o n e n t i a l  d i s t r i b u t i o n s  

Let us start with the formal definition: F is called an SE-distribution, if 

lim F~(u) = k for all k _> 2, 
. ~  F~(u) 

(2.14) 

2 ~  



where Fk stands for the k-fold convolution of F, F c = 1 - F, and F~ = 1 - Fk. This 
definition was proposed by Chistyakov [5] (see also [9]). It was proved in [5] that 
(2.14) holds for all k if and only if it holds for only k = 2. It was also proved in [5] 
that any exponential moment of the form 

fo ° e "~ dF(u) ,  > O, a 

is infinite as soon as F E S E .  This explains the name of the class. 
The importance of the above definition for actuarial science can be explained by 

the fact that, in this case, 

P ( X l  + . . .  > u) ~ P(ma (X,, . . .  > u)  (2.15)  

which actually means that the sum of SE i.i.d.r.v.'s has asymptotically the same 
distribution as their maximum, or that the overwhelming contribution into the sum 
X1 + " "  + Xa is made by only one summand. Referring to the ruin probability, 
this implies that the ruin event occurs mostly due to one large claim rather than the 
accumulation of small claims. And this phenomena can even be demonstrated by 
simulation experiments (see [33]). 

The following tail-equivalence property of SE-distributions explains many phenom- 
ena occurring in the presence of SE-distributions and, in particular, some features of 
the two-sided bounds proposed in this research: I f  F E S E  and the d.f. G is such 
that GO(u) ~,, aFt (u )  for a positive constant a, then G E SE .  This explains why all 
subexponential effects can only occur for large x and are often not noticeable during 
finite intervals. It also explains why the Cramdr-Lundberg theory is successfully ap- 
plied even if it formally cannot. This also highlights why asymptotic formulas derived 
for the case of large claims can lead to large errors. 

We are interested in exactly these situations which are very unpleasant in actuarial 
practice. 

Sometimes, it is not easy to verify whether a d.f. F is subexponential or not 
using the formal definition. Because of this, we present necessary and sufficient 
conditions (characterizations) for F to belong to the class of SF_~distributions. These 
characterizations were proved in our works [23, 28] and here we only formulate the 
corresponding conditions placing the emphasis on their potential applications and 
constructive consequences. These conditions are used for construction of the desired 
two-sided bounds ~ -  and qJ+ (see (1.12) and (1.13). It is necessary to mention that 
the results were mostly stimulated by the profound work by E.S. Murphree [31]. 

The following quantities, defined for all 0 < R <_ x/2,  play a crucial role in the 
sequel: 

I (x)  = (FC(x/2))2 (2.16) 
Fo(x )  ' 
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1 f~ /2  
- FC(x - y)dR(y),  (2.17) J(x,  R) Fc(x) JR 

g ( x , R )  - F ~ ( x -  R) 
Fc(x ) 1, (2.18) 

D(x,R)  = I(x) + g(x,R).  (2.19) 

Note that these quantities can readily be calculated (or, estimated) if we know the 
d . f .F .  Investigating their behavior at x --+ co, we can judge whether F E S E  or not, 
and estimate the rate of convergence of the asymptotic approximations to the real 
tail distribution. 

Let us intr~,duce the following class of functions 

n = { n(x): = and 0 _< n(x) < (2.20) 

T h e o r e m  1. F • S E  if and only if there exists a function R(x) • 7"¢ such that 

D(x, R(x)) -+ O, K(x,  R(x)) --+ 0 (2.21) 

a s  x --~ (:xs. 

Theorem 1 is the principal result of this section. But it is unclear how to apply 
it and, in particular, how to find the desired function R(x). The following corollary 
answers this question. 

Before stating the corollary, note that i f r  is fixed, then D(x, r) ---+ F¢(r) as x --+ oo. 
Evidently, D(x, r) is a decreasing function and K(x, r) is an .increasing function of 
r, given x. Furthermore, the d.f. F(x) is right-continuous (by clefinition). Therefore, 
D(x, r) is right-continuous and K(x, r) is left-continuous with respect to r. 

Coro l l a ry  1. Let 
fiR(X) = inf max(D(x,r) ,  K(x ,r))  (2.22) 

r<_x/2 

and 
R*(x) = sup ( r  : r < 2' D(x,r)  >_ K ( x , r ) } .  (2.23) 

Then 
(i) F E S E  if and only if fiR(X) ---+ O; 
5i) any F e SE  or fiR(X) ~ 0 implies R*(x) ---+ oo. 

The idea behind this corollary is clear. Let us imagine, for a moment, that we can 
solve the equation 

D(x, r) -- g ( x ,  r). (2.24) 

Then its solution R*(x) belongs to the class TO, 

fiR(X) = D(x, R*(x)) = K(x, R*(x)), 
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and, therefore, 
 F(x) 0 

implying that F E SE. As we will see, the quantity ~f(X) actually estimates the 
proximity between the approximation (2.13) and the unknown tail distribution T(x). 
This "naive" approach works in all examples below. But it is necessary to call the 
reader's attention to the following features which do not allow us to use the naive idea 
(without any corrections) in the general case. First, the equation (2.24) may have 
no solution, in general, as both functions D and K are not necessarily continuous. 
Therefore, we should replace equation (2.24) by something more appropriate and this 
is done in Corollary 1 (see (2.23)). Secondly, the quantity R*(x) is usually difficult 
to find from (2.23) since explicit analytical expressions of the functions D(x, r) and 
K(x, r) are not available, as a rule. We have to replace these explicit expressions by 
other functions, say, by majorants or asymptotic approximations of D and K. For 
instance, in some examples below we take R*(x) satisfying the asymptotic relation 
D(x, R°(x)) ..~ K(x,  R*(x, R(x)). In this case, we prove the following auxiliary result 
(which is a combination of Lemmas 3, 4, and 5 from [28]). 

L e m m a  1. If F ~ SE, then there exists a concave function R(x) ~ T~ such that, for 
sufficiently large x > xo, 

D(x,R(x)) < 2F~(R(x)), g(x ,R(x))  <_ 2FC(R(x)), (2.25) 

implying that 
~f(x) < 2FC(R(x)), x > xD. (2.26) 

Usually we can write the asymptotic approximations or majorants of D(x, R(x)) 
and K(x, R(z)) (see examples below) and we definitely know FC(R(x)). Therefore, 
relations (2.25) give us the possibility to define R(x). Evidently, this definition is 
not unique, but the uniqueness is not necessary. This construction, applied to the 
examples below, gives the same result as the naive approach which ensures that it is 
close to optimal, at least. Furthermore, relations (2.25) give us the real opportunity 
to find R(x), using, for example, majorants or asymptotic approximations of D and 
K. 

Let us illustrate this by examples. We only display the main steps of the calcula- 
tions. The details can be found in our paper [28, Section 4]. 

2 . 3  E x a m p l e s  

Let us consider three standard examples of SE-distributions which are widely used in 
actuarial practice and show how we can characterize them by the proposed criteria. 

266 



Example 1. Integrated Pareto tail distribution 
Let us consider the classical risk model when the claim sizes have a Pareto distribution: 

0, if u < ~, 
B(u) 

l 1 -  (a/u) ~, ifu>_t¢, 

where a > 0 and a > 1. Denote by 

t~(2 

its mean value. Let 1// 
F(u) = ~ (1 - B(z)) dz (2.27) 

be the corresponding integrated Pareto tail distribution. Then the probability of ruin 
can be expressed in the form (2.2) where Xi have the common integrated Pareto tail 
distribution F which is subexponetial (this fact is well-known, see [9], but it also 
follows from our results). 

Let us estimate first the quantities I ,  J ,  and K involved in the characterization 
criteria. In this case, 

- -  x > 2 t ~  
ot 

and 

= -  - J ' (x ,R) ,  ~ < R <_ x/2. 
Ol 

Let 
D*(x, R) = I(x) + J ' (x ,  R). 

If ~ <_ R < x/2, 

_ (-~--~-~ -- K*(x,R).  

Let us show how the naive idea works. Assume that R(x) = o(x). Then 

1 (  2t¢ ~ '~-' 
D*(z,R(x))  ..~ -~ \ R(z) ] 

and 
g ' ( x ,  R(x)) ~ (~ - t )R(x)  

x 

Equating the right-hand sides in the last two relations, we arrive at 

R'(x)  = cRx '/~, K'(x,  n'Cx)) ~ O ' ( ~ ,  n ' ( z ) )  ~ ~ x(a-t)/a ' 
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where 

cR = tg -7)/ , = 1 ) ) (o - ' ) /o  

Now, we know the limiting shape of R*(x) and, in accordance with this and omitting 
an unimportant constant cn, we choose 

R ( z )  = z i i ° .  

Using explicit formulas for D*, we then find that 

max(D*(x,R(x)) ,  K*(x, R(x)) <_ DF(x), x > xg, 

where 
Cg 

DF(x) = x(._~)/~-, 

c9 = 2 " m a x ( ~ ; ~  "1 ) , o ~ - 1  , 

xg = max(2 ~/~-l, n'~). 

Evidently, DR(X) -4 0 as x -4 oo and this gives an additional evidence that the 
integrated Pareto distribution belongs to the class of SE-distributions. For us, the 
most interesting thing is the exact value of DR(x) which will be later incorporated 
into the convergence rate estimates. Note that R is a concave function and DR(X) is 
asymptotically proportional to FC(R(x)). 

E x a m p l e  2. We ibu l l  d i s t r i b u t i o n  
Now, let us consider a Weibull distribution having the form 

F(x) = 1 - exp ( -Axe) ,  

where A > 0, 0 < D < 1, and x > 0. The condition 0 < D < 1 implies that it is an 
SE-distribution. 

Let us estimate the quantities I, J, and K in terms of which the characterization 
criteria are stated. Evidently, 

I(x) = exp ( -Ax"  (2 t-o - 1)).  

If R(x) = o(x), then one can prove that 

J(x, R(x.)) < J*(x, R(x)) ,~ exp (-ARZ(x)) - 1 
- All~x 

and 

K ( x , R )  < exp ~ - 1 _= K*(x,R).  
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Equating D*(x, R) = I(x) + J*(x, R) and K*(x, R), we arrive at 

) 1/~ 
R(x) = : - ~ - ~(x)  In (~,I~x) 

where 

f~ln (Al/~x) ' 

from where we have 
D(x, R(x)) < 2fC(R(x)) 

and 
K(x, R(x)) < F~(R(x)) 

for sufficiently large x and, therefore, 

2 In :/~ (A1/~x) 
l~f(x) = 2F~CR(x)) = (A1/#x)l_~ 

This means that, in this case, Lemma 1 gives the precise estimate of ~F(X). 

Example  3. Lognormal distribution 
Let us consider a lognormal distribution of the form 

F(x) = ~(In x), 

where ¢ stands for a standard normal distribution. We restrict ourself to the standard 
case in order to avoid having to introduce additional notations. The general case is 
treated in [28]. Denote, for x >_ 1, 

In2 
a(x) = 1- ln---~' 

ln2x 
b(x) = 

l + l n ~ x "  

Obviously, 
~(x)-~:, b(~)-~: (2.2s) 

a,s X ---~ (:X:). 

In this case, we also start with estimating the quantities I, J, and K. One can 
get that 

I(2) <_ 
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and 

R) < JR 2 

lnx ( I  - R )  l n x ) - l = -  g(x,  R) < ln(x - R) exp ( -  In g*(x, R). 

Equating D*(x, R) = I*(x) + J'(x, R) and K*(x,R), we find that R(x) has the form 

yielding 

In R(x) = ~ (1 

Note that, in this case, 

1 31nlnx 1 ) 
41nx 2-~--~nx(1 - ln2v~) , 

Z (x) = R(x)In  
x 

K(x, R(x)) ,., K'(x, R(x)) .,. D°(x, R(x)) ~ J'(x, R(x)) ,.~ F~(R(x)) ~ ~F(x) 

which also shows that the estimate from Lemma 1 is precise. 

2 .4  B o u n d s  f o r  g e o m e t r i c  s u m s  

The material of this section is based on the results of our works [27, 23, 28]. Here, we 
consider the case where T is the tail distribution of a sum of i.i.d.r.v.'s X1, .. • , X~, 
where the number of summands v is also a r.v. having a geometric distribution with 
the parameter q: 

p ~ = P ( v = k ) = q ( 1 - q ) k ,  k > 0 ,  

see (2.9). Recall that this form of T arises when studying ruin probabilities for 
the classical and S.ndersen risk models. We build lower and upper bounds, T-(z)  
and T+(x), such that they embrace both the unknown function T and its known 
asymptotic approximation TsE (see (2.13)) that is, 

T-(x) < T(x) < T+(x), (2.29) 

T-(z) < TsE(x) <_ T+(x), (2.30) 

and have proper asymptotic behavior: 

T-(x) ,,~ T+(x) ,., TsE(x). (2.31) 

Let us characterize these bounds by the following non-negative quantities 

Tss - T-(x) (2.32) 
A-(x) = Tss(x) 
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and 
A+(x ) = T+(x) - Ts~ 

TSE(X) (2.33) 

representing the relative accuracy of the asymptotic approximation Ts~(x) that can 
be guaranteed. Because of the asymptotic equivalence property (2.31), both A-(x)  
and A+(x) tend to 0 as x --+ cx~. When dealing with the lower bound, we do not use 
the assumption that F E SE .  Thus, this bound is universal and can be used for any 
d.f. F (not only subexponential). The following theorem discloses the lower bound 
and its accuracy. 

T h e o r e m  2. For any d.f. F and any x > O, 

T(x)  > T - ( x )  = ( 1 -  q)f~(x) q + (1 - q)fo(x)" (2.34) 

and 
A - ( x )  = TsE(x) - T - ( x )  = (1 - q)FC(x) 

Ts~(x) q 4- (1 - q)FC(x)" (2.35) 

Note that T-(0) = T(0) = 1 - q  and, evidently, T - ( x )  .~ Ts~(x). I f F  E SE,  then 
T - ( x )  .~ T(x)  and therefore T-(x)  is close to T(x) for also large x. If x is moderate, 
then the accuracy of T - ( x )  depends on the shape of F. Note also that  an analog of 
the bound (2.34) was found in [6] by De Vylder and Goovaerts for the classical risk 
model. 

The bound (2.34) can be calculated readily and the value (2.35) of the relative 
error incidentally coincides with the value (2.34) of the bound. Therefore, the lower 
bound is pretty close to (2.13) and this explains why TsE(x) is often too "optimistic" 
(see [15, 201). 

In order to derive an upper bound, we should use more sophisticated arguments. 
The following result is closely related to Corollary 1 and Lemma 1. 

L e m m a  2. I f  F E SE ,  then there exists a function R(x) E T~ satisfying (2.21), a 
positive monotonically decreasing function g and a Constant xg > 0 such that 

9(x) -+ 0 as x --~ c~, (2.36) 

9(x) > max ( D ( z , R ( x ) ) , g ( x , R ( x ) ) ) ,  x >_ x,, (2.37) 
- R ( x ) )  

-~ 1 as x --~ oo. (2.38) g(x) 

Actually, the value/3p(x) defined in (2.22) satisfies the properties (2.36) and (2.37) 
(with R(x) = R*(x) defined by (2.23)) but it is unclear whether it satisfies (2.38) 
which is important for the sequel. But if we take 9(x) = 2F¢(R(x)) as in Lemma 1, 
then all conditions (2.36) to (2.38) are satisfied. Let us mention that the function g(x) 
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thus defined depends on only the d.f. F and does not depend on q or, more generally, 
on the distribution {p~} of the number of summands (when this distribution is not 
geometric). This fact will be exploited in subsection 2.6. 

It turns out that  any function g(x) satisfying (2.36) to (2.38) gives an upper 
estimate of the relative accuracy 

A(x)  < A+(x) = C+g(x) (2.39) 

as x > x*, where C + and x* are constants to be defined. We shall return to their 
definition when stating the result accurately. For now, it is sufficient to understand 
that,  knowing g(x), we have an upper bound of form (2.39) of the desired relative 
accuracy and the constants x ° and C + which determine the bound. Therefore, the 
crucial step is finding the appropriate function g(x). But we have already discussed 
this problem in subsection 2.2. Particularly, we showed how to find appropriate 
bounds which are proportional to FC(R(x)) and we do know that the function g(x) = 
2FC(R(x)) fits our purpose. In all examples considered above we take g(x) = t~F(X). 
Tha t  is why we devoted so much effort to the characterization problem. 

Now, let us return to the bound (2.39) and state several assertions highlighting it. 
Denote 

f l (x )  ---- (1 - q)g(x - R(x)) (g (x ,  R(x)) + 1), (2.40) 
g(x) 

2(1 - q)g(n(x)) 
]2(x) = g(x) D(x, R(x)), (2.41) 

1 
fa(x) = g(x) (2(1 - q)D(x ,R(x))  + K ( x , R ( x ) ) ) .  (2.42) 

L e m m a  3. I f  F E S E  and functions R and g satisfy Lemma 2, then, for any 1 - q < 
~+ < 1, there exist constants x* k xg and ~o < 3 - q such that 

f 1 (x )+ f2 (x )  <_ a +, (2.43) 

f3(X) _< ~, (2.44) 

for any x >_ x*. 

One can see that  the quantity ~+ affecting the accuracy can be taken rather freely 
within the interval (1 - q ,  1). This gives us an additional degree of freedom to improve 
the bound. As our experience shows, the optimal choice of ~+ is virtually impossible 
to obtain analytically. But we can actually find it numerically with the help of a 
computer. In all numerical results given below we did so. Actually, Lemma 3 defines 
x* depending on (~+: the larger 6+ is, the smaller x* is. This gives the left abscissa of 
applicability of the upper bound. 
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Now, in order to define C +, let us introduce the following quantities 

{ T ( x ) - T s E ( x ) }  (2.45) A'(x)  = max O, , ~ - ~  , 

c ' ( x )  = A.(x)  (2.46) 
gCx) ' 

C*[a,b I = maxC*(x) .  (2.47) 
a<z,Tb 

The next theorem contains the desired upper bound of A(x). 

T h e o r e m  3. I f  F E SE,  functions R, g satisfy the conditions of Lemma 2, and 
constant x* is taken from Lemma 3. Then (2.39) holds with 

C + = max ~ ~o + 5+C*[R(x*),x °] . (2.48) 

Let us call attention to the following important and somewhat misleading fea- 
ture of the bound (2.39). Being defined by (2.48), the constant C + depends on the 
unknown function T(x) (see (2.45) through (2.47)) which should be estimated. Fortu- 
nately, this is not a closed circle: C + depends on C*[R(x*), x °] which, in turn, depends 
on T(x),  x e [R(x*),x*], whereas (2.39) represents a bound ofT(x)  for x > x*. Thus, 
the final estimate (2.39) of A(x) over the infinite interval x • Ix*, co) depends on the 
values taken by A(x) within the finite interval x • [R(x*), x*]. Such a situation is 
typical for various applied problems. Let us refer to the continuity analysis of gen- 
eral Markov chains or queueing models where the infinite horizon continuity estimate 
incorporates some finite horizon continuity bound (see [14]). This has the following 
consequence: in order to use bound (2.39) we should be able to estimate T(x) for 
x <_ x* (or, more precisely, for R(x*) < x < x*). Crude analytical bounds for T(x),  
x < x*, can be stated easily and they can be found in our paper [27]. For example, 

T(x) <_ (1 - q)(qFC(x) + (1 - q)). 

But numerical calculations made it evident that a crude estimate of T(x),  x < x*, 
yield a crude estimate of C + (see corresponding examples in Section 3). Therefore, 
the problem is how to obtain tight bounds of T(x) over the finite interval. During 
this research, we proposed one of such methods which is discussed in Section 2.7. 
Now, we list other possible alternatives to do this. First, let us mention the recursive 
algorithm refined by Dufresne and Gerber in [7] which gives lower and upper bounds 
of T(z)  for any finite x (at least, theoretically). In practice, this algorithm is fast and 
accurate for moderate values of x and comparatively large values of q (q >_ 0.1). For 
small q or large x, this algorithm becomes time-consuming and leads to large errors 
(see [15, 16, 20]). Second, we can employ the bounds proposed in [15, 20] which are 
not asymptotically correct but work reasonably well over finite intervals. 
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To conclude this subsection, let us list the basic steps to be done to find the upper 
bound A+. 

(1) Given the d.f. F,  calculate quantities D and K defined in (2.19) and (2.18). 

(2) Using Lemma 1, find the function R(x). 

(3) Define g(x) satisfying the conditions of Lemma 2. 

(4) Playing with ~+ and ~o, find x* as small as possible (see Lemma 3). 

(5) Estimate C*[R(x*), z*] by any available method (as accurate as possible). 

(6) Define C + by formula (2.48). 

(7) The desired upper bound A+ has the form (2.39). 

2 . 5  E x a m p l e s  

Let us return to the examples listed in subsection 2.3. In all cases, the functions 
g(x) = fiR(X) and R(x) which were then obtained satisfy the conditions of Lemma 
2. The constant x ° is defined by Lemma 3, where $+ is chosen numerically to min- 
imize x °. The constant C + is defined by Theorem 3 and we have already discussed 
some problems associated with its calculation in subsection 2.4. The results of all 
calculations are presented below in Section 3. 

2 . 6  B o u n d s  f o r  t h e  g e n e r a l  c a s e  

The material of this section originated from the work [29] where the corresponding 
proofs and auxiliary constructions can be found. We do not require anymore that 
the distribution {p~} be geometrical but only require that it satisfies the condition 
(2.12). 

We start with lower bounds which are a little more complicated here than in the 
geometric case but still simple and valid for any d.f. F, not only for SE-distributions. 

First, let us assume that the second moment is finite 

o o  

~ 2  = E v  2 = ~., k2pk < co. (2.49) 
k=0 

T h e o r e m  4. I /#2 < co, then 

<_ Fo(=). (2.50) 
# 
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The requirement p2 < ¢x~ imposes almost no restriction in practical cases. Never- 
theless, from a mathematical  point of view, it would be desirable to find the weakest 
possible conditions. It turns out that a finite mean, p < ~ ,  is sufficient for the result. 
In order to prove this, we need the following well-known criterion (see [15, 30]). 

P r o p o s i t i o n  1. The mean is finite, # < cx3, if and only if there exists a non-negative 
increasing convex function G(x) such that 

c ( t ) / t  t oo, c ( t ) / t  2 ~ o, t --+ oo. (2.51) 

and EG(v)  < c~. 

The shape of the function G used in Proposition 1 depends, in general, on the 
distribution {Pk}. If, for example, Ev a < c~ for some a > 1, then G can be taken in 
the form G(x) = x% 

T h e o r e m  5. Let the distribution {Pk} be such that/zG = EG(v)  < oo for some 
function G satisfying (g.51). Then 

2"a (2.~2) 
A - ( x )  < p F c ( x ) G ( l l F ~ ( x ) )  ~ O, x ~ oo. 

In particular, if #a = Eva < ~ for some 1 < a < 2, then 

A-(x)  ___ 2"a (FO(~))~_~. 
# 

Theorems 4 and 5 give explicit expressions for asymptotically correct lower bo- 
unds. Of course, the statement of Theorem 4 is more attractive and it actually covers 
most cases arising in practice. 

The upper bound, like in the geometric case, requires more sophisticated argu- 
ments. Luckily, most of the arguments have already been clarified in subsections 2.2 
and 2.4 and here we pay attention to the existing difference between the two cases. 

Our basic result consists of the following. We prove that, under condition (2.12), 
there exist constants x* and C + such that 

ACx) < A+(~) < c+gCx), • > ~', 

where g(x) is defined in Lemma 2. As we have already mentioned, g(z) does not 
depend on the distribution {Pk}- Note that  the above inequality is just the same as 
(2.39) and the hidden difference lays in definitions of both C + and x*. Let us disclose 
this. 
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Similarly to (2.45) through (2.47), let us define functions 

a~(=)  = \p-~(~) k -< F q = )  k < ~  
+ + 

' x k (= )  G(*)  - 
g(=) 

G[a ,b ]  = s u p G ( = ) .  
a<x<b 

1 
k>_l,  Fo(=)' 

It is important that all functions CA[0, x*] have a common bound: 

1 
Ck[R(x*), x*] < C(=*) < g(x*)FC(x*) " (2.53) 

The inequality (2.53) can be crude and, in calculations, it is better to seek more 
accurate bounds but the existence of the uniyorm bound is crucial for the sequel. Let 
=g be defined by (2.37) and let 

f~(=) = 9 ( = -  R(=)) g(=) (g(z ,  R(z)) + 1), 

.6(=) - 9(n(=)) 
g(x) D(z, R(x)). 

Evidently, 

Let x" _> x 9. Then 

f l ( x ) - +  1, = -+ co, 

h ( = )  -+ O, = -+ oo. 

S u p ( f l ( X )  -{- f2 (X) )  ---- p(x*), 
Z__~X* 

D(x, R(x)) + K(x, R(x)) 
sup = 6(x*) < 2, • >~. g(=) 

where functions both p(x*) and 5(x') are monotonically decreasing and 

p(=*) -+ 1, ** --+ ~ .  

L e m m a  4. If  =* > xg, then, for any k > 1, 

sup c~[=', y] < p(=.)(y,-l(=.) _ 1) ( ~ ( = ' )  ) 
~,_>.- - ~ --i \ p - ~ -  i + U(z') 

where C(x') satisfies the inequality 

1 "C(=') < 
g(x*)F¢(x*) " 

(2.54) 

~(=')(a - 1) 
p(~')  - 1 ' 
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This lemma yields the following result. 

T h e o r e m  6. Assume that the distribution {Pk } satisfies (2.12) and functions 9 and 
R are chosen as in Lemma 2. Then the upper bound (2.39) holds with 

C+ 1 ~ ( ( 6 ( x * )  -C(x*) ) 5(x*)(k - 1 )  ~ 
= - Pk P ( X * ) ( P k - ' ( x  ") - I) \ ( p ( z * )  - 1) 2 + p~;-) ---1 p-"~'---'l" ] "  # = 

The constant C + thus defined is finite if x* > max(xg, xp), where 

x o=min t :  pkpk(t)<c~ , 
k-=I 

the convergence of this series is guaranteed by the conditions (2.12) and (2.54). 

We limit ourselves to these theoretical results. Their applications can be stated 
quite similarly to the geometric case; see the last paragraph of subsection 2.4. 

2 . 7  T r u n c a t i o n  a p p r o a c h  

T h e  C r a m ~ r  case 
Hereafter, we deal with only T(x) which is the tail distribution of a geometric sum 

that is, {pk} has the form (2.3). As we have seen, the calculation of the lower bound 
is fairly simple and poses no problem, and the most difficult part of calculation of 
the upper bound A+(x) is that of C+[R(x'), x*] for which we have to obtain tight 
bounds of T(x) over finite intervals. 

Let us repeat that one can use several options to get such bounds. First, nu- 
merical calculations provided by the routine described in [7] (and we actually used 
that routine). Second, one can use the bounds obtained during our previous research 
(see [16, 15, 20]). They are not asymptotically correct but have reasonable accuracy 
for moderate values of x. The difference between these two types of bounds is the 
following. The recursive algorithm taken from [7] has the property to fail as q --+ 0 
or x -+ oo. Unlike this, the bounds proposed in [16, 15, 20] can be readily calculated 
for any q > 0 and x > 0. Furthermore, their accuracy increases as q tends to 0. But 
the corresponding bounds are not asymptotically correct and therefore, their relative 
accuracy falls as x -+ oo. 

In [17, 27], we proposed another approach enabling us to approximate T(x) for 
moderate x. 

R e m a r k .  As we learned when preparing this report, the same approach was devel- 
oped by J. Cai and J. Garrido who used our results for proving their constructions 
(see [3, 4]). They also did some calculations which completely agree with our results 
and confirm the good accuracy of the method proposed. 
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Note that in our works [17, 27] we obtained also some additional results (concern- 
ing the limiting behavior of the hazard rate of the reliability of regenerative models 
and the behavior of ruin probabilities in the case where the Cram~r condition is 
violated) but now we only intend to discuss computational aspects of the approach. 

The method itself is originated from the change of probability measures technique 
and it can be explained as follows. 

Let us start  with the case where F satisfies the Cramdr condition (see Grandell 
[12] and Kalashnikov [15]): there exists ev > 0 such that 

/; (1 - q) e ec" dF(u) = 1. (2.55) 

Note that (2.55) is equivalent to the condition (2.6). Define the distribution G by the 
relation 

G(dx) = (1 - q)e~CXF(dx) (2.56) 

and introduce the renewal process 

Sn = X t  + "'" + Xn, n >  1, 

where {Xi} are i.i.d.r.v.'s having the common d.f .G.  Let 

(2.57) 

N(x)  = min{n: X, + . .-  + X ,  > x} (2.58) 

and 

= a N ( x )  - x 

be the excess of the renewal process {Sn} over level x. 
In our works [17, 27] we obtained the following exact representation for the tail 

distribution T(x) .  

T h e o r e m  7. I f  the Cramdr condition (2.55) holds, then 

T(x)  = e -Ecx EG e-'cn(x), (2.59) 

where E~ indicates that the inter-renewal times have the common d.f. G. 

By its form, this representation is similar to the famous martingale representation 
by Gerber (see [12]). But (7) has some advantages in that the term Ee -Ec'(x) is more 
tractable and there is no problem with its convergence. In all cases it does not exceed 
1 thus yielding the famous Lundberg inequality (see [12, 15]). In works [17, 27] we 
showed that this representation implies the famous Cram~r-Lundberg approximation 
and also can be employed in the cases where the Cram~r condition is violated. 

T h e  s u b e x p o n e n t i a l  case 
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Now, we are going to show how the representation (2.59) can be used for calcula- 
tion of T(x) in the case where F is an SE-distribution that  is, the Cram4r condition 
does not hold. In [17, 27] we indicated that  this can be done by the truncation 
arguments. 

Note that  T(x), for a fixed x, does not depend on values taken by F(u) at u > x. 
This suggests two natural truncations. In both of them we assume that  x is fixed. 

(i) Let 

F'(u) = { F(u)' i f u < x ,  
1, i fu>_ x. 

Then F '  satisfies the Cramer condition that  is, there exists a positive constant Ex = 
el(x) such that  

f (1 - q) e ~'~ e F ' ( ~ )  = 1 

which is equivalent to 

(L" ) (1 - q) e ' '~  dF(u) + e~'=F<(x) = I .  (2.60) 

Let 

f c ' ( u )  = (1 - q) e ~ ' = d F ' ( z ) ,  

(evidently, G'(x) = 1). Theorem 7 follows that  

U<X,  

T(u) -- e -eiu EG, e -''if(u), U _< X. (2.61) 

(ii) The second way is more sophisticated and more attractive. Let 

S F(u) /F(x) ,  if u < x, F"(u)  
t 1, if u_> x. 

The k-fold convolution F~'(u) has the form 

F~'(u) = Fk(u)/F~(x), u < x. 

Let us use this and rewrite T(u), u < x, designating q' -- 1 - (1 - q)F(x): 

( 1 - q ) F C ( x )  + ~ T,(u), 
T(u) = q + (1 - q)Fc(x) 

where 
O0 

T'(u) = q' E(I - q')k(1 - F~'(u)) 
k--O 

279 



The term T '  represents a geometric convolution and, by Theorem 7, 

T ' ( u )  = e -e2u Ec , , e  -~2'1(u), u < x ,  

where c2 = e2(x) is the unique solution of the Cram~r equation 

(1 - q') e ' 'u  d F " ( u )  = 1 

which is equivalent to 

and 

This results in 

T ( u )  = 

j~0 x 
(1 - q) e ~'~' d F ( u )  = 1 

/; = - q )  e e F ( z ) .  

(2.62) 

( 1  - q)FC(x)  Ea,,e -~2"(u) < (2.63) 
q + ( 1 _  q ) F c ( x )  + e -~2" , u x .  

The first summand  in (2.63) represents the lower bound T - ( x )  obtained in Theorem 
2 and it has the correct asymptotic behavior. Therefore, the second summand tends 
to 0 faster than the first one. 

It is not easy, however, to use these explicit expressions as we have to calculate e~ 
(i = 1, 2) and Ec,  e - ~ ( " )  or EG,,e -c~"(~). 

As for the constants ¢/, they can be found from the corresponding Cram~r's equa- 
tions but we should remember that they depend on x and hence, these equations 
should be solved when x is fixed. The solution can be done numerically by any 
appropriate recursive method but special attention should be paid to the accuracy 
control as, for SE-distributions, e i ( x )  -+ 0 as x .--+ c~.  

The terms EG, e -~2~(") or Ec,,e -e2~(") are much more difficult to estimate. We need 
their upper bounds and, evidently, we can take 1 as such bounds (actually, we did 
so). But this can lead to the loss of accuracy as it is unclear whether the remainder 
exponential terms e ~(=)~ still tend to 0 faster than the first summand in (2.63) or not. 
We cannot answer this question and J. Cai and J. Garrido in [3, 4] do not answer it 
either. But numerical calculations show that such estimates work reasonably good for 
at least those values of x which are of interest to us in order to support  calculations 
of the asymptotical ly correct bounds. 

So, we propose to use the following two routines to find upper bounds T + ( x ) .  
(i) Solve (numerically) the Cram~r equation (2.60) and take 

T + ( x )  = exp( -e l (x )z ) .  (2.64) 
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(ii) Solve (numerically) the Cram4r equation (2.62) and take 

( 1  - q)FC(x) + exp(-~2(x)z). 
T+(z )  = q 7 (-1 - q)FC(x) (2.65) 

Numerical calculations show that both methods give fairly close results. 
It is necessary to mention that equations (2.60) and (2.62) can also be solved in 

the case where the d.f. F is unknown but sample values of Xi are available. Then we 
can use the Monte-Carlo method to estimate ~ or e2. Some results in this direction 
are presented in the following section. 

3 N u m e r i c a l  examples  

The following approximations of the unknown function T are considered in this sec- 
tion: 

T o G ( X  ) - the lower bound obtained by the numerical routine from [7]; 

T + c ( x )  - the upper bound obtained by the numerical routine from [7]; 

T ~ s ( x  ) - the upper bound obtained in [15, Theorem 4.3.2]; 

T ~ l ( x  ) - the upper bound (2.64); 

T ~ 2 ( x  ) - the upper bound (2.65); 

T E v ( z )  - the approximation taken from (2.7); 

T - (x )  - the lower bound (2.34). 

The reader can have a vivid impression about their accuracy from the numerical 
results we present. 

3.1  Pare to - l ike  d i s t r i bu t ion  

First, we consider the Pareto-like distribution 

F ( u ) = l - ( l + ~ u )  -° ,  ~ > 0 , / ~ > 0 .  

Tables 1 to 6 contain numerical results that illustrate the real behavior of T ( z )  and 
its various bounds. In all tables the mean value of the d.f. F is taken as 1. Tables 1 
to 3 refer to the case ~ = 3 and f~ - 0.5 and Tables 4 to 6 deal with the case c~ --- 5 
and/? = 0.25. The latter d.f. has a lighter tail than the former one. Empty cells in 
these tables (referring to only TDc and T~)G) indicate that the method proposed in 



3.29 

7.11 

2.59 
1.22 

6.68 

8.38 

8.84 
8.88 

8.89 

8.89 

3.32. 
10-3 

10 -3 
10 -3 
10-4 
10-7 

10-1o 
10-t3 
10-16 
19-22 

3.32. 

T-(x) 

7 .78 .10  -3 

2 .86 .10  -3 

1 .34 .10  -3 

7 .24 .10  -4 

8.43 • 10 -7 

8 .84 .10  -1° 
8 .88 .10  -13 

7.79 • 10 -3 

2 . 8 7 . 1 0  -3 

1.34 • 10 -3 

7 .25.10 -4 
8 .44 .10  -7 

8 .85.10 - l °  
8 .90.10 -13 

3.19.1--0 --:T- 

7 .06 .10  -3 

2 .58 .10  -3 
1 .22.10 -3 

6 .67 .10  -4 

8 .38 .10  -7 

8 .84 .10  -1° 
8.88 .10  -13 
8.89 .10  -16 
8.89 .10  -22 

4.46. 

1 .32 .10  -2 

5 .96 .10  -3 
3 .15 .10  -3 

1 .79.10 -3 

1 .49.10 -6 

1 . 3 9 . 1 0  -9  

1.30- 10 -12 

1.26- 10 -15 

1.43 - 10 -21 

4.08. 
1.18- 10 -2 

5 .64 .10  -3 
2 .91 .10  -3 

1 .63 .10  -3 

1 .38 .10  -6 

1 .19 .10  -9 

1.13- 10 -12 
1 .08 .10  -Is  
1 .04 .10  -21 

Table 1: Pareto-like case: q = 0.9, a = 3,/~ = 0.5 

TEv(x) ~ ~  T-(x) 
2.67 7.91.1--6-=I-- 7.91.1--6-=1- 7.27.1--6=I- 8.32. ~ 1.06 

5.76 10 -1 

2.10 10 - I  
9.88 10 -2 

5.41 10 -2 

6.79 10 -s  
7.16 10 -s  
7.20 10 -11 
7.20 10 -14 

7.20 10 -2° 

6 .36 .10  -1 
5 .19 .10  -1 
4 .26 .10  -1 

3 .50 .10  -1 

1.89 • 10 -4 
7.32 • 10 -s  

7.20- 10 - n  
7.20- 10 -14 

6.38- 10 - I  

5 .22.10 -1 
4 .30 .10  -1 

3 .56 .10  -1 

3 .48 .10  -4 
8.24- 10 - s  

8.07.10 -11 

8 .08 .10  - '4  

3 .66 .10  -1 

1.74- 10 - l  
8.99- 10 -2 

5 .13 .10  -2 

6 .78 .10  -5 
7 .16 .10  -8 

7 .20 .10  - u  
7.20- 10 -14 
7 .20 .10  -20 

7 .01 .10  -1 

5 .88 .10  -1 
4.91 • 10 -1 

4.12- 10 -1 

9 .25 .10  -4 

1 .36.10 -v 
1 .17 .10  - t °  
9 .36 .10  -14 
8.82 - 10 -20 

8.69 10 -1 
6.58 10 -1 
5.18 10 -1 

4.20 10 -1 

7.70 10 -4 
1.16 10 -7 

9 .80 .10  - n  
8 .93 .10  -14 
8.55 • 10 -20 

Table 2: Pareto-like case: q = 0.1, a = 3, fl = 0.5 

[7] fails to work in these cases. In all other cases, the bounds T~c  and T+a embrace 

the real value T(x). Note that  in all cases TEv(x) <_ TDc which means that  TEv(X) 
should be regarded as a too optimistic approximation.  We did the calculations for 
different values of x (even for those which are out of actuarial interest) to il lustrate 
the heavy-tai led effects which can actually occur for large x. 

Tables 1 and 4 show that ,  for large q (q = 0.9 which corresponds to the relative 

safety loading equal to 9), the asymptotic approximation TEv works well even for 
small values of  x. One can see also that  the two proposed upper bounds 7'+1 and T+2 
are close to each other  and they are stable even for large x. The values of these upper 

bounds are larger than the real value of T(x) by approximately 1.5 times. This is 

due to the subst i tut ion of the exact formulas (2.61) and (2.63) by their upper bounds 
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T~v(x) 
29.3 

6.34 

2.31 

1.09 
5 . 9 5 . 1 0  -I 
7 . 4 6 . 1 0  -4 

7 . 8 7 . 1 0  -7 

7 . 9 2 . 1 0  -1° 

7.92 • 10 -13 

7 . 9 2 . 1 0  -19 

9.77 

9.56 

9.36 

9.16 

8.98 

3.28 

1.05 

7.92 

7.92 

1-7-  
i0-1 
10-I 
10-I 
10-1 
10-1 
10-6 
10-1o 
10-13 

9.77 .  
9 . 5 6 . 1 0  -1 

9 . 3 6 . 1 0  - I  

9 .18-  10 -1 

8 . 9 9 . 1 0  -1 

4.00 • I0 -1 
1 . 5 3 . 1 0  -2 

6 . 5 4 . 1 0  -3 

6.51 • 10 -3 

9.67 

8.64 

6.98 

5.21 

3.73 

7.46 

7.87 

7.92 

7.92 

7.92 

l-b-=r- 
I0 -I  

10-1 

10-1 

10-1 

10 -4 

I0-7 
10-19 

10-13 

10-19 

9.85 

9.65 

9.48 

9.30 

9.12 

3.94 

6.48 

2.34 

1.29 

1.22 

10-1 
10-I 
10-I 
10-1 
10-i 
10-2 
10-9 
10-12 
10-18 

1.38 

1.59 

1.52 

1.37 

1,23 

3 .93"  10 -1 

6 .48"  10 -2 

2 . 1 3 . 1 0  -9 

1 .08-  10 -12 

9 . 2 0 . 1 0  -19 

T a b l e  3: Pa re to - l i ke  case: q = 0.01, a = 3, fl = 0.5 

TEv(x) T~a(x) ~ T-(x) ~ T~2(z)~ 
3 .64 .  
6 . 7 7 . 1 0  -3 

1 . 9 3 . 1 0  -3 

7 . 0 7 . 1 0  -4  
3 . 0 6 . 1 0  -4 

9 .35-  10 -9 
1 . 1 2 . 1 0  -13 

1 . 1 4 . 1 0  -18 

1 . 1 4 . 1 0  -23 

1 . 1 4 . 1 0  -33 

3.65.1--0 - ~ -  
7.63 • 10 -3 

2 . 2 5 . 1 0  -3 

8 . 2 5 . 1 0  -4 
3 . 5 4 . 1 0  -4 

9 . 4 5 . 1 0  -9 
1.12.10 -13 

3.65 . ~  
7 .64-  10 -3 

2 .26-  10 -3 

8 . 2 8 . 1 0  -4 
3 . 5 5 . 1 0  -4 

9 .47-  10 -9 
1.12.10 -13 

3.51 

6.72 

1.92 

7.06 
3.06 

9.35 
1.12 

1.14 

1 .14 .  

1 .14 .  

10-3 
10-3 
10 -4 
10-4 
10-9 

. 10-13 

. 1 0 - 1 8  

10-23 
10-33 

4.83 . ~  
1 . 3 8 . 1 0  -2 

6 . 8 0 . 1 0  -3 

3 . 6 3 . 1 0  -3 

1 .89 .  I0  -3  

2 .70 .  I0  - s  
2.30 • 10 -13 

2.31 • 10 - I s  

2 . 1 7 . 1 0  -23 

2.68 • 10 -33 

4 .46-  
1 . 1 8 . 1 0  -2 

6.73 • 10 -3 

3 . 5 4 . 1 0  -3 

1 , 8 2 . 1 0  -3 

2 . 6 6 . 1 0  -8 
2 . 1 7 . 1 0  -13 

1 . 8 0 . 1 0  -18 

1 . 7 6 . 1 0  -23 

1.55" 10 -33 

T a b l e  4: Pa re to - l i ke  case: q = 0.9, a --  5 , /~  --- 0.25 
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1 2.95 

3 5 . 4 8 . 1 0  -1 

5 1 . 5 6 . 1 0  -1 

7 5 .72 -  10 -2 

9 2 . 4 8 . 1 0  -2 

i 0  2 7 . 5 8 .  I0  -T 

i 0  a 9 . 0 3 . 1 0  -12 
104 9 .20 -  10 -IT 

105 9 . 2 1 . 1 0  -22 

I07 9 . 2 2 . 1 0  -32 

T6 (z) 
8 .02-  10 - I  

6 . 5 2 . 1 0  -1 

5 . 3 3 . 1 0  -1 

4 . 3 7 . 1 0  -1 

3 . 5 9 . 1 0  -1 

2 .89-  10 -5 

9 . 3 4 . 1 0  -12 

T~a(x) 
8 . 0 2 . 1 0  -1 

6 .53-  10 -1 

5 . 3 6 . 1 0  -1 

4 . 4 1 . 1 0  -1 

3 . 6 4 . 1 0  -1 

1 . 3 0 . 1 0  -4 

1 . 1 4 . 1 0  -11 

T - ( x )  

7 . 4 7 . 1 0  -1 

3 . 5 4 . 1 0  -1 

1 . 3 5 . 1 0  -1 

5 .41-  10 -2 

2 . 4 2 . 1 0  -2 

7 . 5 8 . 1 0  -~ 

9 . 0 3 . 1 0  -12 

9 . 2 0 . 1 0  -1~ 

9 . 2 1 . 1 0  -22 

9 . 2 2 . 1 0  -32 

T2l(x) 
8 . 4 0 . 1 0  -1 

7 . 1 4 . 1 0  -1 

5 . 9 9 . 1 0  - I  

4 . 9 9 . 1 0  -1 

4.15 - 10 -1 

1 . 4 1 . 1 0  -4 

2 . 8 6 . 1 0  -11 

1 .83-  10 -15 

1.72 • 10 -21 

1 . 5 4 . 1 0  -31 

1.06 

8 . 9 0 . 1 0  -1 

6 .59 -  10 -1 

5 . 1 7 . 1 0  -1 

4 . 1 8 . 1 0  - t  

1 . 4 2 . 1 0  -4 

2.22 • 10 -11 
1 . 6 4 . 1 0  -15 

1 . 4 2 . 1 0  -21 

1 . 2 5 . 1 0  -31 

T a b l e  5: Pa re to - l ike  case: q --  0.1, c~ = 5, D = 0.25 

z f 
1 32.4 

3 6.03 

5 1.72 

7 6 . 3 0 . 1 0  - I  

9 2 . 7 3 . 1 0  - I  

102 8 . 3 3 . 1 0  -5 

103 9 . 9 4 . 1 0  -11 

104 1 . 0 1 . 1 0  -15 

105 1 . 0 1 . 1 0  -2° 

107 1 .01 .  i 0  -3° 

T c(z) [ T ,o(z) [ T-(x) 
9 . 7 9 . 1 0  - l  

9 .58 -  10 - l  

9 . 3 9 .  i0  - t  

9 . 2 0 . 1 0  - I  

9.01 • 10 - I  

3 . 2 8 . 1 0  - I  

9 .79 -  10 - t  

9 . 5 8 . 1 0  -1 

9 . 3 9 . 1 0  -1 

9 . 2 1 . 1 0  -1 

9 . 0 3 . 1 0  - l  

4 .00-  10 - I  

9 . 7 0 . 1 0  -1 

8 . 5 8 . 1 0  - l  

6 . 3 2 . 1 0  -1 

3 . 8 6 . 1 0  -1 

2 . 1 5 . 1 0  -1 

8 .33 -  10 -6 

9 . 9 4 . 1 0  - u  

1 . 0 1 . 1 0  -15 

1.01 • 10 -2° 

1.01 • 10 -30 

I 
9.85" 10 - t  

9 . 6 7 . 1 0  -1 

9 . 4 9 . 1 0  -1 

9.31" 10 -1 

9 . 1 4 . 1 0  -1 

3 . 9 5 . 1 0  - t  

2 . 8 3 . 1 0  -4 

5 . 6 9 . 1 0  -15 

2 .87-  10 -20 

1 . 3 9 . 1 0  -30 

I 
1.36 

1.61 

1.49 

1.27 

1.10 

3 . 9 5 . 1 0  -1 

2 . 8 3 . 1 0  -4 

4 . 0 6 . 1 0  -15 

2 .55-  10 -20 

1 . 4 1 . 1 0  -30 

Tab l e  6: Pa re to - l ike  case: q --  0.01, a = 5, ~ = 0.25 
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(2.64) and (2.65) respectively. 
Tables 2 and 5 (where q = 0.1 that is, the relative safety loading is 0.11) indicate 

that the approximation TEv is poor up to x = 102. And this effect is more evident 
from Tables 3 and 6 where TEV lays far from real values of T(x) .  All these results 
agree with the numerical calculations made by J. Cai and J. Garrido in [4] for the 
Pareto-like distribution (with a = 2) and integrated lognormal tail distribution where 
they also came to the conclusion that the lower bound is pretty close to TSE but their 
assertion that this "indicates a greater accuracy of lower bounds" is wrong because 
this fact indicates only that the proposed lower bound and TsE are close to each other 
and they both can be pretty far from the real value T(x)  as in Table 6. 

In all cases indicated in Tables 1 through 6, we also obtained bounds T~l and T+2 
using sample values of Xi, i = 1, . . .  , N (the volume N of the sampling was 5000). 
Our routine was as follows. First, we built the sample (or, empirical) d.f. 

N 

1 ~ l(x~<~} 

and then used it in order to find vl and E2 from equations (2.60) and (2.62) thus 
obtaining sample bounds T~I and T~2. The results are very optimistic: in all cases, 
the difference between T+l (resp., T+2) and T+1 (resp., T+2) does not exceeds 15%. 
This confirms the robustness of the procedures proposed. 

Note that in all cases the proposed bounds T+I and T~2 have reasonable accuracy 
and can easily be calculated. But they have evident limitations as their calculation 
for arbitrarily large x is impossible whereas our asymptotically correct bounds can 
be calculated for any x. Nevertheless, they can be used successfully for calculating 
C*[R(x*, x*] and, as the consequence, for obtaining asymptotically correct bounds. 
In accordance with the constructions of subsections 2.2 and 2.4 we took 

R(x)  = x 1/(~'+~), g(x) = x -~/(~*l). 

Table 7 contains the following information: 

x* - the value defined in Lemma 2 which indicates the left abscissa of validity 
of our constructions; 

C + - the constant defined in Theorem 3 which appears in the desired rate of 
convergence; 

x** - the value of x such that C+g(x °*) = 1; 

T+(x **) - the actual value of the asymptotically correct upper bound at x**. 
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q 

0.9 
3 0.1 

0.01 
0.9 

5 0.1 
0.01 

z" C + z "  T+(x .') 
2.52 16.8 43.2 1.55 • 10 -5 

1.18.103 1.48.107 3.63- 109 2 .58 .10  -27 
1.24.105 0.66- 101° 1.35.10 L3 5 .51 .10  -37 

2.31 48.9 107.7 2 .69 .10  -9 
1.44.103 4.19.106 9.21. l0 T 1 .94.10 -36 
1.65.105 - - - 

Table 7: Pareto-like distribution. 

It  is necessary to clarify the meaning of x**: we guarantee that  the relative ac- 
curacy does not exceed 100% if x > x *° and, conventionally, this value x *° can be 
viewed as the left abscissa of true applicability of the asymptotic approximation TEv. 

Comparing da ta  from Table 7 with those from Tables 1 to 6, one can see that  the 
value x ° clearly indicates the barrier where TEv starts working. The value x** is too 
pessimistic and we can explain its large values by the fact that  the construction of 
~F(X) uses the shape of FC(x) for large x but not the values of FC(x) for all x. This is 
exactly the consequence of the tail-equivalence property indicated in subsection 2.2. 
The values of x*, x °*, and C + can be diminished, if we take into account the values 
of FC(x) for comparatively small x (which seems to be difficult). 

3 . 2  W e i b u l l  d i s t r i b u t i o n  

Tables 8 to 11 have the same structure as Tables 1 to 6 but they refer to the Weibull 
distribution (see Example 2 in subsection 2.3) where the parameters /3 and A are 
chosen in such a way tha t  the mean of F is 1. Its tail is lighter than that  of the 
Pareto distribution since all its power moments exist. 

Tables 8 and 9 contain figures for the case fl -- 0.9. This distribution has a 
relatively light tail as it is close in some sense (~ = 0.9 ~ 1) to the exponential 
distribution. One can observe that  the approximation TEv is extremely poor. 

The situation in Tables 10 and 11 illustrates another extreme. Here, /3 = 0.1 
and the tail of F is rather heavy. One can notice that  all approximations have good 
accuracy. In this case, the routine from [7] fails to work for comparatively large x 
unlike the proposed bounds T~l and T~2 which are stable and fairly good in all cases. 

This effect can be confirmed by the numerical examples from [4]. The authors of 
[4] obtained that,  for the Pareto-like distribution (they chose a = 2 and therefore, its 
tail is fairly heavy), the difference between upper and lower bounds is 15% - 30 %, 
whereas, for the integrated Iognormal tail distribution (which tail is much lighter), 
that  difference attains 2000%! 

Let us highlight additionally the effect of the choice of C'[R(z*),z*]. In the 
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* TEv(*) 
I 3.51.10 - I  
5 1 . 1 6 . 1 0  -2 

10 2 . 4 4 . 1 0  -4 

5000 4 . 1 9 . 1 0  -1~ 
2.01 • 10 -29 

500000 7.05.  10 -123 
1.14- 10 -223 

T~e(x ) T~a(x ) T-(z) T~(x) T~2(x ) 
2.92- i0 -I 
4 .46 .10  -2 

4 .52 .10  -3 

7 .59 .10  - n  

2.92.  I0 -I 

4.41 • 10 -2 

4 .34 .10  -3 

2 .98 .10  -11 

2 .60 .10  -1 
1 .15 .10  -2 

2.44- 10 -4 

4 . 1 9 . 1 0  -18 

2.01 • 10 -29 
7 .05 .1 0  -123 

1.14 • 10 -228 

3.57.  I0 - l  

7 . 9 0 . 1 0  -2 

9 . 5 6 . 1 0  -3 

1.13- 10 -I° 

1.34- i0 -2° 

1.69. I0 -99 
1.83- lO - I ~  

3.59. I0 - l  

7.39- 10 -2 

9.00.10 -3 

1.13. I0 -l° 

1.34.10 -20 

1.69.10 - ~  

1.83. I0 -199 

Table  8: Weibull  distr ibution:  q = 0.5, ~ = 0.9, A = 1.04723 

i0 

50 

I00 

500 

1000 

6.67 
2 . 2 0 . 1 0  - I  

4.64-  10 -3 

7 .96.  i0  -15 
3.82" 10 -28 

1 .34 '  10 -121 

2 . 1 6 . 1 0  -227 

I T;A:) I T;~(:) 
8.99.10 -!" 8 .99.10 -1 
7,35.10 -1 7.37.10 -L 
5.71.10 -1 5.77.10 -1 
6.97.10 -2 8.82.10 -2 
4.02- 10 -3 1 .02 .10  -2 

5 .37 .10  -18 1 .24 .10  -T 

T-(x) I T~I(=)  I T6~(=) 
8 . 7 0 . 1 0  - l  

1 . 80 .1 0  - I  
4.61 • 10 -3 

7 . 9 6 . 1 0  -18 
3 . 8 2 . 1 0  -28 

1 .34 .10  -121 

2.16- 10 -22"z 

9.19- 10 - I  

7 . 7 7 . 1 0  - l  
6 . 1 0 . 1 0  - I  

1 . 0 2 . 1 0  - I  

7 . 1 8 . 1 0  -3 

1 , 1 7 . 1 0  -1° 
3 , 6 7 . 1 0  -21 

1.20 
9 . 0 4 . 1 0  -1 

6 . 1 3 . 1 0  -1 

1 . 0 2 . 1 0  - l  
7.18 • 10 -3 

1 . 1 7 . 1 0  -1° 

3 . 6 7 . 1 0  -21 

Table  9: Weibull  dis t r ibut ion:  q = 0.05, B = 0.9, A = 1.04723 

1.08 
3.34 10 -3 
7.64 10 -4 

1.19 10 -4 

1.15 I0  - s  

6.03 10 -v 
1.48 10 -8 

1.39 10 -1° 

3.89 10 -13 

2.38 10 -18 

2,15 10 -2o 

1.07 
3.34 10 -3 
7.64 10 -4 

1.19 10 -4 

1.15 10 -5 
6.03 10 -7 

1.48 10 -8 

1.39 10 - I °  
3.89 i0 -13 

3 .35 .10  -3 

7 .66 .10  -4 

1 .20 .10  -4 

1.15- 10 -5 

6 .07 .10  -7 

1 .49 .10  - B  

1 .40 .10  -1° 

3 .94 .10  -13 

1.07.1--0 "='/- 
3 . 3 3 . 1 0  -3 
7 . 6 3 . 1 0  -4 

1 .19 .10  -4 

1.15- 10 -5 

6 . 0 3 . 1 0  -7 

1 . 4 8 . 1 0  -8 

1 . 3 9 . 1 0  -1° 

3 . 8 9 . 1 0  -13 

2 . 3 8 . 1 0  -18 

2.15- 10 -2° 

1.24.1-0 = ' / -  
3.85 • 10 -3 
9 . 1 4 . 1 0  -4  

1.41 • 10 -4 

1.32 • 10 -5 

7.21 • 10 -7 

1 . 8 5 . 1 0  -s 
1 . 6 0 . 1 0  - l °  
4 . 6 5 . 1 0  -13 

2 . 9 8 . 1 0  - le  
2 . 8 5 . 1 0  -20 

1.16 -1--0 - : ' / -  
3.65 • 10 -3 

8 . 3 7 . 1 0  -4 

1.31 • 10 -4 

1 . 2 7 . 1 0  -5 

6 . 6 7 . 1 0  -7 

1.63- 10 -8 

1.55- 10 -1° 
4 . 3 5 . 1 0  -13 

2 . 7 0 . 1 0  -16 

2 . 4 4 . 1 0  -2° 

Table  10: Weibull  dis t r ibut ion:  q = 0.5, fl = 0.1, A -- 4.52874 
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= [ T v(x) 
I 2 . 0 5 . 1 0  - I  

101 6 .35 .10  -2 
102 1.45.10 -~ 
103 2 .26 .10  -3 
104 2 .18 .10  - 4  

l0 s 1 .15.10 -5 

106 2 . 8 1  • 1 0  - 7  

107 2.64- 10 -9 
108 7 .40.10 -t2 

109 4 .53 .10  -15 
101° 4 .08 .10  - t 9  

1.82.10 - l  
6.31 • 10 -2 
1 .47.10 -2 
2 .28 .10  -3 
2 .18 .10  -4 
1 .15.10 -s  
2.81 - 10 -7 
2 .64 .10  -9 
7 .40 .10  -12 

4.06- 10 -15 

I 
1.87.10 -1 

6 .58.10 -2 
1.56.10 -2 

2.46- 10 -3 
2.40- 10 -4 
1.29- 10 -5 
3 .27.10 -7 
3 .21.10 -9 
1.64.10 -H 
6.92.10 -12 

T-(x) 
1.70.10 -1 

5.97- 10 -2 
1.43.10 -2 
2.26.10 -3 
2 .18.10 -4 
1.15.10 -5 
2 .81.10 -7 
2 .64.10 -9 
7 .40.10 -12 
4 .53 .10  -1~ 
4 .08.10 -19 

2 .26 .10  - t  

8 .40 .10  -2 
1 .93.10 -2 
2 . 9 8 . 1 0  -3 

2.81.10  -4 
1 .38.10 -5 

3 .47 .10  -z 
3.15- 10 -9 
9 . 6 9 . 1 0  -12 

5.55.10  -15 

6.41 • 10 -19 

2 .08 .10  - l  
7 .31 .10  -2 
1.71 • 10 -2 
2 .65 .10  -3 
2 .51 .10  -4 
1.31 • 10 -5 
3.17- 10 -7 
3.01 • 10 -9 
8 .35 .10  -12 
5 .11 .10  -15 
4.58- 10 -19 

Table 11: Weibull distribution: q = 0.05, fl -- 0.1, A = 4.52874 

examples above we used bounds (2.64) and (2.65) for this purpose. Now we illustrate 
the difference caused by a good or bad estimate of C°[R(x*),x*]. We have already 
mentined that  it is possible to give crude analytical bounds for C*[R(x°), x*]. One of 
such bounds was proposed in [27]: 

6+(1  _ q)2 
O'[R(x'),  x'] < C; = 

where g+ and g are taken from Lemma 2. Another bound for C*[R(x*),x*] can be 
found if one applies upper estimates T~s(x ) of T(x) over [R(x') ,  z °] taken from [15, 
Theorem 4.3.2]. Let us denote this bound by C~: 

C'[R(x'),  < 

(it is not  necessary to write the bound explicitly here). And, at last, let us denote by 
C~ the bound obtained if one uses the estimate T+l(X) for x E [R(x') ,  x'] which has 
already been done in the preceding examples. 

In accordance with this, let C +, i = 1, 2, 3, be the corresponding constants calcu- 
lated by formula (2.48) where C'[R(x'), x'] is replaced by its estimates C~, i -- 1, 2, 3, 
and denote by T+(x) the corresponding asymptotically correct upper bounds having 
the form 

T+(x) = TEv(x)(1 + C+g(x)). 
For illustrations, we took q -- 0.5 which is typical for actuarial applications and we 
chose numerically the optimal value 5 + which turned out to be 0.999. The corre- 
sponding constants C + have the following values: 

C + = 4 . 9 . 1 0  s, C + = 3 . 9 . 1 0 3  , C + = 3 . 6 . 1 0 3  . 
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X 

1.6.102 
3.5.102 
1.0.103 
2.5.10 3 

5.0.103 

T v(x) 
1.3.10 -5 
2.6.10 -8 
3.1. lO -T 
5.0.10 -8 
1.2.10 -8 

2.1.10 - l  
2.6.10 -2 
1.5.10 -3 
1.3.10 -4 
2.1.10 -5 

1 . 6 . 1 0  - 3  

2.0- 10 -4 
1.2.10 -5 
1.1 • 1 0  - 6  

1.7. 10 -~ 

1.5.10 -3  

1.9.10 -4 
1.2.10 -5 
1.0.10 -8 
1.6.10 -7 

Table 12: Comparison of T +, i = 1, 2, 3. 

Let us call the reader's attention to the fact that C + is much larger than C + and C + 
which are close to each other. The numerical results are presented in Table 12. 

One can see that  the choice C{' yields poor bounds whereas both C~ and C~ give 
better results. This means that certain attention should be paid to this choice which 
affect the results. Let us mention also that, in order to find C~, we do not have to 
solve any functional equation (like (2.60) or (2.62)) and because of this, it can have 
a computational advantage in practical situations. 

4 C o n c l u s i o n  

During this research we 

(i) provided quantitative accuracy estimates of the known asymptotic approxima- 
tions of the probability of ruin and the distribution of accumulated claims in 
the presence of large claims; 

(ii) proposed operational bounds of the mentioned characteristics. 

Most of the results were obtained by mathematical methods which were specially 
developed for the purposes of the research. All the methods proposed can be imple- 
mented into software packages. We considered also various example illustrating both 
the technique and the quality of the estimates. To be more specific, the following 
results should be considered as basic. 

1. New characterizations of SE-distributions are proposed (see Section 2). These 
characterizations can be used for solving various applied problems (from risk 
theory, queueing theory, etc.). 

2. We derived asymptotically correct two-sided bounds (which have been unknown 
in the literature until now) for geometric (Section 3) and general (Section 4) 
random sums with subexponential summands. These results are mathematically 
interesting and give insight into the behavior of random sums with heavy-tailed 
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summands. These sums can be interpreted as accumulated claim sizes of an 
insurance company or the probability of its ruin. 

3. The proposed bounds give us the possibility to detect the critical value x ' ,  after 
which the known asymptotic approximations can be applied with a reasonable 
accuracy (see Section 3). These bounds seem to be rather pessimistic for actuar- 
ial practice (although, their application to communication networks and some 
queueing problems where the loss probability should be less than the proba- 
bility of ruin is possible). This fact can be explained by the tail-equivalence 
property of SE-distributions (see Subsection 1.2): SE-effects can only occur for 
large x. Numerical examples collected in Section 3 show that the asymptotic 
approximations can differ significantly from real values. So, the accuracy prop- 
erties (indicated above) of the bounds has solid foundation and is implied by 
the properties of SF_,-distributions. 

The fact is that the asymptotic formulas can approximate the real distributions 
poorly and therefore, their usage in actuarial practice is questionable. Our 
research reveals the situations where these formulas can be applied and where 
they cannot. 

4. We propose, for practical needs, two routines giving close results which provide 
us with upper bounds of the ruin probability (see Subsection 2.7). These upper 
bounds turned out to be rather accurate (as they are derived from the exact 
representation of the probability of ruin) and can be used in practice. The 
corresponding numerical methods found in standard packages allow us to solve 
functional equations and make integration. Furthermore, these routines work 
in the case where the exact form of F is unknown and only samples of X~ are 
given. The accuracy of calculation is demonstrated in Section 3. 

5. This research provided us with a clear qualitative picture of the limiting be- 
havior of random sums with SE-summands. The existing asymptotic approxi- 
mations cannot be recommended as approximations of real distributions if q is 
small (or, in general, if v is large) or if the tail FC(x) is not sufficiently heavy. 
In these cases, it is better to use T~l(x ) or T+(x) ,  or the approximations taken 
from [15]. In other cases, the asymptotic approximations can work accurately. 
Our practical recommendations are as follows. Calculate T-(x) and any of 
T~I (x) or T~.~ (x). If these bounds are close to each other, it is possible to use 
the asymptotic approximations. If they are far from each other, then the ap- 
proximations can give enormous errors and it is better to use upper bounds 
T~l(x ) or T+2(x). 

A c k n o w l e d g e m e n t s :  We appreciate valuable advices and prompt assistance given 
us by the Chairperson, other members of POG, and Kathie Peters. 
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