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1 Introduction

During the last decade, a vast activity have been observed in generalizing of the classical
discrete distributions. The main idea was to apply the extended versions for modeling dif-
ferent kinds of dependent count or frequency data structure in various fields (Econometrics,
Insurance, Finance, Biometrics, etc.), see for example Bowers et al. (1997), Collett (1991),
Johnson et al. (1992), Luceno (1995), Rolski et al. (1999), Winkelmann (2000) and references
therein.

In the general introduction of the recent monographs Bowers et al. (1997), Rolski et al.
(1999), Winkelmann (2000) is emphasized the need for richer classes of probability distribu-
tions when modeling count data. Since the probability distributions for counts are nonstan-
dard in the actuarial literature, special attention is paid here for more flexible distributions,
since they can be used as a building blocks for improved count data models with immediate
application in insurance describing the accumulated claims.

In the present paper we suggest extensions of the classical univariate geometric, negative
binomial, Poisson, Bernoulli, binomial and logarithmic series distributions, by including an
additional parameter p. Tt has a natural interpretation in terms of “zero-inflation”, and
because of this we named the corresponding generalized versions adding “inflated-parameter”.

After giving notations and preliminary results in Section 2, probability mass functions
(PMF) and probability generating functions (PGF) of the corresponding inflated-parameter
distributions are presented in Sections 3 through 8. The relationships between the inflated-
parameter distributions, according to the remaining parameters, are the same as between
their classical analogue. This simply shows that the new generalized distributions compose a
new class (family) of discrete distributions and this topic is discussed in Section 9, where two
different representations of the corresponding PMF's of the r.v.’s belonging to the inflated-
parameter family of the generalized power scries distributions arc presented. An overdispersed
property of the new class according the family of generalized power series distributions is
discussed as well as a new constructive interpretation of the parameter p is obtained. In Section
10 we use the inflated-parameter Poisson and negative binomial distributions to approximate
real frequency data. At the end, some conclusions are given.

2 Notations and Preliminaries

The random variables (r.v.) considered are assumed to be defined on a fixed probability space
(€2, F,P). We will deal with a nonnegative r.v.’s representing a number of claims or a claim
amount adopting the assumptions of the collective model of risk theory for a fixed period
of time. Let N be a nonnegative integer valued r.v. representing a number of claims, with
counting density

p=P(N=k), k=0,1,....

For the PGF of the r.v. N we will use notation

P,v(t) = Zpktk, ‘t‘ < 1.
k=0



There are at least three particular cases that are applicable in Insurance as a claim number
distributions: the Poisson, the binomial and the negative binomial distributions. We write

e (i) N ~ Po()\) if N has a Poisson distribution with parameter A > 0, i.e.

e Mk
o= k=01

e (ii) ¥ ~ Bi(n,n) if N has a binomial distribution with parameters # € (0,1) and
ne{0,1,...}, Le

Pr = (Z)Wk(l )" %, k=0,1,...,n
When n = 1, we obtain the Bernoulli r.v. with a parameter ;

e (iii) N ~ NB(n,7) if N has a negative binomial (NB) distribution with parameters
7€ (0,1) and 7 > 0, i.c.

Ptk -1
pk=<r+k >7r'(1—7r)k, k=0,1,....

In the special case r = 1, we obtain the geometric distribution with a parameter m,
Geo(7), on the nonnegative integers.

e (iv) N ~ LS(x) if N has a logarithmic scries distribution with paramcter = € (0, 1), i.c.

7k

- k=12
—klog(t —m)’ '

Pk

The logarithmic series distribution is used rather rarely. It can be obtained as a limiting
distribution of the truncated at zero NB distribution. We include the logarithmic series
distribution since it can be used to model the numbers of items of a product purchased
by a buyer in a specified period of time, e.g. Chatfield et al. (1966);

e (v) N ~ §,, if N is concentrated on the integer o € {0,1,...}, i.e. degenerated at
N = m with
m=1 p=0 for k#m.

The cquality of mean and variance is characteristic of the Poisson distribution and can be
referred to as equidispersion. Departures from equidispersion can be either as overdispersion
(variance 1s greater than mean) or underdispersion (variance is less than the mean). The
Binomial distribution is underdispersed and the NB distribution is overdispersed according
to the Poisson distribution. The logarithmic series distribution displays overdispersion for
0 < —[log(1 — m)}"! < 1 and underdispersion for —[log{1 — #)]"! > 1.
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2.1 Generalized Power Series Distributions and Panjer’s Recursion

Many univariate diserete probability distributions, with a single parameter belong to the class
of generalized power series distributions (GPSD) or to the classes of their generalizations, see
Gupta (1974), Consul (1990).

Definition 2.1. The PGF of the GPSD with a parameter # > 0, is given by the following
relation
g(6t)

plt) = @) (1)

where g(8) is a positive, finite and differentiable function. For any member of this family, the
PMF of the corresponding r.v. X can be written as
k)gx
PN =k = A s ps, (2)
9(6)
where S is any nonempty enumerable set of nonnegative integers, a(k) > 0 and ¢(#) =
Lies a(k)6*.

The binomial, the NB, the logarithmic series and the Poisson distributions belong to this
class, see Patil (1962). In the binomial and NB cases, the corresponding additional integer
parameters n and 7 are treated as nuisance parameters.

In the particular cases, the functions a(k), g(f) and the parameter 6, are given by the
following expressions

X ~Bi0.n): a(k)=(}) 9@ =1 +6)r, 8=
X ~ Po(f) : a(k) = &, g(8) = *, 6 =X

X ~NB(O.r): ak)=(*7"), o@®)=(1-0" 0=1-m

X ~ LS5(8) : a(k) = ¢, g(@) =—-In(1 -0), 6=1-n.

The concept. of the GPSD and their extenstons is not popular in actnarial literature. The
authors prefer to use as a first step the Panjer-recursion

b
Pk:<a+E)Plc—1, k=12,... (3)

for some constants a < 1, and b, cf. Panjer (1981). In Sundt and Jewell (1981) is shown that
the recursion is satisfied if and only if V has a Poisson, a binomial or a NB distribution or
N ~ &y, respectively. If we start recursion (3) only at £ = 2 then logarithmic series distribution
also satisfies it as well as the truncated versions of the above distributions. The values of the
constants a and b in the different cases can be found, for example in Straub (1988), p. 35.
Let us only note, that the class of distributions fulfilling (3) is known in actuarial literature
as a R1(a,b) class also.
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So, the GPSD satisfy Panjer’s recursion (3). In this paper we will follow the GPSD
terminology since, at least historically, it appears earlier.

Recently there are many generalizations of the recursion formula (3) where the densities of
counting distributions satisfy certain second and higher order difference equations. Recursions
for the evaluation of related compound distributions have been developed in the case of severity
distributions which are concentrated on the non-negative integers, see for example Schrérter
(1990), Sundt (1992), Dhaene et al. (1996).

2.2 Zero-inflated Distributions

Our study is based on the inflated parameter (zero-modified) discrete distributions, which are
used to model counts that encounter disproportionally large frequencies of zeros, e.g. Johnson
at al. (1992). Let £ be an arbitrary nonnegative integer-valued r.v. such that

P(f:]):pj’ j=0’13“') pJ:].,

s

0

=
il

and let G¢(t) = E(tf) be its PGF. An extra proportion of zeros, p € (0,1), is added to
the proportion of zeros from the distribution of the r.v. €, while decreasing the remaining
proportions in an appropriate way. The zero-inflated modification 7 of £ is defined by

Pln=0) = p+(1-p)po,
Pin=3) = (1-pp;, §=12,.... (4)

It has as a PGF
Gy(t) = p+(1~p)Ge(t). (5)

Zero-inflated models address the problem, that the data display a higher fraction of zeros,
or non occurrences, than can be possibly explained through any fitted standard count model.
The zero-inflated distributions are appropriate alternatives for modeling clustered samples
when the population consists of two sub-populations, one containing only zeros, while in the
other, counts from a discrete distribution are observed.

If p = 1, than the corresponding zero-inflated distribution is the degenerated at zero one;
if p = 0, “nothing is changed” in (5), i.e. G,(t) = G¢(2).

In general, the inflation parameter p may take negative values provided that P(n = 0) > 0,
ie, p > _T{'Q,E and therefore max{-1, “T{jﬁ} < p < 0. This case corresponds to the
“opposite” phenomena - “excluding” a proportion of zeros from the basic discrete distribution,
if necessary.

In actuarial literature, e.g. Rolski et al. (1999) p.35, the zero-inflated distributions are
known as a “f-modification” which can be considered as a reverse truncated operation.

3 Inflated-parameter Geometric Distribution

In this section we suggest a generalization of the usual geometric distribution by including an
additional parameter p € [0, 1). Several simple interpretations of the proposed distribution are
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resented in Section 3.1 and a new concept of “p-type lack-of memory property” is introduced
A Y1 )
in Section 3.2.
Let {W,1¥,,...} be an infinite sequence of independent binary variables

, 0 with probability 1 -,
W, = . o
1 with probability i,

for k =1,2,..., where the parameter 7 € (0,1). In the sequel, we will identify the realization
“1" as a “success”.

Consider its corresponding zero-inflated sequence {W,, Wy, ...}, determined for k = 1,2, ...
according to (4):

W — 0 with probability (1 - 7)1 — p) + p,
¥~ 11 with probability (1 - p)r,

with max{-1, —1;—”} < p < L. Let the rov. V be equal to the number of trials that we

need to achieve the first observed "success” in the new constructed sequence {WI,W,:, .. }of

independent binary variables. The PMF of the r.v. V is given by
PV=k=[1-mA-p)+pf "0 -pm, k=12 ... (6)

The r.v. V' has the usual geometric distribution on the positive integers, V' ~ Ge((x*), with

a parameter
o= (I-ml-pltp=1-(l-p7 )

Now, let us define the r.v. X by the following relations
P(X=0) = =,
PX=k) = (1-ml(Ll-m-p)+p (1-p)r k=12 (8)

It is easy to verify that the above equations define a proper probability distribution. The
corresponding PGF Px (s) is determined by the following expression

~ (1 - tp) _ -ty
Px(t) = 1—t(1-m)(1—p)+p]  1-t(—7+pn) )

Definition 3.1. We say that the r.v. X defined by (8) (or (9)) has an influted-parameter
geometric distribution with parameters 7 € (0,1) and p € (max{—1, =122}, 1) and will denote
this by X ~ IGey(m, p).

Remark 3.1. If p = 0, the defined inflated-parameter geometric distribution coincides
with the usual geometric distribution on the nonnegative integer values, with parameter m,

ie. Geg(m) = IGep(m, 0).
Remark 3.2. The mean and the variance of the IGey(m, p) distribution are given by

1—7 (1 —m)(1+7p)

PN = sy and Vet =
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3.1 Interpretations

Remark 3.3. Let us consider a time homogencous Markov chain {X,,n > 0} taking valucs
{0,1}. We determine the sequence Xy, X1, ... by the distribution of the initial states

P(Xg=0)=1-7 and P(Xg=1)=7x
and for n = 0,1,..., by the transition probabilities
PXp1 =0| X, =0)=(1-m)(1-p)+p, PXop=1]Xa=0)=(-p)
and
PXo1 =0 Xn=1)=(1-7)(1-p) PXun=1[Xu=1={0-p7+p

For the defined Markov chain the r.v. X determined by (8) has the following interpreta-
tion: it gives the number of transitions until the first "success” is observed in the sequence
Xo, X1, .- .

Remark 3.4. Note, that the parameter 7* of the r.v. ¥V ~ Ge,(n*), given by (7) coincides
with the probability P(W, = 0) for the zero-inflated sequence {Wy, k > 1} as well as with the
conditional probability P(X,; = 0| X,, = 0) for the two-state homogeneous Markov chain
considered by Remark 3.3.

Let us underline that, in fact, the parameter p, represents the proportion of zeros added
to the usual Bernoulli distribution (when p > 0), decreasing the "successive” value 1 in an
appropriate way.

Remark 3.5. Let us consider the Correlated binomial distribution, introduced by Luceno
(1995). A r.v. W following this distribution counts the number of “successes® in a sample of
n subjects that give equicorrelated binary responses with correlation coefficient p, probability
of success m, under condition that its PMF must depend linearly on p. The PGF for n = 2 is
given by

Pu(t) =p(l —7 +7t3) + (1 - p)(1 — 7 + 7t)%

From the last expression we obtain the following equations

PW=0) = (Q-mp+(1-p(~n),
PW=1) = 201 —-=)(1-p)m,
PW=2) = =lp+(1-p)]

Now, it is easy to obtain the transition probabilities given by Remark 3.3. Really, if W, and

W, are two equicorrelated binary responses, we have

PW,=0W,=1) IPW, +W,=1) PW=1) (- p)r
PW,=0)  PW,=0) _ PW,=0 o 7

P(Wy=1|W,; =0) =

and

Wy =0,W, =0)  PW,+W,=0)  PW =0)
PW, =0y — PW,=0)  PW =0y

PW, =0| W, =0) =~
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PW,=0|{W,=0) = ({1-m)(1-p)+p

In this case, the r.v. X, given by (8), can be interpreted as the number of trials until the first
“success“ is observed in a sequence {W;, W, ...} of equicorrelated binary responses. Because
of the last interpretation of the r.v. X, one may refer the inflated-geometric distribution
1Gey(m, p) as Correlated geometric distribution.
3.2 p-type Lack-of-Memory Property
It is well known, e.g. from Galambos and Kotz (1978), that the equation

PUZb+z|U>b)=PU>zx), >0, b>0, (10)

is true for a r.v. U which is nonnegative and non-degenerate at zero, if and only if it has
either the exponential or the geometric distribution. Equation (10) is known as the lack of
memory property ecither for the r.v. U or for its distribution function.

Theorem 3.1. Let X ~ IGey(m,p). Then for any z > 0 and b > 0, the conditional
probability P(X > b+ x| X > b) has the following equivalent representations:

@) (1-m1-p) +pl5

(i) U=RAIp(X > g);

(i5) P(X > z) + pyZ=P(X > z);

(iv) P(X >1)+prP(X >z|X >0);

(v) (1-pP(X >2)+pP(X>2|X >0);
(vi) PV >z+1),

where the r.v. V is given by (6).
Proof. For any fixed integer b > 1 from (8) we have

PIX 2D = S0-ml =m0 g+ o,
k=b
ie.
PX2b) = (1-ml(l-m)(1-p)+pP"
Then for any z > 0
PX>b+z|X>b) = B(If(—;i—%ﬂ = (=T —p) 4

and the representation (i) is obtained.
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By simple transformations from (i) one can obtain relations (i) - (v). Representation (vi)
follows from the definition of the r.v. V and ().

The statement (v) from Theorem 3.1 gives us reasons to suggest the following extension
of the usual lack-of-memory property.

Definition 3.3. We call that the r.v. U has p-type lack-of-memory property if
PUZ>b+z|U2b)=Q0-p)PU=z)+pP(U>z|U>0),
for any £ > 0 and & > 0.

We will not discuss here the characterizations of the p-type lack-of-memory property.

4 Inflated-parameter Negative Binomial Distribution

Let r be a positive integer and X;, X3,..., X, be independent identically distributed (i.i.d.)
r.v.'s having IGey(n, p) distribution, given by (8).

Definition 4.1. We say that the r.v. ¥ = X; + X3 + -+ - + X, has an inflated-parameter
negative binomial distribution with parameters 7 € (0,1), p € (max{-1, —l—fr—”-}, Dandr > 1,
to be denoted Y ~ INB(w, p, 7).

Since X, X,,..., X, are i.i.d. r.v.’s, each having a PGF given by (9), the PGF of the r.v.
Y ~ INB(=, p,r) has the following form

_ (1=t 1

The PMF of the inflated-parameter negative binomial distribution is given by the next
proposition.

Proposition 4.1. The PMF of the INB(x, p, ) distributed r.v. Y is given by the following
relation

P(Y=y)=n" Z (!/1 tyt+--+7— 1) [(1 = 7)(1 — p)|r et pyettmst= (12)

Y1, Y2, .. yl)y’l,---,T—]_
where y = 0,1,... and the summation is over all nonnegative integers y1, ¥z, ys, . . . such that
N+ 2y +3ys+ - =y

Proof. Using some combinatorial equations, from the PGF (11) we consequently obtain
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o 1=t |
i = [m]

el

[1- (=m0 - ot

Il

i( )[ l‘r)(l—p)(l+rp+r2,,+..‘)]"‘
g

(’” e )[(1 RIS ( " )w)*
ey, My,

Amy,my, ...

where the last summation is over all nonnegative integers 1y, my, msy, . .., such that my +my +
my + -+ - = m. Now, taking into account the equality

m+r—1 m m+r—1
™m my,ma. ...} \my,mg, e =1
we have

= m+r—1 .

Py(t) = 7" S [(1—m)(1— p)t]” > ( , . 1>(fﬂ)m")“m“+"\
m=0 My, T, .. AL =

Substituting in the last expression m; = y;, i > Land =y - 35,(j ~ 1)y; we finally

obtain
o0

Py(t) = S P(Y =y),

y=0
where the probability P(Y = y) is given by (12) for y > 0.

Remark 4.1. If we put p = 0 in (12) the PMF of the usual NB distribution is obtained.

Remark 4.2. The probabilities of the first four values of the r.v. Y ~ INB(r, p,7r) are
given by the following expressions

r

P(Y =0) = &7,
PY =1) = n'r(1 - m)}(1 - p),
P(Y =2) = (L= p)1=m) [('3)(1 = o)1 =) + 7],
PY=3) =a(L-p(l-m) ';2)(1 =P =¥ i+ D - )L —7m)p+rp?|,

derived from (12).
Remark 4.3. The mean and the variance of the INB(7. p, r) distribution are given by

r(l—m)(1 4+ ap)

ey =" d var(y) = Ty
T (1 —p

7(1 - p)
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5 Inflated-parameter Poisson Distribution

Here we will obtain the PGF and PMF of a new distribution, by finding the limits of the
expressions (11) and {12) when

r— oo and 7 -— 1, suchthat r(1—7)=A=const>0. (13)
The limiting PGF is given by the following proposition.

Proposition 5.1. Under the limiting conditions (13) the following relation is true

(— 1
lim lim Py (t) = exp [/\(l‘ )] ) (14)
rooc g—1 1 - tp

where Py (t) the PGF given by (11).
Proof. Taking logarithm on both sides of (11) we have

InPy(t) = r{ln[l = (1 — 7+ prt)] — In[l —t(1 — 7 + p7)]}.

Using the Taylor expansion of the logarithmic function In(1 — z), after some simple transfor-
mations we obtain that

inPy(t) = r(l-m{t—-1) {1 + %[prt + (1 —7)(¢ + 1)]

+3Blomt? + 3pmt(t 4+ D01 =7+ (P4 e DA — 1)+,

Now using the limiting conditions (13) we finally have

At —1)
1—pt’

lim lin} InPy(t) = Mt — D)1 +pt+ (pt)* +--] =

740G
Taking anti-logarithm in the last relation we obtain (14).

Remark 5.1. If we put p = 0 in the limiting PMF given by right side of the relation (14)
we obtain the PGF of the usual Poisson distribution with parameter A > 0.

Therefore, we have a reason to define the corresponding r.v. by the following definition.
Definition 5.1. We say that the r.v. Z has an inflated-parameter Poisson distribution

with parameters A > 0 and p € [0, 1), and will denote this by Z ~ IPa(X, p), if its PGF Pz (1)
is represented by the following eqnation

Py(t) = exp [A—l(i:_f_/l))] . (15)

By analogy with the NB case, we will obtain the PMF of the inflated-parameter Poisson
distribution by the following proposition.
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Proposition 5.2. The PMF of the IPo(\, p) distributed r.v. 7 is given by the following

relation
e

P(Z=2z) = M1 = p)|rrEEt (18)
21,22, - - LZ1RR0 ..
where z = 0,1,... and the summation is over all nonnegative integers z,, z3, z3, . .. such that
2+ 2z2+323+ - =2,

Proof. From the PGF (15) we have

Pz(t) = ezp [/\(t — (1 +pt+ p* + - .)]

= ezp{)\{—l + (1= p)t+ p(1 — p)2 + p*(1 — p)t* + -~ ]} .
Using the Taylor expansion of the exponential function exp(z), we obtain
S A1+ (1= p)t+p(1 = p)t* + p*(1 - p)t* + - |

Pr(t) = 3

n=0

1

n!

oc yn
Pz(t) — Z _)‘n_'_ Z ( n )(_1)710(1 _ p)nl+uz+---png+2ng+v~tm¢2n2+3n3+»~’
n=0

Mg, 7, .. N T

where the last summation is over all nonnegative integers ng, ny, no,. .., such that no + ny +

ny + -+ + = n. Substituting in the last expression n; = 2z;, 1 > 0and n =z — ;’io(j —1)z;
we obtain o \ et 2ad2sate 00 \
1~ 1422+ 422 3+ _ 2o
Pz(t) — z tz Z [ ( p)] 14 ( ) ,
zilz! zp!
=0 2Zy,22,... 12 zo=0 <0
where z = 0,1,... and the last summation is over all nonnegative integers z, 23, z3, . .. such
that z; + 2z, + 323 + - - - = z. Therefore,

P;(t) = it‘P(Z =z),

where the probability P(Z = z) is given by (16) for z > 0.

Remark 5.2. From (16) we obtain the probabilities of the first four values of the r.v.
Z ~ IPo(), p), given by the following expressions

P(Z=0) = e,

P(Z=1) = e X1 - p),

P(Z=2) = ¢*\1-p) [252 + ],

P(Z=3) = e?)1-p) ﬁ%%‘fﬁ + AL - p)p+p2] .
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Remark 5.3. We will show how to obtain the PMF (16) of the inflated-parameter Poisson
r.v. from the PMF (12) of the inflated-parameter NB distribution by using the limiting
conditions (13).

It is easy to show that the following equality is true

(y1+y2+---+r—1> :ﬁ(r—-1+yi)(r—1+y,<—1)-~-[r—1+y¢—(yi—l)] —ﬁA'
y]:st"'vr—l "

K]
i=1 Yi- i=t

Then (12) can be represented as

PY =y) =1 Z (1- p)y|+yz+--'pyz+‘1y3+---A1(1 - HAi(l —m)¥,
Y, Y2, .- i=2
Under the limiting conditions {13) the following two relations
T Vi
lim lim#z" = lim (l - —) =e? and lm(l-n)%="—, i=12,...
00 11 00 r r—00 r¥i
are valid. Then
) e AW prE
lim lim A;7" (1 — m)* = and limlimA; = —, 1=2,3,...
r=00 121 y1! r—00 11 yi!

Therefore,
lim lim P(Y = y) = P(Z = 2),

r—00 731

where P(Z = z) is given by (16) for z =0, 1,....
Remark 5.4. The mean and the variance of the I Po(m, A) distribution are given by

A Al + p)

E(Z) = (—1_—[)) and Var(Z) = (I———W

Remark 5.5. Let us note that the I Po(}, p) coincides with the Pélya-Aeppli distribution,
introduced by Evans (1953).

6 Inflated-parameter Bernoulli Distribution

Until now, we defined the inflated-parameter geometric distribution, the inflated-parameter
NB distribution (by summing 7 i.i.d. IGep(w, p) r.v.’s) and the inflated-parameter Poisson
distribution (from the INB(m, p,7) distributed r.v. by using the limiting conditions (13)).
Qur aim is to obtain the same inflated-parameter Poisson distribution (given by (15) or
(16)), but starting from an appropriate defined inflated-parameter Bernoulli distribution (as
in the classical theory).
Let us define the r.v. @ as follows:

P(QZO) = 1-7(,
PQ=k = 7m*'(1-p), k=1,2,... (17
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The above equations define a proper probability distribution on the set of the nonnegative
integers.

Definition 6.1. We call the r.v. @ defined by (17) an inflated-paramcter Bernoulli
distributed with parameters 7 € (0,1) and p € [0, 1), and we will denote this by Q@ ~ I Be(x, p).

Remark 6.1. If p = 0, the inflated-parameter Bernoulli distribution 7 Be(w,0) coincides
with the usual Bernoulli distributed r.v. with parameter 7. taking values 0 and 1.

From (17) we calculate the corresponding PGF Py(t) given by the following expression

w(1 1)
Po(t) = 1 - ———. 18
@ (t) e (18)
7 Inflated-parameter Binomial Distribution
Now, if we sum n i.i.d. IBe(m, p} r.v’s we will obtain the v.v. B with the following PGF
Py(t) = [1 - M] (19)
1—1ip

Definition 7.1. We call the r.v. B defined by the PGF (19} infleted-parameter bi-
nomial distributed with parameters 7 € (0,1), p € [0,1) aud n. and will denote this by
B ~ IBi(m, p,n).

The next proposition represents the PMF of the IBi(7, p, n) distributed r.v.

Proposition 7.1. The PMF of the I Bi(w, p,n) distributed r.v. B is given by the follouwing
relation

b +by 4o
PB=b=1-1" Y < " - )/)" [M} . (20)

by by n—by —by—- (1—m)p

where b= 0,1, ... and the summation is over all nonnegative integers by, by, by ... such that
by + 20, + 30y =h.

Proof. From the PGF (19) we consequently obtain
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w(l— p)t]n

1—pt

i
k=0 k p(l - ﬂ-)(l - pt)

n\ [#({1-p) 2,2 )
k:a(k) [p<1-n>(pt*'p ot ﬂ

(1 _ 7r)" z": (n> Z ( k ) I:Tr(l — p)]k|+k2+-.. (tp)kl+2k2+m
im0 \F ki, ka, ki, ke,...) [ p(1 — =) :

where the last summation is over all nonnegative integers ki, k2, .. ., such that ky+k,+-+- = k.
Substituting in the last expression k; = b;, i > 1and k= b-372,(j ~ 1)b; we finally obtain

1l
_
)
=
NgE

I
=
[
3
=2
NgE

where the probability P(B = b) is given by (20) for b > 0.

Remark 7.1. Representation (20) has the following equivalent form:

PB=b= Y (

b17b27"‘

T
1 - T 1 - by b+ b2+2;,3+,..’ 21
79,01, bo, .. >( ) [7r( /’)] 2 (21)

with & = 0,1,... and summation over all nonnegative integers by, by, bs, ..., such that b +
2by + 3b3 + - -+ = b, under condition that ng +b; + by + -+ = n.

Remark 7.2. Let us note that our I Bi(n, p,n) distributed r.v. can take infinite number
of non-negative values, since by construction the corresponding inflated-parameter Bernoulli
distributed r.v. can take all non-negative values.

Remark 7.3. The first four values of the probabilities of a r.v. B ~ I Bi(m, p, n) are given
by the following expressions

P(B=0)=(1-m)",
P(B=1)=(1-m)""n(1-p)n,
P(B=2)= U—wV*ﬂl—ME%ﬂl—M+nU—wML
P(B=3)={1-m"(1-p}|(5)72(1 - p)* +n(n—- 1)1 -m)7(1 - p)p+n(l - 7r)7p2] .

Now, by putting in (19)

n—oo and =« —0, suchthat n7r=2A=const>0, (22)
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we would like to obtain in the limit the PGF (15) of the inflated-parameter Poisson distribu-
tion. Indeed,

lim lim Pg(t) = lim [1_ AU"U)]" _ m)[/\(r-l)]

n-+00 10 n—oo n(l — pt 1—tp
Remark 7.4. The PMF (16) can be obtained from the PMF (21) by using the limiting
conditions (22} also, but we omit these calculations (compare with Remark 5.3).
Remark 7.5. The mean and the variance of the IBi(r, p, n) distribution are given by

E(B) = "”p and 1/'ar(B)=gl((—ll—:—7§ﬂ

8 Inflated-parameter Logarithmic Series Distribution

Let Y ~ INB(rm, p,r) and its PGF Py(t) is given by (11). From (12) we find that P(Y =
0) = n". Then P(Y > 0) = 1 — x". Now, let us consider the truncated at zero INB(w, p, 1)
distributed r.v. Y,. Its PMF is given by the following relation

1—ar

P =y) , n=12...

The corresponding PGF Py, (t) has the form

w T f(=pt) = [1 = (1~ 7+ pm))
[Py(t)*ﬂ—l_wf{ 1 —t(1 -7+ pr)] }

Palt) = ——
Assuming r — 0 in the last expression, after using the L'Hoépital's rule, we obtain the
relation

. 1—pt
iy P (1) = 1o | =

1—-7+ /)7'()} (=tnm)™".

If we denote by L the r.v. having the limiting PGF, then the following equality is fulfilled

(1-m)(1 - p)t

P (t) = In|1
L (1) n[+1—t(l—7r+p7r)

] (—=inm)~".
After simple transformations, the PGF P.{t) can be given by the following equivalent
representation
(1-m(1 - p)t
1—pt
Remark 8.1. If we put p = 0 in the last cxpression, we derive the PGF of the usual
logarithmic serics distribution.

Pr(t) = In [1 - ]7 (Inm)~", (23)

So, we are ready to give the following definition.
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Definition 8.1. We say that the r.v. L has an inflated-parameter logarithmic series
distribution with parameters 7 € (0,1) and p € [0,1), and we will denote this by L ~
ILS(m, p), if its PGF Py (¢) is given by (23).

The following proposition represents the PMF of the defined inflated-parameter logarithmic
series distribution.

Proposition 8.1. The PMF of the ILS(), p) distributed r.v. L is given by the following
relation

(-14+4L+0L+--)

P(L=1)= 1-— 1 = p)JirHat 12+'Z‘3+4~‘ 24
(L=1) 1 zZ SRS (1 =m)(1 - p)] o (24)
]! 21" .
where | = 1,2, ... and the summation is over all nonnegative integers ly,ly,l3,... such that
Lh+2+3+---=1

Proof. From (23) we have
Pt) = In [1 ~(1=m)(1 - p)t(1 + pt + p*t® + - )] (tnm)™!

= - — 242 .”i+1
-(zmw};[t(l (1 P)(liiqt+pt+ )i

after using the Taylor expansion of the logarithmic function in(1 — z). Therefore,

> 1 i+ 1 .
P t) = —(Innw -1 i ( > (l_p)(l—ﬂ') 711+ﬂ2+---pn2+271:l+~'tm+2nz+37|3+--'_
( ( ) ;l-“lnh%’“. ny,Na, ... [ ]
The last summation is over all nonnegative integers n;, n,,. .., such that n; +ny+--- =i+ 1.

Substituting n; =14, 1 > land i+1=1-32,(j — 1)I; we obtain

&= “1+4+h+--)
Pty = —(lnm) ' 3080 Y ( 1111121 : ) (1= p)(1 = m))irtletplavlat
=1, e

i.c. we derived the PMF (24).

Proposition 8.2. Let the rv. Y ~ INB(nw,p,7). Then the following convergence is
fulfilled
limP(Y =y]Y >1) = P(L=y),
;

where the rov. L ~ ILS(7,p).
Proof. Since P(Y > 1) =1 — n", we have
PlY=y4Y >1) PY=yY=>1

PV =yl¥ 21 = PY > 1) - -7
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From the last relation aud (12) we have

: " =1 -
PY =yly >1) = (yl + Y2+ ! )[(1 — - p)]_,/‘+y,+..,/)y2+zy5+ )
L=y, N Yy or =

_ o > (i +yatetr—1)(r+2)(r + 1)[(1 )1 e

I —ar n'y! .. '
Yo, Y2,
Notice that according to the L'Hépital’s rule lim =~ = —(Inm)~'. Then it can be seen that
ro0 -7

lin& P(Y = y|¥ > 1) converges to the PMF P(L = y),y = 1,2,... of the inflated-parameter
r—

logarithmic series distribution as given by (24).

Remark 8.2. The classical NB and logarithmic series distributions are related with the
same limiting results stated by the last two propositious, see Qu at al. {1990).

Remark 8.3. The probabilities of the first three valucs of the r.v. L ~ ILS(w,p), are
given by the following expressions

P(L=1) =—(in7)"'(1=p)(1 =),
P(L=2) =—(lnm)7'(1-p)(1 - m) [U=i=md ¢ o],
P(L=3) = —(inm) 11 = p)(1 = m) [L2=mE 4 (1= p)(1 = 7)o+ 2]

Remark 8.4. The mean and the variance of of the rv. L ~ TLS(w, p) arc given by the
following expressions
—(1—-7) (L =m)lnx(1 +7p) + 1 — 7]

E(L) = m and V¥ (l‘l'(L) = Tr2(1 — /))2(17”T)2

9 A Family of Inflated-parameter GPSD

Having in hands our inflated-parameter discrete distributions studied in the previous sections,
it is natural to propose an “inflated-parameter generalization of the GPSD. In this section we
define the family of inflated-parameter GPSD. We give common representation of the PMF’s
and PGF’s in the corresponding subsections. An overdispersed property of the new family is
discussed and a new constructive interpretation of the additional parameter p is given. We
will assume hereafter that p € [0,1).

9.1 Common Representation of the PMF’s

One can observe that the PMF’s of the inflated-parameter binomial, Poisson, negative bino-
mial and logarithmic series distributions given by (21), (16), (12) and (24) correspondingly,
have similar representations according to the additional parameter p. Therefore, we can expect
a common expression of the corresponding PMF’s, as states the following proposition.
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Proposition 9.1. The PMF’s given by (21), (16), (12) und (24), correspondingly, have
the following common representation

1 )
PIN=K) = = 5 a(k)[p(1 — p)hetphet it (25)
9(0)
kl) k’?s e
withk =0,1,2,..., p€[0,1),0 > 0, and the summation is on the set of all nonnegative integers
ki, ko, ..., such that ky +2ko+--- = k. If the r.v. N ~ ILS(0, p), its realizations begin from 1
and the summation in (25) is over the nonnegative integers, such that ky + 2k, + ... = k+ 1.

In the particular cases, the functions a(k), g(6) and the parameter 8, arc gwen by the
following expressions

N ~IBi0,p,n): alk) = (4t i obike ) 90 = (140, 6=

N ~1Po(#,p): a(k) = tr g(0) = ¢, 6=,
N~ INB@,pr): alk)= (525000, g®)=(1-0)7, 8=1-x,
N~ILS(0,p): (k) = Skttt g(f) = —In(1—6), 6=1—r.

Proof. Using simple transformations one can obtain the above relations from (21), (16), (12)
and (24), respectively.

Definition 9.1. The r.v. N belongs to the family of Inflated-parameter GPSD with
parameters 6 > 0 and p € [0,1) if its PMF can be represented by (25).

Remark 9.1. Let us note that the defined family is different than the corresponding
family studied by Gupta et al. (1995).

The following statement gives alternative expressions for the corresponding PMF's.

Proposition 9.2. The PMF’s of the IBi(8, p,n), IPo(6,p), INB(8, p,r) and ILS{8, p)
distributed r.v.’s can be given by the following equivalent expressions

min{k,n) _ ) )
N ~ IBi(r,p,n): PN=k)= (7) (l:_ ;)[w(l - = )i

N~IPo(dg): PN=k= 3 (E*I>M.
i=l

il '

k _ i
NeaNBmpn: P =n= w3 (ST (T - ma -

7

N~ILS(m,p): P(N=m)= (~lnr)" i (Tf‘ - 1) [(t =m){ - Pl $
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where k =0,1, .., m=1,2,... and it is assumed that Y2 =1.
Proof. We will demonstrate how to obtain the PMF for the r.v. N ~ IPo(A,p). The
remaining expressions can be deduced in a similar way.

The starting point here is to use the following relation

1 x (l+5-1
(l_y)jzz( l )y', 0<y<l, (26)
=0

valid for any j =1,2,....
For the PGF (15) we have

Py(t) = eap{A-1+(1-p)t+p(l = p)t* +p*(1 = p)t* + -]}

Using the Taylor expansion of the exponential function erp(z), after some algebra we obtain

Py(t) = e‘*{Hi iUl }
=1

it (1= ptp

Applying (26) in the last expression we have

S P(N = k)t = e’\{l-{»i[)‘_(l—_p)tf_i(l'*_i_l)pltl}.

it
J: =0

The PMF of the r.v. N ~ IPo(A, p) given by the proposition is obtained by equating the
coefficients of t* on both sides of the last equality for fixed & =0,1,2, .. ..

9.2 Common Representation of the PGF’s

Let Py(t) and Px(t) be PGF’s of the non-negative integer valued r.v.’s N and X, respectively.
Let N denote the number of claims and let X; denote the amount of the i-th claim,7=1,2,.. ..
Let {X|, X2,...} be a sequence of i.i.d. r.v.’s, with common PGF Py (). Assume that the
X,'s are also independent on N and consider the random sum

S:4\’1+1X’2+"'+4YN,

with the convention that § = 0 if N = 0. Then S equals aggregate claims, and the cor-
responding PGF Pg(t) = Pwn(Px(t)), see for example Bower et al. (1997). This situation
describes the portfolio of insurance policies during a given length of time.

Now, if N belongs to the family of GPSD with parameter 8 defined by (1) and X is an
arbitrary discrete distribution, then the resulting random sum S has a PGF given by the
following expression

_ 9(0Px(1))

Ps(t) = R

where the possible choices of the function g(#) are given by Proposition 9.1, see Hirano ct al.
(1984).

(27)

314



According to Proposition 9.1 the inflated-parameter binomial, Poisson, NB and logarithmic
series distributions have a common representation for their PMF’s. Therefore, one can expect
that they have the corresponding common representation of their PGF’s. This is precised
by the following statement, which gives the PGF of the inflated-parameter GPSD defined by
Definition 9.1.

Proposition 9.3. The PGF of the inflated-parameter GPSD is given by (27), where the
functions g(6) are given by Proposition 9.1 and

Py(t) = 1122 (28)

Proof: Using simple transformations from the corresponding functions g(#), given by Propo-
sition 9.1, relations (27) and (28), one can get easy the PGF’s (19), (15), (11) and (23),
respectively.

Remark 9.3. In fact, Proposition 9.3 gives a constructive representation of the distri-
butions belonging to the family of inflated-parameter GPSD. Indeed, (28) is the PGF of the
geometric distribution with parameter 1 — p and taking positive integer values.

In terms of the collective risk model, this means that the aggregated claim S has inflated-
parameter GPSD when the individual claims have geometric distribution with parameter 1— p,
t.e. X; ~ Gey(1 — p), and number of claims N for a given length of time is a r.v. belonging
to the usual family of GPSD with parameter 8.

Remark 9.4. Proposition 9.3 gives, in fact, a new interpretation of the additional param-
eter p (being a parameter of geometric distribution), different than “zero-inflated” proportion
and correlation coefficient, as discussed earlier.

Remark 9.5. From (27) and (1) it is easy to establish, that the variance-mean ratio of
the inflated-parameter GPSD is greater than the corresponding variance-mean ratio of the
original GPSD, i.e. our new family is overdispersed according the family of GPSD, if the
additional parameter p € (0,1).

10 Applications

In this section we will approximate the frequency data given in the column headed “Observed”
of the Table 10.1 by using IPo(A, p) and INB(w, p,r) distributions. The statistics are taken
from Daykin et al. (1994) p. 52, and relate to claims under UK comprehensive motor policies.
The 421240 policies were classified according to the number of claims in the year 1968.

Let us denote by X, and o2 the sampling mean and variance. Then the average number
of claims per policy is X,, = 0.13174 and o2 = 0.13852.

In the column headed “Poisson” of the Table 10.1 are given the corresponding expected
values by using the usual Poisson distribution with a parameter A = X, = 0.13174. The cal-
umn of the Table 10.2 headed “NB” sets out the resulting NB approximation with parameters
7 = 0.951 and r = 2.558. The last rows show the corresponding values of the Pearon’s x?.
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The value of the chi-square in the Poisson case is too high, so the insufficiency of the
Poisson law for the data is evident. The reason is that the sampling variance is greater than
the sampling mean, whereas they should be almost equal if the Poisson law were valid. The
value of x? in the NB case is 9.18 which gives probability 0.05 for 5 degrees of freedom, so
that the representation is acceptable.

We will not discuss here the Maximum Likelihood (ML) estimates of the parameters and
their properties, but they can be calculated numerically. Here we give the corresponding results
for comparison only. The ML estimates are obtained by a direct minimization approach of
the log-likelihood following Mickey and Britt (1974). The minimization procedure is based on
derivative-free algorithm for nonlinear least squares proposed by Ralston and Jennrich (1978).

10.1 IPo()\, p)-case

The mean and variance of the TPo(), p) distribution are given by Remark 5.4. Solving the
corresponding system we obtain the following moment estimates for the parameters A and p:

2 7 Ny 24

gt~ X : 2X

f) = :—T,n and A= T‘*ﬂ?,
g+ X, or+ X,

Remark 10.1. The same estimates can be found, for example, in Johnson et al. (1992)
pp. 381-382, where they were reported for the Pélya-Aeppli distribution, see Remark 5.5.

In our case we obtain the values
p=00251 and A =012843.
The corresponding expected values are given in the column headed “1Po” of the Table 10.1.

Table 10.1. Poisson case

k  Observed Poisson IPo IPo-ML
0 370412 369246.88 370469.93 370435.30

1 46545  48643.57 16385.30  46447.48

2 3935 3204.09 4068.21 4045.88

3 317 140.70 296.20 291.57

4 28 4.63 19.14 18.61

b 3 0.12 1.13 1.09
>6 0 0.01 0.07 0.06
Chi-square 667.52 13.60 13.61

The comparison of the expected values given in the columns headed *Poisson” and “IPo”
shows that TPo(), p) distribution fits the observed frequencies much better than the usual
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Poisson distribution, which has a shorter tail than the data. The value of x? is 13.60 which
gives probability 0.04 for 5 degrees of freedom, so the approximation by I Po(}, p) distribution
is acceptable (observe that the use of the NB distribution is preferable if our criterion is the
value of the x? statistics).

Remark 10.2. We calculated a positive value for the moment estimate of the parameter
p. This can be interpreted in the following way: the observed number of zeros is more than it
can be predicted by the usual Poisson distribution (as it can be seen from the Table 10.1).

We obtain the following ML estimates
prr = 002441 and  Apy, = 0.12852

with x2 = 13.61. One can see that the ML estimates of the parameters are close to the values
of the corresponding moment estimates. The corresponding expected values are given in the
last column of the Table 10.1.

10.2 INB(r,p,r)-case

To estimate the parameters of the INB(x, p,r) distribution we need additionally the third
moment together with sampling mean and variance.

The mean and the variance of the r.v. X ~ INB(mw,p,r) are given by Remark 4.3. From
the PGF (11), after some algebra we obtain the following relation for the third morent

B(X?) =

1- 3(r+1 (- 1 2)(1 — 7)?
M=m [ gy 3D NA=n) | D040
s p r
The solution of the corresponding system gives the following procedure for calculation the
moment estimates of the parameters.

Step 1. The moment cstimate of the parameter p is a solution of the following quadratic
equation
ap® +bp+c=0,

where ) )
. 207, ms — o
= ‘X — R S—.
a ( +X>(Y+X,.) X,
202 ms
= JX X
+X)( o i )+2X",
and

2 . 202 my + o?
Kot 2} (X4 2m) Tt
,X X Xa
with m; being the third sample moment;
Step 2. The moment estimate for the parameter 7 is given by

3 -1
= {;"(1—/))— ] :
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where p is the result from Step 1;

Step 3. Finally, the moment estimate of the parameter r can be calculated by the following
formula _
Xnﬁ-(l - ﬁ)

1-7

f= ,

where g and 7 are the calculated values from Step 1 and Step 2, correspondingly.

For the considered data we obtain the following moment estimates
p=—.03869, 7 =0.88428 and 7 = 1.04564.

In the column headed “INB* of the Table 10.2 are given the corresponding estimated frequen-
cies, when using the computed moment estimates of the parameters. One can see that the
INB(rm, p, 7} distribution fits the observed frequencies perfectly.

Table 10.2. NB case

k  Observed NB INB INB-ML

0 370412 370459.94 370409.99 370412.37

1 46545 46413.30 46533.37 46545.63

2 3935 4043.97 3922.17 3928.82

3 317 300.92 325.21 324.23

4 28 20.48 26.85 26.58

5 3 1.32 2.21 2.17
>6 0 0.09 0.20 0.19
Chi-square 9.18 0.78 0.76

Remark 10.3. We calculated a negative value for the moment estimate of the parameter
p. This is possible (see Section 2.2) and can be interpreted in the following way: the ohserved
number of zeros is less than predicted by the classical NB distribution. Let us note, that in
the Poisson case we observed just the opposite situation (compare with Remark 10.2).

We obtain the following ML estimates for the parameters

pumr = —.03670, 7pp = 0.88748 and 7y = 1.07727,

with x2 = 0.76. The corresponding estimated frequencies arc given in the last column of the
Table 10.2.

Remark 10.4. The computer program code in FORTRAN for computation of the corre-
sponding PMF’s is available from the third author upon request.

318



11 Conclusions

In this paper we introduce extensions of some classical univariate discrete distributions. This
can be considered as a new method for adding a parameter to a family of distributions. The
natural interpretation of the additional parameter p € [0,1) being “zero-inflated” parameter
(see Section 2.2), correlation coefficient (see Remark 3.5) and parameter of a mixing geometric
distribution (see Remark 9.3), gives possibility to use the proposed class of inflated-parameter
GPSD for modeling dependent count or frequency data structures, which naturally appear
in Insurance, Finance and Economics. The corresponding variance-mean ratios show that
the inflated-parameter distributions are overdispersed according to their univariate analogue.
The results in Section 9 show that it is possible to define different classes of extended GPSD,
taking a mixing discrete distribution, different than the geometric one. The simulation results
from the last two subsections show that the inclusion of the additional parameter p improves
significantly the corresponding approximations of our frequency data when using I Po(), p)
and INB(n, p,r) distributions.

This paper is only a starting point, giving a theoretical basis for the distributions that
belong to the new class of inflated-parameter GPSD. We are sure, the additional parameter
p will lead to a second-order difference equation, which will help to estimate effectively the
tails of distributions. Some future investigations related with this topic as well as with some
statistical score-tests are currently in progress.
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