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Abstract

In pricing joint last survivor insurance policies, standard industry practice assumes
independence of mortality rates among the insured and adds on loading factors to
compensate for possible under-estimations of the joint last survivor mortality due to
common life style, broken heart factor or common disaster.
Considering the fact that the separate mortality experiences for males and females are
well documented, we study a dependence relation that describes the joint mortality of
married couples in terms of marginal female and male mortality rates. We hope that this
will help the insurance industry to utilize the existing single life mortality tables (male /
female, smoker / non-smoker, and select / ultimate tables) in pricing joint life policies
without relying on the independence assumption and yet reflecting more realistic joint
mortality rates.
Using data from a large insurance company, we construct a parametric model for the joint
survival function based on a Hougaard copula function. The data is from joint annuity
contracts and represents mostly married couples. Age difference within a couple is a
significant factor in our model. We investigate the association between the marginal
survival functions and apply the results to price the joint last survivor insurance using
single life tables.

Note. This is a preliminary version of a paper to be submitted for a publication.
Because of possible modifications, this paper may not be cited without the permission of
the authors.

1. Data Analysis

The data set is from 14,947 joint and last-survivor annuity contracts of a large Canadian
insurer. The contracts were in pay out status over the observation period December 29,
1988 through December 31, 1993. We included 11,457 contracts in our study after
eliminating duplicating contracts (3,432) and single sex contracts (58).
The fact that the data set reflects last- survivor annuities with guarantee periods raises a
question of possible under-reporting.
Following the insurance industry practice of using integer ages at issue and since we
compute discrete insurance premiums 

yx
A , we round the female and male entry ages and

termination ages to nearest integer values and denote them as EF , ME , 
F

T  and 
M

T . We

let D denote the age difference ME - EF .



The following table is a preliminary data analysis.

Table 1. Number of Policies and Observed Deaths by Age Difference D.

All Data D<0 D=0 D=1 D=2 D=3 D=4 D>4

Number of Policies (Total) 11457 2133 1037 1290 1246 1166 1025 3560

Female Deaths (FD) 449 103 43 70 47 44 39 103

Male Deaths (MD) 1245 201 102 149 144 131 119 399

Both Died (BD) 194 39 19 30 20 20 19 47

Ratio )//()( TotalMDFDBD ⋅ 3.98 4.02 4.49 3.71 3.68 4.05 4.20 4.07

(under-reporting of first deaths may have affected the Ratio )//()( TotalMDFDBD ⋅ )

If female and male lives are independent, we should have
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2. Univariate Model

We describe the procedures we used to obtain estimates of the univariate (single life)
female and male survival functions. Computations were executed in Microsoft Excel and
SPSS.
Two parameter Weibull survival functions for female and male can be expressed
(following Frees et al.(1996)) as:
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where m is the scale parameter and m/σ  is the shape parameter, with appropriate
subscripts. Maximum likelihood estimation is carried out in Microsoft Excel with
adjustments related to left truncation and right censoring of the data according to the
scheme of Frees et al.(1996).
Two parameter Gompertz survival functions for female and male can be expressed as:
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where parameters m and σ , with appropriate subscripts, correspond to modes and scale
measures of the Gompertz distribution. Maximum likelihood estimation with the



likelihood function adjusted for left truncation and right censoring is carried out in
Microsoft Excel according to Frees et al. (1996).

Table 2. MLE of Parameters of Univariate Survival Functions

Gender Parameters Weibull St.Error Gompertz  St.Error

Female m F 92.62 0.79 91.81 0.67

σ F 9.28 0.54 8.14 0.43

Male m M 86.32 0.32 85.86 0.30

σM
10.87 0.42 10.6 0.42

3. Age Difference as a Factor

 Since most of the pairs in our data set, and probably most of the customers of last
survivor insurance policies, represent couples who share wealth and lifestyle, we can list
several possible sources of association in female-male mortality rates such as

- common lifestyle,
- common disaster,
- broken-heart factor.

The first of these three factors has an effect throughout a couple’s lifetime and will affect
the correlation between  X  and Y – their ages at death. However, the other two factors
correspond to events happening simultaneously (common disaster) or close in time
(broken-heart factor). Therefore, one could expect an increased number of cases when
couple’s deaths occur closely one after the other in real (chronological) time. For a
couple with age difference 0≠D , the proximity of their deaths does not imply a
proximity of their ages at deaths X and Y. We will call this phenomena as chronological-
time source of association.
One way to deal with this issue would be to shift the time scale introducing a new
variable Z = Y-D, “lifelength of the male partner since DOB of the female partner” or
"wife’s age at the time of husband’s death". The effect of chronological-time source of
association translates naturally into correlation between X and Z. Therefore, closeness of
the times of deaths of a couple will indicate  closeness of the values X and Z, regardless
of couple’s age difference. Although obtaining a meaningful marginal distribution for Z
might be difficult, we study the correlation between X and Z to confirm our intuition that
the age difference D is indeed an important factor to consider.

Table 3. Nonparametric Correlations

(Z=Y-D: Wife’s age at the time of husband’s death)

Variables X,Y X,Z X,Y/ D=0 X,Y/ D=1 X,Y/ D=2 X,Y/ D=3 X,Y/ D=4

Kendall's $τ 0.639 0.906 0.838 0.904 0.892 0.802 0.893



Ratio to $τ  (X,Y) 1 1.42 1.31 1.41 1.40 1.26 1.40

Spearman's $ρ 0.795 0.975 0.934 0.975 0.961 0.895 0.967

Ratio to $ρ  (X,Y) 1 1.23 1.17 1.23 1.21 1.13 1.22

4. Bivariate Model

In some recent studies (see Hougaard et al. (1992), Frees et al. (1996)), the method of
copula functions was suggested for construction of joint survival functions. According to
this method, the joint survival function of  X  and Y is represented as

S x y C S x S yF M( , ) ( ( ), ( )),=  where

S x P X x S y P Y yF M( ) ( ) ( ) ( )= ≥ = ≥and

are female and male marginal survival functions, and  C(u,v) is a copula – a function
with special properties, mixing up the marginals with a certain association parameter.
Frees et al. (1996) suggest using Gompertz or Weibull marginal survival functions and
Frank’s copula function (Frank (1979)):
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with the association parameter α < 0  for the construction of a bivariate spousal survival
function. We followed the same approach, considering also another class of copula
functions with association parameter α > 1 , introduced by Hougaard (1988):
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For these models, the likelihood function was built for the available data sample (11,457
joint annuity policies observed for the period of 5 years), and then the maximum
likelihood estimate was constructed for the 5-dimensional vector parameter
( , , , , )m mF F M Mσ σ α , where the first 4 components correspond to Gompertz or Weibull
marginals, and the last one is the parameter of association. The technique introduced by
Frees et al. (1996) and replicated by the authors allows for left truncation and right
censoring of the data. The maximum likelihood estimates  presented in Table 4
correspond to parameters of Gompertz (three first columns) and Weibull (three last
columns) distributions evaluated for the univariate (compare Table 2) and bivariate
(shaded) cases. Parameters m and σ  with appropriate subscripts correspond to modes and
scale measures of the Gompertz distribution, and to the scale and scale/shape parameters
of the Weibull distribution, so that we can expect these values to be close to each other.



Table 4. MLE of the Parameters of Joint Survival Function S x y( , )

Model Univariate Bivariate Univariate Bivariate
Marginals Gompertz Weibull

Copula Frank Hougaard Frank Hougaard
Female m F 91.81 88.55 88.98 92.62 89.09 89.51

σ F
8.14 8.4 8.29 9.28 8.92 8.99

Male m M 85.86 85.2 85.45 86.32 85.74 85.98

σM
10.6 10.92 11.19 10.87 10.99 11.24

Association α 1.615 1.638
-3.8 -3.75

Kendall's $τ .37 .38 .37 .39

Spearman's $ρ .54 .53

Let us observe though that the univariate estimates of the marginals (columns 3 and 6 of
Table 4, see also Table 2) sometimes differ substantially from the corresponding
components of the vector parameter ( , , , , )m mF F M Mσ σ α  estimated simultaneously. For
m F , for instance, this difference is higher than four standard errors.
The estimates obtained for the association parameter α  indicate a strong statistical
dependence between female and male mortalities in a married couple (see the last two
rows of the table). There exist direct relationships between values of α  and such
nonparametric correlation measures as Kendall’s (for both classes of copulas) and
Spearman’s (Frank’s copulas). For example,  for Hougaard’s copula τ α= − −1 1 .

However, we believe that the unconditional survival function S x y( , ) does not capture all
the association between X and Y. Some additional dependence between female and male
mortalities could be captured if an additional observable d - “the age difference between
husband and wife”, is introduced into the picture, and conditional survival functions are
studied.

A rationale for this is given by the results of maximum likelihood estimation for
alternative models presented in Table 5 below. Here we assume Weibull marginals and
Hougaard’s copula function. Model A is obtained by changing time scale to calendar time
(estimating the joint survival function of X and Z instead of X and Y); Model AD1 (d =
0,1,2,3,4) estimates S x yd ( , )  by separate subsamples D = d. All these estimation results
show higher values of association than those presented in Table 4. The log-likelihood
value for Model A is –7,473 while for the best of parametric models in Table 4 we obtain
–7,851, and for the Weibull-Hougaard model we have –7,875. The main problem with
this model is the fact that obtaining a reasonable marginal distribution for variable Z is
not as easy as for X and Y.



Table 5. Study of Association

Parameters Model A
(X,Z)

Model AD1
d=0 d=1 d=2 d=3 d=4

Female m F 86.59 91.07 86.17 87.97 87.43 85.82
σ F 6.6 10.41 6.99 8.36 9.61 7.26

Male m M 82.66 86.94 83.85 84.75 84.78 85.14
σ M

7.61 10.69 8.26 12.92 10.32 9.46
Association α         1.81 2.44 1.68 1.93 2.33 1.88

Kendall's $τ .45 .59 .40 .48 .57 .47

We will use Weibull-Hougaard copula models similar to those above with one
distinction: the association parameter α  is allowed to depend on d. The choice of
Hougaard’s copula versus Frank’s is explained by simpler overall expression while used
with Weibull marginals, which was essential in our search of a convenient functional
form of dependence  α α= ( )d .
The joint survival function of  X  and Y given d is represented as
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are Weibull survival functions, and C u vd ( , )  is a Hougaard’s copula with association
parameter α ( )d > 1. Then the survival function given d is
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Marginals do not change with d, so the only parameter depending on age difference is
association. We choose a parametric model for α α= ( )d  to be a “Cauchy-type” function

α β γ
β
γ

( ; , )d
d

= +
+

1
1 2

 with hyperparameters ( , )β γ . This model is referred as Model AD2

in the following Table 6. Model ONE is the model beased on one survival function for all
age difference groups, thus referring to the model ignoring the age difference factor.



Table 6. MLE of the Parameters of Conditional Survival Function S x yd ( , )

Parameters Model AD2 Model 0NE

Female m
F

89.02 89.51

σ
F

8.89 8.99

Male m
M

85.82 85.98

σ
M

11.13 11.24

Association α ( )0 2.02 1.64

α ( )5 1.67 1.64
α ( )1 0 1.33 1.64

β 1.018
γ .021

5. Premium Computation: Last Survivor Insurance Premium yxA

We calculate the joint last survivor insurance premiums for each model developed above
and compare the results by the ratios of premiums based on different models. We used
i=5%.
Independence Assumption

Age Difference -10 -5 0 5 10
Female Age

50 .112 .126 .139 .150 .158

55 .142 .160 .176 .189 .199

60 .180 .203 .222 .238 .250

65 .227 .254 .278 .297 .311

70 .284 .316 .343 .365 .381

75 .349 .386 .416 .440 .457

80 .422 .462 .495 .519 .537

Model AD2

Age Difference -10 -5 0 5 10

Female Age
50 .135 .163 .182 .183 .183

55 .170 .203 .226 .226 .226

60 .211 .251 .276 .276 .278

65 .260 .305 .333 .333 .338

70 .316 .365 .397 .397 .405

75 .378 .430 .467 .467 .479

80 .444 .497 .539 .539 .556



Model ONE

Age Difference -10 -5 0 5 10
Female Age

50 .141 .160 .173 .179 .180

55 .176 .200 .215 .222 .221

60 .218 .246 .264 .271 .269

65 .267 .300 .320 .327 .323

70 .321 .359 .383 .390 .385

75 .380 .424 .450 .459 .454

80 .442 .491 .521 .531 .526

We notice that for female ages 55 and above, the premiums are higher when the age
difference is 5 than when the age difference is 10.

Ratio of Premium Values: Model AD2/Independence

Age Difference -10 -5 0 5 10
Female Age

50 1.207 1.293 1.311 1.225 1.157
55 1.191 1.269 1.280 1.194 1.133
60 1.170 1.237 1.242 1.159 1.109
65 1.143 1.199 1.20 1.123 1.085
70 1.113 1.157 1.156 1.090 1.064
75 1.082 1.115 1.114 1.061 1.047
80 1.052 1.076 1.078 1.039 1.035

Ratio of Premium Values: Model AD2/Model ONE

Age Difference -10 -5 0 5 10
Female Age

50 .958 1.018 1.051 1.021 1.015
55 .961 1.018 1.049 1.021 1.024
60 .966 1.018 1.046 1.020 1.034
65 .974 1.017 1041 1.019 1.044
70 .983 1.016 1.036 1.018 1.051
75 .994 1.015 1.030 1.017 1.056
80 1.005 1.013 1.024 1.016 1.056

6. Application

We applied the association factors found in our study to 15-year select female and male
non-smoker mortality table provided to us by a local insurance company. This mortality
table reflects the company's insurance experience and is used to price its joint last



survivor insurance policies. Thus this model is a bivariate copula model with non-
parametric marginal survival functions.

Model: BivSelect AD: (Model AD2  with select )(xSF  and )(ySM as marginal survival
functions)

))(),((),(),( ySxSCdDyxSyxS MFdd === ,

where )(xSF  and )(ySM  are constructed using a 15-year select table from a local
company.
We calculate the premiums based on two different formulas: One calculation is done
based on what we call a full bivariate model and the other based on what we call a partial
bivariate model. The following is the rationale for the two methods.

We notice that
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Let us define conditional (superscripted) survival probabilities and net-single premiums
where the superscripts denote the spousal stastus.
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and when the joint last survivor premium is computed using this formula, we call this
model Full Bivariate Model.



On the other hand, when we approximate y
xk p  by 
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and when the joint last survivor premium is computed using this formula, we call this
model Partial Bivariate Model.

The following premiums are calculated based on full and partial bivariate models.

Full BivSelect AD  A A A Ax y x
y

y
x

xy= + −

X\D -10 -5 0 5 10
50 0.1087 0.1314 0.1496 0.1511 0.1511
55 0.1347 0.1611 0.1816 0.1823 0.1842
60 0.1656 0.1953 0.2170 0.2192 0.2240
65 0.2009 0.2326 0.2573 0.2624 0.2673
70 0.2434 0.2793 0.3086 0.3124 0.3242
75 0.2893 0.3298 0.3586 0.3698 *
80 0.3460 0.3866 0.4230 * *

Independent (Select)
X\D -10 -5 0 5 10

50 0.1009 0.1151 0.1285 0.1403 0.1500
55 0.1271 0.1445 0.1607 0.1745 0.1862
60 0.1590 0.1799 0.1987 0.2152 0.2292
65 0.1967 0.2206 0.2429 0.2626 0.2771
70 0.2415 0.2704 0.2979 0.3196 0.3385
75 0.2916 0.3264 0.3552 0.3818 *
80 0.3519 0.3888 0.4255 * *

Ratio: Full BivSelect AD/Indepentent(Select)

X\D -10 -5 0 5 10
50 1.0773 1.1414 1.1642 1.0770 1.0068
55 1.0601 1.1146 1.1303 1.0447 0.9892
60 1.0414 1.0856 1.0922 1.0182 0.9770
65 1.0211 1.0540 1.0594 0.9995 0.9645
70 1.0081 1.0329 1.0359 0.9773 0.9576
75 0.9922 1.0105 1.0097 0.9684 *
80 0.9832 0.9944 0.9941 * *



Model: Partial BivSelect AD  A A A Ax y x y xy≅ + −
X\D -10 -5 0 5 10

50 0.1144 0.1396 0.1601 0.1642 0.1636
55 0.1424 0.1721 0.1960 0.2007 0.2007
60 0.1760 0.2104 0.2371 0.2432 0.2443
65 0.2151 0.2529 0.2832 0.2911 0.2922
70 0.2609 0.3052 0.3420 0.3509 0.3544
75 0.3116 0.3622 0.4002 0.4126 *
80 0.3719 0.4245 0.4700 * *

Ratio: PartialBivSelect AD / Full BivSelect AD

X\D -10 -5 0 5 10
50 1.0526 1.0627 1.0703 1.0862 1.0833
55 1.0569 1.0687 1.0789 1.1004 1.0900
60 1.0628 1.0771 1.0925 1.1096 1.0909
65 1.0706 1.0875 1.1007 1.1093 1.0931
70 1.0718 1.0928 1.1082 1.1233 1.0932
75 1.0770 1.0982 1.1160 1.1158 *
80 1.0748 1.0981 1.1110 * *

xA
X\D -10 -5 0 5 10

50 0.1779 0.1779 0.1779 0.1779 0.1779
55 0.2162 0.2162 0.2162 0.2162 0.2162
60 0.2603 0.2603 0.2603 0.2603 0.2603
65 0.3081 0.3081 0.3081 0.3081 0.3081
70 0.3723 0.3723 0.3723 0.3723 0.3723
75 0.4336 0.4336 0.4336 0.4336 *
80 0.5056 0.5056 0.5056 * *

y
xA

X\D -10 -5 0 5 10
50 0.1756 0.1737 0.1703 0.1671 0.1669
55 0.2135 0.2109 0.2059 0.2007 0.2017
60 0.2570 0.2534 0.2455 0.2400 0.2427
65 0.3042 0.2990 0.2900 0.2851 0.2867
70 0.3663 0.3589 0.3479 0.3395 0.3460
75 0.4264 0.4191 0.4040 0.3992 *
80 0.4972 0.4864 0.4727 * *



yA
X\D -10 -5 0 5 10

50 0.1372 0.1686 0.2054 0.2478 0.2928
55 0.1686 0.2054 0.2478 0.2928 0.3439
60 0.2054 0.2478 0.2928 0.3439 0.4031
65 0.2478 0.2928 0.3439 0.4031 0.4611
70 0.2928 0.3439 0.4031 0.4611 0.5296
75 0.3439 0.4031 0.4611 0.5296 *
80 0.4031 0.4611 0.5296 * *

x
yA

X\D -10 -5 0 5 10
50 0.1338 0.1646 0.2026 0.2455 0.2912
55 0.1636 0.1997 0.2438 0.2900 0.3419
60 0.1983 0.2396 0.2875 0.3402 0.4004

65 0.2374 0.2814 0.3360 0.3974 0.4576
70 0.2813 0.3314 0.3941 0.4554 0.5257
75 0.3288 0.3852 0.4491 0.5212 *

80 0.3856 0.4424 0.5156 * *
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