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ABSTRACT 

 
In this paper, we propose measures of the risk that the value of the liabilities becomes 
larger than the value of the assets, and this especially for insurance companies. We study 
probabilities of mismatching and a degree of mismatching in unsegmented and 
multidimensional models of the balance, in which we stress the influence of interest rates 
on the active and passive side of the balance. 
 The results are important as they are useful to determine ALM-strategies for insurance 
companies, but they are also interesting in the relation of an investor versus his broker.  
 
Keywords: stochastic differential equation, Cox-Ingersoll-Ross process, Ornstein-
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1. INTRODUCTION 
 
Classical risk theory mainly concentrates on the liabilities of insurance companies and 
therefore on the study of claims, including their frequency and their amount. As explained 
in e.g. Parker (1997), the insurance companies do not only have to deal with insurance risk 
but also with investment risk like liquidity risk, risk of change and most importantly the 
interest rate risk. The insurance risk, due to the risk insured (e.g. mortality, fire, car 
accidents), can be decreased as the number of policies in the portfolio increases (however, a 
perfect and complete pooling will never occur). The investment risk does not decrease with 
an increasing number of policies since the rates of return are highly correlated. Interest 
rates both influence the active and the passive side of the balance and become very 
important when the insurance policies are long-term contracts. 
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 It is therefore essential to devise asset liability models appropriate to insurance 
companies. In this paper, we concentrate on the mismatching of assets and liabilities, 
namely the times that the value of the assets A(t ) becomes lower than the value of the 
liabilities B(t)  and this according to some definitions which will be stated in section 2, 
namely perfect matching and final matching. In a model specified for insurance companies, 
we determine the probability that a mismatching happens and we propose a mismatching 
degree in case of final matching.  
 Concentrating on ALM for banks, Janssen (1992) modeled both the assets and the 
liabilities by geometric Brownian motions. We study an extension of the Janssen model in 
which the asset fund A  takes into account fixed-income securities and this introduces 
asymmetry for A  and B . This is particularly useful for insurance companies whose 
investments are more in bonds than in shares. 
 We start with a simple unsegmented model in order to obtain a first understanding of 
the different factors in ALM. We suppose that the asset portfolio can be modeled by a fund 
containing only pure-discount bonds which reflect the rates of return of the asset portfolio 
in the past and with maturity the time horizon of the period that we are interested in. We 
study the cases that the rates of return follow an Ornstein-Uhlenbeck process or a Cox-
Ingersoll-Ross process.  
 We assume that the liability process is defined by a geometric Brownian motion with 
drift, which is correlated with the asset process in a constant way. In this generalized 
unsegmented Janssen model, we study the perfect matching and final matching of assets 
and liabilities by determining the probability of mismatching and the degree of 
mismatching. In case of perfect matching, we study the influence of the parameters of the 
asset and liability processes on the probability of no perfect matching in order to obtain 
general implications of the model to the company asset liability management and we look 
at the difference between the models with a Cox-Ingersoll-Ross process and an Ornstein-
Uhlenbeck process. We further study a multidimensional model in which we assume that 
the assets and liabilities are segmented in respectively m  and n  pools, for example into 
different investments and into different insurance contracts. We first concentrate on the 
case that the assets contain only shares.  Afterwards, we distinct shares and fixed-income 
securities which mainly differ since shares can be modeled by a geometric Brownian 
motion, but the interest-rate derivatives cannot. Since these financial instruments depend on 
the yield curve, we assume a stochastic interest rate process. 
 The results presented in this work, which are initially derived to measure the riskiness 
of an insurance company, are also useful in other settings. As an application, we look at the 
relation between an investor and his broker. 
 This paper is organized as follows. To begin with, we define perfect matching and 
final matching in section 2. The unsegmented Janssen model is presented in section 3. 
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Section 4 is devoted to the study of probabilities of mismatching in the unsegmented case. 
In section 5, we concentrate on a degree of mismatching between the assets and the 
liabilities. The influence of the parameters on the no-perfect-match probability in the 
unsegmented model is the subject of section 6. By a simple case study in section 7, we want 
to stress the usefulness of these indicators of risk to ALM. In section 8, we study the 
multidimensional model. Section 9 proposes an interesting application of our results in case 
of the relation between an investor versus his broker. Section 10 concludes the paper. 

 
 

2. MISMATCHING AND ALM 
 
Asset Liability Management may be seen as the simultaneous management of assets and 
liabilities. ALM is a way to quantify and control the various risks that a financial institution 
(like a bank or an insurance firm) encounters, and in particular the interest rate risk. The 
interest rates influence both the active side and the passive side of the balance, and not only 
the values of the present positions, i.e. assets and liabilities generated by past actions but 
also the cost and benefits of present and future actions will become different under changes 
in interest rates.  
 In theory, a financial institution would like to match its cash flows on the assets and 
liabilities sides. But in case of an insurance company, there often are considerable 
discrepancies between assets and liabilities when volumes and timing are concerned 
because an insurance company can have long-term contracts of premiums, which means 
that some of its assets may be short-term but its liabilities are long-term. So, in practice a 
perfect match is not always possible. Neither is it always desirable since the final objective 
of an insurance company is to make profit or better to maximize the net present value of the 
profit over a given time horizon. In order to achieve a higher return, they may accept a 
higher level of risk. 
 Until nowadays, ALM (especially in banks) is mainly concentrated on duration 
analysis and/or gap management. Another approach to ALM, is to use simulation models. 
Our goal is to measure the risk of the insurance company by using a stochastic model of 
both the asset and the liability side of the balance and we consider the possibilities of 
perfect matching and final matching. We say that the assets and liabilities have no perfect 
match in an observation period [ ]T,0 , if at some date t  in the observation period, the asset 
value A(t ) becomes lower than the liability value B(t) . In practice, perfect matching of 
insurance liabilities might be too demanding since low-risk investment strategies associated 
with the highest degree of matching possible usually produce lower expected returns. 
Therefore, we also observe final matching which means that we only check whether the 
assets cover the liabilities at the end of the period [ ]T,0 : )()( TBTA > .  
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 We propose the probabilities of no perfect matching and no final matching as 
indicators of riskiness. We further concentrate on the difference between liabilities and 
assets at the time horizon. These measures are interesting for the management of the 
company who can check whether they stay within the risk limits and can approve their 
strategies with respect to investment, reinsurance, pricing and acceptation of policies. This 
kind of information would also be useful for the determination of a contingency reserve or 
the solvency of a portfolio of insurance policies. 
 We do not propose these indicators as an alternative of other ALM approaches but 
rather as a complement. Starting from a good database, we advise to use different ALM-
tools like duration analysis, gap management, simulation and our mismatching probability 
and mismatching degree in order to obtain more useful information and a more complete 
idea of the situation of the company. 
 The proposed measures of risk are also useful from the point of view of regulating 
authorities. In fact the goals of an insurance company and regulatory bodies are the same to 
a certain degree. Insurance companies want to maximize their profit under an acceptable 
risk level. Regulators want insurance companies which are save for the clients. They are 
concerned with the social implications of a bankruptcy of an insurance company because 
not only the clients would be the victims, but also the third-party claimants. Therefore in 
most countries, the regulatory bodies introduced rules in connection with the contingency 
reserves and the solvency of the portfolio. They put constraints on the structure of the 
assets portfolio and they check the financial conditions of the insurance companies, as they 
also do in case of banks. E.g. in the U.S.A., the National Association of Insurance 
Commissioners (NAIC) subject insurance companies each year to computerized audits. The 
measures that we propose in this paper could be an example of an audit ratio test which 
could be used by the NAIC. 
 
 

3. THE UNSEGMENTED JANSSEN MODEL 
 
The most realistic model is to look at a portfolio of asset pools A1, A2 , ... , An  with segments 

containing different investment instruments. Such a multidimensional model will be the 
subject of section 8. 
 First, we concentrate on a less realistic but more treatable model in order to obtain an 
increased understanding of different influences. Instead of dividing the assets up in 
different classes, we suppose that we can model the assets as one group of interest rate 
sensitive securities, reflecting the rates of return of the asset portfolio in the past. Since 
insurance companies invest particularly in bonds, we model the asset portfolio by assuming 
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that it contains N zero-coupon bonds which are modeled by the rates of return which have 
been obtained by the portfolio over the last years.  
 The maturity ˜ T  of the bonds representing the asset portfolio certainly should be larger 
than or equal to the time horizon T of the observation period [ ]T,0  we are interested in. In 

order to simplify the notations, we choose ˜ T =T. The results about the mismatching 
probabilities can easily be generalized to longer maturities. In case of the proposed risk 
measure of final mismatching for stochastic rates of return, however, it makes a difference 
whether ˜ T  = T or whether ˜ T  > T. 
 In Deelstra and Janssen (1998a), we studied the case that the rates of return follow an 
Ornstein-Uhlenbeck process of the form  

drt = κ(θ − rt)dt + ηdZt , 
where Zt( )t ≥1  is a Brownian motion and where κ ,θ,η ∈ℜ+ . In this paper, we also 

concentrate on the case of a Cox, Ingersoll and Ross process of the form  
drt = κ (θ − rt)dt + η rt dZt  

and compare it with the Ornstein-Uhlenbeck case. Both processes have the realistic 
property of being mean reverting towards the long term value θ  where the speed of 
adjustment is determined by the parameter κ . The rates in the Vasicek (1977) model can 
be negative but in our opinion, negative rates of return are possible since assets can be 
invested in many different financial instruments. If the rates of return remain positive with 
certainty like for a portfolio of only bonds, the Cox-Ingersoll-Ross model is recommended. 
 We assume that financial markets are complete and frictionless and that trading takes 
place continuously. In this setting, Harrison and Kreps (1979) have shown that there exists 
a unique risk-neutral probability. 
 Under these assumptions, the assets At , modeled by the investment in N pure-discount 

bonds with maturity T, are modeled in case of the Ornstein-Uhlenbeck process by (see e.g. 
Vasicek (1977)): 

dAt = At rt +
ηλ
κ

1− e−κ T −t( )( ) 
 

 
 dt − At

η
κ

1 −e− κ T −t( )( )dZt  

with AT = N1  and in case of the Cox-Ingersoll-Ross process by (see e.g. Cox, Ingersoll and 
Ross (1985)) 

dAt = Atrt 1− λK t,T( )( )dt − AtK t,T( )η rt dZt  

with 

K t,T( ) =
2 eγ T −t( ) −1( )

γ + λ + κ( ) eγ T −t( ) −1( )+ 2γ
, 

γ = κ + λ( )2 + 2η2 , λ  the market risk parameter and with AT = N 2 . Remark that in fact, 

Briys and de Varenne (1997) also model the portfolio of assets of a life insurance company 
by looking at the asset dynamics in the case of the Ornstein-Uhlenbeck process, although 



 6

they add another diffusion term in order to capture asset risk other than the interest rate 
risk.  

 
We model the liability process B  by a lognormal process with positive constants 

µB,σ B  which is correlated with Zt( )t ≥1 . Cummins and Ney (1980) argue that the lognormal 

distribution is a reasonable model for insurer liabilities if there is a good reinsurance 
program to hedge catastrophic jumps in the liabilities. 
 
 

4. PROBABILITIES OF MISMATCHING IN THE UNSEGMENTED MODEL 
 
4.1 The mismatching process 
 
 Using the unsegmented Janssen model presented in the previous section, we study the 
relations between the assets process A  and the liabilities process B  in order to point out 
some management principles. In order to determine the probabilities of mismatching, we 
consider the mismatching process a = at ,t ≥ 0( ), which has been defined in Janssen (1992), 

namely at = ln
At

Bt

 

 
  

 
  and a0 = ln

A0

B0

 

 
  

 
 . This process has the same meaning as the surplus 

process in risk theory. We recall from Deelstra and Janssen (1998a) the dynamics of the 
mismatching process a = at ,t ≥ 0( ) in case of an Ornstein-Uhlenbeck process: 

 
Theorem 1 
The stochastic process a = at , t ≥ 0( ) is a solution of the stochastic differential equation 

dat = µ rt ,t,T( )dt + ˜ σ t,T( )dW t  

where 
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and where W = W t , t ≥ 0( ) denotes a standard Brownian motion and where ϕ  is the 

correlation parameter between assets and liabilities. 
 
In case of a Cox-Ingersoll-Ross process, Ito's lemma leads to an equivalent theorem: 
 
Theorem 2 
The stochastic process a = at , t ≥ 0( ) is a solution of the stochastic differential equation 

dat = µ rt ,t,T( )dt + ˜ σ rt , t,T( )dW t  

where 
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µ rt ,t,T( )= rt 1− K t, T( )λ( )− µB − K t,T( )2 η2rt − σB

2( )/ 2
˜ σ 2 rt , t,T( )= K t,T( )2 η2rt + 2K t,T( )η rt ϕσB + σB

2

K t,T( )=
2 eγ T − t( ) −1( )

γ + λ + κ( ) eγ T −t( ) −1( )+ 2γ

 

and where W = W t , t ≥ 0( ) denotes a Brownian motion, γ = κ + λ( )2 + 2η2  and where ϕ  

is the correlation parameter between assets and liabilities. 
 
Remark that in case of the Ornstein-Uhlenbeck process, the mismatching process 
a = at ,t ≥ 0( ) is a Gaussian process. In the Cox-Ingersoll-Ross case, the process 
a = at ,t ≥ 0( ) is not a Gaussian process since rt , the rate of return at time t, does not have a 
Gaussian distribution but is distributed as a non-central χ 2  - random variable.  
 
4.2 Perfect matching 
 
As the assets and liabilities have no perfect match if for some t ≥ 0 the asset value A(t ) 
becomes lower than the liability value B(t) , a no-perfect-match occurs if a(t) becomes 
negative (see Janssen (1992) and Ars and Janssen (1994,1995)). 
 Therefore, we define the first mismatching time in the period [ ]T,0  as 

τ = inf t : 0 ≤ t ≤ T, a(t) ≤ 0{ }. 

In order to determine the probability of no perfect match, we have to concentrate on the 
crossing probabilities P τ < T[ ], which cannot be obtained explicitly in the general model. 
To obtain more insight, we first treat deterministic rates of return. 
 
4.2.1 Special case: Non-stochastic rates of return 
 
First, let us assume that the volatility coefficient η  equals zero so that the rates of return 
are deterministic and equal  

( ) .0 θθκ +−= − rer t
t  

 
a/ Constant rates of return 
 
In order to be able to use the nice and well-known results in case of a Brownian motion, we 
first concentrate on the special case of constant rates of return r. Clearly, if r0 = θ , then 

a = at ,t ≥ 0( ) is a Brownian motion with drift and denoting µ = θ − µB +
σ B

2

2
 and σ = −σB .  

 The probability of no perfect match in the period [ ]T,0  turns out to be (see for an 

overview e.g. Deelstra (1994)): 
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 P τ < T[ ] = P sup
0≤t ≤T

Wt −
µ
σ

t 
 

 
 ≥

a0

σ
 
  

 
  . 

   =1   if 
a0

σ
≤ 0  

 







+

−
Φ+








+Φ−= −

σ
µ

σσ
µ

σ
σµ T

T
a

eT
T

a a 0/20 2
01  if 

a0

σ
> 0 , 

where  Φ( ) denotes the cumulative Normal distribution function. 

An interesting measure of the mismatching risk is to calculate the probability of 
mismatching in the period ),0[ ∞ . For T tending to infinity, we find that: 

P τ < ∞[ ] = e− 2µa0 σ 2

µ , a0 > 0
= 1 µ ≤ 0 or a0 ≤ 0.

 

Therefore, if µ  is negative or a0  is negative, then there will be no perfect match with 

probability 1. Otherwise, the probability of having at least once a mismatch equals 

e− 2µa0 σ 2

. This probability decreases if a0 = ln
A0

B0

 

 
  

 
  or µ = r − µB +

σ B
2

2
 increases and/or 

σ = σB  decreases. So, the initial assets should be as large as possible in comparison with 
the liabilities. The instantaneous drift and the volatility of the liabilities should be as low as 
possible. As motivated before, this information number can be interesting for the managers 
of the company, the regulators as well as the clients and everyone who has to deal with the 
insurance company because it is a measure of the risk position of the company. 
  
b/ Time-dependent rates of return 
 
If r0 ≠ θ , the determination of the crossing probability P τ < T[ ] is not so easy since the 
drift term of a = at , t ≥ 0( ) is time-dependent and therefore, we cannot rely on results about 

Brownian motions crossing (piecewise) linear boundaries. In this case, we can rewrite the 
first mismatching time τ  as  

τ = inf t : 0 ≤ t ≤ T, Wt ≥
1

σ B

a0 +
r0 − θ

κ
− µB − θ −

σB
2

2
 
 
  

 
t +

e− κt

κ
θ − r0( )

 

 
  

 
 

 
 
 

 
 
 

, 

which is the crossing time of a standard Brownian motion to a boundary l(t) which is 
wholly convex for r0 < θ , and wholly concave for r0 > θ .  

In such a situation, Durbin (1992) gives successive approximations for the first-passage 
densities and some error bounds.  Also Sacerdote and Tomassetti (1996) propose 
approximations for the first passage probabilities and indicate error bounds by using a 
series expansion for the solution of an integral equation for the first-passage time 
probability density function.  
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4.2.2 General case of Ornstein-Uhlenbeck and of Cox-Ingersoll-Ross process 
 
Let us now concentrate on the first mismatching process in case of stochastic rates of return 
modeled by an Ornstein-Uhlenbeck process or a Cox-Ingersoll-Ross process with η ≠ 0 . In 
Deelstra and Janssen (1998a), we treated the case of an Ornstein-Uhlenbeck process. We 
used approximations by Durbin (1985) for the crossing probabilities and the first-passage 
density of a continuous Gaussian process )(ty at a boundary l(t) at u = t . But the Cox-

Ingersoll-Ross process is no Gaussian process and therefore the approach used in case of an 
Ornstein-Uhlenbeck process cannot be applied.  
 In case of the Cox-Ingersoll-Ross process, we looked at an alternative way to 
approximate first mismatching times. We first approximated rs by a constant upper bound 

U and by a constant L, which are determined in such a way that for both bounds the 
probability that the process crosses the bound in [ ]T,0  is for example 5%. These 

boundaries follow from results of Giorno et al. (1989) and of Sacerdote and Tomassetti 
(1996).  
 Afterwards, we could compare the time of first mismatching τ  of the process 
a = at ,t ≥ 0( ), by the times of first mismatching τ1,τ2 ,τ3,τ 4  with L or U substituted in stead 
of rs. The crossing probabilities ],[ TP i <τ  i=1, 2, 3, 4, could be determined by the method 

of Durbin (1985) since by the substitution of L and U, one obtains a continuous Gaussian 
process y(t )( )t≥0 . Finally, we could use the bounds 

min
i

P[τ i < T ] ≤ P[τ < T ] ≤ max
i

P[τ i < T ] . 

 Unfortunately, this way of approximating the crossing probabilities is very 
complicated. Therefore, one can better use simulations to obtain the mismatching 
probabilities in case of the Cox-Ingersoll-Ross model. Another reasonable approximation 
seems to use the no-perfect-match probabilities in case of the Ornstein-Uhlenbeck model. 
We did many simulations (see section 6) which usually showed only small differences 
between the mismatching probabilities on a short period when the parameters were 
estimated by the same rates of return. 
 
4.3 Final mismatching 
 
In practice, perfect matching of insurance liabilities might be too demanding since low-risk 
investment strategies associated with the highest degree of matching possible usually 
produce lower expected returns. Therefore, we also observe final matching which means 
that we only check whether the assets cover the liabilities at the end of the period [ ]T,0 : 

A(T)>B(T). Therefore, the probability of no final matching is the probability 
P AT < BT[ ]  = P aT < 0[ ] 
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where at( )t ≥0  is the process of mismatching defined above and this probability follows from 

the distribution of aT . 
 In the non-stochastic case and in the Gaussian case, the mismatching process at( )t ≥0  is 

a Gaussian process and therefore aT  has a Normal distribution with mean m(T) and 
standard deviation σ(T ). The probability of no final matching simply equals 

P AT < BT[ ]  = P aT < 0[ ] = 1 − Φ
m(T )
σ(T )

 
 
  

 
, 

where Φ(z)  denotes the cumulative standard normal distribution function in z. 
 In order to calculate the probability of no final match in the general Cox-Ingersoll-
Ross case, we have to know the distribution of aT  since 

P AT < BT[ ]= P aT < 0[ ]= f aT
(u)du

−∞

0

∫ . 

Unfortunately, we do not know the distribution of aT  since the process of mismatching 
satisfies a stochastic differential equation where the rate of return rt  shows up in both the 

drift term and the volatility term. Therefore, one has to approximate the no-final-match 
probability by using simulations or by using the results in case of the Ornstein-Uhlenbeck 
process. In any case, the probability of no final matching is always lower than the 
probability of no perfect matching since final matching puts only a restriction on the 
portfolio at time T. 
 

5. MISMATCHING DEGREE 
 

In case of no final matching, we want to have a risk measure of final matching which gives 
an idea of the difference between liabilities and assets at the time horizon T. We use  the 
approach of Cummins (1988) in his calculation of risk-based premiums, and of Kusakabe 
(1995) in his discrete ALM model, and we propose  as a measure of risk at time t: 

Mt(BT − AT ) = E BT − AT( )+
e

− iudu
t

T

∫ Ft

 

  
 

   

with it( )t≥ 0  modeling the short-term interest rates and with Ft the sigma-field of information 

until time t. This implies that the risk measure equals zero if the assets A(T) are higher than 
the liabilities B(T). 
 At time T itself, we know that the measure TM  equals 

(BT − AT )+ = max(BT − AT ,0). 
The value at time t can be obtained by using techniques from option theory and in 
particular from the formulae of Black and Scholes (1973) and Merton (1973). 
 Indeed, it is well-known that the value of a call option at time t which gives the right 
(but not the obligation) "to buy" at time T the liabilities BT , modeled by the geometric 
Brownian motion  
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dBt = µBBtdt + σBBtdWt , 
at the exercise value K= AT  of the assets at time T, equals 

E BT − AT( )+
e

− i udu
t

T

∫ Ft

 

  
 

   

where the conditional expectation is taken with respect to the risk-neutral probability. 
 Under the assumption that interest rates are constant and ˜ T  = T, we can use the well-
known Black and Scholes (1973) formula: 

Mt(BT − AT ) = e−i (T −t )E BT − AT( )+
Ft[ ]= BtΦ(z) − e− i(T − t) K Φ(z − σB T − t )  

with 

z =
log Bt

K
 
 

 
 + i + σB

2

2
 
 

 
 (T − t)

σB T − t
 

and where Φ(z)  denotes the cumulative standard normal distribution function in z. 
Substituting t=0, delivers us the risk measure at time t=0 of the expected deficit at time T, 
i.e. the expected discounted value of the difference between the liabilities and the assets 
when there is no final match.  
 Under the assumption of stochastic interest rates, the value of the risk measure also 
follows from results obtained in finance (see e.g. Merton (1973), Rabinovitch (1989)). 
 If ˜ T  > T,  the results remain the same in case of deterministic rates of return with  

K= AT = A0 exp θT +
r − θ

κ
1 − e−κT( ) 

 
 
 . 

In the general case, however, the risk measure of no final match has to be determined 
numerically since now not only the liabilities BT  but also the assets AT  at time T are 
random. 
 

 
6. SIMULATIONS IN THE UNSEGMENTED MODEL 

 
In order to determine the no-perfect-match probabilities in the time-interval [ ]T,0 , we have 

used an Euler scheme to simulate the processes ln A(t) and ln B(t) and this with rates of 
return first modeled by an Ornstein-Uhlenbeck process and afterwards by a Cox-Ingersoll-
Ross process. Therefore, we used 1,000 steps and took the average over 1,000 paths. So, 
for the calculation of each probability of no perfect matching, we generated 2,000,000 
Normal random numbers.  
 For the simulations presented in this paper, we have chosen the parameters of the 
rates-of-return process as in Chan et al. (1992), namely for the Ornstein-Uhlenbeck 
process: θ =0.0866, κ =0.1779, η =0.02 and for the Cox-Ingersoll-Ross process: 
θ =0.0808, κ =0.2339, η=0.0854; with in both cases 0r =0.01. The drift and the volatility of 
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the liability process and the initial value of the assets are taken from Ars and Janssen 
(1994), who estimated the parameters from data of a real Belgian company: Bµ =0.1008, 

Bσ =0.0261 and 0A =24,406 million Belgian francs. The value of the initial liabilities, 
namely 0B =23,389 million Belgian francs, was chosen by us to have a probability of no 

perfect match of around one half so that both increases and decreases should be clear. In 
the model, we suppose at a first stage that ϕ =0 and  λ =0. 

 We have checked the influence of the different parameters of the asset process in order 
to find out which parameters have the largest influence. 
 A first conclusion of our simulations is that if the maturity is small, e.g. T=3 years, and 
the parameters of the Ornstein-Uhlenbeck process and the Cox-Ingersoll-Ross process are 
estimated to fit the same rates of return, then the probabilities of no perfect matching are 
almost the same. Since in the Cox-Ingersoll-Ross model, the rates of return remain always 
positive, they are expected to be higher than the rates of return in case of the Ornstein-
Uhlenbeck process and consequently the probability of no perfect matching to be lower 
than in case of the Ornstein-Uhlenbeck process. 
 We notice that in general the influence of the initial values 0r , 0A  and 0B  are very 

high since no good match in the beginning can lead to an immediate mismatching. The 
probability of no perfect matching increases as the initial value of the liabilities increases or 
the initial value of the assets decreases. The probability of no perfect matching also 
decreases with the initial rate of return. The initial values, however, become less important 
if the maturity increases. 
 The influence of θ  is the same as the influence of r0 , namely a decreasing θ  leads to 
higher probabilities of no perfect matching, but the effect is not as large as that of r0  since 

θ  is a long-term value. 
 The influence of the volatility parameter η  is also quite important: increasing values 
for η  lead to increasing values of the probability of no perfect matching. The influence in 
case of the Ornstein-Uhlenbeck model however is much higher since the volatility term in 
the Ornstein-Uhlenbeck model is ηdZt  and in the Cox-Ingersoll-Ross model η rt dZt . So 

in case of the Cox-Ingersoll-Ross model, the increase in the volatility parameter η  is 
tempered by the multiplication of the square root of the rates of return. 
 The influence of the speed-of-adjustment parameter κ  depends on the difference of 
r0 − ϑ . If r0  almost equals θ , then there is almost no influence. If the difference is positive 

and quite large, then the probabilities of no perfect match increases if κ  decreases. For a 
negative difference, the opposite statement is true. 
 The influence of the market-risk parameter λ  differs for both models since they 
appear in a different way in each model. In both cases, however, the market-risk parameter 
λ  has a high influence and this might cause a problem as the market-risk parameter λ  is 
difficult to estimate. 
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 Increases in the correlation parameter ϕ  leads to both increases and decreases of the 
probability of no perfect matching. The dependence of the no-perfect-match probability on 
the correlation parameter ϕ  is not clear. 
 

7. CASE STUDY 
 
In this section, we give some examples of how the measures of no perfect matching and of 

no final matching can be applied. To obtain an increased understanding, we want to be able 

to calculate the probabilities by using a calculator and we restrict ourselves to the case 

where the portfolio can be modeled by zero-coupon bonds with maturity date the final date 

of the observation period and with a fixed constant rate of return r. This constant rate can 

be thought of as the average of the rates of return of the portfolio in the last years. As 

explained above, for more difficult situations we have to recur to a computer program but 

the underlying ideas of using the indicators of risk are the same. 

 For the first example, we use the data which is presented in Ars and Janssen (1994), 

namely of a Belgian firm during the period 1980-1991 with 0A =24,406 million Belgian 

francs and 0B =22,631 million Belgian francs. Supposing that the liabilities follow a 

geometric Brownian motion with drift, Ars and Janssen (1994) estimated the parameters: 
ˆ µ B = 0.1008 and ˆ σ B = 0.0261. As in the period 1980-1991 the interest rates and the 

returns were high, we suppose that the constant rate of return equals r = 0.1 and that the 

market interest rate equals i = 0.09. 

 In this situation, the probability of having once a mismatch (in an infinite period) 

equals 1 since  

µ = r − µB +
σ B

2

2
 = -0.00045939 < 0. 

The probability of no perfect matching in a finite period T, however, does not equal 1 but 
equals  

P τ < T[ ] = 1 − Φ
a0

σ T
+

µ T
σ

 

 
  

 
 + e−2a0µ / σ 2

Φ
−a0

σ T
+

µ T
σ

 

 
  

 
  

with Φ( ) the cumulative Normal distribution function and where we recall that τ  denotes 

the first mismatching time. For example, if we are interested in an observation period of 3 
years, then the probability of no perfect matching equals 

P τ < T = 3years[ ]= 1 − Φ 1.64( ) +1.10735Φ −1.70( ) ≈10%. 
 The probability of no final matching in [ ]yearsT 3,0 =  is always smaller than the 

probability of no perfect matching and equals 



 14

  P AT < BT[ ]= 1− Φ
a0

σ T
+

µ T
σ

 

 
  

 
 =1 − Φ 1.64( )≈0.0505 . 

 To have an idea of the mismatch at the final date, we calculate the risk measure given 
by the Black and Scholes formula: 

M0 (BT − AT ) = B0Φ(z) − e− iT K Φ(z − σ B T )  

with 

z =
log B0

K
 
 

 
 + i + σ B

2

2
 
 

 
 T

σB T
 

and K= AT = A0 exp rT( ) . Substituting the different parameters, this measure of a deficit at 

T = 3 years turns out to be  
M0 (BT − AT ) = 22,631Φ(−2.31) − 25,150Φ(−2.36)≈6.5 

millions of Belgian francs. 
 It turns out that in this example, the probability of mismatching is quite high (a 
mismatch with probability 1 over an infinite period!) and the expected discounted 
difference between the assets at the final date is quite important. This firm should try to 
increase its expected rates of return on the assets portfolio, should decrease the drift of the 
liabilities and / or should adapt the initial proportion of assets to liabilities. 
 
Let us now consider a second example with rates of return and interest rates more adapted 
to the present situation. We suppose that the constant average of the rates of return equals r 
= 0.05, that the constant market spot interest rate equals i = 0.042, that the estimated drift 
and volatility of the liability process equal respectively ˆ µ B = 0.045 and ˆ σ B = 0.009 , and 
we choose the initial values of the assets and liabilities quite arbitrarily equal to 
respectively A0 = 23,000  and B0 = 22,631 millions of Belgian francs.  

 In this situation, the probability to have a mismatch (in an infinite period) equals 
P τ < ∞[ ] = e− 2µa0 σ 2

≈13.4% 
The probability of obtaining a mismatch within 3 years equals 

 P τ < T = 3years[ ]= 1 − Φ 2.008( )+ 0.1336Φ −0.0675( ) ≈0.085. 

And the probability of no final match in [0, T=3 years] turns out to be 
  P AT < BT[ ]= 1− Φ 2.008( )≈0.0222. 

The order of mismatch at the final date of T = 3 years follows from substituting the 
different parameters in the risk measure of no final matching: 

M0 (BT − AT ) = 22,631Φ(−2.57) − 23,559Φ(−2.585)≈1.16  

millions of Belgian francs. 
 
 These two examples show that it is important to calculate different measures of risk. 
For instance, when calculating the probability of having a mismatch within 3 years, the 
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second company has a result which is only slightly better than the first company. However, 
when concentrating on an infinite period, one can conclude that the situation in the second 
example is much better since the company in the first example has a mismatching in an 
infinite period with probability 1 and the second one of only 13,4 %. Also the measures of 
final matching show that the situation of the second firm is more stable. 
 
 

8. THE MULTIDIMENSIONAL MODEL 
 
Following Janssen (1992), Ars and Janssen (1994), Bergendahl and Janssen (1994) and 
Janssen (1995), we concentrate now on the following multidimensional model. Let us 
denote the total value of the assets at time t by A(t) and the total value of the liabilities by 
B(t). Both the asset side A(t) and the liability side B(t) can have a segmentation in 
respectively m and n pools:  

A1(t), ... , Am (t)  such that Ai
i =1

m

∑ (t) = A(t) 

and  

B1(t),. .. ,Bn (t) such that Bi
i =1

n

∑ (t) = B(t) . 

The assets can be segmented into different investments like bonds with different maturities 
and coupons, shares, options, currency et cetera. The segmentation of the liabilities 
represents different types of contracts like fire insurance, automobile insurance, civil 
responsibility insurance or in case of a life-insurance company, temporary life-insurance or 
endowment contracts for e.g. smokers, non-smokers, females, males. Remark that the 
unsegmented situation corresponds with m=n=1.  
 Janssen (1995) studied the matching of this multidimensional ALM model in the 
particular case that all segments are a constant fraction of respectively the total assets A(t) 
and the total liabilities B(t) which are both modeled by geometric Brownian motions. 
 In this paper, we want to treat the general model but therefore, we introduce a weaker 
form of perfect matching. For perfect matching, one usually assumes that for all t in a 
period [ ]T,0  both the asset side A(t) and the liability side B(t) have a segmentation in n 

pools:  
A1(t),... , An (t)
B1(t),. .. ,Bn (t)

 

and that each segment Ai (t) covers the liability part Bi(t), 1 ≤ i ≤ n , or equivalently 
∀i ln Ai(t)( )≥ ln Bi(t)( ) ∀t ∈[0,T ]. 

 This condition implies that the arithmetic mean of the logarithms of the assets should be 
larger than the one of the logarithms of the liabilities: 
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1
n

ln Ai(t )( )
i =1

n

∑ ≥
1
n

ln Bi(t)( )
i =1

n

∑ ∀t ∈[0,T ]. 

This inequality is equivalent with the inequality between the geometric means of 
respectively assets and liabilities 

Ai
i =1

n

∏ (t)n ≥ Bi
i =1

n

∏ (t)n ∀t ∈[0,T ]. 

 This inequality is not equivalent with perfect matching but is implied by it. In the 
following, we will look at the first time that the geometric mean of the assets becomes 
lower than the geometric mean of the liabilities since at that time there is certainly no 
perfect match anymore. We admit that it would be more intuitive to work with arithmetic 
means but as we will show below, it is mathematically easier to check matching in 
geometric mean. Because of difficulties with the arithmetic mean of lognormal 
distributions, other authors have already suggested in other settings to use the geometric 
mean, e.g. Vorst (1992) or Nielsen and Sandmann (1998). 
 We generalize this definition of matching in geometric mean to the general basic 
multidimensional model above with m asset pools and n liability segments by the 
condition: 

Ai
i =1

m

∏ (t)m ≥ Bj
j =1

n

∏ (t)n ∀t ∈[0,T ]. 

We remark that if the number m of asset pools equals the number n of liability segments, 
then no matching in geometric mean implies no perfect matching. If the number m of asset 
pools differs from the number n of liability segments, then the definition of perfect 
matching cannot be applied but the generalized definition of matching in geometric mean 
can be used. 
 Following the ideas in case of the unsegmented model, we introduce the mismatching 
process at( )t ≥0  defined by 

( ) ( )∑∑
==

−=
n

j
j

m

i
it tB

n
tA

m
a

11

)(ln1)(ln1
   

As before, we look at the first mismatching time τ : 
τ = inf t : 0 ≤ t ≤ T, a(t) ≤ 0{ } 

and at the probability that the first mismatching time τ  is smaller than the final date of the 
period we are observing: 

P τ < T[ ], 
which is the probability of no matching in geometric mean. This probability is in the 
segmented (m=n) model always smaller than the probability of no perfect match. Thus, if 
the probability of no matching in geometric mean is higher than a certain risk limit, then we 
know that the probability of no perfect matching is even higher and that the insurance 



 17

company has to conclude that they have to adapt the strategies with respect of pricing, 
reinsurance, investment et cetera. 
 As there exist only explicit results about crossing probabilities if the process at( )t ≥0  is 

a Brownian motion with drift, we first look at a basic model in which the segments follow a 
geometric Brownian motion. In section 8.2, we will turn to the more realistic model with a 
mixed asset portfolio, containing fixed-income securities like bonds. 
 
8.1 The basic model 
 
In this section, the dynamic evolution of the (m+n)-dimensional stochastic process 
A1(t), ... , Am (t),B1 (t), .. ., Bn (t)( )t≥ 0  are assumed to be governed by the following system of 

differential equations 
 

nj
mi

tZdtBdttBtdB

tdZtAdttAtdA

jjjjjj

iiiiii

,...,1
,...,1

)()()()(

)()()()(

=
=

+=

+=

σµ

σµ

 

with µ i ,σ i , i = 1,... ,m; µ j ,σ j , j = 1,... ,n  positive constants representing the instantaneous 

return and volatility of either assets or liabilities. The (m+n)-dimensional process 
Z1(t), ... ,Zm (t),Z1 (t),.. ., Z n(t)( )

t ≥0
 is an (m+n)-dimensional Brownian motion with mean 0 

and covariance matrix  

Λ Z = Λ Λ
t
Λ Λ

 

 
 

 

 
   

with three different types of elements, namely for mji ≤≤ ,1  
E dZi(t ) ⋅ dZ j(t)[ ]= λ ijdt , 

for nji ≤≤ ,1  
E d Z i(t) ⋅d Z j(t)[ ]= λ ijdt  

and for njmi ≤≤≤≤ 1,1  

E dZi(t ) ⋅ dZ j (t)[ ]= λ ijdt = λ jidt . 

We include this general covariance matrix in order to take into account the possibility of 
multidimensional correlation between the different asset and liability sections. 
 In order to study the probability of mismatching, we concentrate on the process of 
mismatching at( )t ≥0  whose stochastic differential equation is easily deduced by Ito's lemma 
and which turns out to be easy : the drift term of the mismatching process a = at ,t ≥ 0( ) is 

constant. The only difficulty in directly solving the stochastic differential equation of the 
mismatching process a = at ,t ≥ 0( ) defined by looking at the geometric mean, is that 

 Z = Z1 (t),.. ., Zm(t), Z1(t), ... ,Z n (t)( )
t ≥ 0
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is a correlated Brownian motion. Therefore, we express the components of this (m+n)-
dimensional Brownian motion in terms of an (m+n)-dimensional standard Brownian 
motion 

W1(t),... ,Wm( t),Wm +1(t),. ..,Wm +n (t)( )t ≥ 0
. 

 Indeed, it is possible to define a matrix of constants with m+n rows and m+n columns  
C = cij( )

1≤i ≤m ,1≤ j ≤ n
 

such that  

Zi = cikWk
k =1

m + n

∑ , i = 1,. .. ,m + n . 

The determination of the constant matrix C is equivalent to the matrix factorization of the 
covariance matrix Z = Z1 (t),.. ., Zm(t), Z1(t), ... ,Z n (t)( )

t ≥ 0
, namely  

Λ Z =CtC . 
This problem is called the Cholesky factorization and it is known from linear algebra that 
there exists a unique solution C which is lower triangular since a covariance matrix is 
always symmetric. For a procedure to determine the constant matrix C = cij( )

1≤i ≤m ,1≤ j ≤ n
, we 

refer to Hahad, Erhel and Priol (1993).  
Having determined the matrix C, the stochastic differential equation of the 

mismatching process can be formulated as follows: 
 
Theorem 3 
The stochastic process a = at , t ≥ 0( ) is a solution of the stochastic differential equation 

dat = µ dt + σdW t  

with 

 ∑∑
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
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1
m

σ i
i=1

m

∑ cik −
1
n

σ j
j =1

n

∑ cm + j,k

 

 
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 
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k =1

m + n

∑
2

 

and where W  is a Brownian motion. 
 
 Remark that the mismatching process a = at , t ≥ 0( ) is a Brownian motion with drift 

and therefore, modulo parameters, the results are the same as those in section 4.2. For 
example, let us recall the simple formula for the probability of no matching in geometric 
mean in the infinite period [0,∞ [: 

P τ < ∞[ ] = e− 2µa0 σ 2

µ , a0 > 0
= 1 µ ≤ 0 or a0 ≤ 0.
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Therefore, if µ  is negative or a0  is negative, then there will be no matching in geometric 

mean with probability 1 and consequently, there also will be no perfect match with 
probability one since the probability of no perfect match in a segmented (m=n) model is 
always higher than the probability of no matching in geometric mean.  
 Otherwise, the probability of having at least once a mismatch in geometric mean 
equals e− 2µa0 σ 2

. This probability decreases if 0a or µ  increases and/or 2σ  decreases.  

 As motivated before, this probability of no matching in geometric mean can be 
interesting for the managers of the company, the regulators as well as the clients and 
everyone who has to deal with the insurance company because it is a measure of the risk 
position of the company. Moreover, it is a lower bound of the no-perfect-match probability 
in the segmented (m=n) model.  

 
8.2 A general multidimensional model 
 
As mentioned before, the modeling of the liabilities by a geometric Brownian motion is an 
acceptable assumption if there are no catastrophes or if the insurance company has an 
excellent reinsurance program (see Cummins and Ney (1980)). A geometric Brownian 
motion for the assets seems only appropriate if the assets portfolio contains only shares. 
However, it is more realistic to assume a segmentation of the assets containing not only 
shares but also bonds, futures, options et cetera. 
 In the unsegmented model, we have worked with the rates of return in order to reflect 
the evolution of the asset portfolio in the past without explicitly modeling different pools. 
Since we take in a multidimensional model the most important segments of the assets into 
account, we do not model a process of the global rates-of-return but we need a yield curve 
to price the interest rate derivative securities. 

Let us from now on use the notation ( ) 0≥ttr to denote the short-term interest rates. The 

segments of the shares remain modeled by a geometric Brownian motion but the sections of 
interest rate derivative securities usually are not. In case of most fixed-income securities 
with maturity iT , the stochastic differential equation of the segment has a stochastic 

differential equation of the form 
dAi(t) = Ai(t)µi rt , t,Ti( )dt + Ai(t)σ i rt ,t,Ti( )dZi (t), 

where the instantaneous drift and/or volatility can depend on the short-term interest rates. 
 Therefore, a general multidimensional model of both the asset and the liability side of 
the balance A1(t), ... , Am (t),B1 (t), .. ., Bn (t)( )t≥ 0  can be determined by the following system of 

differential equations 
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with µ i ,σ i , i = 1,. .. , l; µ j ,σ j , j = 1,..., n  positive constants and where µ i ,σ i , i = l +1,... ,m  

can be depending on the time, the maturities and the short-term interest rates. The (m+n)-
dimensional process Z= Z1(t), ... ,Zm (t),Z1 (t),.. ., Z n(t)( )

t ≥0
 is as before an (m+n)-

dimensional Brownian motion with mean 0 and covariance matrix  

Λ Z = Λ Λ
t
Λ Λ

 

 
 

 

 
 . 

 For this model, the process of mismatching at( )t ≥0  is a solution to the stochastic 

differential equation 
dat = µ rt , t,Ti(l +1 ≤ i ≤ m)( )dt + σ rt , t,Ti(l +1 ≤ i ≤ m)( )dW t  

where W  is a Brownian motion, but where the drift and volatility term can be quite 
complicated. 
 In order to determine the probability of no matching in geometric mean, we have to 
study the crossing probability P τ < T[ ] where τ  is the first mismatching time 

τ = inf t : 0 ≤ t ≤ T, a(t) ≤ 0{ } 

and where T is the final date of the period that we are interested in. 
 It is possible to model the interest rates by a constant rate, by deterministic rates, by an 
Ornstein-Uhlenbeck process or by a Cox-Ingersoll-Ross process. The dynamics of the 
different interest rate derivatives in the asset portfolio follow from the chosen short-term 
interest rate model. Using Ito’s lemma, the stochastic differential equation of the first 
mismatching process is then derived and it is possible to obtain explicit or approximating 
results of the probability of no matching in geometric mean by applying the methods 
proposed in section 4, e.g. by Durbin (1992, 1985) and by Sacerdote and Tomassetti 
(1996). 
 As an example, we study in the following subsection a (2+1)-dimensional model 
where the assets contain both shares and bonds, as Bacinello and Ortu (1993) did for 
pricing guaranteed securities-linked life insurance.  
 
8.3 A particular multidimensional model 
 
In this section, we assume that the liability side of the balance is unsegmented and modeled 
by a geometric Brownian motion. We further concentrate on the asset portfolio which we 
model as consisting from a segment 1A  of shares and a section 2A  of bonds with maturity 
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T. The short-term interest rates are supposed to follow an Ornstein-Uhlenbeck process and 
this assumption leads to the stochastic differential equation of the section 2A  of bonds. 

 Summarizing, the particular multidimensional model in this section is governed by the 
following stochastic differential equations 
 

drt = κ (θ − rt)dt + ηdZ2 (t)
dA1(t) = A1(t)µ 1dt − A1 (t)σ1dZ1(t)

dA2 (t) = A2(t) rt +
ηλ
κ

1− e− κ T −t( )( ) 
 

 
 dt − A2 (t)

η
κ

1 − e−κ T − t( )( )dZ2 (t)

dBt = µBBtdt + σBBtdZ1 (t)

 

with 2A (T)=N, the number of bonds in the asset portfolio, and with Z1(t), Z2 (t), Z1(t)( )
t≥ 0

 a 

three-dimensional Brownian motion with mean 0 and covariance matrix Λ Z = ϕ ij( )
1≤ i, j ≤3

. 

 
 In this case, the mismatching process is a solution of the stochastic differential 
equation 

dat = µ rt , t,T( )dt + σ t( )dWt  

with 

µ rt ,t,T( )=
µ1

2
−

σ1
2

4
+

1
2

rt +
ηλ
κ

1 − e−κ (T − t )( ) 
 

 
 −

1
2

η2

κ 2 1− e− κ (T −t )( )− µB +
σB

2

2
 

and 

σ 2 t( ) =
σ1

2

4
+

1
4

σ1ϕ12 −
η
κ

1 − e−κ (T − t )( ) 1 − ϕ12
2 

 
 
 

2

+
1
4

σ1ϕ13 −
η
κ

1 − e−κ (T − t)( )α − σBβ 
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 
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and where W  is a Brownian motion. 
 
 Notice that the mismatching process at( )t ≥0  is a Gaussian process and straightforward 

calculations show that the probability of no matching in geometric mean is in fact the 
crossing probability of the continuous Gaussian process y = y(t);0 ≤ t ≤ T( ) defined by 

y(t ) =
−1
2

e− κs ηeκudZu
0

s

∫
0

t

∫ ds − σs
0

t

∫ dW s  

to the boundary ( )( ) [ ]dsrEdsrTsratl
t

s

t

ss ∫∫ +−+=
00

0 ,,)( µ . Therefore, the approximations 

of Durbin (1985) can be used (see also Deelstra and Janssen (1998b)). Indeed, under mild 
restrictions on l(t) and on the covariance function ρ(u, t) = cov y(u), y(v)( ), Durbin (1985) 
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derives approximations for the crossing probabilities and the first-passage density of a 
continuous Gaussian process y(t ) at a boundary l(t) at u = t .  

 
9. OTHER APPLICATION: AN INVESTOR VERSUS HIS BROKER  

 
In this section, we want to explain another interesting application of the probabilities of 
matching, which has been suggested by an anonymous referee. 
 Suppose that an investor sells short through his broker a non-dividend paying stock. 
As a collateral, he deposits with the broker a zero-coupon bond which matures at time T. 
Let us assume that the broker marks to market continuously. Then, the investor is interested 
in calculating the probability that he will be asked by the broker to put additional funds into 
his account to cover a deficit before the bond maturity date T. 
 As it is common use in finance (see e.g. Merton (1971)), the non-dividend paying 
stock is modeled by a geometric Brownian motion. For pricing the pure-discount bond, we 
have to model the yield curve. For example, if we choose the short-term interest rates to 
follow a Cox-Ingersoll-Ross process, then we are in fact observing the model: 

drt = κ(θ − rt)dt + η rtdZt

dAt = Atrt 1− λK t,T( )( )dt − AtK t,T( )η rt dZt

dBt = µB Btdt + σBBtdWt

  

with NAT = , with Ε dZt .dWt[ ]= ϕdt  and with 

K t,T( ) =
2 eγ T −t( ) −1( )

γ + λ + κ( ) eγ T −t( ) −1( )+ 2γ
, 

γ = κ + λ( )2 + 2η2  and λ  the market risk parameter. 

 Since the broker marks to market continuously, the probability that the investor will be 
asked by the broker to put additional funds, is in fact the probability of no perfect matching 
in case of a Cox-Ingersoll-Ross process, which has been discussed in section 4.  
 Notice that in the situation of this section, rt( )t≥ 0  denotes the process of the short-term 

interest rates and not the process of the rates of return as in sections 4 to 7. This 
terminology, however, does not change the results in these sections. 
 We stress that the example above of an investor versus a broker could be generalized 
to situations in which the investor sells short several non-dividend-paying stocks and 
deposits as a collateral a number of different securities like shares and pure-discount bonds. 
If the broker marks to market continuously, then this situation can be modeled by a 
multidimensional model as in section 8 and the results of that section can be used. 
 It is also possible, however, to suppose that the broker does not mark to market 
continuously but only at some fixed date T. Then, the investor is interested in the 
probability of final matching and then, the investor is usually not only interested in the 
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probability that he has to pay additional funds but also in the expected amount of money 
that he has to pay in case of a deficit. This means that he is interested in the risk measures 
of final matching that we have proposed. 
 We conclude that the results in this paper are not only useful for the asset liability 
management of an insurance company, but also in the relation of an investor versus his 
broker. 
 
 
 

10. CONCLUSION 
 
We have successfully extended the Janssen model in such a way that the asset fund A  takes 
into account fixed-income securities. This is important for insurance companies whose 
investments are more in bonds than in shares, especially for life-insurance companies.  
 We have first considered a model in which we assume that the assets can be 
represented by only zero-coupon bonds which reflect the historical rates of return. We 
concentrated on the cases that the rates of return of the portfolio in the past are presented by 
an Ornstein-Uhlenbeck process or by a Cox-Ingersoll-Ross process. In this unsegmented 
Janssen model, we have studied the probability of mismatching of the assets and liabilities 
of the company in a period [ ]T,0  by introducing the first mismatching time 

τ = inf t : 0 ≤ t ≤ T, a(t) ≤ 0{ } where a = at , t ≥ 0( ) is defined by at = ln
At

Bt

 

 
  

 
  and where T 

can be assumed to be infinity. Further, we have proposed a risk measure of no final 
matching which indicates the difference between the assets and the liabilities at time T. The 
influence of the parameters and the difference between the Ornstein-Uhlenbeck process and 
the Cox-Ingersoll-Ross process have been studied by simulations. The usefulness of the 
different measures of risk proposed in this paper, has been stressed by a simple case study.  
 Afterwards, we have studied a more realistic multidimensional model by introducing 
mismatching in geometric mean. 
 Finally, we have shown that the results in this paper are not only useful for the asset 
liability management of an insurance company, but also in the relation of an investor versus 
his broker.  
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