TRANSACTIONS OF SOCIETY OF ACTUARIES 1959 VOL. 11 NO. 31

SECTION II. FEMALE EXTENSION OF THE 1958 CSO AND CET MORTALITY TABLES

INTRODUCTION

Your committee concluded that it could not justifiably publish monetary tables based upon the new mortality tables without first introducing appropriate refinements to eliminate two anomalies in assumed juvenile female mortality rates which would result from a strict application of the " 3 -year age setback": (1) female mortality rates would be higher than male mortality rates at ages 10 and under, and (2) there would not be any clearly defined female mortality rates at ages 0,1 and 2 .

CONSTRUCTION OF FEMALE EXTENSION TO 1958 CSO TABLE
After considering various possible solutions, it was agreed that the best approach was the straightforward one of constructing an extension of the 1958 CSO Table for females at ages 14 and under that would:
(1) grade smoothly into the 1958 CSO Table set back 3 years at ages 15 and over (i.e., male ages 12 and over),
(2) be based on the same general method as that used in the construction of the 1958 CSO Table, and
(3) start with our best estimate of female experience mortality rates that correspond to the experience mortality rates shown in the 1958 CSO Basic Table.
Starting with (3) above, we used the United States Life Tables 194951 (Vital Statistics-Special Reports-Vol. 41, No. 1) to obtain ratios of white female mortality rates to total white mortality rates by individual age. These mortality rates and ratios are shown in Table 1. In general, these ratios would appear to be slightly conservative because the proportion of females in the population is undoubtedly higher than the proportion of females in an Ordinary life insurance experience. We believe, however, that any distortion because of this factor should be relatively small at the juvenile ages and could be ignored.

We also investigated the possibility that the age 0 ratio derived from population data is not applicable to insured lives data because of differences in the distribution of exposures by exact age during the first year of life. This problem was analyzed by following the same approach for white females as that described in C. M. Sternhell's paper "The New Standard Ordinary Mortality Table" (TSA IX, 7-9). This analysis indicated that the age 0 ratio derived from population data would not be significantly
affected by an adjustment for differences between insured lives and population distributions of exposures by exact age and it was agreed that no such adjustment should be made.

The next step was to obtain a female counterpart to the 1958 CSO Basic Table by applying the ratios from Table 1 to the 1958 CSO Basic Table mortality rates. This calculation is shown in Table 2. The Table 1 ratios did not appear to require any graduation, as the mortality rates

TABLE 1
United States Life Tables 1949-51
Mortality Rates at ages 0 to 14 for
White Females and Total Whites

Age	White Females (1)	Total Whites (2)	Ratio Col. (1) \div Col. (2) (3)
0	02355	02722	86.5%
1	00189	00201	94.0
2	00112	00125	89.6
3	. 000087	. 00097	89.7
4	. 00069	. 00080	86.3
5	. 00060	00071	84.5
6.	. 00053	00064	82.8
7.	. 00048	. 00058	82.8
8.	. 00044	00054	81.5
9.	. 00041	00051	80.4
10.	. 00040	00050	80.0
11.	. 00039	00051	76.5
12.	. 00041	. 00054	75.9
13.	. 00043	. 00060	71.7
14.	. 00048	00069	69.6

they produced exhibited satisfactory smoothness after only slight adjustment (1 in last place) at a few ages. The third differences also indicate a very smooth junction between the female mortality rates produced by this method at ages 0 to 14 and the female mortality rates at ages 15 and over obtained by using the 1958 CSO Basic Table with a 3 -year age setback.

The last step was to obtain a female counterpart to the 1958 CSO Table by loading the mortality rates of the female counterpart to the 1958 CSO Basic Table from Table 2 in a manner consistent with the procedure followed in the construction of the 1958 CSO Table. This calculation is shown in Table 3. Since the loading in the 1958 CSO Table increased by .01 per year of age up to age 38 , the use of a 3 -year age setback for females from age 15 to age 38 results in a loading in this range of
ages .03 less than the loading at the same male ages. This loading pattern has been extended for ages under 14 in order to produce a smooth series of loadings.

Table 4 shows values of l_{x}, d_{x}, and commutation columns at $2 \frac{1}{2} \%$ interest for the female extension of the 1958 CSO Table (set back 3 years). All of the values for age 15 are exactly the same as the corresponding values for age 12 on the 1958 CSO Table. The values of l_{x} and d_{x} at ages

TABLE 2
Construction of Female Counterpart to
1958 CSO BASIC Table

Age	$\begin{gathered} 1958 \text { CSO } \\ \text { Basic Table } \\ 1,00 q_{x} \end{gathered}$ (1)	Ratio Col. (3) Table 1 (2)	1958 CSO Female Basic Table $1,000 q_{x}$ Col . (1) $\times \mathrm{Col}$. (2) (3)	$\Delta \text { Col. (3) }$ (4)	$\Delta^{z} \mathrm{Col} \text {. (3) }$ (5)	$\Delta^{ \pm} \mathrm{Col} \text {. (3) }$ (6)
0.	6.33	86.5\%	5.48	-4.54	4.27	-4.07
1	1.00	94.0	. 94	$-.27$	20	$-.20$
2	75	89.6	67	$-.07$	00	. 01
3	. 68	89.7	(.61) . $60 *$	$-.07$	01	-. 01
4	61	86.3	. 53	-. 06	00	. 01
5	55	84.5	(.46) .47*	-. 06	01	00
6.	49	82.8	. 41	-. 05	01	01
7.	44	82.8	. 36	$-.04$. 02	-. 01
8	40	81.5	(.33) . 32^{*}	-. 02	. 01	. 00
9	. 37	80.4	. 30	-. 01	.01	00
10	36	80.0	29	00	. 01	. 00
11	. 37	76.5	(.28) . $29 *$. 01	. 01	. 00
12	. 39	75.9	. 30	. 02	. 01	. 00
13	44	71.7	. 32	. 03	. 01	. 00
14	50	69.6	. 35	. 04	. 01	00
15			. $39 \dagger$. 05	01	-- 01
16.			. $44+$. 06	. 00	. 01
17			. $50 \dagger$. 06	. 01	
18			. $56 \dagger$. 07		
19...			. $63 \dagger$			

* Adjusted to improve grading.
\dagger Equals 1958 CSO Rasic Table 1,000qx with 3-year age setback.
under 15 were obtained by applying the mortality rates in column (3) of Table 3 backward from l_{15}. As the values of D_{x} and N_{a} at female ages 15 and over involve the factor v^{-3} because of the 3 -year age setback, the values of D_{z} at ages under 15 were obtained by multiplying l_{x} by \boldsymbol{v}^{x-3}. Similarly, the values of C_{x} at ages under 15 were obtained by multiplying d_{x} by v^{x-2}. The values of N_{x} and M_{x} were obtained in the traditional manner by summing the values of D_{x} and C_{x}, respectively. This method

TABLE 3

Construction of Female Cuunterpart to 1958 CSO TAbLE

Age	1958 CSO Female Basic Table $1,000 q_{x}$ Col. (3) Table 2 (1)	Loading* (2)	$\begin{gathered} 1958 \text { CSO } \\ \text { Female } \\ \text { Table } \\ 1,000 q_{x} \\ \text { Col. (1) } \\ \text { +Col. (2) } \\ \text { (3) } \end{gathered}$	Δ Col. (3) (4)	Δ^{2} Col. (3) (5)	$\Delta^{3} \mathrm{Col} .(3)$ (6)
0	5.48	72	6.20	-4.53	4.27	-4.07
1	. 94	. 73	1.67	-. 26	. 20	$-.20$
2	. 67	. 74	1.41	$-.06$. 00	. 01
3	. 60	75	1.35	$-.06$. 01	-. . 01
4	. 53	. 76	1.29	$-.05$	00	. 01
5	. 47	77	1.24	$-.05$. 01	. 00
6	. 41	. 78	1.19	$-.04$. 01	. 01
7	. 36	. 79	1.15	$-.03$. 02	$-.01$
8.	. 32	. 80	1.12	$-.01$. 01	. 00
9.	. 30	. 81	1.11	. 00	. 01	. 00
10.	. 29	. 82	1.11	. 01	. 01	. 00
11	. 29	. 83	1.12	. 02	. 01	. 00
12.	. 30	. 84	1.14	. 03	. 01	. 00
13	. 32	. 85	1.17	. 04	. 01	. 00
14	. 35	. 86	1.21	. 05	. 01	. 00
15.	. 39	. 87	1. $26{ }^{\dagger}$. 06	. 01	-. . 01
16.	. 44	. 88	$1.32 \dagger$. 07	. 00	. 01
17	. 50	. 89	$1.39 \dagger$. 07	. 01	
18.	. 56	. 90	$1.46{ }^{\dagger}$. 08		
19.	. 63	. 91	$1.54 \dagger$			

* Loading used in constructing 1958 CSO Table less .03.
\dagger Equals 1958 CSO Table $1,000 \mathrm{gx}$ with 3 -year age setback.
TABLE 4
Female Extension at Ages 0 to 14 of 1958
CSO Table (Set back 3 Years)
Commutation Columns $2 \frac{2}{2} \%$

Age	t_{x}	d_{x}	$\mathrm{D}_{\boldsymbol{x}}{ }^{*}$	N_{x}	$\mathrm{C}_{x} \dagger$	M_{x}
0	10014660	62091	10784693.4666	356121626.4210	65234.3569	2098800.1462
1	9952569	16521	10456417.8060	345336932.9544	17036.5250	203.3565 .7893
2	9935948	14010	10184346.6998	334880515.1484	14009.9999	2016.529 .2643
3.	9921938	13395	9921938.0000	324696168.4486	13068.2927	2002519.2644
4	9908543	12782	9666871.2196	314774230.4486	12166.0916	1989450.9717
5	9895761	12271	9418927.7811	305107359.2290	11394.8433	1977284.8801
6	9883490	11761	9177802.9921	295688431.4479	10654.8855	1965890.0368
7	9871729	11352	8943299.2530	286510628.4558	10033.5139	1955235.1513
8	9860377	11044	8715136.4892	2775673292028	9523.2066	1945201.6374
9	9849333	10933	8493048.9781	268852192.7136	9197.5528	1935678.4308
10	9838400	10921	8276703.8883	260359143.7355	8963.3733	1926480.8780
11	9827479	11007	8065869.6893	252082439.8472	8813.6170	1917517.5047
12	9816472	11191	7860327.5429	244016570.1579	8742.3913	1908703.8877
13	9805281	11472	7659869.8463	236156242.6150	8743.3250	1899961.4964
14	9793809	11851	7464300.4276	228496372.7687	8811.8808	1891218.1714
15	9781958	12325	7273432.4866	221032072.3411	8940.8062	1882406.2906

[^0]of constructing the female commutation columns satisfies the requirements that all monetary values for female issue ages 15 and over will be exactly equal to the corresponding values on the 1958 CSO Table with a 3-year age setback and that all monetary values for female issue ages under 15 will be consistent with those for female issue ages 15 and over.

Table 5 compares net annual premiums computed on the female extension of the 1958 CSO Table (set back 3 years) and $2 \frac{1}{2} \%$ interest with

TABLE 5
Net Annual Premiums
1958 CSO TABLE $2 \frac{1}{2} \%$

Ace	Ordinary Life			20 Payment Life			20 Year Endowment		
	Male	$\begin{gathered} \text { Male } \\ (-3) \end{gathered}$	Female	Male	$\begin{gathered} \text { Male } \\ (-3) \end{gathered}$	Female	Male	$\begin{aligned} & \text { Male } \\ & (-3) \end{aligned}$	Female
0	\$6.39		\$5.89	\$13.23		\$12.37	\$39.29		\$39.19
1.	6.38		5.89	13.13		12.31	38.96		38.89
2	6.52		6.02	13.37		12.53	38.94		38.87
3	6.69	\$6.39	6.17	13.62	\$13.23	12.77	38.93	\$39.29	38.86
4	6.85	6.38	6.32	13.89	13.13	13.02	38.93	38.96	38.86
5	7.03	6.52	6.48	14.17	13.37	13.28	38.93	38.94	38.86
6	7.22	6.69	6.65	14.46	13.62	13.55	38.94	38.93	38.86
7	7.41	6.85	6.82	14.76	13.89	13.83	38.95	38.93	38.87
8	7.61	7.03	7.01	15.07	14.17	14.12	38.97	38.93	38.89
9	7.83	7.22	7.20	15.40	14.46	14.43	38.99	38.94	38.91
10.	8.05	7.41	7.40	15.73	14.76	14.74	39.01	38.95	38.93
11.	8.28	7.61	7.61	16.07	15.07	15.06	39.04	38.97	38.95
12.	8.52	7.83	7.82	16.42	15.40	15.39	39.07	38.99	38.98
13	8.76	8.05	8.05	16.78	15.73	15.73	39.10	39.01	39.01
14	9.02	8.28	8.28	17.15	16.07	16.07	39.13	39.04	39.04
15.	9.29	8.52	8.52	17.52	16.42	16.42	39.16	39.07	39.07

corresponding values on the 1958 CSO Table and on the 1958 CSO Table set back 3 years. This comparison covers net annual premiums for the ordinary life plan, the 20 payment life plan and the 20 year endowment plan. In every case, net annual premiums computed on the basis of the female extension of the 1958 CSO Table (set back 3 years) are equal to or lower than corresponding net annual premiums computed on the basis of either the 1958 CSO Table or the 1958 CSO Table set back 3 years.

RESERVES ON FEMALE EXTENSION OF 1958 CSO TABLE

The new model bills for the Standard Nonforfeiture and Standard Valuation laws include ". . . may be calculated according to an age not
more than three years younger than the actual age of the insured." The proposed female extension of the 1958 CSO Table (set back 3 years) was examined to see whether it would fulfill the requirements of the Standard Nonforfeiture and Standard Valuation laws. As to premium paying policies issued at female ages 3 and over, terminal reserves computed on the basis of the extension are always equal to or greater than the corresponding terminal reserves computed on the basis of the 1958 CSO Table set back 3 years. As to the question of the legal mortality rates for females under age 3 , the law is rather ambiguous. The method used for constructing the female mortality rate extension through ages under 3 is consistent with the method used for constructing female mortality rates at ages 3 to 14 , inclusive. There follows in the immediately succeeding paragraphs a more complete analysis of the suitability of the extension in these two juvenile female age brackets.

Reserves at attained ages 15 and over

Table 6 demonstrates that mortality rates on the proposed female extension of the 1958 CSO Table (set back 3 years) shown in column (3) are less than the corresponding mortality rates on the 1958 CSO Table set back 3 years, shown in column (2), at ages 3 to 14 . Since the mortality rates at attained ages 15 and over on the 1958 CSO Female Table are

TABLE 6
Comparison of Mortality Rates per 1,000

Age	1958 CSO Table (1)	$\underset{\substack{1958 \text { CSO } \\(-3) \text { Table } \\ \text { (2) }}}{ }$	1958 CSO (F) Table (3)	Col. (2) Col. (3) (4)
0.	7.08		6.20	
1.	1.76		1.67	
2.	1.52		1.41	
3	1.46	7.08	1.35	5.73
4	1.40	1.76	1.29	. 47
5.	1.35	1.52	1.24	28
6	1.30	1.46	1.19	27
7	1.26	1.40	1.15	25
8	1.23	1.35	1.12	23
9.	1.21	1.30	1.11	19
10.	1.21	1.26	1.11	. 15
11.	1.23	1.23	1.12	. 11
12.	1.26	1.21	1.14	. 07
13	1.32	1.21	1.17	04
14	1.39	1.23	1.21	. 02
15.	1.46	1.26	1.26	0

exactly the same as the mortality rates on the 1958 CSO Table set back 3 years, the present value of future benefits at attained ages 15 and over will be the same on both tables. Therefore, a comparison of terminal reserves at attained ages 15 and over depends only on a comparison of net annual premiums. Since net annual premiums for issue ages 3 to 14 on the 1958 CSO Female Table are always equal to or less than net annual premiums on the 1958 CSO Table set back 3 years, it follows that terminal reserves computed on the basis of the 1958 CSO Female Table at attained ages 15 and over will always be equal to or greater than corresponding terminal reserves computed on the basis of the 1958 CSO Table set back 3 years.

Reserves at attained ages under 15

At attained ages under 15, Lidstone's Theorem (Society of Actuaries' Textbook on Life Contingencies by C. W. Jordan, Jr., page 114) was used as follows:

For an insurance of uniform amount with level premiums payable throughout the n year duration of the contract, reserves on the 1958 CSO Female Table will exceed reserves on the $1958 \operatorname{CSO}(-3)$ Table at all durations $t(0<t<n)$ provided that the critical function decreases as the duration t increases.

The critical function is defined as $\left(q_{t}-q_{t}^{\prime}\right)\left(1-{ }_{t+1} V\right)$ for $0 \leq t<n$ where: q_{t} is the mortality rate at the attained age on the $1958 \mathrm{CSO}(-3)$ Table, q_{i}^{\prime} is the mortality rate at the same age on the 1958 CSO Female Table and ${ }_{1+1} V$ is the terminal reserve on the 1958 CSO (-3) Table.

For coterminous insurance on which the reserves increase as the duration increases, it is apparent that if the differences in mortality rates decrease with increasing attained age, then the critical function must decrease with duration.

It can be seen from Table 6 that the differences in mortality rates decrease with increasing attained age. Therefore, for all coterminous life and endowment plans issued at female ages 3 to 14 , the reserves on the 1958 CSO Female Table will always be greater than the reserves on the 1958 CSO (-3) Table.

As the above theorem is not applicable to limited payment life plans issued at female ages 3 to 14 , special comparisons were made of terminal reserves at attained ages under 15 for 10,15 and 20 payment life plans issued at each female age from 3 to 14. These comparisons indicate that, during the premium paying period, terminal reserves on the 1958 CSO Female Table will always be equal to or greater than corresponding reserves on the 1958 CSO Table set back 3 years.

Our tests indicate that the only area where terminal reserves on the

TABLE 7
Comparison of Terminal Reserves on 1958 CSO Female Table and 1958 CSO Table Set back 3 Years
for Policies Issued at female Age 3- $\$ 1,000$ Basis

Policy Year	10 Payment Life			15 Payment Life			20 Payment Life		
	1958 $\operatorname{CsO}(F)$ (1)	1958 cso (-3) (2)	Col. (1)- Col. (2) (3)	$\begin{gathered} 1958 \\ \operatorname{cso}(\mathbf{F}) \end{gathered}$ (I)	1958 CSO (-3) (2)	Col. (1) Col. (2) (3)	1958 CSO $(\mathrm{~F})$ (1)	1958 Cs0 (-3) (2)	Col. (1). Col. (2) (3)
1.	\$ 21.86	\$ 17.04	\$4.82	\$ 15.10	\$ 10.01	\$5.09	\$ 11.75	\$ 6.52	35.23
2	44.36	39.78	4.58	30.66	25.56	5.10	23.87	18.52	5.35
3	67.49	63.35	4.14	46.67	41.77	4.90	36.36	31.06	5.30
4	91.28	87.60	3.68	63.15	58.45	4.70	49.22	44.00	5.22
5	115.73	112.55	3.18	80.10	75.64	4.46	62.46	57.34	5.12
6	140.84	138.21	2.63	97.53	93.32	4.21	76.07		5.00
7	166.62	164.58	2.04	115.41	111.52	3.89	90.05	85.22	4.83
8	193.07	191.67	1.40	133.76	130.23	3.53	10439	99.77	4.62
	220.21	219.51		152.59	149.46	3.13	119.10	114.73	4.37
10.	248.04	248.08	$-.04$	171.89	169.21	2.68	134.17	130.11	4.06
11	253.37	253.38	$-.01$	191.67	189.48	2.19	149.62	145.88	3.74
12	258.81	258.81	. 00	211.94	210.27	1.67	165.44	162.06	3.38

Policy Year	10 Year Endowhent			15 Year Endowment			20 Year Endownent		
	1958 CSO (F) (1)	$\begin{gathered} 1958 \\ \operatorname{cso}(-3) \end{gathered}$ (2)	Col. (1) - Col. (2) (3)	$\begin{gathered} 1958 \\ \operatorname{CSO}(\mathrm{~F}) \end{gathered}$ (1)	$\begin{gathered} 1958 \\ \text { CSO } \\ (-3) \end{gathered}$ (2)	Col. (1)- Col. (2) (3)	$\begin{gathered} 1958 \\ \operatorname{CSO}(F) \end{gathered}$ (1)	1958 (-3) (2)	$\begin{gathered} \text { Col. } \\ (1)- \\ \text { Col. } \\ (2) \\ (3) \end{gathered}$
I	\$ 88.63	\$ 84.08	\$4.55	\$ 55.13	\$ 50.22	\$4.91	\$ 38.53	\$ 33.43	\$5.10
2	179.65	175.30	4.35	111.77	106.85	4.92	78.14	72.91	5.23
3	273.11	269.14	3.97	169.94	165.20	4.74	118.83	113.67	5.16
4	369.05	365.51	3.54	229.68	225.14	4.54	160.64	155.55	5.09
5	467.52	464.46	3.06	291.01	286.71	4.30	203.57	198.60	4.97
6	568.59	566.06	2.53	353.97	349.95	4.02	247.64	242.82	4.82
7	672.31	670.34	1.97	418.58	414.88	3.70	292.88	288.24	4.64
8	778.73	777.39	1.34	484.87	481.55	3.32	339.30	334.88	4.42
9.	887.93	887.25	. 68	552.90	549.98	2.92	386.93	382.77	4.16
10	1,000.00	1,000.00	. 00	622.70	620.21	2.49	435.79	431.93	3.86
11				694.31	692.29	2.02	485.92	${ }^{482} .38$	3.54
				767.80	766.25	1.55	537.34	534.15	3.19

$\begin{aligned} & \text { Policy } \\ & \text { Yeat } \end{aligned}$	Ordinary Life			Single Pbemium Lipe		
	$\underset{(1)}{1958}{ }_{(5)}^{\operatorname{CSO}_{(1)}}$	$\operatorname{cso}(-3)$ (2)	$\begin{gathered} \operatorname{Col},(1) \\ -\operatorname{Col}_{(3)} \end{gathered}$	$\begin{gathered} 1958 \\ \operatorname{cso}_{(1)}^{(F)} \end{gathered}$	$\operatorname{cso}_{(2)}^{1958}$	$\begin{gathered} \mathrm{CoL} .(1)- \\ \mathrm{Col} .(2) \end{gathered}$ (3)
1.	\$ 4.98	\$-. 53	\$5.51	\$205.80	\$207.26	\$-1.46
2.	10.15	4.26	5.89	209.93	211.06	-1.13
3.	15.50	9.41	6.09	214.20	215.14	-. 94
4	21.05	14.76	6.29	218.63	219.38	-. 75
5	26.77	20.31	6.46	223.20	223.78	-. 58
6	32.68	26.06	6.62	227.91	228.33	-. 42
7	38.75	32.00	6.75	232.76	233.04	-. 28
8	44.98	38.14	6.84	237.73	237.90	-. 17
9.	51.37	44.48	6.89	242.83	242.92	-. 09
10	57.90	50.99	6.91	248.04	248.08	-. 04
11.	64.57	57.68	6.89	253.37	253.38	-. 01
12.	71.38	64.52	6.86	258.81	258.81	. 00

1958 CSO Female Table are lower than terminal reserves on the 1958 CSO Table set back 3 years is on fully paid-up policies at attained ages under 15 . This result reflects (1) that the terminal reserve on a fully paidup policy is the single premium for future benefits and (2) that mortality rates on the 1958 CSO Female Table at ages under 15 are lower than corresponding mortality rates on the 1958 CSO Table set back 3 years.

Table 7 shows, for illustrative purposes, a comparison of terminal reserves on the 1958 CSO Female Table and on the 1958 CSO Table set back 3 years. This comparison covers the first 12 policy years for policies issued on various plans at female age 3.

NONFORFEITURE VALUES ON 1958 CSO FEMALE TABLE

Reduced Paid-up Insurance

Values of reduced paid-up insurance on the 1958 CSO Female Table will always be equal to or greater than corresponding values on the 1958 CSO Table set back 3 years because premium paying reserves on the Female Table are higher and single premiums on the Female Table are lower than corresponding values on the 1958 CSO Table set back 3 years.

TABLE 8
Comparison of Mortality Rates per 1,000

Age	1958 CSO Table (1)	1958 CSO Female Table (2)	1958 CET Table (3)	1958 CET Female Table (4)
0.	7.08	6.20	7.83	6.95
1	1.76	1.67	2.51	2.42
2	1.52	1.41	2.27	2.16
3	1.46	1.35	2.21	2.10
4	1.40	1.29	2.15	2.04
5	1.35	1.24	2.10	1.99
6.	1.30	1.19	2.05	1.94
7.	1.26	1.15	2.01	1.90
8	1.23	1.12	1.98	1.87
9	1.21	1.11	1.96	1.86
10.	1.21	1.11	1.96	1.86
11	1.23	1.12	1.98	1.87
12	1.26	1.14	2.01	1.89
13	1.32	1.17	2.07	1.92
14	1.39	1.21	2.14	1.96
15.	1.46	1.26	2.21	2.01

Extended Term Insurance

An extension of the 1958 CET Table (set back 3 years) for females at ages 14 and under was constructed by following the same general method as that used in the construction of the 1958 CET Table. As the 1958 CET Table mortality rates at ages 14 and under were obtained by adding .75 deaths per 1,000 to the 1958 CSO Table mortality rates, this means that we merely have to add . 75 deaths per 1,000 to the female extension of the 1958 CSO Table in order to obtain a consistent female extension of the 1958 CET Table.

Periods of extended term insurance on the 1958 CET Female Table will always be equal to or greater than corresponding periods on the 1958 CET Table set back 3 years because net single premiums on the 1958 CET Female Table are lower than corresponding values on the 1958 CET Table set back 3 years.

CONCLUSION

The above extension of the female mortality rates down to age 0 is being incorporated in the publication of the monetary tables based upon the 1958 CSO and CET Mortality Tables, and the Committee considers it appropriate if adopted as the legal standard for use in all calculations involving female lives.

[^0]: * $\mathrm{D}_{x}=p^{x-3} l_{x}$
 $\dagger \mathrm{C}_{x}=y^{x-2} d_{x}$

