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ABSTRACT 

With the increasing ability to maintain better records and larger volumes 
of data, reports generally display tables of data broken down by many var- 
iables. This paper presents a variation of the Whittaker-Henderson gradua- 
tion method that may be used to graduate such multidimensional data. The 
main purpose of this paper is to present the underlying theory. No rigorous 
proofs are presented here since they are easily developed from other proofs 
available in the literature. Also presented in this paper is another modifi- 
cation of the Whittaker-Henderson method, designed to help the actuary find 
an acceptable smoothness constant more quickly. Examples are presented to 
illustrate these two enhancements. A general program that performs the 
graduation is described in the appendix. Other possible enhancements to the 
Whittaker-Henderson method are mentioned in an effort to develop a method 
that is as general as possible. 

BACKGROUND 

Multidimensional data should be familiar to every actuary. Premiums are 
determined by factors such as age, plan of insurance, smoker or nonsmoker; 
financial reports are prepared by line of business, state, accounting period, 
and other factors; statistical studies show data broken down and summarized 
by many variables such as age, sex, policy duration, and underwriting clas- 
sification. Each variable defines a dimension. A multidimensional array of 
data is merely data organized in a collection of detailed cells. Each cell 
represents a unique combination of values of those variables. For example, 
consider the three-dimensional array with the dimensions defined by (1) 
decennial age groups, (2) sex, and (3) state. This array is merely data or- 
ganized into 1,000 cells (10 age groups by 2 sexes by 50 states), where all 
the data in a given cell represent the same decennial age group, same sex, 
and same state. Data for any other combination of age, sex, and state would 
be found in another cell. 

213 



214 M U L T I D I M E N S I O N A L  W H I T T A K E R - H E N D E R S O N  G R A D U A T I O N  

In many cases the pattern of data across certain dimensions is expected 
to be smooth. These are the only pertinent dimensions as far as graduation 
is concerned. These dimensions must be defined by variables whose values 
have a definite order, such as policy duration (where duration 1 is followed 
by duration 2, and so forth), or premium rate-up due to physical impairment 
(where 100-150 percent is between 50-100 percent and 150-200 percent) 
or age. Data are almost always expected 'to be smooth across age. Some 
dimensions defined by variables such as marital status or national origin are 
difficult to order and, therefore, smoothness across these dimensions is not 
expected. There are other dimensions where smoothness is not expected even 
when their values are in a definite order. For example, if one of the variables 
were state of  residence, one would not expect that mortality rates would be 
smooth across that dimension when the states were arranged in alphabetical 
order. In other cases, there are variables, such as sex, smoker versus non- 
smoker, or face amounts less than $250,000 versus not less than $250,000, 
with only two possible values. Even if the two values could be ordered 
easily, it does not make sense to smooth two bits of data. 

If the underlying curve of data across a given dimension is assumed to 
be smoother than some raw data, and its shape is assumed to be close to a 
polynomial, then the Whittaker-Henderson graduation method may be used 
to remove fluctuations due to random errors. The entire graduation process 
can be summarized in one statement: minimize the value of F + kS, where 

F = E  
x f f i  1 

n - - z  

s - - E  

W,, (u~, - u'~) 2, a measure of fit; 

(/~z Ux)2, a measure of  smoothness; 
x f f i  ! 

ux = The graduated data; 

u~ = The ungraduated (that is, raw) data; 

W~ = A nonnegative number representing the weight to be given to the 
difference between the graduated and ungraduated values associated 
with a particular x value; 

k = A nonnegative number representing the smoothness constant. 

In other words, the graduation process dictates the best possible fit (small- 
est possible value of  F) and the best possible smoothness (smallest S) with 
the proper balance defined by k. The shape of the underlying data is assumed 
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to be close to a polynomial of degree z -  1. (For example, if the third-order 
differences of the graduated data are equal to zero, then the data lie on a 
quadratic curve.) The magnitude of k determines how close the graduated 
data will be to the polynomial. The greater the magnitude of k, the more 
the graduated data resemble the polynomial; the smaller the magnitude of 
k, the more the graduated data resemble the original data. 

S M O O T H N E S S  C O N S T A N T S  

The selection of proper smoothness constants has long been a concern in 
the use of the Whittaker-Henderson method ([7], p. 65 and [6], p. 433). 
There appears to be no relationship between the proper constants for two 
sets of data unless the two sets of data are very similar. To illustrate this, 
consider the graduation of mortality rates where the exposures (denoted by 
El) were used as weights. Assume that the proper smoothness constant was 
found to be 25,000. If the relative amount of exposure were used instead 

I I  

(that is, use Ei + ~'~ Ex instead of Ei as the ith weight), and if the total 
x = l  

amount of exposure is 1,000,000, then the proper k would be 0.025. In fact, 
the two sets of graduated rates would be identical, since minimizing 

Wx (Ux - U"x) 2 + kS has the same result as minimizing 
x = l  

~] _ _  k 
Wx (ux - u]-) 2 + - S, where c is any positive constant. 

x = l  C C 

The usual approach seeks to minimize the expression F + kS with k being 
a nonnegative number. If k = 0, there is complete emphasis on fit. As k 
becomes larger, there is increasingly more emphasis on smoothness. Thus, 
the two extremes of the graduated values are given by k values of 0 and ~. 
Another approach is to minimize the expression (1 - k') F + k'S with k' 
having a possible range of values between 0 and 1. When k' = 1, there is 
complete emphasis on smoothness; when k' = 0, there is complete emphasis 
on fit. Hence, the two extremes of graduation are given by k' values of 0 
and 1. This alteration of the function to be minimized in the graduation 
process is analogous to finding the proper balance by taking some weight 
off the left side of a scale and adding it to the right side, instead of only 
adding weight to the right side. The approach taken by this author is to not 
only limit the range of the smoothness constants to the interval from 0 to 1 
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but also limit the range of the entire expression to be minimized to the 
interval from 0 to 1. 

The expression to be minimized that this author has adopted is 
1 - k k 
- - F  + S, where 0 < k < 1. The constant Fr is equal to the value 

FT 
of F when the graduated data is totally smooth (that is, all zth differences 
are equal to zero). Fr is the maximum value of F. This value is determined 
by assuming that the graduated values lie on the least square polynomial of 
degree z - 1. The constant ST, which is the maximum value of S, is equal 
to the value of S when there is complete fit. Since this occurs when the 
graduated values equal the ungraduated values, the constant ST is equal to 
n - - z  

(A z u~) 2. The introduction of these two new terms, FT and St, has the 
x = l  

F 
effect of standardizing fit and smoothness, since ~ ranges from a value of 

0 (when no smoothing has taken place) to 1 (when the graduated data is 
S 

completely smooth) and Sr  ranges from 1 (with no smoothing) to 0 (with 

total smoothness). The minimized expression is equal to 1 when there is no 
smoothness and also when there is total smoothness; in other instances the 
expression is less than 1. Fit and smoothness are standardized so that k could 
determine the degree of smoothness relatively consistently for different sets 
of data. 

The modification of the Whittaker-Henderson smoothness constant is il- 
lustrated in the following example. Table 1 shows the ungraduated values, 
which were taken directly from the Part 5 Study Note ([3], p. 59), and the 
graduated values. Smoothness is measured using second differences and a k 
value of 0.95. Figure 1 graphically shows the graduated and ungraduated 
values. Figure 2 shows how the values of F/F T and S/Sr change as k goes 
from 0 to 1. As can be seen, the use of a k = 0.95 achieves better than 99 
percent of the total smoothness possible. The same graduation can be achieved 
without the modification presented in this section, but the required constant 
would be 26.25 (that is, 0.95 F r - 0.05 St). The graduated data that appear 
in the study note can be achieved by the modified formula if the smoothness 
constant is set equal to 0.99542. 

M U L T I D I M E N S I O N A L  G R A D U A T I O N  

When multidimensional graduation is discussed, one application that im- 
mediately comes to mind is the graduation of select mortality rates. The two 



T A B L E  1 

SAMPLE D A T A ,  U N G R A D U A T E D  AND G R A D U A T E D  

X W x U" x U x ~ - - U "  x 

1 . . . . . .  3 34 27.16 - 6 . 8 4  
2 . . . . . . .  5 24 28.95 4 .95  
3 . . . . . . .  8 31 31.51 .51 
4 . . . . . . .  10 40 34.69 - 5 . 3 1  
5 . . . . . . .  15 30 38.18 8 .18 
6 . . . . . . .  20 49 43 .68  - 5 . 3 2  
7 . . . . . . .  23 48 48 .22  .22 
8 . . . . . . .  20 48 52.88 4 .88  
9 . . . . . . .  15 67 58 .56  - 8 .44  

10 . . . . . . .  13 58 62 .44  4 .44  
11 . . . . . . .  !1 67 66 .52  - .48 

Totals . . . . . . . . . . . . . . . . .  

E30 

70 

W ~ ( u x - u " x )  2 Au~ A2u~ (A2u~)2 

140.357 1.79 .77 .593 
122.512 2 .56  .62 .384 

2.081 3 .18 .31 .096 
281.961 3 .49 2.01 4 . 0 4 0  

1 ,003.686 5 .50  - . 9 6  .922 
566 .048  4 .54  .12 .014 

1.113 4 .66  1.02 1.040 
476 .288  5.68 - 1.80 3 ,240  

1,068.504 3.88 .20 .040 
256.277 4 .08  .00 .000 

2 .534 " .00 .00 .000 

3,921.361 . . . . . . . .  10.370 

F .8433,  ST = 3 ,365,  ~ r  = .0031. NOTE.--z  = 2, k = .95, F T = 4 ,649,  F"~ = 

60 

S0 

40 

30 

m 

m 

20 

1 0 -  

0 I n I I 
I 2 3 4 

FiG. 1.----Sample data, ungraduated ( 
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I I 1 I I I I 
S 6 7 8 9 I0  I I  

) and graduated ( -  - - ) .  

dimensions in this case are defined by the variables issue age and policy 
duration. In another application, annuity tables may have mortality rates 
varying by age and calendar year. The application that prompted the devel- 
opment of the general multidimensional graduation program presented in the 



218 MULTIDIMENSIONAL WHITTAKER-HENDERSON GRADUATION 
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0.10 0.011 0.788 
0.20 0.043 0.608 
0.30 0.093 0.456 
0.40 0.161 0.330 
0.50 0.245 0.227 
0.60 0.345 0.145 
0.70 0.462 0.083 
0.80 0.595 0.038 
0.90 0.752 0.010 
0.95 0.843 0.003 
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k 
FIG. 2 . - - V a l u e s  o f  FIFT and S/ST as k goes  f rom 0 to 1. 

0.8 0.9 1.0 

appendix is the construction of a disability table for valuation purposes. 
Disability termination rates vary by age at disablement, duration since dis- 
ablement, elimination period, and occupational classification. Disability in- 
cidence rates vary by age (probably issue age and policy duration, although 
attained age is generally used), elimination period, and occupational class. 
These applications will be used to explain and demonstrate the underlying 
theory. 

The concept of graduating a grid of data (a two-dimensional array) was 
developed by Steven F. McKay and John C. Wilkin and first published as 
an appendix to an article by Francisco Bayo and John C. Wilkin [1] and is 
merely expanded here to include higher dimensions and differences other 
than second differences. The concept of balancing fit and smoothness re- 
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mains the same as in the one-dimensional case, but fit and smoothness have 
slightly different definitions for data with D dimensions: 

F = 

n I n2  n D  

X l = l  x 2 = l  X D = l  

( U x  l . x  2 . . . . .  x O - -  / /"Xl,x2 . . . . .  rO )2,  

n 2 n 3 n D n I - z I 

~s k , E  E . . . E  E ~'  = ( @  U x l , x  2 . . . . . .  D )2 
x 2 ~ l  x 3 = l  X D = I  x l = l  

n I n 3 n D n 2 - z  2 

Xl~ I x3=. 1 X D =  1 x2= 1 ( z  

n I n 2 n D n 3 - z  3 

+ k~ E E . . .  E E z3 2 (A Ux,~2 . . . .  ~o) 
X l ~ l  x 2 = l  X D ~ l  x 3 = l  3 

n I n2  n D  - I n D  - Z D  

+ k o E E  . . E  E go • (~D U X l  "x2  . . . . .  x O ) 2 '  
x I=1  x 2 = l  X D - I = I  x D = l  

where A ~i is defined by 
i 

/ ~  U x l . x  2 . . . . .  x i . . . . .  x D = U x l , x  2 . . . . .  (xi+ I ) . . . . .  x D  
i 

- -  Ux  I , x 2  . . . . .  x i  . . . . .  x D ,  

• ^ z  i -  I 
/ ~ Z t U x l , x 2  . . . . .  x i  . . . . .  x D  = L.~ U x l , x  2 . . . .  , ( x i+ l )  . . . . .  x D 
i i 

^ z  i - 1 
? U x l , x 2  . . . .  , x i ,  • • ", X D "  

These formulas may seem overwhelming at first, but they can be explained 
quite easily. Fit is quantified by taking the difference between the graduated 
data and the ungraduated data in every cell, squaring each difference, mul- 
tiplying it by the weight assigned to that cell, and then adding them all up 
for all the cells in the entire array. For example, if a select mortality table 
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is being graduated with 15 durations and 9 groups of issue ages (D = 2, nl 
= 15, n 2 = 9), then there will be 135 crude rates and 135 graduated rates. 

The difference between the crude rate and graduated rate for the first policy 
duration and the first issue age is squared and multiplied by the exposures 
for that cell. The same thing is done with the data for the first policy duration 
and the second issue age, and so on for all the cells. The sum of all these 
is equal to F. 

Smoothness is also measured at each cell. However, now there is smooth- 
ness in D different directions at each cell. For example, the graduated rate 
for the fifth policy duration and seventh age group should be smooth relative 
to the neighboring rates in the fifth policy duration (that is, age groups 6, 
8, 5, 9, and so on). It should also be smooth relative to the neighboring 
graduated rates in the seventh age group (that is, policy durations 4, 6, 3, 
7, and so on). Smoothness in each direction may be defined independently. 
For example, third differences may be minimized across policy duration 
while second differences are minimized across age. There may also be a 
different smoothness constant (ki) for each dimension. 

In dealing with multidimensional data, the ravel function found in APL 
is very helpful. For example, the calculation of F (which involves the sum- 
ming of squares) becomes a trivial task. The best way to explain how the 
ravel function works is through an illustration. Consider the following 2 × 
3 × 5 matrix (two planes, three rows, and five columns): 

Plane 1: 
2 2 

13 17 
11 15 

Plane 2: 
1 1 
2 3 
1 2 

2 2 2 
19 23 29 
17 21 27 

1 1 1 
5 7 11 
4 6 10 

The result of raveling these data is the following one-dimensional array 
(vector) with thirty elements: 

2 2 2 2 2  13 17 1 9 2 3 2 9  11 15 1721 27 1 1 1 1 1 2 3  5 7  11 1 2 4 6  10 

Notice the order in which the cells were taken: The ravel function loops 
through the values of the dimensions beginning with the last dimension 
(column) and ending with the first dimension (plane). In other words, the 
plane and row are initially held constant and the column position varies. 
When all the column entries in a particular row have been used, we move 
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to the next row within the plane. When an entire plane has been used, we 
move onto the next plane and repeat the process. This process is similar to 
the way the odometer of a car loops through the values 0 through 9 in each 
position. If the weights and both the graduated and ungraduated data were 
raveled, F then could be defined as 

N 
F = ~ Wy(Ry - -  Uy) 2, 

y = l  

where N = nl × n2 × n3 × . . .  × no and is the total number of  cells 
in the multidimensional data. 

Determining the graduated data amounts to solving the equation Au = 
Wu".  This is the same equation mentioned in the Part 5 Study Note ([3], 
p. 53), except that the elements are again defined slightly differently and 
are expressed using the ravel function. 

D 

A = W + ~ k i K T K i ;  
i = l  

u -- (Ul, u2, • • • , U~v), the raveled graduated data; 

u" = (u], u2 . . . . .  U~v), the raveled ungraduated data; 

W = An N × N matrix with the weights (wl, w2 . . . . .  wN) 

down the diagonal and zeros everywhere else; 

K i = Another N × N matrix with binomial coefficients 

that are needed to determine A zi ; 
i 

K'f/ -- The transpose of matrix Ki. 

The steps required to prove that the equation Au = Wu" is the result 
when F + kS is minimized parallel the steps in the Part 5 Study Note. This 
equation has a unique solution for the same reasons. 

Similarly, the property of  preserving the total number of deaths or ter- 
minations, if exposures are used as weights, also applies to the multidimen- 
sional graduation. However, this is only valid for the entire set of data. This 
property does not hold for the number of  deaths in all the policy durations 
of a single issue age group, but the total number of deaths for all age groups 
and all durations would be preserved. 



222 MULTIDIMENSIONAL WHITTAKER-HENDERSON GRADUATION 

If, instead of  working with the expression F + kS, we use the expression 
F S 

(1 - k )  F-r + k S-r' then the formulas required to produce a multidimensional 

graduation are as follows: 

1 - k  

FT 
- - F -  

D 

1 -  ~ ,  k i nl n2 n D 

FT X l = l  x2=i  XD=l 

W x l , x 2 ,  x3 . . . . . .  rD (Uxl,x2,x 3 . . . . .  x D 

- - U x l  ,x2, x3 . . . . .  xD) 2, 

n 2 n 3 a D n I - z  1 
k 1 
s~S = ~tki E E . . .  E E 

x 2 ~ l  x 3 = l  XD~l  x l = l  

Zl 
( l  A u~l~2, x3 . . . . . .  0) 2 

n I n3 nD n2-z2 

x l = l  x 3 ~ l  XD=l x 2 ~ l  

(2a-~2ux~ ,x2, x3 . . . . . .  ~o) 2 

n I n 2 n D n 3 - z  3 

+k3 E Y - . . . E  E 
X l = l  x 2 = l  xD=I x3=l  

(A~3uxl ,x2, x3  . . . . .  x D )  2 
3 

nl n2 riD- ! nD-ZD 

+ ~ o 2 2 . . . 2  2 
x l = l  x 2 = l  X D _ l ~ l  XD=l 

(ao=° uxl  ,x2 . . . . .  ~-012], 

D 

where 0 < k i < 1 for all ki's and 0 < ~ ki < 1; and Fr is the maximum 
i=1 

value of  F; and Sr is the maximum value of  S. • 
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Determining the graduated data amounts to solving the equation 
19 

Au = [ ( 1 -  ~ ki)/Fr] Wu". 
i = 1  

223 

A m 

U = 

U s! 

W =  

K =  

D 

1-~ k i o 

i=l W + 1 ~ kiKri Ki;  
Fr ~ i=l 

(ul, uz . . . . .  UN), the raveled graduated data; 

(u), u2 . . . . .  u~), the raveled ungraduated data; 

An N × N matrix with the weights (w l, w 2 . . . . .  wN) down 

the diagonal and zeros everywhere else; 

Another N × N matrix with binomial coefficients that are 

needed to determine /~zi ; 
i 

The transpose of matrix K i. 

E X A M P L E S  

The extension of the Whittaker-Henderson graduation technique to higher 
dimensions, using the modification of the smoothness constant, is illustrated 
by the following examples. The data used in these examples were taken from 
the 1979 Reports [8]. Although actual data were used, the analysis needed 
to perform the proper multidimensional graduation was not carded out. These 
examples are meant only to be illustrations of the graduation method. 

Select Mortality Rates 

The two dimensions represent policy duration and issue age group. The 
data represent select mortality rates of nonmedical males between 1977 and 
1978 anniversaries ([8], pp. 40-45). Third differences are minimized across 
each dimension and smoothness constants of 0.199 and 0.8 were used. The 
exposures, which were used as weights, as well as the crude rates and 
graduated rates are shown in table 2. Figure 3 shows the crude rates and 
graduated rates for three of the nine issue age groups. Including all nine 
groups in one graph would have produced a graph too complicated to un- 
derstand. 



TABLE 2 

STANDARD NONMEDICAL ISSUES OF 1963--77 

MALES LIVES 

EXPERIENCE BETWEEN 1977 AND 1978 ANNIVERSARIES 

P O L I C Y  

D U R A T I O N  

l . . . . . . . . .  

2 . . . . . . . . .  

3 . . . . . . . . .  

4 . . . . . . . . .  

5 . . . . . . . . .  

6 . . . . . . . . .  

7 . . . . . . . . .  

8 . . . . . . . . .  

9 . . . . . . . . .  

10 . . . . . . . .  

11 . . . . . . . .  

12 . . . . . . . .  

13 . . . . . . . .  

14 . . . . . . . .  

15 . . . . . . . .  

ISSUE AGE 

5-9 10--14 15--19120-24125-29 30-34135-39140- -44[  

Exposed to Risk in $1,000s) 

45-49 

449 1,613 4,718 4,493 1,806 471 13 36 

380 1 , 3 2 1  3,521 3,396 1,297 365 93 46 

320 1 , 1 3 1  2,889 2,697 1,053 327 86 30 

345 1,216 2,822 2,308 884 284 74 25 

362 1,187 2,653 2,056 817 280 80 18 

307 989 2,443 1,806 715 262 66 12 

219 800 2,225 1,537 644 245 60 11 

183 736 2,009 1,339 579 233 57 7 

174 654 1,669 1,226 546 216 52 6 

170 644 1 , 5 3 5  1,171 533 208 50 6 

166 621 1,258 981 447 162 34 4 

165 607 1,042 839 374 139 25 3 

161 683 1,069 803 375 145 25 2 

149 541 968 765 369 154 25 2 

137 486 839 691 346 147 24 2 

Crude Mo~ality Rates (per 1,000) 

.24 .32 1.08 .76 .61 60 126 1.84 2.11 
23  .24 1.00 .68 64 79 I11 2.52 .26 
.17 66  1.29 .72 88 104 1.30 166 8.43 
.24 .62 !.09 .82 .80 111 1.67 185 9.36 
.34 .98 1.25 .78 .74 1.19 2.29 310 2.28 
.39 1.22 116 .76 .70 1.54 2.29 3.88 442 
47 1.12 1.18 .81 .82 .97 2.65 4.85 209 
54  98 1.24 .83 .95 1.60 2.60 4.91 143 
.50 141 1.14 .86 .99 159 3.51 488 617 
.96 1 11 .79 .87 1.08 1.84 3.72 680 150 
.47 134 E00 1.06 1.06 2.09 3.81 5.65 6.75 

1.28 .85 97  .99 1.10 1.86 3.00 7.28 7.00 
.98 1.48 108 .85 1.30 2.95 5.83 7.00 13.00 

1.16 .91 1.31 112 176 2.86 530 7.48 650 
1.15 1.09 1.22 1.39 1.82 3.43 5.71 9.00 11.00 

2, N = 135, nl = 9, n 2 = 15, zl = 3, z2 = 3, kl .199, k2 = .8. 

I . . . . . . . . .  

2 . . . . . . . . .  

3 . . . . . . . . .  

4 . . . . . . . . .  

5 . . . . . . . . .  

6 . . . . . . . . .  

7 . . . . . . . . .  

8 . . . . . . . . .  

1211111111 
13 . . . . . . . .  
14 . . . . . . . .  
15 . . . . . . . .  

NOTE.--D = 

224 
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T A B L E  2--Continued 

225 

m 

1 . . . . . .  1 . 8 7  

2 . . . . . .  2 . 6 8  

3 . . . . . .  3 . 4 1  

4 . . . . . .  3 . 9 9  

5 . . . . . .  4 . 4 4  

6 . . . . . .  4 . 8 4  

7 . . . . . .  5 . 2 5  

8 . . . . . .  5 . 7 2  

9 . . . . . .  6 . 2 9  

10  . . . . .  6 . 9 6  

11 . . . . .  7 . 7 2  

12  . . . . . .  8 . 5 7  

13 . . . . .  9 . 4 8  

14  . . . . .  1 0 . 4 5  

15 . . . . .  1 1 . 4 8  

N O T E . - - D  = 2 ,  N = 1 3 5 ,  n l  = 9 ,  n2 = 15 ,  z l  = 3 ,  z2 = 3 ,  k~ = . 1 9 9 ,  k2 = . 8 .  

Disability Termination Rates 

The three dimensions represent elimination period, age at disablement, 
and duration since disablement. The data represent rates of termination from 
disability, and the weights are the exposures to termination ([8], pp. 371- 
97). Since nine-month elimination periods do not exist, the data and weights 
were set equal to zero. This was done to make the values of elimination 
period equidistant. The weights, crude rates, and graduated rates are shown 
in table 3A. The smoothness of tlae graduated rates is shown numerically in 
table 3B. Since the set of graduated termination rates is a three-dimen- 
sional array, smoothness is measured in three different directions. Figure 4 
presents the ungraduated and graduated data graphically, showing smooth- 
ness across age. Graphs also could be constructed showing smoothness across 
duration, by drawing one line for each age-elimination period combination. 
The smoothness across elimination periodcan be shown similarly. 

C O N S I D E R A T I O N S  F O R  A D D I T I O N A L  E N H A N C E M E N T S  

An attempt was made to have the APL program shown in the appendix 
as general as possible for the Whittaker-Henderson method presented here. 
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FIG. 3 . ~ t a n d a r d  nonmedical issues of 1963-77; male lives; experience between 1977 and 1978 
anniversaries; ungraduated ( ) and graduated (-  - - ) .  

The method, on the other hand, may be altered to allow for further variations. 
The following are some possible enhancements that come to mind. 

1. The definition of F and S should not be limited to the sums of squares. 
Sums of absolute values may be one alternative. This was suggested by 
Donald R. Schuette ([6], p. 408). Also sums of positive square roots or 
sums of the absolute values of  cubes should be available. 

2. Smoothness may be redefined. Instead of using zth differences, a com- 
bination of differences has been suggested by Walter B. Lowrie in a 
recent paper in the Transactions ([5]). Using divided differences has also 
been suggested when the ordered values of a variable are not equidistant, 
as in the cases of graduating across elimination period where the values 
are 0, 7, 14, 30, 90, and 180 days. Perhaps smoothness could be defined 
in more general terms for cases where the underlying curves are neither 
polynomials, exponentials, nor close to either of these. If  this is possible, 
then the definition of smoothness across one dimension should be inde- 
pendent of  its definition across any other dimension. 

3. Smoothness constants could be allowed to vary within each dimension 
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AGE AT DISABLF2,ff.NT 

Exposures 

3-month 
elimination 

period: 
2 . . . . . . . .  
3 . . . . . . . .  
4 . . . . . . . .  
5 . . . . . . . .  

6 . . . . . . . .  
6-month 

elimination 
period: 

2 . . . . . . . .  

3 . . . . . . . .  
4 . . . . . . . .  
5 . . . . . . . .  

6 . . . . . . . .  

9-month 
elimination 

period: 
2 . . . . . . . .  
3 . . . . . . . .  

4 . . . . . . . .  
5 . . . . . . . .  

6 . . . . . . . .  
12-month 

elimination 
period: 

2 . . . . . . . .  

3 . . . . . . . .  
4 . . . . . . . .  
5 . . . . . . . .  

6 . . . . . . . .  

256 
121 
63 
37 
34 

676 
314 
192 
127 
95 

74 
42 
24 

9 
5 

504 
254 
146 
108 
59 

1,395 
816 
527 
377 
276 

158 
76 
45 
34 
23" 

1,374 
900 
583 
385 
274 

4,197 
2,823 
2,120 
1,631 
1,178 

521 
330 
233 
163 
130 

3,674 
2,510 
1,756 
1,22 I 

695 

11,005 
7,998 
6,089 
4,642 
3,279 

1,504 
965 
681 
508 
333 

1,633 
927 
394 
157 

0 

5,178 
3,135 
1,564 

667 
195 

542 
260 
147 

0 
22 

NOTE.---D = 3, N = 100, nl = 4, n 2 = 5, n 3 = 5, z! = 2, z 2 = 3, z 3 = 3, kl = .1, 

k2 = .29, k3 = .59. 

and behave as weights of smoothness. This means rewriting each term 
of S from 

n 1 n 2 h i _  1 ni+ 1 n D n i - z  i 
z i  k,E E.. .  E E . . .  E Z ( A .  . . . . . . . .  

Xlffi 1 x2ffi I X i _ l f f i l  X i+l f f i l  XD= 1 xi= I i 1 '2 ' 3 '  
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T A B L E  3 A ~ C o n t i n u e d  

DURATION 

3-month 
elimination 

period: 
2 . . . . . . . . .  
3 
4 . . . . . . . . .  
5 . . . . . . . . .  
6 . . . . . . . . .  
6-month  

el imination 
period: 

2 . . . . . . . . .  
3 . . . . . . . . .  
4 . . . . . . . . .  
5 . . . . . . . . .  
6 
9-month  

elimination 
period: 

2 . . . . . . . . .  
3 . . . . . . . . .  
4 
5 
6 . . . . . . . . .  
12-month 

elimination 
period: 

2 . . . . . . . .  
3 . . . .  ~ . . .  
4 . . . . . . . .  
5 . . . . . . . .  
6 . . . . . . . .  

AGE AT DISABLEMENT 

Under 30 I 30-39 ] 40--49 [ 50-59 j 

Chide Rates of Termination 

6O-64 

.3637 

.1976 

.0638 

.1070 

.0294 

.3535 

.2835 

.1250 

.0630 

.0631 

.0000 

.0000 

.0000 

.0000 

.0000 

.2148 

.1680 

.2552 

.1080 

.3896 

.2915 

.1966 

.0956 

.1021 

.0510 

.2703 

.1790 

.1062 

.0690 

.0398 

.0000 

.0000 

.0000 

.0000 

.0000 

.2537 

.1180 

.0897 

.0884 

.0430 

.2053 

.1333 

.0943 

.0468 

.0329 

.1725 

.1176 

.0698 

.0521 

.0467 

.0000 

.0000 

.0000 

.0000 

.0000 

.1652 

.1212 

.1028 

.0307 

.0461 

NOTE.-- D = 3, N = 100, n I = 4,  n2 = 5, n3 = 5, zl = 2, z 

kz = .29,  k 3 = .59. 

.1369 

.0964 

.0672 

.0639 

.0834 

.1224 

.0864 

.0675 

.0629 

.0677 

.0000 

.0000 

.0000 

.0000 

.0000 

.1170 

.0860 

.0955 

.0729 

.0780 

.1096 

.1025 

.0761 

.0637 

.0000 

.1041 

.0775 

.0729 

.0495 

.0719 

.0000 

.0000 

.0000 

.0000 

.0000 

.1217 

.0885 

.0477 

.0000 

.0455 

= 3, z3 = 3, kl = .1, 

t o  

nl n2 ni- I hi+ I 

Z Z ,  Z Z • 
X l = l  x 2 = l  Xi_l=l X i + l = l  

nD ni_zi 

Z kxl,x2 . . . . . .  i _ l ,  xi+ I . . . . . .  o Z 
XD=I xi=l 

zi 
(A Uxl.~2. x3 . . . . . . .  o) 2 

Rewrit ing S in this manner  can be incorporated in a program fairly easily. 
This,  by the way,  would not destroy the property of  the Whit taker-Henderson 
method that preserves  the total number  of  deaths or terminations. 
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AGE AT DISABLEMENT 

Graduated Rates o f  Termina t ion  3-month 
elimination 

period: 
2 . . . . . . . . .  

3 . . . . . . . . .  

4 . . . . . . . . .  

5 . . . . . . . . .  

6 . . . . . . . . .  
6-month  

elimination 
period: 

2 . . . . . . . . .  
3 . . . . . . . . .  

4 . . . . . . . . .  
5 . . . . . . . . .  

6 . . . . . . . . .  
9 -month  

elimination 
period: 

2 . . . . . . . . .  
3 . . . . . . . . .  

4 . . . . . . . . .  
5 . . . . . . . . .  

6 . . . . . . . . .  
12-month 

elimination 
period: 

2 . . . . . . . . .  
3 . . . . . . . . .  

4 . . . . . . . . .  
5 . . . . . . . . .  

6 . . . . . . . . .  

.3696 

.2140 

. ! 1 1 6  

.0614 

.0422 

.3595 

.2619 

.1470 

.0716 

.0540 

.3221 

.2325 

.1590 

.1100 

.0926 

.2491 
• 1907 
• 1596 
• 1479 
.1604 

.2875 
• 1809 
.1043 
.0605 
•0346 

.2651 

.1764 
• 1038 
•0603 
•0423 

.2344 

.1638 

.1104 

.0762 
•0625 

.2191 

.1510 
•1114 
.0886 
•0810 

.2043 

.1338 

.0873 

.0570 

.0464 

.1746 

.1175 

.0736 

.0548 

.0490 

.1667 

.1157 
.0801 
.0593 
.0524 

.1644 
• 1 1 9 0  

.0916 

.0645 

.0532 

.1378 

.0975 

.0698 

.0624 

.0778 

.1221 

.0863 

.0669 

.0617 

.0667 

• i 225 
.0876 
.0667 
.0580 
.0605 

.1194 

.0921 

.0841 

.0698 

.0676 

•1093 
•0976 
.0745 
.0716 
.1109 

.1040 

.0787 

.0701 

.0586 

.0769 

.1044 

.0792 

.0681 

.0698 
•0847 

.1174  

.0820 

.0690 
•0823 
•1084 

NOTE.-- D = 3, N = 100, n I = 4, n2 = 5, n3 = 5, zl = 2, z2 = 3, z3 = 3, kl = . I ,  

k2 = .29, k3 = .59• 

C O N C L U S I O N  

The method for graduating a grid of  data was expanded for a greater 
number of dimensions and for differences other than second differences• The 
general program presented here performs the Whittaker-Henderson gradua- 
tion on multidimensional data as well as the more familiar one-dimensional 
data. This program also incorporates a new approach to smoothness con- 
stants, which limits them to values between zero (no smoothness) and one 
(ultimate smoothness)• The program may be rendered useless if the actuary 
does not have access to an APL system with a workspace large enough for 
the graduation• In spite of  this limitation, any actuary involved in graduating 
data should be aware that multidimensional data can be graduated using this 
enhancement of the Whittaker-Henderson method• Further enhancements are 
also possible and should be encouraged• 
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TABLE 313 

GROUP LONG-TERM DISABILITY INSURANCE 

TERMINATION EXPERIENCE OF 1962--77 
MEASURES OF SMOOTHNESS 

AOE AI" DISAB LE.M EN/ 

0 . . . .  oN Oo or30 I 3 0 - .  I 50-59 I 
Smoothness across Elimination Perlc ~2  u.,l.x2..r3) 

3-month elimination 
period: 

2 . . . . . . . . . . . . . .  
3 . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . .  

6-month elimination 
period: 

2 . . . . . . . . . . . . . .  
3 . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . .  

3-month elimination 
period: 

2 . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . .  
6-month elimination 
period: 

2 . . . . . . . . . . . . . .  
3 . . . . . . . . . . . . . .  

9-month el imination 
period: 

2 . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . .  

12-month elimination 
period: 

2 . . . . . . . . . . . . . .  
3 . . . . . . . . . . . . . .  

- . 0273  
- .0773  
- . 0 2 3 4  

.0282 

.0268 

- . 0 3 5 6  
- . 0 1 2 4  
- . 0 1 1 4  
- . 0005  

.0292 

- . 0 0 1 0  
- . 0 2 1 2  

.0568 

.0183 

.0084 

.0071 

- .0079 
.0048 

- . 0 0 8 3  .0219 
- .0081  .0145 

.0072 .0202 

.0161 .0067 

.0125 .0006 

.0154 .0056 
- .0002  .0051 
- . 0 0 5 6  .0050 
- .0035  .0007 
- . 0 0 1 6  - .0025  

.0161 

.0125 

.0027 
- .0030 

.0049 

- .0034  
.0032 
.0176 
.0155 
.0133 

Smoothness across Duration ~3  uXld2..T3) 

.0025 
- . 0 1 4 6  

.0130 
- . 0036  

.0020 

.0013 

- .0117  
- .0015  

.0057 

.0194 

.0024 

.0242 

.0418 

.0126 

.0023 

.0029 

.0013 

.0159 

- .0079  
.0035 

.0119 
- .0120  

- .0006  
- .0009  

- .0177  
.0155 

.0077 

.0025 

- .0022  
- . 0040  

- . 0 0 1 8  
- . 0 0 1 0  

- . 0257  
.0184 

.0316 

.0220 

- . 0 1 9 6  
.0327 

- .0013  
.0004 

.0039 
- .0135  

APPENDIX A 

P R O G R A M  

Since the program is lengthy, it is presented here one logical step at a 
time. The length of the program would be reduced from seventy-three state- 
ments to thirty-four if all checks for the data's validity were left out. 

APL was chosen as the programming language for a number of reasons. 
First of all, it is well suited to multidimensional data. This comes in handy 
for the construction of the K matrices. Second, the matrix divide ( B ) makes 
the final step of the graduation very concise and eliminates the need for 
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I~ON 

3-month elimination 
period: 

2 . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . .  
4 . . . . . . . . . . . . . . .  
5 . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . .  
6-month elimination 
period: 

2 . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . .  
4 . . . . . . . . . . . . . . .  
5 . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . .  

AGE AT DtSAm.r.Ur.N'r 

Under  30 [ 30-39  

Smoothness et'ross Age 

(@3 1/o, ~2~3 ) 

.0216 

.0256 

.0226 
- .0051 
- .0179 

DURA~ON 

AGE AT DL~ABLEMEN'T 

Under 30 J 30 -39  

.0175 

.0248 

.0095 

.0115 

.0002 

.0341 

.0011 

.0105 

.0066 
- . 0 0 7 7  

- .0036 
- .0041 
- .0136 
- .0224 
- .0182 

9-month elimination 
period: 

2 . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . .  
4 . . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . . . .  
6 . . . . . . . . . . . . . . .  

12-month elimination 
period: 

2 . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . .  
4 . . . . . . . . . . . . . . .  
5 . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . .  

Smoothness across Age 

(/N 3 Uxl,x2,t3) 
3 

.0035 
~ . 0 0 0 6  

- .0014 
- .0013 
- .0018 

.0345 
- .0026 
- . 0 1 6 1  

- . 0 0 5 8  

- . 0 0 9 1  

.0026 
- .0003 
- . 0 0 2 1  

- . 0 0 2 5  

- . 0 0 2 1  

.0330 

.0117 
- .0199  
- ;0222 
- .0159  

350 

3OO 

Year 2 Year 3 Year 4 Year 5 Year 6 

Duration 

FiG. 4.---Group long-term disability insurance, termination experience of 1962-77, ungraduated 
( ) and graduated (-  - -).  A. three-month elimination period. 

u s i n g  t h e  C h o l e s k i  m e t h o d .  A l s o ,  A P L  is b e c o m i n g  t h e  a c c e p t e d  s t a n d a r d  

in t h e  a c t u a r i a l  c o m m u n i t y  

T h e  m a i n  d r a w b a c k  o f  th i s  p r o g r a m  is t he  l a r g e  a m o u n t  o f  s t o r a g e  r e q u i r e d  
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FIG. 4--C. Nine-month elimination period. 

for the graduation of multidimensional data. One method of conserving stor- 
age is to store only the diagonal band of nonzero matrix elements. However, 



300  

o 
o ° 250 

200  

M U L T I D I M E N S I O N A L  W H I T T A K E R - H E N D E R S O N  G R A D U A T I O N  

SO 

9" 

Yezr2 

9" 
as" 

Ye=r3 

r#" 

Year4 

Duration 
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Year6 

additional dimensions expand the width of the band significantly making 
that method no longer practical. Also, the additional programming required 
would be very confusing. 

This APL function returns the array of graduated data. It requires a left 
argument (the weights), a fight argument (the ungraduated data), and two 
variables (DIFF and SMOOTH) that must be def'med before the function is 
called. The variable DIFF must contain the differences that are to be min- 
imized for each dimension. The variable SMOOTH must contain the smooth- 
ness constants for each dimension. The sum of these smoothness constants 
may not be greater than one. 

E03 O~WEXONTS OreAD L J H G g ~ D ~ ; I ~ I ; H ~ Z ; K ~ j ~ ; ~ ' r ~ ' r ; Z ~ I . i O T l r  

Once DIFF and SMOOTH are defined, the graduation function, GRAD, 
may be called to display the graduated data. It may also be called by another 
APL function where the graduated data can be used for further processing. 
This graduation function requires two arguments. The left argument is the 
set of weights. The fight argument is the ungraduated data. The data may 
have any number of dimensions, but the dimensions of the ~veights must 
match the dimensions of the ungraduated data. 

The local variables that will not be saved after the function has been 
executed are listed after the fight argument, UNGRAD. The names given 
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the APL variables were designed to correspond with the names of the varibles 
used in the formulas presented in this paper. 

Formulas APL 

D D 
N N 
n and n~ N and N [!] 
z and zi Z and Z [/] 
k and k~ K and K [!] 
u" UNGRAD 
u U 

W~.~2 . . . . . . .  c) WEIGHTS [; ; . . . ; ]  
K _K 
,4 A 

W W 
F T _FT 
sr _~ ¢~ally ./ST) 

Meaning 

Number of dimensions (variables) 
Number of cells 
Number of possible values for each variable 
Differences minimized 
Smoothness constants 
Ungracluated array of data 
Graduated array of data 
An'ay of weights 
N x N matrix of binomial coefficients 

D 

( 1 -  ~.k,) 
~ "  W+~Y~k,~Xi 

FT ST i- l 

N x N matrix of weights 
Maximum value of F 
Maximum value of S 

[ 1 ]  T E S T R ~ H W : 4 ( ( r P N E I G H T S ) : r p U H G R A P ) / T E S T S H ~ P E  

E2] ' R ~ N K  OF N E Z G H T S  DO HOT E Q U A L  RAHK OF I J N O P ~ D U ~ T E ~  [ I A T A  I 

[ 3 ]  mHO G R a D U a T I O N  N Z L  BE P £ R F O R M ~ O *  

[ 4 ]  U ~ U N G R A D  

[ 5 ]  4 E N D  

A test is made to be sure that the weights and the ungraduated data have 
the same number of dimensions, that is, the same rank. If they are not the 
same, then an error message is typed and the original ungraduatecl data are 
returned in place of the graduated data. 

[ ~ ]  T E S T S H A P E ~ 4 ( ^ / ( ~ W E Z O H T O ) ~ r U N G R A D ) / T E S T W E C G H T  

[ 7 ]  1 S H A P E  OF W E I G H T S  DO HOT H A T C H  ~ H A P E  OF U H O R A D U A T E I )  DATA I 

[ 8 ]  i H o  O R A D U A T Z O N  W I L L  BE p E R F O R M E D  I 

[ 9 ]  U ~ U N G R A D  

[ 1 0 3  ~ N D  

A test is made to be sure each dimension of the ungraduated data matches 
the corresponding dimension of the weights. If any one of them does not 
match, an error message is typed and the original data are returned. 

[ 1 1 ]  T E S T W E I G H T : 4 ( ( ^ / f W E I G H T S L 0 ) ^ ( ( + / J W E I G H T S ) ) 0 ) ) / T E S T D I F F  

[123  eWEZGHTS H A Y  NOT DE H E G A T I V E  AND HOST H A V E  AT L E A S T  OHE P O S I T I V E  V A L U E  j 

[133 'NO G R A D U ~ T I O H  WILL BE P E R F O R M E D  ~ 

[ 1 4 ]  U ~ U N G R A D  

E15~ 4 E N D  
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A test is made to be sure that there are no negative weights and that there 
is at least one weight that is greater than zero. I f  either of these is not true, 
an error message is typed and the original data arc returned. 

[ 1 6 3  T E S T D I F F : ~ ( ( p e D I F F ) = r p U H G R A D ) / A D J D I F F  

E17 ]  * , , D Z F F , ,  f fOT D E F I N E D  P R O P E R L Y *  

[ 1 8 ]  *ONE VRLUE FOR EACH DIMENSION' 

[ 1 9 ]  : N o  G R A D U A T I O N  M I L L  BE P E R F O R M E D *  

[ 2 0 ]  U ~ U H G R R D  

[ 2 1 3  +END 

A test is made to be sure that there is one difference to be minimized for 
each dimension. If the number of differences does not match the number of 
dimensions, then an error message is typed and the original data are returned. 

[ 22 ]  A D J D Z F F : ~ ( ( ^ / D I F F ~ I ) ^ ( ^ / D I F F ~ r U H G ~ D ) ^ ( ^ / D I F F = L D I F F ) ) / T E S T S M O O r H  

E 2 3 ]  I I I ~ I F F D I  NOT D E F I N E D  P R O P E R L Y I  

[ 2 4 ]  * A D J U S T E D  FROM ~ F ( g D Z F F I ~ *  TO ' r 9 I F ( L D I F F ) L r U N G R A D  

[ 2 5 ]  I ~ R R D U R T I O N  M I L L  C O N T ; N U E  I 

If any one of the differences is less than one or greater than the number 
of possible values in its corresponding dimension or is not an integer, then 
a message is typed, and the differences are corrected and processing contin. 
u e s .  

[26] 

[27] 

[ 2 8 ]  

[29] 

[30] 

[31] 

[32] 

E33] 

T E S T S N O O T N : 4 ( ( ^ / ( p S M O O T N ) ) 0 ) ^ ( ( ÷ / y S N O O T H ) ~ l ) ^ ( ( , ~ S M O O T H ) = p p U N G R A D ) ) / T O T A L  

SNOOTNHESS 

I S N O O T H N E S S  F A C T O R S  HOT D E F I N E D  P R O P E R L Y  I 

*ALL F A C T O R S  M U S T  DE G R E A T E R  T H A N  Z E R O '  

ITHE SUN OF THE FACTORS N U S T  ~ E  LESS T H R N  ONE I 

IONE F A C T O R  FOR EACH DIMENSION'  

I N O  G R A D U A T I O N  M I L L  DE P E R F O R M E D '  

U ~ U H G R A ~  

~END 

The. smoothness constants are tested to be sure they are all greater than 
zero, their sum is not greater than one, and there is one smoothness constant 
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for each dimension. If any one of  these is not true, an error message is typed 
and the original data are returned. 

[ 3 4 ]  TO'rALSHOOTHI'IES5 ~ ze ( I [ (Lz'x~F) LPUNGRAt*)-I 

[353 U@WEIGHT5 LS~ UHGRAD 

The multidimensional least squares data are determined with z/defined to 
be the degree of  tlie polynomial across the ith dimension. Once the APL 
variable Z is defined, the least-squares function (LSQ) can be called similar 
to the GRAD function. This function contains thirty statements and is shown 
in appendix B. The data that are returned by LSQ are data with the ultimate 
smoothness.  In other words, this is the limit of  the graduated data as the 
smoothness constants approach one. 

[ 3 6 ]  ~( (+ / ,S~OOTH)=I ) /EHD 

[ 3 7 3  - -FT(-+/~ WE ~ GHT S X ( U--UI'~EIR~I;' ) ~ 2 

[ 3 8 ]  " ) (Eq '>O) / IHTz~I ' z zE  

[ 3 9 ]  ' ['ATA ALREAD'f S~OOTH ' 

[ 4 0 ]  ~EI .~,  

If the sum of  the smoothness constants is equal to one or if the ungraduated 
data are already smooth, no more processing is required. The rest of  the 
program is bypassed and the smooth data are returned. 

[ 4 1 ]  I N ' r I ~ t .  l Z E  ; 

[ 4 2 ]  ~yyUNO~A~, 

C 4 3 3  H( -~  UHC, F:At, 

[443 Her ,  UH~RA~' 

[45]  z~-z+l 

[46] K,L', ~ 4 O O T H  

Most of  the variables are initialized here. 

[ 4 7 ]  ~ ( U , U ) ~ 0  

[ 4 8 ]  ~T~10 

[ 4 9 ]  Z~0 

[ 5 0 ]  LOOP~I~'~+I 

[ 5 1 ]  ~ ( ( I Z E I ] ) : Z E ~ J ) X ( - - I ) ~ Z [  I ] 

[523 ~e~EZ3f01P~ 

[ 5 3 ]  K e ( ( H [ I ] - - Z E I ] ) , H E I ] ) y K  

[543 ~ ( H E X ] , H [ ] ] ) ÷ K  

[553 H O T Z ~ < Z ~ I ~ > / I ~  
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[ 5 6 2  K--~((Xl;~E~OTX]),~CZ],i';'IEX])f~- 

[ 5 7 ]  K-~((X/t~[~OTX])H'I[1],(X/~IE&~O~Z])'t '{[~])~- 

[ 5 8 3  - ~  (~, -~)  ~-~ 

[ 5 9 ]  x - ~ ( l - i - ~ )  ~-~ 
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[ 6 0 ]  k~ (;~[NOTI ] ~ HI I ] , ;4[HOTI ] , ;'~[ I ] ) f K 

[ 6 2 ]  ~ - ( ~ , ~ ) ~ K  

[ 6 3 ]  S T t ~ S T  ~ ( r UPIGRAIO ) + • X ( ~--R ) + * X I~ 4' ' X ( ~ U;'~GR~:~O ) 

[64] _K~- (~_K)  + ,  x K 

[ 6 5 ]  _K~-~ [ z ] x_K 

[ 6 6 ]  ~ - -~+-~  

[ 6 7 ]  "~ ( I ( E ) / L O ( ] F "  

This loop is required to produce a K array for each dimension. These are 
needed in the development of  the A array since 

D 

o 

i=1 W - l -  l 
a - FT S-T i=l ~ '  ki KTi Ki" 

Each K array is used to define the smoothness along the given dimension. 
Since smoothness is defined in terms of  differences, binomial coefficients 
are needed. In other words, since 

A3Ux = lux+ 3 - 3ux+ 2 + 3Ux+ I - lux, 

and, in general, 

Ux+z-Z + . . .  + ( - 1 )  z (0) ux 

the binomial coefficients - I, 3, - 3 ,  1 and, in general, 
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are needed. Positioning these coefficients properly in the N × N array is 
the reason for the major processing effort. The proper position is determined 
by the dimension and by the number of possible values in the other dimen- 
sions. In one case the difference is taken between an element and the next 
element of the raveled data; in this case the coefficients are positioned next 
to each other in the K array. In another case the difference is taken between 
an element and another element n o  places away in the raveled data. In this 
case the coefficients are separated by n o - -  1 zeros. There is a different case 
for each dimension. In the last case the difference is taken between an 
element and another one n o x n D _ !  x . . . X n 3 × n2 places away; in 
this case the coefficients are separated by (n  o × nD ~ × • . • X n 3 × n2) 
-- 1 zeros. 

The smoothness constant for a given dimension is applied to the matrix 
product of  K r and K. 

[68 ]  ~ e A + + / ~ r  

The A array is adjusted by S t ,  the standardizing value for smoothness. 

[ 6 9 3  O~:x , K_, 

The final K array is erased to make more storage available for the W array. 

W is constructed as an N × N array whose elements are zeros everywhere 
except down the diagonal. The diagonal elements are the ravel weights 
adjusted by (a) one minus the sum of the smoothness constants and (b) Fr ,  
the standardizing value for fit. 

[ 7 1 ]  _¢,~.A_.~.__. 

The W array is added to complete the A array. 

[72) GRA~IUATION~U('?qP(~+*YyUNGRAD)BA-- 

The graduation is performed by solving the equation Au -- Wu" for u. 
This is possible if and only if the A array has an inverse. Since we have 
constructed the A array to be a positive definite matrix, an inverse is assured. 

[733 E~-~, ; 

Processing ends and the data in the APL variable U are returned. 
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APPENDIX B 

THE LEAST SQUARES FUNCTION 

[i] 

[2] A I H I T : [ A L ] ~ Z ] ~ N G  r, A T A  

[3] n 

[4] U(= X/H(-,e rx  

[5] w(- ()J,L4) P ( • (l-N) o, = ~)\,w 

[ 6 ]  ze~z 

[73 x~- 1 1 t'l 

[O] n 

[ 9 ]  fl LOOPIHG THF;.OUGH EACH [ , I H E H S I O H  

~10] fl TO ~ E T  I.;P )4 ~ : ~ : ~ ' ; "  -- A.~,SUHE A L L  I ' A T A  I S  E O U ~ I )  I S T A t ' ~ T  

[ii] n 

[12] r~0 

[13] LOOP~ X@X+I 

[14] Xl~< ~[~]) ~.*0, ~Z[X] 

[15] Xe(((YX)EI]XHE:r]),O'X)E2]xI+ZEI])t " i 3 2 4 ~xo,x×~ 

[ 1 6 ]  -) ( ~[ ( y ~'F~< ) / L O O P  

[17] n 

[ 1 8 ]  N T w o  AR~:A' t 'S  MtJSI" BE S E T  U ~  

[19] n 

[ 2 0 ]  A e ( ~ x ) + , x w + , x X  

[ 2 1 ]  e ~ . ( w + ,  x , F X )  + ,  x X  

[22] n 

[ 2 3 ]  n ~ ) E T E R M I H E  E Q E F E I C I E I ' | T S  FOE T H E  L E A S T  ~ e U A R E S  F - O L ' f # . ; O N I A L  

[ 2 4 ]  n 

[ 2 5 ]  COEF~'RBA 

[26] A 

[27] R U S E  T H E  C O E F F I P .  Z E H T S  TO C A L C U L A T E  T H E  V A L U E  OF 

[ 2 8 3  R T H E  P O L ' f H O ~ A L  A T  E V E E Y  P O I H T  

[ 2 9 ]  n 

[ 3 0 ]  C $ - / - ~ X + .  X C O E E  

239 
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DISCUSSION OF PRECEDING PAPER 

STEVEN F. MCKAY; 

Mr. Knorr has done a commendable job in expanding the usefulness of 
multidimensional Whittaker-Henderson graduation. As he pointed out in his 
paper, we developed the concept of graduating a grid of data here at the 
Social Security Administration about ten years ago. In our applications, we 
saved a considerable amount of computer storage by using the band structure 
of the matrices involved in the calculations. Such techniques should be 
expandable to higher dimensions. I suggest that anyone having problems 
with limited computer storage when using Mr. Knorr's approach should look 
into the possibility of using the band structure. 

I believe any discussion of advances in Whittaker-Henderson graduation 
techniques should give credit to Dr. T. N. E. Greville, whose lucid Part 5 
Study Note was a great help to a decade of actuarial students. 

J E F F R E Y  L. K U N K E L :  

Mr. Knorr's paper is a useful addition to the literature on graduation. I 
particularly like his idea of standardizing fit and smoothness. My discussion 
is limited to the author's justification for the large amount of storage required 
by his APL program used to implement his generalization of Whittaker- 
Henderson graduation. 

Mr. Knorr contends that taking advantage of the band structure of the 
matrix A, as described in his article, is impractical because "additional 
dimensions expand the width of the band significantly." While it is true that 
the band width is significantly expanded with an increase in the number of 
dimensions, one should recall that A is a symmetric matrix. Thus, only 
slightly more than half of the band (the main diagonal and the nontrivial 
diagonals above it) needs to be stored. The width of the band will depend 
on the particular function used to transform the ungraduated array into a 
vector. It will also depend on the degree of differencing associated with that 
dimension for which the transformation requires the largest "jumps" within 
the resulting vector when moving from one position to the next. Let me 
clarify this last statement with an example. Suppose we have a three-di- 
mensional array with N rows, M columns, and L layers. We choose to map 
the (i, j, k) position in the array to the ( k  - 1 ) N M  + (i  - I)N + j position 
in a vector, so that in moving from one layer to the next (i.e., in the height 
dimension), the largest jump will occur in the resulting vector. The width 

241 
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of the band, in this example, would be 2dNM + l, where d is the degree 
of differencing specified for smoothness among the layers. Again, because 
of symmetry, we need only store dNM + l diagonals of this band. 

In general, if the ungraduated array has D dimensions, and the total num- 
ber of cells is N = nl,nz,  n3 . . . . .  riD, then the number of entries required 
for the matrix A is A rE. However, taking full advantage of the symmetric 
band structure, we may store the main diagonal of A and the nontrivial 
diagonals above it as the columns of a matrix A'. If the jth dimension is 
chosen as the one for which " jumps"  are largest under the transformation 
previously described, and if dj is the degree of differencing associated with 
this dimension, then A' will have 

N(nl ,n  2 . . . . .  nj_l ,  r / j + l ,  . . .,nDd j + 1) 

entries. The ratio of the size of A' to A is thus about dj to nj. Of course, we 
are free to choose j in order to make this ratio as small as possible. 

For example, suppose we have a 20 by 9 by 5 array of ungraduated data. 
The full matrix A would require (20 x 9 × 5 )  2 = 810,000 entries-- 
probably too many for most computers. However, if we assume that only 
order 2 differencing is needed among the 20 rows, then the reduced matrix 
A' will require (20 × 9 × 5) x (9 x 5 × 2 + !) = 81,900 entries. 
Storage requirements have now been cut by almost 90 percent. 

Thus, significant amounts of storage space can be saved by utilizing the 
band structure of matrix A instead of the whole matrix. The degree of savings 
will depend on the structure of the ungraduated array and the degree of 
differencing selected for each dimension. 

I have written a short (129 lines total, or 82 lines excluding comments) 
FORTRAN program (see Appendix) which performs a conventional Whit- 
taker-Henderson graduation and conserves storage space as I 've described. 
The program will handle one or two dimensional data. The question remains 
whether the method employed here can be practically extended to more than 
two dimensions. 

Perhaps my FORTRAN program may serve as a foundation upon which 
an extension to higher dimensions can be made by those who both have the 
need for graduating data in more than two dimensions and who wish to save 
computer storage space at the same time. 
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APPENDIX 
C P r o g r a m  f o r  W h i t t a k e r - H e n d e r s o n  g r a d u a t i o ~  o f  o n e  o r  t w o  d i m e n s i o n a l  
C d a t a ,  
C 

P~RAMETER M D = 4 . M R = 5 0 . M C = 1 4 . M P = M R * M C . M A C = M D * M C + i  
C 
C MD = M a x i m u m  o r d e r  o f  D i f f e r e n c i n g  u s e d  i n  s m o o t h i n g  
C MR = M a x i m u m  ~ ROWS o f  u n g r a d u a t e d  d a t a  
C MC = M a x i m u m  # C o l u m n s  o f  u n g r a d u a t R d  d a t a  
C MP = P r o d u c t  o f  M a x i m u m  # r o w s  & max # c o l u m n s  o f  u n g r a d u a t e d  d a t a  
C MAC = M a x i m u m  # C o l u m n s  n e e d e d  i n  m a t r i x  A ( I , J )  d e s c r i b e d  b e l o w  
C 

CHARACTER,-it TN(2)/'LINGRADUATEO'." GRADUATED ' /  
INTEGER DOP(MO+I,2),ORD(2),D(2),SM(MR,MR,2),BW.Z 
DIMENSION UNGRAD(MR,MC),WEIGHT(MR,MC).A(MP,MAC).U(MP),SW(2) 

C 
C A = m a t r i x ,  i n  r e d u c e d  f o r m ,  w h o s e  c o l u m n s  a r e  t h e  n o n t r i v i a l  
C d i a g o n a l s  o f  "W + V*SM(  . . 1 ) +  H*SM( . , 2 ) " .  V & H a r e  ~ u m b e r s  
C w h i c h  g i v e  t h e  r e l a t i v e  w e i g h t  p l a c e d  o n  v e r t i c a l  a n d  h o r i z o n t a l  
C S m o o t h i n g ,  r e s p e c t i v e l y .  
C BW = h n o n t r l v i a l  Columns of matr ix  A minus l 
C DOP = D i f f e r e n c e  O p e r a t o r .  2 n d  d i m e n s i o n  r e f e r s  t o  w h e t h e r  DOP I s  
C f o r  v e r t i c a l  s m o o t h i n g  - -  D O P ( I . t ) .  o r  h o r i z o n t a l  - -  D O P ( I . 2 ) .  
C ORD : Order o f  s m o o t h i n g  ( l = v e r t .  2 = h o r i z )  
C SM( . . l )  = c o e f f i c i e n t  matr ix f o r  v e r t i c a l  smoothing. Each 
C c o e f f i c i e n t  r e f e r s  t o  a m u l t i p l e  o f  t h e  i d e n t i t y  s u b m a t r t x  o f  
C s i z e  = t o  # C o l u m n s  o f  u n g r a d u a t e d  d a t a .  
C SM( , , 2 )  = c o e f f i c i e n t  s u b m a t r t x  f o r  h o r i z o n t a l  s m o o t h i n g ,  T h e  w h o l e  
C m a t r i x  c o n s i s t s  o f  R r e p i t i t i o n s  o f  t h i s  s u b m a t r i x  a l o n ~  t h e  m a i n  
C d i a g o n a l  ( w h e r e  R = # r o w s  o f  u n g r a d  d a t a )  a n d  z e r o s  e l s e w h e r e .  
C SW = s m o o t h i n g  w e i g h t s  ( l = v e r t .  2 = l l o r i z )  
C U = v e c t o r  c o n t a i n i n g  t h e  g r a d u a t e d  d a t a .  
C UNGRAD = m a t r i x  o f  u n g r a d u a t e d  d a t a .  
C WEIGHT = m a t r i x  o f  w e i g h t s ,  t o  b e  a p p l i e d  t o  t h e  u n g r a d u a t e d  d a t a .  
C 

tO FORMAT(//iOX,'NUMBER OF ROWS =',I3/7X.'NUMBER OF COLUMNS = ' , I 3 / /  
&' ORDER'.I2," DIFFERENCING FOR VERTICAL SMOOTHING'/ 
&' ORDER'.I2,' DIFFERENCING FOR HORIZONTAL SMOOTHING'// 
&" VERTICAL SMOOTHING WEIGHT =',F5.1/ 
&' HORIZONTAL SMOOTHING WEIGHT = ' .F5.1)  

20 FORMAT(IHI.2OX,'THE MATRIX OF " , A l l . '  NUMBERS:'/' ROW') 
30  F O R M A T ( I 4 . 1 4 F 9 . 3 )  

C 
C Read the # of rows D(1) & # of columns 0(2)  of UNGRAD. Read the 
C order o f  d i f f e r e n c i n g  f o r  v e r t i c a l  & horizontal s m o o t h i n g  followed 
C b y  t h e  c o r r e s p o n d i n g  w e i g h t s  f o r  e a c h  t y p e  o f  smoothing. 

READ(S,*) D,ORD.SW 
WRITE(6,10) O,ORD,SW 

C Read  t h e  u n g r a d u a t e d  d a t a  f o l l o w e d  b y  t h e i r  r e s p e c t i v e  w e i g h t s .  
READ(S,*) ( (UNGRAD( I . J ) .d= I ,D(2 ) ) , I= I .D( i ) )  
READ(S,*) ( (WEIGHT( I ,d ) , J= i ,D(2 ) ) , I= I .D(1 ) )  
WRITE(G,20) IN(1) 
DO 40 I= I ,D(1 )  

40 WRITE(6,30) I , (UNGRAO(I,d),J=I,D(2)) 
C Compute the d i f fe rence operators for  ve r t  & hor iz  smoothing: 

00 140 K = 1 . 2  
N : o R e ( K )  + I 

C G A M M A ( N )  = ( N - l ) f  : O R D ( K ) i  
DO 100 d : l . N  

100 D O P ( J . K )  = ( - I ) , * ( J + N ) * G A M M A ( N ) / ( G A M M A ( d ) * G A M M A ( N - d + I ) )  
C Z e r o - o u t  SM a r r a y  o n  & a b o v e  t h e  m a i n  d i a g o n a l :  

00 110 I = I . D ( K )  
DO 110 J = I . D ( K )  

110 SM(I.d.K) = 0 
C Compute SM: 

DO 120 d = I . D ( K )  
DO t 2 0  I = M A X ( t , J - O R D ( K ) ) , J  
DO 120 IR=MAX(I,I-ORD(K),J-ORD(K)),MIN(I,D(K)-ORD(K)) 

120 SM(I,d,K) = SM(I,d,K)+DOP(I-IR+I,K)*DOP(J-IR+i,K) 
DO 130 I :2,D(K) 
DO 130 d : l . ] - I  
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71 
72 
73 
74 
75 
76 
77 
78 
79 
BO 
81 
B2 
B3 
84 
B5 
B6 
87 
8 8  
89 
90 
g i  
92 
93 
94 
95 
96 
g7 
g8 
g9 

t 0 0  
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
I l l  
112 
i 13  
114 
l t 5  
~16 
117 
118 
~19 
120 
12t 
122 
123 
124 
125 
126 
127 
128 
129 

130 S M ( I , d . K )  = S M ( O , I , K )  
140 CONTINUE 

NRC = D ( 1 ) - D ( 2 )  
BW = M A X ( O R D ( t ) * D ( 2 ) , O R D ( 2 ) )  

C F t l l  t n  t h e  f i r s t  c o l u m n  o f  m a t r i x  A: 
00 190 I : 1 , 0 ( 1 )  
DO 190 O = I . D ( 2 )  

190 A ( ( I - I ) * D ( 2 ) + J . t )  = W E I G H T ( I . d )  + S W ( I ) * S M ( I , I . I )  + S W ( 2 ) * S M ( d . J . 2 )  
C Z e r o - o u t  t h e  r e m a i n i n g  BW c o l u m n s  o f  m a t r i x  A 

DO 200 d=I.BW 
DO 200 I=I,NRC 

200 A ( I , J + I )  = O. 
C F i l l  out BW COlUmns of A beginning w i th  Column 2 : '  

DO 220 K = 1 . 2  
DO 220 Z = I . D ( 3 - K )  
00 220 I = I . D ( K )  
IA = ( ( 2 - K ) * I + ( K - I ) * Z - t ) * D ( 2 )  + ( 2 - K ) * Z + ( K - I ) * I  
DO 220 J = I + f . M I N ( I + O R D ( K ) . D ( K ) )  
JA = ( ( 2 - K ) * d ~ ( K - I ) * Z - t ) * D ( 2 )  + ( 2 - K ) * Z + ( K - 1 ) * O  

220 A ( I A . J A - I A + I )  = A ( I A , d A - I A + I )  + SW(K)*SM(I.J,K) 
C Compu te  t h e  d e c o m p o s i t i o n  o f  m a t r i x  A a s  t h e  p r o d u c t  L * L ' .  
C The n o n t r I v t a l  d i a g o n a l s  o f  L a r e  s t o r e d  t n  m a t r i x  A. 

DO 270 J= I ,NRC 
I F ( J  .EO. l )  THEN 

A ( I , I )  = SORT(A( I . I ) )  
ELSE 

SUM = O. 
D0 240 IH=MAX(I,d-BW).d-I 

240 SUM = SUM + A ( I H , U - I H + I ) * * 2  
A ( d , l )  = SQRT(A(J,I)-SUM) 

END IF 
DO 260 I=J+I,MIN(NRC,J+BW) 
SUM = O. 
DO 250 IH=l .d - I  

250 I F ( I - I H  .LE. BW) SUM=SUM+A(IH,I - IH+I)*A(IH,J- IH+i)  
260 A ( O , I - d + t )  = ( A ( U . I - J + i ) - S U M ) / A ( d , 1 )  
270 CONTINUE 

C Compu te  t h e  g r a d u a t e d  numbers  by  s o l v i n g  
C AU = L L ' U  = WU" 
C f o r  U t n  2 s t a g e s ,  w h e r e  U"  a r e  t h e  u n g r a d u a t e d  n u m b e r s .  

DO 280 I = I . D ( I )  
DO 280 d = l . D ( 2 )  

280 U ( ( I - I ) * D ( 2 ) + J )  = WEIGHT(I,d)*UNGRAD(I,d) 
U(1) = U(1)/A(I,t) 
DO 300 I=2,NRC 
SUM = O. 
DO 290 O = M A X ( I . I - B W ) . I - I  

290 SUM = SUM + U ( d ) * A ( J . I - O + I )  
300 U(1) = ( U ( I ) - S U M ) / A ( I . I )  

U(NRC) = U(NRC)/A(NRC,I) 
DO 320 I = N R C - I , I , - t  
SUM = O. 
DO 310 d=I+I.MIN(NRC.I+BW) 

310 SUM = SUM + U ( d ) * A ( l . d - l + l )  
320 U ( I )  = ( U ( I ) - S U M ) / A ( I . I )  

W R I T E ( 6 . 2 0 )  TN(2 )  
00 330 I = I , D ( 1 )  

330 WRITE(6,30) I , ( U ( J ) , d : ( I - I ) * D ( 2 ) + I , I * D ( 2 ) )  
END 

E L I A S  S. W. SHIU: 

As two-dimensional Whittaker-Henderson graduation has been included 
in the Society of Actuaries' new Part 5 study note ([3], section 8.4), this is 
indeed a timely paper. The author has clearly demonstrated that APL is the 
natural tool for solving problems involving matrices. I hope that future re- 
visions of the graduation syllabus will include the study of APL algorithms. 
• I have the following comments on this paper. 
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The definition of S is perhaps not complete since mixed difference terms 
are not included. L e t f  be a function in two variables. The conditions 

A 2 f(x, y) = 0 
x 

and 

A2f(x ,y)  = 0 
Y 

do not necessarily imply that f is a linear function. An example is 

f ix ,  y) = xy. 

The additional condition 

A A  f (x ,  y) = 0 
xy 

is needed to ensure that f is of the form 

a + bx + cy. 

For a select life table, it is expected that 

qtx] < qtx - 1 1 + 1  < qtx - 2 ] + 2  < • • • 

The mortality rates graduated by the method in this paper need not satisfy. 
the previous inequalities. Indeed if there is a lot of emphasis on smoothness, 
some of the graduated values may turn out to be negative or greater than 
one. Thus, we propose that appropriate linear constraints be included in the 
formulation of the problem. The resulting optimization problem is then solved 
with a quadratic-programming algorithm. (See section 7 of [5]). 

Consider the function 

1 - k F + k S 
g(u,  k) - F-----~ S r  " 

In this paper the value of k is first fixed, and then g is minimized by varying 
u. Perhaps one should minimize g by varying both u and k. If we ignore 
the natural constraints on u and k and apply the method of multivariate 
calculus, the problem becomes solving the equations 

0 
g = 0 (1) 

and 

0 
n 0u g 0, (2) 

simultaneously. Equation (1) is simply 
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F/F T = S / S T .  

As shown in [4], the left-hand side of equation (2) is 

2[ l - u") ] w(u - +  / Txu 

Traditionally, the choice of k has been made by trial and error. In pro- 
posing the method above, we are trying to eliminate the problem of choosing 
k. However, upon examining figure 2 of the paper, we see that the optimal 
k is around 0.5. The graduated values for such a k may not be sufficiently 
smooth. 

The author has raised the question whether the index of "smoothness 
could be defined in more general terms for cases where the underlying curves 
are neither polynomials, exponentials, nor close to either of these." An 
answer to this question can be found in [1]. 

First, it should be pointed out that, by the Weierstrass approximation 
theorem, any continuous function on a compact set can be uniformly ap- 
proximated by polynomials (compare [2], p. 486). In fact, since we are 
dealing with a finite set of points, there are polynomials interpolating these 
points. Of course, this is not the answer the author is looking for. 

Dr. T. N. E. Greville ([1], pp. 389-90) has suggested that S may be 
generalized as 

Z [p(E) uA 2, 
X 

where p(E) is a polynomial in the forward-shift operator E. By the theory 
of difference equations, the solutions of 

p(E)ux = 0 

are linear combinations of products of polynomial and exponential functions. 
It is interesting to note that, nearly one hundred years ago, T. B. Sprague 
([6], p. 110) used this result to discredit the method of moving-weighted- 
average graduation. 

The last comment concerns Appendix B. We wish to find the coefficient 
vector c such that the quadratic form 

(y  - x c ) r w ( y  - X c )  (3) 
is minimized (compare [3], section 6.5.1). 
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Equating the derivative of (3) with respect to c with the zero vector, we 
have 

-2Xr~V(y - Xc) = O, 

o r  

c = (XrWX)-Ix 'rwy.  (4) 

Equation (4) is programmed as lines 20, 21, and 25 in Appendix B. 

On the other hand, (3) can be expressed as 

(W"2y-  W"zX c )r (W"2y -- W"2Xc). 

Thus the coefficient vector c is simply given by 

(W"2y) ~] (W"2X). 
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WILLIAM J. TAYLOR: 

First, on behalf of all of  the members of the Committee to Recommend 
New Disability Tables for Valuation, we congratulate Mr. Knott  on his lucid 
description of the extensions he has made to Whittaker-Henderson graduation 
in connection with our committee 's  charge. In addition to the obvious mul- 
tidimensional nature of our problem, his standardization of smoothness and 
fit constants not only makes the graduation process simpler, it also makes 
it a lot easier to describe to actuaries not intimately involved in graduation. 

In applying the author's program to graduating incidence rates, we en- 
countered difficulties in obtaining satisfactory results and thought it might 
be caused by the invalidity of the assumption of equal intervals between the 
variable values in some of our dimensions. We investigated extending the 
program to handle divided differences in addition to normal differences and 
found the extension to be quite simple. Unfortunately, the improvements 
provided by this extension did not produce satisfactory results. We concluded 
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that our problem was that we had too few variable values to graduate the 
complex mathematical form with the underlying probabilities and ended up 
using Lotus 1, 2, 3 to perform multidimensional graphic graduation as de- 
scribed in our committee report. 

Revised listings incorporating the extensions and excluding many of the 
comments are attached. Two new global variables have been defined, one 
function added and small changes made to each of LSQ and GRAD, in- 
cluding the addition of the letter T to the name of each of these two functions. 

The variable VI is a logical scalar indicating the variable interval. A value 
of 1 indicates equal intervals and causes the original calculations to be per- 
formed. A value of 0 indicates unequal intervals. 

If VI is equal to 0, VM must be defined as a matrix containing each of 
the values that each of the variables assumes. There is a row for each 
dimension and enough columns to accommodate the dimension with the most 
values. The change to LSQ simply substitutes the variable values for the 
natural numbers sequence if unequal intervals are used. The change to GRAD 
simply substitutes the divided difference coefficients for the binomial coef- 
ficients if unequal intervals are used. The appropriate set of coefficients are 
determined in the new function DCM and three lines of GRAD are replaced 
by a single line returning the result from DCM. 

VO~ADT[0]~ 
U t - W E I G H T ~  GRI~iDT U t 4 i ~ R ~ I I ~ . ~ I : 2 ; N ~ ; ~ Z ; I ( ; ~ ; K ~ W ; F _ T ~ S T | Z ~ H O T I ~ V V  

[ 1 ]  T E S T F : ~ H K : ' ) ( ( r r W E Z G H T S ) = f r U H O F : A I ' a ) / T E s T S H A F ' E  

[ ~ ]  I~:A#/K OF W E I G H T S  0 0  FIOT [ G U L L  R ~ N K  OF U # ' ~ G F . A D U A T E ~ ' ~ ' A T A  I 
[ 3 ]  I ; 40  G . ~ A r I U A T ; O / 4  WZL DE PERFCIRNED I 

[ 4 : ]  U I r U H G R A D  

[ 5 ]  4E#~D 
[ ~ ]  T E S T S H A P E  : ~ ( A /  ( ~ WE Z GHT ~ ) ;=~ LJ;.IG~:A|I ) / ' ~ E S T W E  Z GF~T 

[ 7 3  I S H A P E  OF W E Z G H T S  0 0  HOT H A T C H  S H A P E  OF U H G ~ A D U ~ T E D  D ~ T A  I 

[ 8 ]  11.1o GF::AIE, U A T Z O H  WXLL  [~E F ' E R F O R H E D '  

[ 9 3  U~--UHGRAD 

[ 1 0 3  -~EHD 
L l l ]  T E S T W E I G H T : ~ (  ( A / ~ W E Z G H T S ) 0 ) ^  ( ( + / t N E Z G H T S ) ) 0 )  ) / T E S T D Z F F  

[ 1 2 ]  I W E I G H T S  HA'f' H O T  DE H E G A T Z V E  AND MUST HOVE A T  L E A S T  OHE F ' O S Z T ~ V E  V A L U E *  

[ 1 3 ]  ' H O  GF~.ADUATZO;,I W Z L L  ~ E  P E R F O ~ : H E [ ,  I 

[ 143  U~UHGEAD 

[153 -~EHD 
[ 1 ~ ]  T E S T D Z F F  : ~ ( ( F r D I F F ) = r r U H G R A D ) / A D J D I F F  

C17]  ' I I D I F F I  ' HOT D E F I t 4 E b  F ' F : O P E R L ' f l  

[ 1 B ]  , O N E  V A L U E  FOE: E A C H  D ~ H E H S I O H  I 

[ 19 ]  '#~O G6:AE, UAT IO#~  ~ I L L  ~ E  P E ~ : F O R ~ E £  ,*  

[ 2 0 ]  U~UHO~A~, 
[ 2 1 ]  -~E##D 
[ 2 2 ]  ~ D J [ , I F F : ~ ( ( ^ / D I F F )  1 ) ^ ( ~ / ] : , I F F ( ~ ' U H G ~ : A E , ) ^ ( ^ / D I F F = L L ,  I F F "  ) ) / T E S T S ~ O O T H  

[ 2 3 ]  , ' * D Z F F *  * ;~OT D E F Z H E D  P R O P E R L T ~  

[ 2 4 ]  ' A D J U S T E E '  FROH ' ~ ( ? D I F F ) ; *  TO , , t l r ( L D Z F F ) L r U H G R A D  

[ 2 5 ]  ~GF:~DU~TIO;.# W~LL C(JHT~HUE ~ 

[ 2 ~ 3  T E S T S H O O T H : - ~ (  ( A / /  ~ S N O Q T H )  ) 0 ) A ( ( + / ~ , S H O O T H )  ( I ) ^ (  (,{" ~ S ~ D O T H ) = p F - U t - I ( S R A D )  ) / T O T A L  

SHOOTHHESS 
[ 2 7 3  * S H O O T H H E S S  F A C T O R S  NOT D E F I ; ~ E [ *  P~:OPER:LT I 

[ 2 ~ ]  I ~ L L  F ~ C T O ~ E  H U S T  ~ E  ~ R E A T E ~ :  T H A ; I  ZES:O I 

[2 ( ' / '3  * T H E  .~U~ OF T H E  F ~ C T O ~ S  ~4UST BE ~ E S S  T H A H  O H E *  
[ 3 0 ]  I O H E  F~CTO~; FOR E ~ C H  DIHENS~OH I 

[ 3 1 ]  ' H O  G~ADUATZO#.# W I L L  9 E  P E R F O R H E D I  

[ 3 2 ]  U~,U.GR~D 
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[333 ~e~t ,  
[ 3 4 ]  TOTAt-SHOOTHHESS : Ze ( 1 r ( [ D I F F )  LP U H ~ R ~ D ) - I  
~ 3 5 ]  U~WEIOH~S LS~T U I ~ D  
[363 ~ ( ( + / ,  SHOOTer) =1 )/EI~D 
[ 3 7 ]  E T a + /  , WEIGHTSX (U--UHGRA[') *2  
[ 3 ~ ]  ~ ( ~ T ) 0 ) / I H T I A L I ~ E  
[ 3 9 ]  'L.ATA ALREABf SHOOTH ~ 

[413 I~TIALIZE ~ 

~ 4 3 ]  I.~ (. ~ tlt.tG R A E' 
[ 4 4 3  ~ t ' t v  q'~HGRAD 
[453 z~Z+l 
[4~) ]  He;S~OOTH 

[ 4 ~ ]  ~ ' ~ 0  
[ 4 9 ]  I~O 
[50] L O O F ' ~ I ~ I + I  
[513 K~CM 
E52] K~.(N[I],H[Z])fK 

[ 5 4 ]  ~ ' ( ( X / H [ H O T Z ] ) , I ; [ I ] ~ l v H [ I S ) r ~  
[ 5 5 ]  ~ ( ( X / H [ N O T I ] ) H 4 [ I ] ' ( X / ~ ' ~ [ H U ~ ] ) ' H [ I ] ) f ~  
[56] ~(~,U)t~ 

[59] ~e ( (~.~OT~, ~ ), ~+;~OT Z, Z ) ~ 
[60] ~e(~,~)r~ 

[ 6 3 J  [ e r [ z ] x ~  
[64J  Q~+~ 
[ 6 5 ]  ~ ( x < ~ ) / ~ o o P  
[ 6 6 3  0 ~ ÷ + / ~  T 
[67] 0~>: '~' 
[ 6 8 ]  ~ e ( U , ~ ) £ ( 9 ( ( l ~ ) ~ , = | ~ ) )  \ 'WEI~HTsx(1-+ /~)+ET 

[ 6 9 ]  ~ 
[ 7 0 ]  GR~PUATIO;~U~ I Ip (~+ .XpUreGF:AD)~  
[713 EHO: 

9 

[ I ]  ~ v I / E I  
[ 2 ]  ~ ( ( H E ~ ] - - Z E X ] ) ' T ~ T ) t ( T ' r ) y I ' ( T ~ I + Z E I ] ) P 0  
[ 3 ]  ~ + x / X ~ +  1 2 1 3 ~ v v [ J ] * * - v v [ d ~ ( - l + l # z [ ~  ] - Z ~ T ] ) ° ' ~ r ]  
C4] ~0 
[ 5 ]  EX :F:~H[I]~I, ((~Z[i]) ~ZEI]) x--l* I~[X] 

[ 6 ]  ~e( U'~Ez]-z[ z~) ,HZ~3)r ~ 

249 

OLSOT[0 ]O  

E l ]  w ~ ( ( r F v ) ~ t P ' r ) ~ ( p ( t t F r ) ° . = t t F  r ) \ T w  
[ 2 ]  z ~ , z  
[ 3 ]  ::~ 1 1 r l  
[4 ]  x~O 
[ 5 ]  L I ~ I ~ I + I  
[ 6 ]  ~ v I / v v P ~ 0 ~ v v e ~ ( r " ) E  x ] 
[7] V V ~ ( ¥ T ) [ I ] ~ V H [ I ; ]  
[B] vv~::<x~vv°.*O,tZEX] 
[ 9 ]  : < ~ ( ( ( F × ) E 1 ] x ( K ' , ' ) E ~ ] ) , ( f : ~ ) E 2 3 X 1 + Z E x ] ) F  1 3 2 4 ~o.x~I 
[ 1 0 ]  ~ ( I ( t ¥ ' v ' ) / L 1  
[ 1 1 ]  ~(~:)+,xw+.xX 
[123 ~ ( W + . x , ' , ) + . x ~ t  
[ 1 3 ]  COEF~RB~ 
E14] C~(PY)r~+.xCOEF 



250 M U L T I D I M E N S I O N A L  W H I T T A K E R - H E N D E R S O N  G R A D U A T I O N  

L E E  G I E S E C K E :  

Frank E. Knorr's article on multidimensional Whittaker-Henderson grad- 
uation, looks very promising. I would like to make two suggestions that will 
make the paper slightly more general. I also add a note of caution in using 
the standardized fidelity and smoothness constants FT and ST. 

First I suggest moving the smoothness constants inside all but the inner- 
most summations. This would permit many more smoothness constants and 
allow us to establish the smoothness coefficients using single dimensional 
graduations prior to the multidimensional run. Without doing this, we may 
be using some very large smoothness constants where data are sparse. 

Second I suggest permitting regions of discontinuity inside the innermost 
smoothness summation. The use of different smoothness measures and 
smoothness constants on either side of the discontinuity is related to this. 
Even when there is no discontinuity, it may be desirable to use different 
smoothness measures in different rows (or columns) of a particular cross 
section of the multidimensional array. This suggestion is rather academic 
but may occasionally prove useful. Table 1 illustrates why I note caution in 
using the standardized fidelity constants FT and ST. 

T A B L E  I 

x q~ w~ u'~ ut, uz, 

8 5  . . . . . . . . . .  

86 . . . . . . . . . .  
87 . . . . . . . . . .  
88 . . . . . . . . . .  
89 . . . . . . . . . .  
90 . . . . . . . . . .  
91 . . . . . . . . . .  
92 . . . . . . . . . .  
93 . . . . . . . . . .  
9 4  . . . . . . . . . .  

95 . . . . . . . . . .  
96 . . . . . . . . . .  
97 . . . . . . . . . .  
98 . . . . . . . . . .  
99  . . . . . . . . . .  

100 . . . . . . . . . .  
101 . . . . . . . . . .  
102 . . . . . . . . . .  
103 . . . . . . . . . .  
104 . . . . . . . . . .  
105 . . . . . . . . . .  
106 . . . . . . . . . .  
107 . . . . . . . . . .  
108 . . . . . . . . . .  
109 . . . . . . . . . .  

.12575 

.13650 

.14792 

.16013 

.17308 

.18674 

.20103 

.21562 

.23011 

.24417 

.25745 

.26959 

.28024 

.28977 

.29869 

.30696 

.31461 

.32167 

.32817 

.33414  

.33960  

.34460  

.34917 

.35333 

.35712 

43205 
37772 
32616 
27791 
23341 
19301 
15697 
12541 
9837 
7573 
5724 
4251 
3105 
2235 
1587 
1113 

771 
529 
359 
241 
160 
106 
69 
45 
29 

.12742 

.13772 

.14338 

.15984 

.17608 

.18828 

.20610 

.21468 

.23172 

.25028 

.25028 

.26687 

.27451 

.30194 

.26490 

.30695 

.31724 

.30897 

.34613 

.31813 

.35056 

.34087 

.34865 

.32190 

.31523 

.12747 

.13750 

.14371 

.15969 

.17587 

.18882 

.20528 

.21557 

.23136 

.24399 

.25173 

.26543 

.27872 

.28940 

.28303 

.29707 

.31228 

.32148 

.33047 

.33542 

.34089 

.34341 

.34057 

.33065 

.31390 

.12598 

.13662 

.14829 

.16096 

.17440 

.18830 

.20233 

.21618 

.22961 

.24245 

.25458 

.26545 

.27654 

.28634 

.29537 

.30365 

.31119 

.31799 

.32402 

.32928 

.33374 

.33740 

.34026 

.34230 

.34353 
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The q's are the true values we are trying to estimate. Using q and W, the 
u" vector was created in a simulation trial. The Ul vector was created using 
a Whittaker-Henderson graduation on W and u" with third differences and a 
smoothing coefficient of 162.2. The value of 162.2 was obtained from 

k F, 
with k = .5. 

( l - k )  St 
The u2 vector was also created using a Whittaker-Henderson graduation 

with third differences but with the smoothing coefficient set to 1,076,616. 
The larger smoothing coefficient gives a better graduation as may be seen 
by comparing u~ and u2 with q, which they are trying to estimate. The larger 
value for the smoothing coefficient could be obtained using the F/St ap- 
proach; however, k would have to equal .99985. 

My own practise is to iteratively reset the smoothing coefficient until a 
twenty-fifth, fiftieth, or seventy-fifth percentile Chi-square statistic is ob- 
tained. Although it is time consuming, this normally gives good results. 

(AUTHOR'S REVIEW OF DISCUSSION) 

FRANK E. KNORR: 

I would like to thank everyone who expressed an interest in this paper, 
in particular those who have contributed their written discussions. I am 
especially grateful to Mr. McKay who first conceived the idea of graduating 
a grid of data and made the method for graduating higher dimensions much 
clearer. I would like to address the various problems and issues raised in 
the discussions. 

Programs 

I am certainly not the only one who is glad that Mr. Kunkel made his 
FORTRAN program available to everyone in his discussion. His example 
of a 20 by 9 by 5 array nicely illustrates that developing a similar program 
to graduate 3-dimensional or n-dimensional data to make multidimensional 
graduation available to people with limited computer capacity would be time 
well spent. When I said that this method was impractical, I was only thinking 
of data where the ratio of dj to nj is large, such as a 5 by 5 by 5 array 
minimizing third differences. Here only about 16 percent of the cells are 
outside the nonzero band of A. Note that the upper triangle of this array has 
1,225 zeros outside the band; putting the band portion of the upper triangle 
into a rectangular array creates 2,850 new cells which contain zeros. This 
explains why there is only a 40 percent reduction in storage needs, while 
57 percent of the cells are outside the band portion of the upper triangle. 

Professor Shiu's final remark concerning Appendix B makes the least 
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squares program more concise. This is very fitting since conciseness is one 
of APL's trademarks and strengths. 

Using divided differences to define smoothness was thought to be a huge 
task to program but Mr. Taylor makes it look easy. In spite of the difficulties 
in applying this to the work of our committee, I am sure this will prove to 
be a very useful enhancement. 

Smoothness Constants 

Mr. Giesecke's first suggestion that smoothness constants vary within each 
dimension would make graduation quite flexible. For areas of sparse data, 
a smaller (or larger) smoothness constant can be selected. Sparse data many 
times mean erratic values that need more smoothness. 

Mr. Giesecke's note of caution is expressed a little differently by Professor 
Shiu. A natural inclination is to select a standardized k value around .5. 
After all, the idea is to minimize the expression 

1 - k  k 
- - F + - - S .  
FT Sr 

Why not allow k to vary, so we can find "the smallest minimum"? I did 
not intend to imply that the best graduation is achieved when fit and smooth- 
ness are equally balanced. The best graduation must be determined by the 
graduator. I personally must be able to see good smoothness when the grad- 
uated values are graphed. Mr. Giesecke uses Chi-square statistics. We both 
seem to agree that graduation using a k less than .95 will probably not be 
good. This is like statistical tests where a 50 percent confidence limit is 
uninteresting, but confidence limits 95 or 99 percent are interesting. 

I would normally consider a smoothness constant of .99985 close enough 
to 1 that I would simply use the least squares values as the graduated values. 
Graduated mortality rates that have been presented using k = .99985 are 
visibly different than the least squares values at the extremely high ages. 
However, if the weights truly reflect their importance (i.e. age 87 data is 
almost 500 times more important than age 107 data) then the least squares 
values would be perfectly acceptable to me. 

Using the Chi-square statistic is interesting because it is similar to the def- 
inition of Whittaker-Henderson's measure of fit: 

F = E W ( u - u ' )  2 
Pearson X 2 --- E 

( W u  - Wu") 2. 

Wu 

= X W ( u - u " )  2 
U 
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Although I have not tried this, it seems that if one knows the degrees of 
freedom, the Chi-square confidence limit, Fr, and has an idea of what the 
weighted average of 1/u's are, then a very good first guess of k can be made. 

Problem of Discontinuities 

As Professor Shiu points out, any continuous function can be approxi- 
mated by a polynomial. I believe that points of discontinuity are less aca- 
demic than Mr. Giesecke suggests. There are many insurance policies with 
options at defined durations, causing experience before that duration to be 
different from experience afterwards. One would expect the group of em- 
ployed people less than 65 years old to be different than those over 65. One 
approach would be to graduate the two parts separately. 

Another approach is to use divided differences. Mr. Taylor's program 
uses divided differences to define smoothness and can be applied here. Since 
equidistance between points is no longer assumed, values must be entered 
(into the VM array) so that the distances among the points can be determined. 
These values are typically 25, 35, 45, 55, 62 for the age dimension or 0, 
7, 14, 30, 90, 180 for the elimination period dimension. However, any 
values can be entered. When the values of  a standard table are entered, the 
result is a set of graduated values whose shape is related to the shape of the 
standard table. If second differences are minimized and total smoothness is 
used, then each graduated value is a linear function of its corresponding 
standard value (ui = a si + b for all i's). This is the case regardless of the 
shape of the standard curve. Illustration D shows how this can be used to 
graduate data that has a point of discontinuity. 

It should be noted that the total number of deaths (or terminations) will 
be preserved when divided differences are used. The average age at death 
(or average duration) will only be preserved if the ages (or durations) are 
used to define the distances among ungraduated data. 

Problem of Mixed Terms 

Professor Shiu suggests that the definition of S is not complete without 
mixed difference terms. When second differences are minimized in two 
directions, the graduated values can be thought of as lying on a surface. 
With total smoothness, we can be assured that any cross section of the 
surface produces a linear graph as long as the cutting plane is perpendicular 
to the x-axis or y-axis. But the surface is not necessarily a plane. This is 
because the surface is defined by the equation aoo + alo x + aol y + al l  
X y and a plane is defined by the equation boo + blo x + bol y. I would 
solve this by finding the weighted average of a l l  X y for all x, y combina- 
tions. Then I would redefine the constant term to be aoo plus this weighted 
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Weights 
Ungraduated Data 
Standard Data 
Graduated Data 

MULTIDIMENSIONAL WHITTAKER-HENDERSON GRADUATION 

ILLUSTRATION D 

Problem of Discontinuities 
95 72 65 60 57 25 22 20 19 18 
1 7  30 26 20 25 65 60 68 67 68 
21 22 24 28 36 61 62 64 68 76 
19.6 20.6 22.5 26.4 34.2 58.5 59.5 61.4 65.3 73.1 

Use Standard Data to define the distances 
among Ungraduated Data and k = 1. 
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average. This may be all that is necessary to get the least squares plane. 
But, it seems that a simple counter example will show that further adjust- 
ments to the coefficients are necessary. 

If this approach is a solution, it can be used to eliminate mixed terms 
(any terms, in fact) for higher differences and/or higher dimensions. 

P r o b l e m  o f  B o u n d a r i e s  

Professor Shiu's second point is that there are natural boundaries for mor- 
tality rates (between 0 and 1) which are ignored by this graduation method. 
Monotonically increasing select mortality rates can be put into this category 
since we want the differences between q[x-i] + i and qtx - ~i-~)] ÷ i - t  to be 
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greater than zero (or their ratios to be greater than one). Faced with this 
problem a number of times, my solution has been to graduate the logarithms 
of the data. No matter what the graduated numbers are, when they are 
converted from logarithms back to rates, only positive rates are possible. 
This is a simple practical solution which also has a price; some nice prop- 
erties of Whittaker-Henderson graduation are lost. 

Another solution might be to use divided differences with a standard table 
which I have described as a solution to the problem of discontinuities. Grad- 
uated data can usually be forced to take on the same shape as the standard 
data even if the standard data contain sudden jumps and/or sudden changes 
of slope. Therefore, sparse mortality data could be used to produce graduated 
rates which include the infamous hump in mortality rates for males in their 
twenties. I feel the use of divided differences in defining S is such a major 
step that it deserves its own name, like "Type  D "  (for divided differences--  
by-passing C entirely). 




