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ABSTRACT 

We use fuzzy sets to model the selection process in group health in- 
surance. Fuzzy sets describe collections of objects whose boundaries are 
not precisely defined; in particular, we define fuzzy sets that characterize 
groups that are good underwriting risks. First, we consider single-plan 
underwriting and then extend the work to multiple-option plans. 

1. INTRODUCTION 

In this paper, we use fuzzy sets to model the selection process in group 
health insurance. First, we present the underwriting of a group of em- 
ployees covered by a single plan of health insurance. Next, we extend 
the work to group selection in a multichoice environment. As more em- 
ployers offer multiple plans to their employees, art underwriting scheme 
for such situations becomes important. 

Fuzzy sets describe collections of objects whose boundaries are not 
precisely defined. Indeed, a fuzzy set is a mapping, f ,  from the universe 
of discourse, X, to the unit interval I=[0,  1]. The valuef(x)  represents 
the degree to which x is a member of  the fuzzy set given by f. This 
definition generalizes the identification of a crisp set with its character- 
istic function. 

For example, consider the statement: To underwrite a group, require 
a minimum percentage participation in the group health plan. Insurers 
often quantify this by requiring 75 to 85 percent participation. This rule 
can be represented as a fuzzy set through the function: 

I 0, 0--<x--<0.75 

f(x)= 1 0 x - 7 . 5 ,  0.75--<x--<0.85 

l 1, 0.85 <---x <-- 1.00, 

in which f(x) is the possibility of accepting the group that has x pro- 
portion of participation. This function can be refined to include variations 
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for group size, for participation of employees with dependents, or for 
both. 

See Section 2 for an introduction to fuzzy sets; references for this topic 
include [1], [5], [6], I l l ] ,  112], [14], [15], and [16]. 

Lemaire [8] provides a model for underwriting individual life insur- 
ance using fuzzy sets. We follow Lemaire's lead by creating models for 
underwriting group health insurance. In Section 3, we examine single- 
option plans, and in Section 4, multiple-option plans. The Society of 
Actuaries has published several Study Notes that contain rules for group 
selection [7, pp. 2, 10-18], [10, pp. 48-52],  and [13, pp. 4-9] .  One 
problem is to determine how these underwriting rules interact. 

Fuhrer and Shapiro [4] model selection in multiple-option plans, and 
Mailander [9] lists factors that influence selection in such plans. These 
include the plan of benefits, access to care, employee costs, and the age, 
sex, and marital status of the individuals in the group. We define fuzzy 
sets that measure the possibility of accepting the group based upon such 
considerations. This measure of possibility can be used to develop under- 
writing loads for various benefit plans. 

Finally, in Section 5, we suggest areas for future research, such as 
applying fuzzy sets to trend analysis and to credibility theory. 

I thank several colleagues: Joseph W. Michel, for direction as the sponsor 
of my work; David W. Pray, for suggestions about the content of this 
paper; and Wendell L. Holt, for comments about the underwriting rules. 
I also thank my Research Paper Committee and Dan Dieterich for rec- 
ommending valuable changes. 

2. FUZZY SETS 

2.1 Definition and Examples 

Zadeh introduced the theory of fuzzy sets in a paper published in 1965 
[14]. Research in this area has expanded so that now there are journals 
devoted to fuzzy set theory. Also, the applications of fuzzy sets cover 
a broad range, such as artificial intelligence, linguistics, economics, de- 
cision-making, and consumer products [5, p. 301], [12, p. 37]. Le- 
maire's 1990 paper [8] presents some of the first applications of fuzzy 
set theory in actuarial science. 

Fuzzy sets describe concepts that ate vague. The fuzziness of a set 
arises from the lack of well-defined boundaries. This lack is due to the 
equivocal nature of language and to the subjective interpretation of it. 
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For example, let A represent the set of good basketball players among 
the set of teenage basketball players, X. Some teenagers clearly do not 
play basketball well; however, others are decidedly talented players. Be- 
tween these two extremes lie marginally good players. In set theory, the 
grade of membership 1 is assigned to elements in the given set, and the 
grade 0, to those not in the set. In general, the borderline cases have 
membership values in A between 0 and 1, and the better players have 
values closer to 1. 

People assign membership values subjectively. Indeed, they disagree 
on what constitutes a good basketball player, thus creating different fuzzy 
sets to represent A. Also, one person may develop distinct fuzzy sets to 
represent the same concept at varying times. Context, or the underlying 
universe of discourse, X, is another important factor in determining the 
membership grades of elements in a fuzzy set. If X were the set of all 
basketball players 13 years of age or older, then the fuzzy set of good 
basketball players in X would necessarily change. For instance, an other- 
wise proficient 16-year-old basketball player would not be judged as skilled 
when compared to a professional player. In this paper, we do not deal 
with fuzziness that comes from these kinds of subjectivity. 

Complexity also can add to the fuzziness of a set. In evaluating a good 
basketball player, several attributes are measured: ball-handling (drib- 
bling and passing), shooting (field goals and free throws), defensive work 
(rebounding, guarding, and ability to cause turnovers), physical stamina, 
and aerobic capacity. In what follows, we consider fuzziness that comes 
from vague, complex concepts. In this section, we give the definition 
of a fuzzy set and some examples [14, pp. 339-340], [15, pp. 4-10, 
13[, [16, pp. 199-201]. 

2.1.1 Definition 

A fuzzy set, A, in a universe of discourse, X, is a function of the form 

fa : x - ~ l  = [0, l ] .  

The function fm is called the membership function of A, and for any x in 
X, fa(x) in [0, 1 ] represents the grade of membership of x in A. 

This definition generalizes the one for a nonfuzzy, or crisp, set. Such 
a set is given by a characteristic function: 

fA :X--" (0, 1), 

in which fA(X)= 1 if X is in A; otherwise, fA(x)=O. 
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The following two examples illustrate how fuzzy sets can be applied 
to complex situations that an actuary may encounter. 

2.1.2 Example 

Among other factors, the following ten influence health-care trend: 
• Aging of the insured population 
• Higher expectations of medical care and the consequent increase in 

utilization 
• Higher standards of living of the insured population 
• Use of more expensive technology 
• Cost-shifting from public to private payors 
• Rising cost of medical malpractice insurance 
• Defensive medical practices due to threat of malpractice 
• Leveraging effect of deductibles 
• Mandated benefits 
• Increased risk due to new diseases, such as AIDS. 
These components interact in a complex manner; for example, the costs 
of defensive medicine can vary directly with the cost of malpractice 
insurance. As another example, the changes in charges and utilization 
can vary inversely as physicians attempt to maintain a given standard of 
living. 

Fuzziness exists inherently in these complex relationships. It also arises 
when the trend for prospective pricing is being determined: If the chosen 
trend is too high, then good risks may leave the insurance company, and 
an assessment spiral may develop. If the trend is set too low, then profits 
may be low or even negative due to inadequate pricing. See Example 
2.2.13 below for further discussion of trend. 

2.1.3 Example 

The evaluation of fixed-income securities is very complex [2, pp. 30-  
39]. Indeed, risk arises from many sources, but primarily from the fol- 
lowing ten items: 
• Market risk, or being forced to sell when interest rates are rising 
• Reinvesting income when interest rates are falling 
• Timing or call risk 
• Political risk 
• Sector risk 
• Purchasing power or inflation risk 
• Credit risk 
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• Currency risk for foreign investments 
• Liquidity risk 
• Event risk. 

To simplify the discussion, look at one part of risk: the risk of call of 
the security. An investor may think that there is no possibility of call if 
market interest rates are at least 10 percent when the bond has a coupon 
rate of 9 percent and that the risk will increase to certainty as market 
rates fall to 8 percent or less. Note that market interest rates behave 
randomly, while fuzziness arises from the opinion of the investor about 
the quality of the investment based on the possibility of call. Let A be 
the fuzzy set of good bonds from the standpoint of the call risk; one 
representation of A is 

t 1, 0.10 < x  
fa(x)= 1 0 0 x - 9 ,  0 .09-<x-<0 .10  

l 0, x _< 0.09, 

in which x is the market interest rate. 
This investor is unwilling to buy a callable 9 percent coupon bond if 

market rates are less than 9 percent, even though the probability of call 
is not 1. Other such functions for the remaining risks could be developed 
and combined through methods introduced below to help this investor 
decide whether to purchase a given security. 

2.2  O p e r a t i o n s  o n  F u z z y  Se ts  

To be able to consider several fuzzy conditions simultaneously, we 
define the ways in which fuzzy sets can be combined or operated upon 
[14, pp. 340-342], [15, pp. 11-14]. 

2.2.1 Definitions 
The union, AUB,  of two fuzzy sets, A and B, is given by 

faun(X) --- max[fa(x), fs(x)], x @ X, 

and the intersection, AOB,  is given by 

fanB(X) -= min[fA(x), fn(x)], x E X. 

The complement, - A ,  of fuzzy set A is given by 

f-a(X) = 1 -- fA(X), X E X. 
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Note that these definitions degenerate to those used for crisp sets if A 
and B are nonfuzzy. 

2.2.2 Example 

Let X={1, 2, 3, 4, 5}, and define fuzzy sets A and B on X by 

fA = {(1, 0.2), (2, 0.5), (3, 1.0), (4, 0.2), (5, 0.0)} 

and 

fn = {(1, 0.2), (2, 0.4), (3, 0.6), (4, 0.8), (5, 1.0)}. 

One can interpret the fuzzy set A as the collection of small integers very 
close to 3, and B as the set of integers in X close to 5. Some combi- 
nations of A and B are 

fAUB = {(l, 0.2), (2, 0.5), (3, 1.0), (4, 0.8), (5, 1.0)} 

fanB = {(1, 0.2), (2, 0.4), (3, 0.6), (4, 0.2), (5, 0.0)} 

and 

f -a  = {(1,0.8), (2, 0.5), (3, 0.0), (4, 0.8), (5, 1.0)}. 

The operation of union acts as an "or" operator; intersection, as "and"; 
and complement, as "not." Thus, for example, fAnB represents the fuzzy 
set of small integers that are very close to 3 and close to 5. 

In what follows, fuzzy sets represent characteristics of a group that 
must be simultaneously "good" for the group to be classified as a good 
risk. We want the characteristics to interact when combined, especially 
when intersected; however, the above definition of intersection does not 
allow interaction. We present other definitions of intersection below, which 
take into account some or all of the following properties [8, pp. 41-42]: 

Property 1 (cumulative effects): 

fanB(x) < min[fa(x), fB(x)], if fa(x), fn(x) < 1. 

This property states that if two characteristics are both "less than pre- 
ferred," then the two taken together are worse than each separately. 

Property 2 (interactions between criteria): The effect of a change offa(x) 
upon fanB(X) also depends on ftdx). In other words, the effects of A and 
B are not independent. 
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Proper ty  3 (compensation between criteria): The effect of a decrease of 
fm(X) upon fAnB(X) can be eliminated by an increase offn(x). 

Property 4: If A and B are crisp sets, then 

1, i f x E A  and x ~ B  
fmnB(X) = 0, else. 

Note that the minimum operator satisfies only Property 4. Lemaire [8, 
p. 42] follows the description of  these properties with alternative defi- 
nitions of intersection: 

2.2.3 D e f i n i t i o n  

The algebraic product, AB, is given by 

faB(x) ~-- fa(x) × fs(x),  x E X. 

The algebraic product satisfies all four properties. 

2.2.4 D e f i n i t i o n  

The bounded difference, A O B ,  is given by 

fa®B - max[0, fA(x) + fB(x) - 1 ], x E X. 

The bounded difference satisfies all but Property 2. Indeed, a change 
effected upon A Q B  by fa(x) is independent of the value offB(x) as long 
as fa(X)+f~(x)--1 is greater than 0. 

2.2.5 D e f i n i t i o n  

The Hamacher operator, H, which depends on p, is given by 

fA(X)fB(x) 
H(A, B; p)(x) -- 0 <-- p ~-- 1. 

p + (1 -p)[fA(X) +fn(x) --fa(x)fB(x)]' 

The Hamacher operator satisfies all four properties. In general, faB < - 
fP < cq < ¢ if 0 ~ q < p <  1. Note that the interaction between A and B 

H - - J H - - J A N B ,  ~ - -  - -  

depends upon the parameter p; the degree of interaction decreases as p 
decreases. When p =  1, the Hamacher operator reduces to the algebraic 
product--the intersection that affords maximal interaction. 



5 5 8  TRANSACTIONS, VOLUME XLV 

2.2.6  D e f i n i t i o n  

The Yager operator, Y, which depends on p, is given by 

Y(A, B;p)(x)  -= 1 - min(1, {[1 - f a ( x ) ]  p + [1 -fn(x)]P}~/P), p >- 1. 

The Yager operator satisfies all four properties as long as 1 < p < ~ .  It 
reduces to the minimum operator as p goes to infinity and to A O B  when 
p = l .  

2.2.  7 E x a m p l e  

Let A, B, and X be as in Example 2.2.2: 

faB = {(1, 0.04),  (2, 0.2), (3, 0.6), (4, 0.16),  (5, 0.0)} 

fa®B = {(1,0.0) ,  (2, 0.0), (3, 0.6), (4, 0.0), (5, 0.0)} 

H(A, B; 0.5) = {(1, 0.059),  (2, 0.235),  (3, 0.6), (4, 0.174), (5, 0.0)} 

and 

Y(A, B; 2) = {(1, 0.0),  (2, 0.219), (3, 0.6), (4, 0.175), (5, 0.0)}. 

Fuzzy sets can be combined in other ways to allow for interaction 
among criteria [13, p. 345], [14, pp. 14-15]: 

2 . 2 . 8  D e f i n i t i o n  

Given fuzzy sets A l, A2 . . . . .  A,, the convex combination, B, is defined 
by 

fB(x) =- wl(x)fa~(x) + ... + w.(x)fa.(x) 

in which 

• wi(x) = 1 
i ~ l  

and 0<wi(x),  for all x E X .  
A special case of the above occurs when wi(x)=w,, a constant, i = 1, 

... .  n. In this case, B is called a convex linear combination of the Ai. If 
wi= 1 In,  i = 1 . . . . .  n, then B is the arithmetic mean of  the A~. 
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2.2.9 De f in i t i on  

Given fuzzy sets A i, Az . . . . .  A,, their geometric mean, B, is defined 
by 

f "x" l /n  fs(x) =- [fa,(x) . . .sa,(  ~l , x ~ X. 

If a given criteria A t is more important than the others, then one can 
account for this difference when intersecting fuzzy sets or forming con- 
vex combinations of  them. In the second case, A t can be weighted with 
a larger value of wj. In the first, one can concentrate A t before inter- 
secting, where the operation of concentration is defined below. 

2.2.10 Definition 

The concentration, CON(A). of a fuzzy set A is given by 

fCON(A;a)(X) ~ [fa(x)] ~, a > 1. 

Concentration reduces the grade of membership of all elements x, with 
fA(X)< 1, SO that the closerfa(x) is to 0, the more its grade of membership 
is reduced. In most applications of this operation on fuzzy sets, a is set 
equal to 2. 

The inverse operation of concentration is called dilation, and it re- 
duces the importance of  a given criteria by increasing the grades of 
membership. 

2.2.11 Definition 

The dilation, DIL(A), of a fuzzy set A is given by 

fDir(a:,)(X) =- [fA(X)]", 0 < a < 1. 

For most applications, a is set equal to t/2. 

2.2.12 E x a m p l e  

Again, let A, B, and X be as in Example 2.2.2, and let C be 

f = {(1,0.6),  (2, 0.8), (3, 0.2), (4, 0.1), (5, 0.5)}. 

Form the convex combination: 

D =  C × A + (I - C )  × B; 

fD = {(1,0.2),  (2, 0.48), (3, 0.68), (4, 0.74), (5, 0.5)}. 
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Calculate the geometric mean of A and B, or equivalently, the dilation 
of the algebraic product of A and B: 

fE = {(1,0.2), (2, 0.447), (3, 0.775), (4, 0.4), (5, 0.0)}. 

The concentration of A is the fuzzy set of very small integers in X that 
are also very close to 3: 

fcoNIa;2) = { (1 ,  0.04), (2, 0.25), (3, 1.0), (4, 0.04), (5, 0.0)}. 

Dilation has the opposite effect of concentration. The dilation of B is the 
fuzzy set of integers in X that are somewhat close to 5: 

fDIL~B:05~ = {(1, 0.447), (2, 0.633), (3, 0.775), (4, 0.894), (5, 1.0)}. 

2.2.13 Example 
We base the model of this example upon one used to determine wash- 

ing time for a particular Japanese washing machine [ 12, p. 37]. We con- 
tinue the discussion of Example 2.1.2 by presenting two rules for esti- 
mating trend: 
(1) If the increase in the medical consumer price index (CPI) is high 

and the increase in the reimbursement of providers under Medicare 
is low, then the trend will be high. 

(2) If the increase in the medical CPI is moderate and the increase in 
the reimbursement of providers under Medicare is moderate, then 
the trend will be moderate. 

Define the following fuzzy set functions: 

I 0, 0< -x<-0 .05  

CPI-High(x) = 20x - 1, 0.05 -< x <- 0.10 

(. 1, 0.10 <-- x, 

f 20x, 0 <-x-< 0.05 

CPl-Mod(x) = 1 - 2 0 x  + 2, 0.05 -< x -< 0.10 
! 
[ O, 0.10 -< x, 

in which x is the annual increase in the medical CPI. 

-253' + I, 0 -< 3' ~ 0.04 
Medicare-Low(y) = 0, 0.04 -< y, 
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f 40y, 0 _< y _< 0.025 

Medicare-Mod(y) = ] - 4 0 v  + 2, 0.025 < y -< 0.05 

L O, 0.05 ---y, 

in which y is the annual increase in the reimbursement of providers under 
Medicare. 

Trend-High(z) = 

Trend-Mod(z) = t 

O, z-<O. lO 

l O z -  1, 0.10<--z-<0.20 

1, 0.20 -< z -< 0.25 

- 2 0 z +  6,  0 . 2 5  ~ z -< 0 . 3 0  

O, 0.30 -< z, 

0, z -< 0.05 

2 0 z -  1, 0 .05-<z-<0 .10  

- l O z +  2, 0. I 0<-z -<0 .20  

O, 0.20 <- z, 

in which z is the annual trend. See the graphical representations of the 
above fuzzy sets in Figure 1. 

Suppose that x is 0.075 and y is 0.025; then CP1-High(O.075)=0.5 
and Medicare-Low(O.025)=0.375. Intersect these two values through the 
minimum operator to get 0.375. Truncate the graph of the function Trend- 
High at 0.375 from above. Similarly, CPI-Mod(O.075)=0.5 and Medi- 
care-Mod(O.025)= 1.0. Intersect these two to obtain 0.5; again, truncate 
the graph of the function Trend-Mod at 0.5 from above. Form the union 
of the two planar regions (see Figure 2), and set the trend equal to the 
abscissa of the center of gravity of the union. The trend thus determined 
in this example is 0.168= 16.8%. 

2.3 Fuzzy Set Theory Versus Probability Theory 
Fuzzy set theory and probability theory are related in that they both 

deal with uncertainty. Fuzzy sets represent the uncertainty that comes 
from vagueness and the extent to which an event occurs. On the other 
hand, probability theory looks at the uncertainty that arises from ran- 
domness and regards simply whether an event will occur. 



F I G U R E  1 

GRAPHS FOR EXAMPLE 2 .2 .13  

CPI--High Medicare--Low Trend--High 

0,05 0,10 
- - - - X  . . . . . . . . .  y I 

0.05 0.10 0.20 0.30 

CPI--Moderate Medicare--Moderate Trend--Moderate 

0.05 0.10 

1 

0.05 0.10 0.20 
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0.5 

0 

FIGURE 2 

GRAPH OF RESULTING FUZZY SET FOR EXAMPLE 2.2.13 

0.10 O.20 0.30 

After the given event occurs (or not), randomness no longer exists; 
however, fuzziness does not decrease after additional information has 
been acquired. For example, suppose that 1 in 5 men is at least 6 feet 
tall; therefore, if a man is selected at random, the probability that the 
man is at least 6 feet tall is 0.20. I f  the height of  the man is measured 
at 5 ft. 11 in., then we are no longer uncertain about his actual height. 
The vagueness related to whether the man is tall, however, remains; for 
example, his membership value in the fuzzy set of  tall men can be set 
at 0.80. 

In general, fuzziness arises when a concept, A, and its opposite, - A ,  
overlap, thus violating the law of noncontradiction: 

2.3.1 Example 
Let A be as in Example 2.2.2. 

f~n-A = {(1, 0.2), (2, 0.5), (3, 0.0), (4, 0.2), (5, 0.0)}. 
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In probability theory, an event and its opposite cannot both occur; yet 
in fuzzy set theory, each may occur to some degree. For example, a man 
can be both tall and not tall to some extent. 

In the sections that follow, we address the problem of characterizing 
what constitutes a group that is a good risk for group health insurance. 
From the viewpoint of probability theory, a group that is a good risk is 
one that is expected to be profitable. From this perspective, uncertainty 
is connected with claim and expense fluctuation relative to the price 
charged. 

From the standpoint of fuzzy set theory, a group is a good risk if it 
is stable and unlikely to select against the insurer. (Note that these qual- 
ities are themselves fuzzy in nature.) This judgment is unrelated to the 
premium charged. In fact, a group may still be considered a good risk 
even if it is unprofitable in a given year--or  for several years. Events 
beyond the control of a group can lead to unprofitability, such as a severe 
epidemic attacking members of the group, an automobile accident in- 
volving one or more members, higher-than-expected expenses associated 
with administration, or inadequate pricing due to competitive pressure 
or to lack of expertise within the pricing unit of the group health insurer. 

For further information on the relationship between probability theory 
and fuzzy set theory, read Kosko [6]. 

3. FUZZY SET MODEL FOR UNDERWRITING 
SINGLE-OPTION PLANS 

In modeling the group selection process for health insurance via fuzzy 
sets, we first consider the case of an employer that offers a single plan 
of insurance to its employees. In this portion of the paper, we outline 
desirable characteristics of such a group [7, pp. 2, 10-18]. 
A. Obtaining insurance is incidental to the purpose of the group. An 

employer-employee group usually satisfies this criterion. 
B. Employment status determines eligibility for health coverage. For 

example, the employer or insurer may require that an employee be 
actively at work at least 30 hours per week to receive benefits, and 
only the spouse and dependent children of such an employee are 
eligible for dependent coverage. Underwriters use an actively-at- 
work rule because someone who works needs to be healthy. 

C. A minimum number of people are in the group. For example, some 
companies require that the group contain at least five employees. 
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D. Benefits are determined automatically. For example, this criterion 
is met in the case of a single-option health plan in which the class 
of employment determines the benefits. 

We assume that the above rules are most appropriately described by 
nonfuzzy sets, although C lends itself to fuzzy set representation. As for 
the remainder of the criteria, we present possible fuzzy set characteriza- 
tions in the following discussion. One difficulty in fuzzy set theory is 
to create a function that accurately describes the given condition or char- 
acteristic. In this paper, we essentially derive the functions by working 
backwards. We consider four categories of groups: preferred risk; nor- 
mal, or acceptable, risk; substandard risk; and unacceptable, or declin- 
able, risk. The fuzzy set function has a membership value of 1.0 for a 
preferred risk. Normal risks have values between 0.5 and 1.0; substand- 
ard risks, between 0.25 and 0.5. Finally, unacceptable risks have mem- 
bership values from 0.0 to 0.25. 

The developed functions are illustrative only and are not intended to 
represent any particular company's underwriting guidelines. 
E. Young lives flow constantly into the group and old lives out. Such 

a requirement helps to ensure stable morbidity. This rule can be 
verified by determining whether the age/sex factor has been rela- 
tively stable and whether the group size has fluctuated greatly dur- 
ing the past few years. 

Let a/x equal the annual percentage change in the age/sex factor 
for the past two years and g/s the annual percentage change in the 
group size during the same period: 

1, a/x <--0.05 

e~(a/x) = - 5 a / x  + 1.25, 0.05 --< a/x  <- 0.25 

O, else. 

f l, - 0 .05  ----- g/s 
e~(g/s) = 5g/s + 1.25, - 0 .25  --< g/s <- - 0 . 0 5  

0, else. 
Examine the information contained in the above functions: An in- 
crease of up to 5 percent or any decrease in the age/sex factor 
describes a preferred risk. A group is normal if the percentage in- 
crease lies between 5 and 15 percent (0.5-<e~-<l.0), while an un- 
acceptable group has an age/sex factor increase of 20 percent or 



566 TRANSACTIONS. VOLUME XLV 

F. 

more (0.0-<e~-<0.25). For a change in group size, we take the op- 
posite viewpoint; that is, a decrease of down to 5 percent or any 
increase is preferred, while a 5 to 15 percent decrease is acceptable. 
These two functions are linear, but for a particular insurance com- 
pany's underwriting guidelines, the functions are not necessarily 
expected to be of that form. 

One way to combine these two functions, which give equal weight 
to el and e2, is 

e(a/x, g/s)  = ~v/el(a/x) × e2(g/s). 

There is a minimum participation in the plan. An insurer usually 
requires that all eligible employees enroll in a noncontributory, or 
employer-pay-all, plan. Since there is no reason for an employee 
not to join such a plan, we focus more on contributory ones. A 
typical rule in this case requires 100 percent enrollment for groups 
of five or fewer grading to 75 or 85 percent for groups of 10 or 
more. 

In addition, insurers often want a minimum percentage of em- 
ployees who have dependents to cover them. For example, suppose 
there is a group of 20 eligible employees; then 15 employees must 
elect coverage if the insurer mandates 75 percent participation. If 
16 of the 20 are enrolled and 12 of them are eligible to cover their 
dependents, then at least 9 must do so. 

If at least 90 percent of the employees participate, then the group 
is preferred. A normal group has 80 to 90 percent participation; a 
substandard group, 75 to 80 percent. This distribution corresponds 
to the requirement that a group has 85 percent participation with 
possible bending of the rule down to 75 percent. Let p be the pro- 
portion of employees that select group coverage: 

1, 0.90 --<p 

f ( p ) =  5 p - 3 . 5 ,  0.70--<p--<0.90 

O, else. 

For small groups, higher percentages of participation than those 
given in the above equation may be desired. Also, the same or a 
similar function may account for participation of employees who 
are eligible for dependent coverage; then some intersection of the 
two could integrate the criteria. 
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G. The employer pays some or all of the cost of insurance; contrib- 
uting at least one-fourth of the premium is often a requirement. A 
preferred risk is one for which the employer pays all of the em- 
ployee's cost and 75 percent or more of the dependent's cost. For 
an acceptable risk, the percentages go down to 75 and 50 percent, 
respectively; for a substandard risk, down to 50 and 25 percent, 
respectively. Let r~ equal the proportion of the employee's pre- 
mium paid by the employer and r2 the proportion of the dependent's 
premium paid by the employer: 

t 
0, rl -< 0.25 

g l ( rO = rl - 0.25, 0.25 ---< rl -< 0.75 

[.2r~ - 1, 0.75 --< rl ~ 1.0. 

f r 2, r 2 ~ 0 . 5 0  

gz(r2) = 12r2 - 0.50, 0.50 <~ r 2 ~ 0.75 
! 

t . l ,  0.75 ~ r 2. 

As in criterion E, we link the two functions by 

g(r l ,  r2) = V ' g j ( r l )  × gz(r2). 

The function g allows trade-offs between r~ and r2. For example, 
if an employer pays all of the employee's cost but only 40 percent 
of the dependent's cost, then 

g(1.0, 0.4) = V ' l  × 0.4 -~ 0.6325 E [0.5, 1.01, 

from which we infer that the group is an acceptable risk. Remember 
that if the employee's contribution decreases, then the participation 
is likely to increase. 

H. A strong, central department of the employer helps the insurer ad- 
minister billing, enrollment, and certification of eligibility. Fuz- 
ziness arises by the use of the term "strong"; such a word cannot 
be quantified easily. An underwriter will use judgment to assign a 
value between 0 and 1 to represent the administrative ability of the 
group. Some factors to consider include the size and qualifications 
of the personnel staff, the function it normally performs, and any 
knowledge about previous experience of the insurer with the em- 
ployer's staff. Call the developed fuzzy set function h. 
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I. The industry of the group is acceptable. A company may either use 
a list of  industries it considers uninsurable or apply a load to the 
medical manual rates. Note that the size of  the load may be re- 
stricted for small groups due to state regulation or law. 

If the underwriting department has a list of  unacceptable indus- 
tries, then any group in one of  those industries has a membership 
value of  0 in the fuzzy set of  groups in industries that can be un- 
derwritten. Similarly, a group in a questionable industry has a 
membership value between 0 and 1. Call the corresponding fuzzy 
set function i. 

J. The policyholder has a good credit rating that helps to ensure that 
the premium will be paid in a timely manner. The Dun & Bradstreet 
credit reports or financial statements of the prospect can be ex- 
amined to determine whether the prospect is a good credit risk. 
Based upon the willingness of  the company to accept this risk, de- 
velop a fuzzy set function for this criterion and call it j .  

K. Ongoing claims are not large as a proportion of  total expected claims. 
For the initial underwriting of  a small group, no employees are 
health risks as determined by a health questionnaire or by an at- 
tending physician's statement or physical examination. In renewal 
underwriting, information is available from the claim file. 

The number and size of ongoing claims that an insurer can tol- 
erate depend upon the group size and the nature of  the claims. An 
acute condition may be resolved in a relatively short time, whereas 
a chronic condition may continue much longer. The function we 
define presupposes the following: The expected payments for on- 
going claims are less than 1/2 percent of the total expected paid claims 
for a preferred group. For a normal group,  the percentage lies be- 
tween I/2 and 11/2 percent. If the percentage of  ongoing claims is 
above 2 percent, then the group is unacceptable. Let c equal the 
percentage of  ongoing claims as a proportion of  the total expected 
claims: 
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L. 

k ( c )  = 

1 
1, c ~ -  

2 

1 5 1 1 
- - c + ~ ,  - ~ c ~ 2 -  

2 2 2 

1 
0, 2 - ~ c .  

2 

(Note that 100 times the decimal representation of the proportion 
of ongoing claims is used to evaluate k; for example, if ongoing 
claims =3/4 percent, then use c=0.75 to determine k.) 
The claim experience of the group has been good. One measure of 
such a characteristic is the loss ratio. Experience for small groups 
fluctuates more than that for large groups; therefore, a high loss 
ratio for a large group is more indicative of poor experience in the 
future than a high loss ratio for a small group. 

Let LR equal the previous year's loss ratio and s the group size. 
Here, the loss ratio refers to incurred claims divided by expected 
claims for the given time, that is, the actual to expected ratio. The 
inclusion of retention in the denominator would distort the loss ratio 
because retention, as a percentage of gross premium, varies with 
the size of the premium: 

I 1, LR <- 0.95 

L1(LR) = - 5  LR + 5.75, 0 .95<-LR<- 1.15 

( 0, 1.15 ~ LR. 

In this function, a group is preferred if its loss ratio is 95 percent 
or less. An acceptable group has a loss ratio between 95 and 105 
percent. If a given company's guidelines are looser than the above 
indicates, then the underwriter will broaden the intervals. 

Because the loss ratio is not as indicative of future claims for 
small groups as it is for large ones, we account for size through 
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L2(s ) = 5 0 0 '  0 <-- s ~ 500  

1, 500 <--- s. 

Another function for L2 could be derived from a credibility table. 
We combine the two functions: 

L(LR, s) = LI(LR) × Lz(s) + [1.0 - L2(s)]. 

Note that L(LR, s) is a weighted average of LffLR) and 1.0 with 
L2(s ) as  the weight. 

M. The group does not change insurers often. A high turnover rate may 
mean that group has poor experience and frequently shops around 
for better rates. 

Let n equal the number of insurers the group has had in the past 
five years. 

l, n = l  

m(n)= 0.5, n =  2 

10 ,  n - > 3 .  

The remainder of this section deals with the problem of combining the 
above rules so that we can decide whether to underwrite the group. In 
other words, we create a single fuzzy set to describe the set of good 
risks. We assume that criteria A, B, C, and D are satisfied from the 
outset and do not consider them further. 

First, contemplate whether a 0 in any one of the categories leads to 
outright rejection of the group. If not, then include the operation of con- 
vex combination together with intersection; otherwise, use only inter- 
section. Suppose that a grade of 0 in any of the following rules does not 
automatically disqualify a group from being insured: 
H. The employer has a strong, central administrative department. 
I. The industry of the group is acceptable. 
K. The ongoing claims are not large. 

The manual rates can be loaded to account for the effects of criteria 
I and K, and an extra margin can be added for expenses to compensate 
for any deficiency concerning criterion H. Create the linear combination: 
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1 1 1 
P = - h + - i + - k .  

6 3 2 

By the choice of weights, we view the amount of ongoing claims to be 
somewhat more important than the industry of the group but judge strong 
administration less important than either. We can intersect P with the 
remaining criteria in many ways as in Section 2.2. The fuzzy set used 
in deciding whether to accept the group can have the form: 

Q = P * e * f * g * j * L * m ,  

in which * is the selected intersection. We present two options below: 

3.1 Option One 

QI = P N e n f n g n j n L A m ,  

in which N denotes the minimum operator. Note that a group preferred 
in each category is preferred in total. Since the minimum operator does 
not allow the variables to interact, the relations among them are missed. 

The following matrix represents the pair-wise interactions between the 
criteria: 

In terac t ion  I 

b e t w e e n  Cri ter ia  , P I e i f 

p 
i 

Flow of  lives (e) , S o m e  
Participation ( f )  Some Impor tan t  
Employer  

contribution (g) iMax 
Good credit U) Some I 
Loss  ratio (L) i 
Turnover  (m) Little I • J _ 

g , j, L m 

Some Little 

Max 

Little 

Liule 

We symbolize the label of "some" by the Hamacher operator (p=0.5) ;  
"little" by the Hamacher operator (p=0) ;  "max" by the algebraic prod- 
uct; and no interaction by the minimum operator. Finally, "important," 
means that the criterion warrants special emphasis. 

One possible fuzzy set function representing the above table is as 
follows: 
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3.2 Option Two 

02 ----- {H[H(P,j; 0.5), m; 0]} 1/3 n [ f ×  g]L/2 n [H(f, e; 0.5)] t/2 n [La], 

in which a changes the importance of the fuzzy set representing the loss 
ratio. The less important it is, the less a will be. 

To develop this function, first group the variables according to whether 
they interact. In this case, partition the variables as follows: {P, j,  m}, 
{e, f},  {f, g}, and {L}. Note that this is not a true partition because f 
appears in two distinct subsets. 

Since P and j interact somewhat and each interacts little with m, first 
combine P and j via the Hamacher operator (p=0.5),  then join the result 
with m by using the Hamacher operator (p=0).  Take the cube root of 
the outcome to negate the effect of the product P×j×m, making the 
result comparable to other terms that involve fewer than three factors. 
If, instead, the interaction between P and m had been "some" and not 
"little," m and j could first be combined via the Hamacher operator (p=0) 
and then that result could be joined with P by using the Hamacher op- 
erator (p=0.5).  

As an aside, note that the Hamacher operator is not associative if the 
parameter changes; that is, H[H(A,B;p),C;q] is not necessarily equal to 
H[A,H(B,C;q);p]. This inequality can be seen by taking fB---l; in this 
case, the first term is H(A,C;q), while the second term is H(A,C;p). For 
a general fuzzy set B, if p=0.5  and q=0,  then an interpretation of the 
first term is that A and B interact somewhat and each interacts little with 
C. Similarly, the second term may mean that B and C interact little and 
each interacts somewhat with A, From this perspective, the two terms 
are not expected to be equal. 

Because f and g interact maximally, intersect them through the alge- 
braic product. Form the square root of this product to make the term 
commensurate with the others. 

The functionsf and e interact to some extent; therefore, combine them 
by using the Hamacher operator (p=0.5); again, take the square root of 
this result. The importance o f f  is reflected in its appearance in the above 
two terms. Alternatively, the concentration CON(f;2) could be used in 
either or both of the two terms in place of f ,  or an extra term of the form 
CON(f;2) could be included, in which the importance o f f  is made ex- 
plicit. Ambiguity arises in this example because e and g are each related 
to f but not to each other. 



FUZZY SETS IN GROUP HEALTH UNDERWRITING 573 

Since L does not interact with any other variable, it is a term in the 
final intersection by itself. However, L can be concentrated or dilated to 
reflect the significance of the loss ratio. The degree of dilation or con- 
centration is influenced by any considerations of credibility not taken 
into account by the variable of group size, for example, a high turnover 
rate within the plan. 

Finally, intersect the four terms, H[H(P,j;O.5),m;O] I/3, (fg)(l/2), 
H(f,e;0.5) ~/z~, and L a, through the minimum operator. Apply this op- 
erator because the four terms do not interact, except by means o f f .  

In general, the cutoff point for choosing or not choosing a group de- 
pends upon the function selected for Q. An alternative to using a par- 
ticular number between 0 and 1 is to implement a fuzzy decision scheme. 
For example, if Q lies between 0.75 and 1.0, then the group is definitely 
acceptable. If Q is in the range from 0.50 to 0.75, then the group is 
most likely acceptable, and if Q is less than 0.25, then the group is 
definitely unacceptable. Otherwise, if Q lies between 0.25 and 0.50, rely 
upon the discretion of the underwriter. (This outline roughly follows the 
concepts of preferred, normal, substandard, and unacceptable risks in- 
troduced at the beginning of this section.) 

Within this fuzzy decision strategy, an insurer can use the value of Q 
to indicate how to load the manual rates, change the plan of benefits, or 
require an alternative funding scheme. This process of making decisions 
could be modeled by using the method in Example 2.2.13. 

3.3 Example 
Consider a group with the characteristics: 
Group size (s) = 250 
Age/sex factor change (a/x) = 10% 
Size change (g/s) = -15% 
Participation (p) = 85% 
Employer contribution (rt/rz) = 100%/40% 
Strong administration (h) = 0.9 
Industry (i) = 1.0 
Credit rating (j) = 0.95 
Ongoing claims (c) = 0.75% 
Loss ratio (LR/a) = 1.05/0.75 
Number of carriers (n) = 1. 
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After applying the fuzzy functions presented above, we obtain: 

Q2 = mini 0.87651/3, 0.47431/2, 0.48271/2, 0.64643/4] 

= 0.6887. 

Since Q2=0.6887 lies between 0.50 and 0,75, the group is most likely 
acceptable. The employer may be interested in knowing how to improve 
the group's acceptability. Determine this information by examining the 
function ~v/(fg) because its value yields the minimum Q2. The contri- 
bution made by the employer to the single rate is 100 percent, so gl 
cannot be improved. To measure the effect of an increase in the partic- 
ipation rate or in the employer's contribution to the dependent's cost, 
consider the following first partial derivatives: 

Op 2 2.2958. 

Or2 4 × 0.4305. 

The greater improvement in V'(fg) comes from an increase in partici- 
pation rate because 2.2958>0.4305, On the other hand, this change may 
be effected most easily if the employer contributes more. Suppose the 
variable r2=0.50 and, as a result, p=0.90 ,  then 

Q2 = min[ 0.87651/3, 0.7071 i/2, 0.6124~/z, 0.64643/4] 

= 0.7209. 

The above process may be continued by considering how the importance 
of L can be decreased; for example, a strong preexisting-condition ex- 
clusion could be implemented or the plan design could be changed to 
lower utilization. 

Another application of the first partial derivatives inherent in the above 
discussion is sensitivity analysis. In addition to calculating Q for various 
scenarios to determine its appropriateness, the partial derivatives can be 
evaluated to determine whether Q's sensitivity to the variables follows 
the underwriting guidelines of the company. 
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Such an evaluation is important if several factors interact intricately. 
For instance, suppose the fuzzy sets A, B, C, and D interact as follows: 

Variable A B C D 

A Some Little Some 
B Some Some Little 
C Little Some Some 
D Some Little Some 

Ambiguity exists because B and D interact to some degree with each of 
A and C, but B and D interact little with each other, as do A and C. 
These relationships can be represented by H[H(A,C;O),H(B,D;O);0.5]. 
The vagueness of this example emphasizes the importance of verifying 
that the chosen functions characterize the qualities correctly and that the 
combination of those functions accurately reflects the given underwriting 
process. 

4. FUZZY SET MODEL FOR UNDERWRITING 
MULTIPLE-OPTION PLANS 

The factors that receive the most attention in the underwriting of mul- 
tiple-option plans are those that affect participation, such as the level of 
access to care, the employee contribution, the plan of benefits, and the 
age, sex, and dependent coverage of the employee. These factors are 
also at work in single-option selection because an employee can choose 
whether to accept coverage. The existence of a working spouse's plan 
and that plan's benefits, employee contribution, and access to care in- 
fluence an employee's decision. Underwriting against shadow plans is 
nearly impossible; therefore, external factors that affect participation in 
single-option plans are not usually considered. They are more visible, 
however, in multiple-option cases because the underwriter is normally 
aware of the competition. 

The level of access to care encompasses the size of the provider panel 
relative to the provider population in the area, the geographic distribution 
of the panel relative to the location of the employees, the operating hours 
of the panel, the particular gatekeeper mechanism used, and the ease of  
obtaining referrals. In general, a staff model or small, closed-panel health 
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maintenance organization (HMO) with tight controls has restricted ac- 
cess. Moderate control is found in a large, open-panel HMO, for ex- 
ample, and loose control in an HMO that is based upon an independent 
practice association. Little or no control describes a preferred provider 
organization or an indemnity plan. 

We measure the richness of the plan of benefits relative to the com- 
peting plans and consider the scope of coverage and any copayments, 
deductibles, and coinsurance. The contribution to the premium required 
from the employee may or may not be tied to the benefits and access to 
care. For example, the employer may contribute a flat dollar amount for 
each employee--say,  the cost of single coverage for the lowest-priced 
option. In this case, the excess paid by the employee varies with the 
benefit design and access to care, assuming that the tighter the control, 
the lower the premium. On the other hand, the employer may seek to 
direct employees to a particular option by requiring that employees con- 
tribute less for that option. 

In what follows, we use the above variables to develop an age factor 
that denotes possible participation in the plan. To simplify the presen- 
tation of the age factor table, we combine the categories of restricted 
access and moderate control into one of limited access; the categories of 
loose and no control, into one of free access. Also, we confine benefit 
design to either rich or poor; employee contribution to the premium, to 
high or low. We consider only three employee age groups: younger (un- 
der 40), middle-aged (40 to 55), and older (over 55). 

We associate a number between 0 and 1 with each age group that 
varies with the level of access to care, the plan design, the employee 
contribution, and whether the employee has single or family coverage. 
The number represents the possibility of the employee's participating in 
the described plan. We obtain single and family age factors by forming 
the weighted averages of these individual factors, where the weights are 
the proportions of employees in the corresponding single and family age 
brackets. Sex can be taken into account if the composition of the block 
of business warrants doing so. For example, in some areas, a married 
female employee is more likely to be covered through her husband's plan 
than vice versa. 
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Single Family 

Access Benefits Cost Young i Middle Older Young Middle Older 

Free Rich High 0.2 I 0.5 0.8 0.3 0 .6  0.9 
Low 0.9 I 0.9 0.9 1.0 1.0 1.0 

Poor High O. 1 I 0.4 0.7 O. 1 0,5 0,8 
Low 0.5 I 0.6 0,7 0,6 0.7 0.8 

Limited Rich High 0.2 I 0.2 0.2 O, 1 0. I 0.1 
Low 0.8 I 0.5 0.2 0.7 0.4 0.2 

Poor High 0.1 I 0.1 0.1 0.1 O. 1 0.1 
Low 0.7 [ 0.4 0.1 0.6 0 .3  0.1 

We emphasize that these possibility distributions are theoretical only 
and are not based upon empirical data. The following is a list of as- 
sumptions implicit in the table: 
(1) Older people prefer less control to more control regardless of the 

cost, because they have established physician relations and want no 
restrictions of the providers they use. Within a given level of ac- 
cess, benefits are more important than the amount of employee con- 
tribution. 

(2) Younger people are more interested in low-cost options. Within a 
particular cost bracket, less control and richer benefits are pre- 
ferred, with the latter taking precedent. 

(3) An employee with family coverage is more interested in easy access 
to care than one with single coverage. 

(4) Middle-aged people balance the preferences of younger and older 
employees. 

The health status of an individual also plays a role in selection: Less 
healthy employees and dependents favor greater access to care, and more 
healthy ones look for lower required contributions. In fact, the tacit as- 
sumption in the age factors is that health status is related to age. For 
small groups, an underwriter may know the health status of individuals, 
but for large groups, gaining such information would be administratively 
costly. 

The relative differences among the factors in the various categories 
can be adjusted based on the actual variations among the plans. For ex- 
ample, if the average difference in the employee contributions between 
two given plans is $50 and between two other plans is $25, then the 
relativities between the factors in the low and high employee contribution 
categories for the first case should be greater than those for the second. 
Indeed, the level of access to care, the plan of benefits, and the employee 
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contribution can be represented by fuzzy set functions and the partici- 
pation factors varied according to the membership values of those fuzzy 
sets. 

4.1 Example 

Employees may choose from two plans: plan 1 with free access, rich 
benefits, and high employee contribution; and plan 2 with limited access, 
rich benefits, and low employee contribution. The census for the group 
is 

Younger 
Middle-aged 
Older 

Single Family 

IO 20 
20 35 
15 15 

Single Family 

Employees Faclor Product  Employees Factor Pr~rduct 

Younger 10 0.2 2.0 20 0.3 6.0 
Middle-aged 20 0,5 10.0 35 0.6 21.0 
)lder 15 0.8 12.0 15 0.9 13.5 

rotal 45 24.0 70 40.5 

Calculate the single/family age factors for plan 1: 

Single factor = 24/45 = 0.533; family factor = 40.5/70 = 0.579. 

Similarly, the factors for plan 2 are: 

Single factor = 21/45 = 0.467; family factor = 31/70 = 0.443. 

Plan 1 is the favorite; if neither were clearly preferred, then we would 
combine the single and family factors to obtain one age factor for each 
plan. One possible combination is the weighted average, with the weight 
equal to the relative premium size, say, 2.7 = (family rate)/(single rate). 
If we follow this scheme, the age factor for plan 1 is 

(0.533 + 2.7 * 0.579)/(1 + 2.7) = 0.567, 

and that for plan 2 is 

(0.467 + 2.7 * 0.443)/(1 + 2.7) = 0.450. 
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Since there is a 26 percent difference between the factors, roughly 
5 /9  of the participants can be expected to chose plan 1 and 4/9,  plan 
2; however, the desirability of a certain level of participation can differ 
from plan to plan. A given participation may be good for plan 2 because 
it expects to attract the younger and supposedly healthier lives, whereas 
the same participation may be less than adequate for plan 1 because older 
and presumably sicker lives will be drawn to it. (Percentage participation 
in the different options is with respect to those employees selecting some 
type of coverage, and the corresponding age factors are also based upon 
that subset.) 

To account for variable levels of participation for different types of 
acceptable plans, we define a fuzzy set for each plan to reflect the desired 
participation. For instance, create the following fuzzy set for plan 1 in 
the above example: 

1, 0.6 ~ p~ 

fll(Pl)= 5 p l -  2, 0 . 4 < - p z < - 0 . 6  

1,0, Pl ~ 0.4 

in which p~ is the expected percentage participation in plan 1. Similarly, 
for plan 2, define 

t l, 0.5 <-P2 

fl2(P2)= 4 p 2 -  1, 0.25--<p2 <--0.5 

lO,  P2 <- 0.25, 

in which P2 is the expected percentage participation in plan 2. Calculate 
the variables Pl and P2 based upon the participation age factors of the 
plan. For example, assume that p~ = 5 / 9  and p2=4/9 for the given group. 

In addition to or in modification of the underwriting rules presented 
in Section 3 for single-option plans, we discuss the following guidelines 
in the case of multiple-option plans [9, pp. 4-9],  [10, pp. 48-52]. Again, 
we contemplate only an employer-employee group. 
DI. Benefits within each option are determined automatically. Since 

this rule is nonfuzzy in nature, we assume that D 1 is satisfied from 
the beginning. 

El.  The group has an average age less than a stated number of years 
and female participation less than a given percentage. A large pro- 
portion of females and older participants leads to high claim costs 
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F1. 

N. 

and may induce selection against the plan that has greater access 
to care or richer benefits. To combat higher expected claims, the 
manual rates can be adjusted by an appropriate age/sex factor. In 
addition, the age/sex factor may have to be close to the average 
of one's block of business or to the nationwide average for the 
industry of the group. 

Such a rule is more important for a plan against which selection 
is more likely. For example, a plan with freer access to care may 
attract those with higher expected claim costs, as mentioned above. 
Different plans therefore will require distinct fuzzy sets to repre- 
sent the above criterion. 

Let as/be the age/sex factor of the group. Define a fuzzy set 
representation for plan 1 by: 

t 1, a s f ~  1.1 
ell(as/) = - 5  as/+ 6.5, 1.1 <-- as/< -- 1.3 

[. O, 1.3<--as/. 

Similarly, define one for plan 2 by: 

1, a s f ~ l . 3  

ej2(asf) = -2 .5  asf+ 4.25, 1.3-< asf ~- 1.7 

O, 1.7 <-as/. 

There is a minimum participation when all benefit options are being 
considered, as well as a minimum enrollment in the given option. 
We discuss this topic at the beginning of this section and mention 
the rule here for the sake of completeness. 
The employee contributions do not differ greatly among the plans. 
A large difference may lead to selection against a higher-cost plan. 
Let ec be the difference between the employee contributions to 
plan 1 and plan 2. For the higher-cost plan, plan 1, define the 
fuzzy set: 

1, ec <-- 25 

nj(ec) = - 0 . 0 4 e c +  2, 25<-ec<--50 

0, 50 <- ec. 
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For the lower-cost plan, plan 2, define the fuzzy set identically 
equal to 1: 

n2 ~- 1. 

Note that we may use the same function for both plans by allowing 
ec  to assume negative values. 

O. The benefits of one plan are not overly rich in relation to the other(s), 
particularly with respect to selected benefits, such as prescription 
drugs and organ transplants. This requirement helps to reduce se- 
lection against the plan and premium differentials. 

One measure of the relative richness is the ratio of  the manual 
claims of one plan divided by the other, where provider discounts 
are not considered. Let rr  be this ratio, and define the fuzzy set: 

1, r r < - l . 2  

o(rr)  = - 2 . 5 r r +  4,  1 .2 <-- rr <-- 1.6 

0, 1.6 ----- rr. 

As in Section 3, we use a matrix to relate the above rules: 

Interaction 
between Criteria eli f l ,  ni o Q2 

Age/sex (e~3 
Participation ( f . )  
2ontribution (n,) 
Benefits (o) 
Q~ 

Some 

Some 

Some  
Important Max 
Max 
Max 
Some Some 

Max 

Some 

Some  
Some 
Some 
Some 

To define a fuzzy set function representing the above table, first group 
the variables associated with an option's characteristics according to 
whether they interact: {et,-,f~i} and { f t , n , o } .  Since et~ and f ,  interact 
somewhat, merge them by means of the Hamacher operator (p=0 .5 ) .  
Take the square root to make the result comparable to the next term. 

Because fJi, ni, and o interact maximally,  intersect them through the 
algebraic product. Form the cube root of  the product, so that the two 
terms are commensurate. The importance offl~ is implicit in its appear- 
ance in both of the above terms. As in Section 3, this importance be- 
comes explicit by using the concentration off l i ,  either as a substitute for 
fli in the two terms or as an extra tenn. 
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Combine the two terms through the minimum operator; the resulting 
function represents an option's  qualities. Join this function with Q2 by 
the Yager operator ( p = 2 ) ;  the Hamacher operator ( p = 0 . 5 )  also may be 
used. The resulting combination is 

Ri = Y(Q2, [fti × rti × 0]  1/3 ("1 [ n ( f t i  , eli; 0.5) ]1 /2 ;  2), 

in which i=1,2 .  Note that Ri generalizes the results of  Section 3 by 
embedding Q2, the fuzzy set related to group characteristics, within it. 
The other four functions, e,i, fzi, n~, and o, depend upon the plan's char- 
acteristics as well as those of  the group. 

4.2 E x a m p l e  

Assume the group is as given in Example 3.3, and use the plans and 
single/family age distributions from Example 4.1. Let aft= 1.2, e c=4 0 ,  
and rr= 1. 

R~ = Y(0.6887, mini0.6776, 0.6417]; 2) 

= I - min{1, [(1 - 0.6887) 2 + (I - .6417)2] ~/2} 

= 1 - min{l,  0.4746} 

= 0.5254.  

R2 = Y(0.6887, mini0.9196, 0.8819]; 2) 

= 1 - min{l,  [(1 - 0.6887) 2 + (1 - .8819)2] 1/2 } 

= 1 - min{l,  0.3329} 

= 0.6671.  

According to the above results, the sponsor of plan 2 is happier about 
offering that plan against plan 1 than vice versa. 

5. CONCLUSIONS AND AREAS FOR FURTHER RESEARCH 

The fuzzy set approach to underwriting presented here generalizes the 
method of debits and credits: For each group characteristic, a given num- 
ber of  points is added or subtracted, and the resulting number is used to 
categorize the group and to determine a load or credit on the manual 
rates for that group. Fuzzy set theory allows for more interaction between 
the variables because operations other than addition can be used. The 
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flexibility allowed in creating the fuzzy set functions and the variety of 
ways in which to combine them also add to the attractiveness of this 
theory. 

Another advantage of fuzzy set models is that they can be used to make 
decisions. Fuzzy sets representing external forces, such as the economy 
or market conditions, could be combined with those describing the char- 
acteristics of the group. Then, marketing and pricing decisions could be 
based on the resulting fuzzy sets, as in Example 2.2.13. 

This work can immediately be extended by using the resulting fuzzy 
set functions as the basis of underwriting loads. Keep in mind that if the 
employee contribution increases with the load, then the selection being 
guarded against may be more likely to occur. Underwriters may be more 
effective in the long run if they change the plan design or require em- 
ployers to contribute more than they would have if they loaded the rates 
to anticipate selection against the plan. 

The mathematics of fuzzy set theory used in this paper are simple 
enough for someone to readily implement them. A PC spreadsheet could 
be created to calculate membership values for all the fuzzy functions 
needed. Testing the appropriateness of the particular functions would 
then be straightforward. Other forms of intersection may be more suit- 
able than those given here. Also, more multivariate functions may prove 
useful in modeling asymmetrical situations. For example, an increase in 
age/sex factor may be less harmful if the group is growing than if it is 
decreasing. 

Other areas in actuarial science that lend themselves to fuzzy sets are 
trend analysis and credibility theory. Fuzzy sets could represent the re- 
lations among trend and economic indicators, such as the medical CPI. 
In credibility theory, the credibility factor is usually based on the ex- 
posure months, premium, or claims during the experience period. Other 
variables can also influence credibility, such as turnover within the group, 
plan design, or chronic versus acute ongoing claims [3]; fuzzy sets could 
symbolize how credibility is affected by these factors. 
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DISCUSSION OF PRECEDING PAPER 

DAVID W. ERBACH* AND ERIC SEAH: 

There is little question that the techniques of fuzzy logic provide the 
best opportunities currently available to model the underwriting process, 
and not only for group health business. While underwriting is, in prin- 
ciple, an affair of statistics, the inexactness of the underlying data, and 
even of the underlying phenomena, invite a treatment that does not de- 
pend on the precise specification of the values of defining parameters. 
Fuzzy logic has the cardinal virtue of not imposing a burden of precision 
where circumstances do not justify it. 

Furthermore, as Dr. Young mentions, the mathematics are not spe- 
cially complicated, even if they may be unfamiliar in appearance. This 
is a happy consequence of the fact that it seems adequate to define the 
membership functions in piecewise linear components. 

Inevitably, she had to restrict her scope somewhat in a survey article, 
but other formally defined notions of fuzzy analysis, such as "plausi- 
bility" and "possibility," also have natural and useful interpretations in 
the context of underwriting. 

Fuzzy logic is a very promising tool waiting to be exploited. 

Some  Caveats  

The methods do have some weaknesses. One is the analysis of the 
likelihood of catastrophic (from an underwriting perspective) single events. 
Fuzzy methods are not so easy to apply to these, which is no doubt part 
of the reason that Dr. Young has concentrated her attention on group 
health underwriting. They can even be applied to individual life busi- 
ness, but some of the emphases need to be different. 

Another is that fuzzy analysis rather depends on the underlying phe- 
nomena being "ordered," in the mathematical sense. When it comes to 
things like participation rates, more is dependably better. But when it 
comes to assessing industry risk, the ordering depends on knowing the 
answer in advance; industries cannot easily be set on a scale that makes 
it easy to locate a new one. The same problem makes it difficult to bring 
occupations into the model (much less names of occupations, if one is 

*Mr. Erbach, not a member of the Society, is head of the Department of Business Com- 
puting at the University of Winnipeg, Winnipeg, Manitoba. 
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thinking in terms of customers filling out electronic application forms), 
with implications for applicability to, say, individual life business. 

A third is that the interplay of factors analyzed can be quite compli- 
cated. With only a dozen factors in the analysis, the situation is much 
worse than simply the number of pairs would imply. For instance, if the 
membership functions are defined as simply as possible, as three piece- 
wise linear parts (one constant 0, one linear from 0 to 1, and one constant 
1), the interplay of two already has numerous boundaries whose location 
requires some attention. Mix in the possibility that factors may tend to 
reinforce or may tend to attenuate each other in terms of aggregate risk 
indication. Combine with this some software that makes the definition 
and addition of new risk indicators easy, and one would have a stew that 
would require very close attention from the cooks--and the management. 

Other Advantages 
To set against this, the techniques have several advantages in addition 

to those Dr. Young mentions. 
One of the most important is that one can record precisely why an 

underwriting decision was made. This has many implications. If you 
want to test your proposed underwriting of a new product, you can run 
the analysis against a past set of cases to see precisely what decisions 
you would have made. If you have the corresponding case history, you 
can determine how you would have fared financially against the actual 
claims experience. Even a matter as vague as deciding to increase or 
decrease underwriting stringency a bit can become an accurately defined 
operation. 

Another is that one can show, if it ever came to a legal question, 
precisely how a decision was taken. An investigation of potential legal 
implications is well beyond the scope of this note. But it is not news 
that companies in many industries have become vulnerable to post hoc 
arguments that certain results implied certain decision-making along the 
way. At least from a mathematical point of view, fuzzy underwriting 
makes it conceivable to prove how decisions were taken, and what the 
results might have been had other decision policies been in place, even 
long after the fact. 

Finally, from a software point of view, it seems clear that designing 
for "economies of scope" has become one of the most important con- 
siderations in the preparation of computer systems with a long half-life. 
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A skillfully designed fuzzy underwriter, which could take electronic in- 
put equally from the field for current underwriting purposes, and from 
historical data for pricing and product development needs, would be a 
marvel of virtuosity. 

A n  H i s t o r i c a l  N o t e  

In 1987, with the aid of two colleagues, Douglas Holmes and Robert 
J. Purdy, one of us (Erbach) led a "skunk works" team that developed 
Zeno, a prototype life automated underwriter using a mixture of fuzzy 
and other techniques. Done on behalf of a Canadian firm, this work 
seems to have been the first practical work done in Canada and among 
the earliest in the industry. It was carried as far as developing an un- 
derwriter (coded in C + + )  that ran on portable computers. Zeno was 
intended to do final underwriting of the majority of individual life cases 
on the spot. With the aid of electronic links to the home office, Zeno 
aimed to make turnaround on cases complicated enough to require hu- 
man intervention a matter of minutes, while agent and prospect had a 
leisurely cup of coffee. Zeno was carried far enough to show that it could 
work, at which point the company turned it over to the regular systems 
people, who promptly abandoned it. Why? The reasons undoubtedly in- 
clude both my lack of persuasiveness and management's inability to un- 
derstand the implications of unfamiliar techniques. The location of the 
data point with respect to these fuzzy membership functions is doubtless 
best left undefined. 
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CHARLES S. FUHRER: 

Dr. Young has written an excellent paper. Fuzzy sets is an intriguing 
area of research that has many applications. Unfortunately, fuzzy sets 
cannot be usefully applied to insurance underwriting. 

The goal of every underwriter is to help achieve the financial goals of 
the insurance company. The measure of the achievement of these goals 
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is the financial results of the company. The success or failure of the 
underwriter is measured by the premium versus the claims and other 
expenses of the company. These are not vague or fuzzy. They are, after 
they have occurred, exact numbers. No underwriter should ever care that 
the block of business written has some sort of high membership in the 
set of good risks. The uncertainty that exists before the claims have been 
reported is best modeled stochastically. In Section 2.3 the author distin- 
guishes between fuzzy set theory and probability theory and states: "After 
a given event occurs (or not), randomness no longer exists; however, 
fuzziness does not decrease after additional information has been ac- 
quired." I submit that in underwriting there is not only some decrease 
in uncertainty after the claims are reported, but also almost no remaining 
uncertainty. 

The author correctly ascertained that there is a problem with current 
methods of group underwriting. A perusal of Lehman (Young's ref. [7], 
the Society of Actuaries main Study Note on group underwriting) yields 
a set of subjective opinions about group characteristics without any sys- 
tematic method of combining these evaluations. The author's fuzzy set 
scheme, which systematically combines these characteristics, is a step 
in the right direction. Nevertheless, the author's method is actually con- 
fined by the fuzzy set concept. There are ways in which the author's 
scheme can be improved. These improvements will necessarily leave be- 
hind the fuzzy set terminology in order to use a more general technique. 

The Basic  L imi ta t ion  o f  Fuzzy  Sets 

The main problem with fuzzy sets is that a set A is defined by fa :X-~[O, 
1]; that is, there is a mapping to the unit interval I. My methodology 
uses functions (no longer identified as set f u n c t i o n s ) f a : X - ~ ,  that is, 
mappings to the whole real line. This greater flexibility prevents having 
functions that have comers or are non-smooth at 0 or 1. Most real phe- 
nomena are best modeled with smooth functions. For example, let us 
look at the participation function used by the author in Rule F of Section 
3. The group is deemed more preferred if the participation rises from 70 
percent to 90 percent. The same level of preference (that is, 1) is given 
for 90 percent through 100 percent. If a 90 percent participation is pref- 
erable to an 89 percent participation, why would not a 91 percent be 
preferred to 90 percent? There is no answer. Of course, the fuzzy set 
theorist could rescale all the functions to the open interval (0, 1). This 
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is analogous to how truly subjective ratings, such as for fine wines, will 
always avoid using a 100 percent. Unfortunately, this would not allow 
the use of the simple linear functions that are preferred by all. The con- 
finement to [0, 1] also leads to very complicated combining operators 
such as the Yager and Hamacher. A simpler operator, S, would be S(A, 
B)=aA+bB+cAB for three constants a, b, and c. Note that the relative 
amount of interaction is controlled by the size of c versus a and b. 

Using Data 

The severest problem with current techniques is that the various opin- 
ions on group suitability are completely subjective, Many insurance com- 
panies load or decline groups based on characteristics of the groups. 
Often, there is no known objective information that these characteristics 
have a negative influence on financial results. Some of the characteristics 
used by the author would fit this description. There is an easy way to 
use actual group insurance data to determine the loads for various group 
characteristics. Merely set up a linear or quadratic function of the char- 

_ n n n acteristics such as Y-~t=l aixi+~,t=l ~5=1 aijxixj, where the x's are char- 
acteristics such as number of people in the group, participation per- 
centage, employer contribution, etc. and the a 's  are unknown constant 
coefficients. The x's can be discrete such as 1 for actively-at-work rule 
and 0 for no rule. Now the a 's  can be determined by least squares regres- 
sion on some group data. There are many techniques for determining the 
coefficients besides least squares. One can also use Bayesian techniques 
to combine a subjective belief about certain coefficients with the data. 

The author's fuzzy set functions would be much harder to use. Fur- 
thermore, the author's fuzzy set paradigm gives the illusion of a scien- 
tific approach to underwriting when actually it is not even an attempt to 
substitute demonstrations for impressions. The use of fuzzy sets for cred- 
ibility factors as suggested by the author would also be a mistake. Most 
good methods of setting credibility [author's ref. 3] currently use func- 
tions of group size (and sometimes other characteristics) that are deter- 
mined using least squares based on group insurance data. See [I] for 
some other methods of fitting credibility levels to size of case. 
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(AUTHOR'S REVIEW OF DISCUSSION) 

VIRGINIA R. YOUNG: 

I thank Mr. Erbach and Dr. Seah for complementing my writing with 
their comments. I am glad that they reinforce my intent, namely, to de- 
scribe how fuzzy sets may serve as the basis of a fuzzy expert underwriter. 

It is unfortunate, however, that Mr. Fuhrer misunderstands my pur- 
pose. In this article, I am not describing how a company might develop 
its underwriting rules. Rather, I am showing how an underwriter might 
model the insurer's existing rules using fuzzy sets. Mr. Erbach and Dr. 
Seah list advantages of this technique beyond those I discuss. 

At the end of Section 2.3, I address the topic in the second paragraph 
of Mr. Fuhrer's discussion. I propose that an unprofitable group may 
still be one that a company wants to write. Please refer to my paper for 
further comments. 

I do not agree with Mr. Fuhrer that the main problem with fuzzy sets 
is that the range of the set is limited to the unit interval [0, 1]. This 
restriction does not necessarily lead to nondifferentiable functions or to 
complicated combining operators. In actuarial practice, one encounters 
the property of boundedness in such areas as limits on rate increases, 
limits on premium capacity, etc., so limiting the range of a fuzzy set is 
not a handicap. Also, cumulative distribution functions are required to 
increase from 0 to 1, and their power is not unduly hampered. 

Mr. Fuhrer takes issue with one of my illustrative fuzzy sets. As I 
clearly state in the sentence preceding Rule E, Section 3, the fuzzy sets 
are examples only. 

Again, the main intent of my paper is to describe how one may use 
fuzzy sets to model existing underwriting rules. I did not give procedures 
for adjusting the functions to reflect given data. That area is one that I 
am currently researching. 


