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ABSTRACT 

Operations research methods have been applied to the modeling and the 
solution of numerous problems in insurance and actuarial science. This paper 
reviews the applications of these operations research methods in the insur- 
ance industry. The paper is organized according to the categorization of 
operations research methods. Specifically, various mathematical program- 
ming models and their applications are first introduced. Game theory and 
some new operations research approaches are discussed, along with their 
applications in insurance and actuarial science. The paper concludes with a 
general discussion of developments and trends in operations research and 
insurance. 

For the student who has studied specific operations research techniques 
mandated by the SOA examination system, this paper provides a set of 
examples of techniques pertinent to actuaries and shows how the expanding 
field of general quantitative reasoning in risk management can have a pos- 
itive impact on the insurance industry. For research actuaries, we finally 
present an updated bibliography of operations research applications in in- 
surance cross-classified by authors, operations research methodologies, and 
insurance areas of application. 

1. INTRODUCTION 

Operations Research (OR) models have been formulated to solve a wide 
variety of problems in the insurance industry. In this paper, we review some 
insurance industry applications of quantitative reasoning techniques, often 
known as OR methods. Many of these techniques are studied by actuarial 
students in a non-insurance context (SOA Exam 130), and so a description 
of actual insurance applications can provide a useful addition and motivation 
for the educational process. 

*Dr. Brockett, not a member of the Society, is Director of the Center for Cybernetic Studies and 
Gus S. Wortham Chair in Risk Management and Insurance in the Department of Management 
Science and Information Systems at The University of Texas at Austin. 

tDr. Xia, not a member of the Society, is with AutoBond Acceptance Corp., Austin, Texas. 
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Early overviews of OR in insurance were presented by Zubay [291], who 
discussed the feasibility of applying OR methods to the insurance industry. 
Wade et al. [279] presented an excellent annotated bibliography, which was 
published by the McCahan Foundation. Denenberg [98] provided a review 
of OR in insurance, and Jewell [151] provided another excellent survey. In 
addition, early on (in 1960s and 1970s) the Society of Actuaries published 
a series of insightful discussions on the potential usefulness of OR tech- 
niques in actuarial and insurance areas [102]. Since then, Jewell [155] and 
Shapiro [255] have provided updated surveys. More recently, Haehling von 
Lanzenauer and Wright [133] presented a very useful overview of the in- 
terface of OR and insurance in the broader context of risk management with 
a unique feature of explicitly dealing with the decision problems by insureds. 

Most of the previous review papers were organized according to appli- 
cation in the insurance industry. Shapiro [255], however, presented the ma- 
terial according to specific OR methodologies. This paper is also categorized 
according to OR areas in an attempt to provide an updated overview of both 
new and classical OR methodologies and their applications in insurance. 
This paper is intended to be more technique-oriented, an approach that is 
consistent with how actuarial students in North America study OR. This 
survey is thus intended to supplement and motivate the material learned by 
actuarial students while providing convenient reference for the professional. 
In particular, actuarial students who have studied OR techniques from non- 
actuarial textbooks will find herein many applications of OR methods to 
insurance and finance. Accordingly, the relevance of the OR examination 
material to actuarial science research and practice is reinforced by the paper. 

In addition, the insights gained by using general quantitative reasoning to 
address problems in risk management will become more apparent to the 
actuary, who is most responsible for implementing mathematical techniques 
in the insurance industry. Some mathematical formulations are illustrated, 
and the connections among various approaches are discussed. In addition, 
some new OR approaches are explored. Both modeling techniques and com- 
putational aspects are briefly considered. Our intent is to deliver a review of 
deterministic methods in insurance and actuarial science without formally 
discussing most probabilistic models and stochastic process models such as 
queuing processes of claim arrivals, and so on. 

~We recognize that uncertainty is the raison d'etre of risk and the business of insurance. We have 
chosen to limit our coverage of stochastic methods primarily to conserve space and to follow more 
directly the OR methods studied by actuarial students without immediately apparent applications in 
risk management. Several methodologies presented do, however, have stochastic components and 
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The paper is organized as follows. Various mathematical programming 
models and their applications in insurance are presented in the next section. 
In Section 3, some new OR methods (such as data envelopment analysis, 
expert systems and neural networks) together with game theory and their 
applications are illustrated. Next, conclusions and discussions are presented. 
Finally, a detailed bibliographic reference of OR applications to insurance 
is given. To make this bibliography useful to both researchers and practicing 
actuaries, it is cross-referenced in three ways: by author, by OR technique, 
and by insurance functional area of applications. 

2. MATHEMATICAL PROGRAMMING 

A major research direction and practical application approach within OR 
is mathematical programming. Accordingly, the major part of this review 
paper is dedicated to various mathematical programming models in a variety 
of risk management and insurance applications. In the following eight sub- 
sections, we introduce the developed or promising insurance applications of 
general linear programming, nonlinear programming, integer programming, 
and five other special mathematical programming approaches: network op- 
timization, goal programming, dynamic programming, chance-constrained 
programming, and fuzzy programming. 

A general mathematical programming problem can be formulated as2: 

Maximize f ( x, y) 

subject to: gi(x, y) = 0, for i = l . . . . .  p; (1) 

gj(x, y) <-- O, forj  = p  . . . . .  p + q ,  

x is a non-negative real-valued n-vector 

y is a non-negative integer-valued m-vector. 

It is not difficult to show that the non-negativity restriction on the vectors 
x and y can be made without loss of any generality. 3 Notice also that the 

statistical content. We also recognize that simulation methods are an important topic for actuaries 
using quantitative reasoning; however, we do not expand this subject here in the interests of space 
and because of the availability of other sources for the information. 

2Throughout we use boldface lowercase letters to represent vectors and non-boldface subscripted 
letters to represent the components of the vector. 

aTo see this, consider the two cases, that is, negative variables and (upper and lower) bounded 
variables. If x-<0, then let y=x and substitute - y  for x in the various functions to obtain a standard 
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general formulation above can encompass both minimization and maximi- 
zation problems, since minimizing an objective function is equivalent to 
maximizing the negative of the objective function. It is also easy to transform 
a "greater than or equal" into "less than or equal to" inequality constraint 
by simply multiplying the inequality by - 1 .  This confirms that Formulation 
(1) indeed encompasses the most general mathematical programming mod- 
els. Accordingly, in this paper, we use either maximization or minimization 
interchangeably without explicit explanation. 

In subsequent sections, we see how added restrictions on the objective 
function or on the constraints and variable domains generate the specific 
type of  mathematical programming problems; this is made clear in the in- 
dividual subsections. The order of these subsections is as follows. Because 
LP is the basis of many other mathematical programming approaches, linear 
programming (LP) is presented first. General nonlinear programming (NLP) 
is presented next. Finally, integer programming (IP), network optimization 
(NO), goal programming (GP), dynamic programming (DP), and chance- 
constrained programming (CCP) are introduced, and last, fuzzy program- 
ming (FP) is presented. 

2 .1  L i n e a r  P r o g r a m m i n g  

For the general mathematical formulation (1), a linear programming prob- 
lem is obtained when the objective function and the constraints are all linear 
in the unknown variables. Hence, a linear programming problem can be 
expressed as follows: 

Maximize cTx 

subject to Ax --< b, and x is a real-valued vector. 

(2) 

where A is an m × n  real-valued matrix, b is an m-dimensional real-valued 
vector, and c is n-dimensional real-valued vector; that is, we are maximizing 
a linear function subject to linear inequality constraints. 

We now present one illustration of LP in the insurance industry, a linear 
programming method for measuring the cost of whole life insurance (Schleef 

formulation, lfxE[l,u], then first, let x '=x-l ,  so that x'E[0, u-l]. The second step is to introduce 
two non-negative and unbounded variables, y~ and Y2, and let x'=y~-y v We then obtain two non- 
negative and unbounded variables and standard formulation by substituting Y~-Y2 for x' and intro- 
ducing the constraints yz<-y~ and y~<-u-1 +Y2. 
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[250] ) .  4 Compared to more traditional methods (the measure of interest ad- 
justed surrender cost method and Linton's rate of return), the linear pro- 
gramming method requires fewer assumptions, because the only input re- 
quired is the rate of return that is relevant to the policyholder. The method 
does not attempt to directly separate the protection and savings components 
of the whole life policy. It assumes that the insured individual requires a 
given level of protection and is not concerned with how the insurer breaks 
down the received premium into loading charges, reserves, and so forth. The 
method also has the additional flexibility of considering the time at which 
the insured requires protection. The flexibility of varying the year of required 
protection is the primary characteristic of the LP method that differentiates 
it from the more traditional methods. 

In the LP formulation, the three types of decision variables are the amount 
w, lent externally by the insured at the beginning of year t, the amount zt 
borrowed externally by the insured at the beginning of year t, and u, the 
face value of insurance purchased at the time t=0. It is assumed that the 
rate of return, i, or borrowing and lending rate are the same (although this 
could be relaxed in the LP formulation), so only the net position ( w , - z , )  

appears in the formulation. The objective function is to maximize the dis- 
counted cash flows associated with a given policy, which is constrained by 
the amount that the insured is willing to budget for insurance, and the 
amounts of protection required in each year to the horizon. The linear pro- 
gramming formulation is shown below: 

Maximize (1 + i) -n Cn u + ~ (1 + i)-t,-l) (w ,  - z t )  
i=1 

subject to Ptu + wt - z t  <-- b t ,  for t = 1 . . . . .  n; 

J 

u + ~ (1 + i) -~'-1~ (w, - Z,) ---> Ij, f o r j  = 1 . . . . .  n; and 
t=l 

u, w, ,  zt  are non-negative, 

where w t, z,, and u are decision variables; w t is the amount lent externally 
by the insured at the beginning of year t; zt  is the amount borrowed ex- 
ternally by the insured at the beginning of year t; u is the face value of 

4As Schleef [250] indicated, the LP model can also be applied to Other types of life insurance 
such as term insurance and interest sensitivity products such as universal life. 
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insurance purchased at the time t=0; Pt is the net premium rate in year t; 
C, is the cash-value rate at the end of year t; b, is the amount budgeted by 
the insured at the beginning of year t; I t is the insurance protection required 
at the beginning of year t; and n is the number of years in the planning 
period. 

From this primal linear programming model, the dual linear programming 
model is obtained/By using the "shadow price" interpretation of the dual 
parameters corresponding to the constraints in the primal problem, the dual 
LP model can be used to analyze the marginal discount factors for each year 
and the marginal discounted cost of increasing the death benefit requirement 
in each year. 

Linear programming is a very general category programming problem. As 
shown later, many goal programs, integer programs, and network flow mod- 
els can be formulated as linear programs. Hence, further applications of 
linear programming are discussed in separate subsections. There are many 
other interesting applications of LP to insurance. For example, Chan et al. 
[57], Schuette [253], and Hickman [141] provide theoretical discussion and 
formulation of LP approaches to graduation. 

Financial management is another mature area in insurance and actuarial 
science in which the LP method has been widely used. Hofflander and Dran- 
dell [144], for example, use a linear programming model to discuss profit- 
ability, capacity and regulation problems in insurance management. Schleef 
[249] uses a linear programming model for decision-making in life insurance 
purchases. 

Conwill [79] develops several linear programming models for maximizing 
policyholder value in problems of making combined decisions of life insur- 
ance product purchasing and asset investment. In his long paper, Conwill 
discusses the techniques used in building linear programming models for 
insurance problems, the computational issues involved in solving the linear 
programming problems, and the interpretation of the results produced from 
computation. 

Haehling von Lanzenauer et al. [ 130] show how to formulate the problem 
of developing a manpower planning policy as a linear programming problem. 
Linear programming is also suggested by Jennergren [150] for use as an 
asset valuation method. Navarro and Nave [211] use linear programming 
for dynamic investment immunization problems. Indeed, there are many 

5We recommend Hillier and Lieberman [1431 for further reading about the definition of dual 
programming, how a primal linear programming transformed to its dual LP, what the relationship 
between the optimal solution to the primal and that to the dual is, and how one can interpret the 
dual (what the economic interpretation is). 
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applications of LP methods for problems in financial areas such as capital 
budgeting, portfolio management, duration matching, and immunization. 
These applications are also of substantial interest to actuaries and to insur- 
ance management. 

2.2 Nonlinear Programming 

In the general mathematical programming Formulation (1), nonlinear pro- 
gramming encompasses the least restrictive set of attributes imposed. In the 
general nonlinear programming model, the variables are free to be either 
real-valued or integer-valued, and the objective or the constraints can involve 
nonlinear functions. Hence, linear programming is actually a special form 
of nonlinear programming. Compared to linear optimization problems, how- 
ever, nonlinear programming suffers more serious disadvantages. Nonlinear 
functions are typically more difficult to specify. In addition, although some 
special classes of nonlinear programming (such as convex programming) 
can be optimally solved, in nonlinear optimization there may be a multitude 
of local optima of the nonlinear objective function. Accordingly, a serious 
problem in nonlinear optimization is that commonly used solution methods 
such as Newton-Raphson techniques may find local rather than global op- 
timal solutions. Occasionally, given the search technique used, the global 
optimum cannot be found within a reasonable time limitation. 

In this section, rather than pursuing further discussion on general nonlinear 
programming, we describe two applications of nonlinear programming in 
the insurance industry: a quadratic programming model for insurance port- 
folio analysis (Markle and Hofflander [197]) and an information theoretic 
approach to mortality table graduation (Brockett [38]). 

Among the early efforts at combining underwriting and investment into 
an integrated portfolio analysis is the work by Markle and Hofflander [197]. 
As an extension of the Markowitz portfolio model, their combined portfolio 
analysis indicates an efficient portfolio that may be relevant for insurers' 
financial decision-making. A similar philosophy is used in Crum and Nye 
[85], in which generalized network flow models are proposed to obtain op- 
timal insurance and investment portfolios. Other extensions include that of 
Brockett, Charnes, and Li [40], who consider simultaneously the optimal 
selection of investment vehicles and insurance lines of business decisions 
for a casualty insurance company. 

Markle and Hoffiander's model is a quadratic programming model; that 
is, the objective function used is quadratic in the unknown decision variables 
of interest and the constraints involve only linear functions. The objective 
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function involves maximizing the expected portfolio return, and this maxi- 
mization is done subject to two types of constraints: institutional and regu- 
latory solvency constraints, and accounting types of constraints. The decision 
variables they use are selected balance sheet variables representing the al- 
location of assets (including various bonds and stocks) and liabilities (in- 
cluding the premiums written in multiple insurance lines). After all the var- 
iance and covariance matrices within and between the asset and liability 
variables have been estimated, the objective function is written as a quadratic 
function in the decision variables. All the constraints are linear. With such 
a formulation, not only can the unique optimal portfolio be found (because 
the constraint set is convex), but also a sensitivity analysis can be conducted 
of the effect of changes in the regulatory solvency constraints on the optimal 
expected portfolio return. Such a quadratic programming formulation for 
portfolio analysis is widely used in finance and investment literature. In 
addition, the algorithms for solving quadratic programming problems are 
also efficient and commercially available for easy use. 

We next introduce another application of nonlinear programming of in- 
terest to life actuaries, namely, mortality table construction and graduation. 
The information theoretic methodology (Brockett and Zhang [46], Brockett 
[38], Brockett et al. [43], and Brockett et al. [45]) can be used for selecting 
statistical models for analysis when the true underlying distributions are 
unknown, which is typical of mortality table construction. The graduation 
of the mortality table using empirical data is a particular problem of interest. 
A complete discussion of the information theoretic methodology illustrated 
here can be found in Brockett [38]. 

Let the vector u denote the observed series of values u = (u~, u 2 . . . .  ) 
that are to be graduated into a mortality table and the vector ~ denote the 
resultant smooth or graduated series of values b = (~t, 82 . . . .  ). The infor- 
mation distance between the observed series and the graduated series is 
defined as 

It represents a measure of closeness of the observed and graduated series 
with l (~/u)=0 if and only if ~=u. 
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The objective of the graduation process is to find a graduated series that 
is as close as possible to the observed series but satisfies certain constraints. 
Thus, the objective function is 

MinJ(B/u) = ~ Bi lnfB"]. 
• L U / J  

The first constraint is the non-negativity on the graduated series. Other 
constraints on ~ occur because the true underlying pattern of mortality rates 
is (a) smooth, (b) increasing with age, that is, A~x=~x÷!--~x-->0, and (c) 
more steeply increasing at the higher ends of the range, that is, A2~x-->0. 
Additional constraints in the graduation process are that (d) the graduated 
number of deaths using ~ equals the observed number of deaths using u and 
(e) the total of the graduated ages at death equals the total of the observed 
ages at death. The measure of smoothness is given by X(A3~x)2--<M, which 
can be formulated as a quadratic constraint ~rA~<--M, where the matrix A 
is: 

1 3 _ 3 , 0 0  
0 - 1  3 - 3  1 0 
0 0 - 1  3 - 3  1 

0 0 0 0 0 0 . 

The constant M determines the degree of smoothness obtained for the grad- 
uated series. 

The restilting convex programming model can be solved by using general 
nonlinear programming codes such as generalized reduced gradient algo- 
rithm (GRG2) (Lasdon [173] and Lasdon et al. [174], and [175]). 

As mentioned in Brockett [38], other objective functions could be used 
for graduation, and the quadratic one associated with Whittaker-Henderson 
graduation provides a case in point. Illustrative of using a mathematical 
programming approach to the Whittaker-Henderson graduation is the paper 
of Lowrie [190]. Chan et al. [57] also show that the problem of minimizing 
the Whittaker-Henderson objective function Fp(U)+hSq(U) o v e r  u-->0, using 
the fit measure 

G u)- 2 wxlux- u:l  
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and the smoothness measure Sq(U)~Z/AZux[q, p--/:q, can be formulated as a 
linear programming problem when p =  1 and q=oo as a quadratic program- 
ming problem when either p or q is 2. These general graduation methods 
are all amenable to solution by using nonlinear programming methods. 

2.3 Integer Programming 
An integer program (IP) is obtained from the general mathematical pro- 

gramming Formulation (1), when the decision variables are restricted to 
being integers. Integer programming problem can involve nonlinear func- 
tions in its objective or constraints. For illustrative convenience, we introduce 
only integer LP. 

Integer LP, as a special case of LP, arises in resource allocation or as- 
signment problems, facility location, traveling salesman or vehicle routing 
problems, and many other combinatorial problems. Graph theory and integer 
programming are often interrelated. Many graph theory problems are for- 
mulated and solved as IP problems, whereas many IP developments are 
directly related to graph theory study. Because of the integer restriction, the 
solution obtained by simply rounding the corresponding real-valued LP so- 
lutions to integer values is often suboptimal. Accordingly, some other effec- 
tive algorithms are required to solve integer LP problems. 

There are many IP problems known for the NP-complete or NP-hard prob- 
lem; that is, it is not very likely that polynomial bounded algorithms (in 
sense of the time required to find the optimal solution) will be found for 
these classes of problems. In spite of the prevalence of NP-completeness/ 
NP-hardness in IP, many efficient algorithms have recently been developed. 
Among them are the branch-and-bound search, the Lagrangian relaxation 
method, the subgradient technique, the decomposition method, and the con- 
straint aggregation method. These algorithms have proven to be computa- 
tionally successful for complex IP problems, although some of them achieve 
computation time efficiency by finding the satisfactory, but not necessarily 
optimal, solution. Several excellent books or papers specializing in integer 
programming are listed in the bibliography. In particular, for those readers 
who are interested in the complexity of algorithms in general, we suggest 
Garey and Johnson [116], while for those who are particularly interested in 
integer programming modeling, we recommend Nemhauser and Wolsey 
[212]. 

Applications of IP models abound in the insurance industry. As discussed 
in a later section, network flow models can be used in many situations such 
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Maximize 

as financial planning, cash management, and so on. These network flow 
problems constitute a special case of IP problems under certain reasonable 
assumptions. In this subsection, we illustrate the application of IP to the 
problem of reorganizing the sale regions for a life and annuity insurance 
company (Gelb and Khumawala [118]). The first example in Section 2.5, 
Goal Programming, provides another integer programming illustration in 
insurance. 

In 1982, a Houston-based company, Variable Annuity Life Insurance 
Company (VALIC), was interested in reorganization of its sales force of 336 
individuals. At that time, there were 16 sales regions, each with a manager 
and regional office. The regions had evolved as combinations of 57 geo- 
graphical segments involving states or portions of states. The reorganization 
plan investigation was specifically undertaken to determine a least-cost so- 
lution to determining the number of regions and the geographical configu- 
ration of the regions. It was also desirable to compute the cost savings that 
would be obtained if the suggested sales region configurations were adopted. 
Three constraints were imposed by the company: (1) the number of regions 
should not decrease; (2) the number of regions should at most double; and 
(3) disproportion in market potential should not be exacerbated. The primary 
task was to improve profitability by either increasing market potential or 
decreasing the costs incurred. This problem of reorganization of the insur- 
ance sales force was formulated by Gelb and Khumawala [118] as follows: 

E C,jx,j + 
U i 

subject to: ~,  x U >- Dj, for all j; 
i 

x U <-- S i y i ,  fo r  all i; and  
J 

for alli, y i =  1 i fx  U>--O;yi= 0 i f x ~ j < 0 ,  

where C U is the sum of variable costs (operating expenses and cost of lost 
sales) relating to the i-th regional office and j-th geographical segment; F~ 
the fixed costs of the i-th potential office; Dj the market potential of the j- 
th geographic segment; S i the capacity of the i-th potential office; y~ the 
integer decision variable indicating the utilization (y/=l)  or nonutiliza- 
tion (yi=0) of the i-th regional office; and x,j the integer decision variable 
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denoting the amount of market potential of the j-th segment to be served 
from the i-th regional office. 

This formulation is a typical facility location problem. For an insurance 
company this model has utility not only for reorganizing existing regional 
sales force structure geography but also for designing a regional sales office 
configuration for an insurance company intending to expand its business 
geographically. Gelb and Khumawala [118] used a branch-and-bound im- 
plicit search procedure to solve the problem. The solution showed that if the 
total number of regional offices was allowed to increase from 16 to 25, the 
total cost could be reduced from $18,826,000 to $9,993,000, a saving of 
$8,833,000. 

The problem size, however, will expand with the number of potential 
offices. The branch-and-bound approach may not be able to handle the case 
of a very large number of potential offices because branch-and-bound tech- 
niques basically use an enumerated search approach. Although the search 
method is wisely designed to potentially reduce the search time substantially, 
in the worst case, the search time is an exponential function of the problem 
size (see Garey and Johnson I116] for the precise definition of problem size). 
For large IP problems, other algorithms such as the Lagrangian relaxation 
may be required. 

Integer programming approaches to problem-solving have also been suc- 
cessfully applied in finance and other business areas. Many portfolio man- 
agement problems (Faaland [109], and Nauss [209], [210]) and capital bud- 
geting problems (Gonzalez et al. [126], Laughhaunn [176], and Pettway 
[224]) have been modeled as integer programming problems when assets 
are indivisible or projects must be adopted or rejected in their entirety. In- 
surance, in its role as a financial intermediary, has many other potential 
applications of integer programming. Two such applications of IP in insur- 
ance and finance are given in the next section. 

2.4 Network Optimization 

A network model is denoted by G(N, A), where N is a set of nodes and 
A is a set of arcs, while G relates the network optimization to graph theory. 
Each arc (i, j)EA represents an ordered relationship between two nodes, i, 
jEN. Thug a network is a directed graph. There are three main types of 
network flow problems: the shortest path problem (SPP), the maximum flow 
problem (MFP), and the minimum cost flow problem (MCFP). In fact, both 
the SPP and MFP are special cases of MCFP; hence, below we give only 
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the general network formulation for a minimum cost flow model. We refer 
readers to an excellent book by Ahuja, Magnanti, and Orlin [5] for thorough 
discussion on network flows. 

A general network formulation is as follows: 

Maximize ~ c ijx ij 
(i,j ')EA 

subject to ~ xq - ~ ,  py~xji = b(i), for i E N; and 
I i:(iJ) ~--A } { J:(J,0 ~-A } 

0 <--l o<-xiy<-  uiy. 

where [j:(j,i)EA } denotes the set of nodes j that have an arc leading to 
node i, while {j:(i,j)~A } denotes the set of nodes j to which an arc origi- 
nating from node i. For one explanation of the formulation given above, 
x o represents the amount of flow from node i to node j ;po  is the transmitting 
efficient rate of the arc (i, j), which is usually less than or equal to 1; b(i) 
is the extra demand or excess supply of node i; and cij represents the benefit 
of unit flow on arc (i, j) because of the maximization of the objective 
function. 

Networks are pervasive. They arise in numerous application settings and 
in many forms. Physical networks are perhaps the most common and the 
most readily identifiable networks. Network flow problems, however, also 
arise in surprising ways for problems that, on the surface, might not appear 
to involve networks at all. Sometimes the nodes and arcs have a temporal 
dimension that model activities that take place over time. Many scheduling 
applications have this flavor. In any event, network models arise in a wide 
variety of problems in project management; equipment and crew scheduling 
(say, claims adjusters or auditors); location layout theory; warehousing and 
distribution; production planning and control; and social, medical, and fi- 
nancial contexts. 

Network flow models have also been used in the insurance industry. In 
this paper, we present a class of network models applicable to insurance and 
investment portfolio management. 

Our first illustrative application of network flow models is project man- 
agement. As early as 30 years ago, Zubay [291] suggested potential appli- 
cations of network models in the insurance industry. In this section, we show 
three basic models of project management: determination of minimum 
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project duration, just-in-time scheduling, and the time-cost trade-off project 
scheduling problem. 

For an application of network methodology to project scheduling, suppose 
we are given a set of jobs required to complete a project (for example, a 
new rate filing or policy filing case). We are also given the order in which 
the jobs are to be done, as certain jobs must proceed others, while other 
tasks can be accomplished simultaneously. These constraints on the order in 
which the jobs can be done are known as the precedence relationships. The 
objective is to determine the minimum project duration, that is, the least 
possible amount of time needed to complete the entire project. This problem 
is a typical shortest path problem. Let u(i) and u(j) denote the earliest 
possible start times for job i and j. Then the problem has the following 
formulation: 

Minimize 

subject to 

u ( t )  - u ( s )  

u(j)  - u(i) >-- cij, for (i, j) E A; and 

u(j)  unrestricted in sign for all j ~ NI 

where nodes s and t represent the starting point and the finishing point, 
respectively; A is the set of precedence relationships, and cij=uii represents 
the time duration of job i. 

In the previous formulation, there were no restrictions on the variables 
except for the precedence constraints. In some cases, however, certain jobs 
in the project might have an absolute time restriction; that is, a job must be 
started within a specified time limit from the start of some precedent jobs, 
for example, constraints on the time available after notice of a claim to make 
payment or the deadlines for rate filing. The objective in this case is still to 
minimize the entire project duration. The so-called "just-in-time scheduling" 
problem is an extension of the previous formulation with the additional class 
of constraints: u(j)<--u(i)-otij, for all (i, j )EA ,  where ot~j means that job j 
must start within a o units o f  time from the start of job i. The "just-in-time 
scheduling" problem can also be formulated as a minimum cost flow model. 

In some circumstances, the durations of jobs can be reduced by allocating 
extra resources (manpower, equipment, or money) to them; that is, there are 
time-resource trade-off curves on certain jobs. If the curves are linear, then 
the dual program of the primal linear program is the minimum cost flow 
problem. 
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As mentioned previously, network flow models are well suited to the sit- 
uations in which there is a set of  entities and flows of some sort between 
entities. The transportation problem, with minimum cost as the objective, 
and the traffic light control problem, with maximum flow per unit time as 
the objective, illustrate classical network flow problems. The best known 
flow-type problem in insurance involves the flow of cash or funds between 
suborganizations of an insurance firm and between the insurance firm and 
other sources or uses of funds. For example, Crum and Nye [85] designed 
general network flow models for three operations of  a multiple-line property- 
casualty insurance firm: insurance portfolio operations, investment portfolio 
operations, and the capital acquisition operations. We introduce the first net- 
work model and refer readers to Crum and Nye [85] for the other two case 
studies. 

In insurance network flow models, there are four types of  nodes: the nodes 
representing the cash balance, the nodes designating the insurance lines of  
business, the nodes representing existing claims, and the nodes representing 
new claims. A network model of  the insurance portfolio of an insurance 
company with two lines of business and spanning three time periods is 
shown in Figure 1 (see Cram and Nye [85] for the original work). 

Corresponding to four types of  nodes, there are four cash flow equations 
balancing dollars in to dollars out of  the nodes (these are similar to the 
equations of  balance in asset share calculations and theory of interest). These 
equations 6 are: 

i = l  i=1 k= l  i = l  

f o r j  = 1 . . . . .  n + l ; k =  1 . . . . .  n; 

- I N S q  - C R i  i = MVij,  for i = 1 . . . . .  m , j  = 1 . . . . .  n; 

~ (1 - L P q ) P P C q  = PC~, for i = 1 . . . . .  m; and 
j = l  

6In the original paper, the second term of the first equation is: E~=~ E~=~ CPjj k, we think the 
range for k should be [l,j] instead of [1, n]. 
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FIGURE I 

INSURANCE PORTFOLIO OPERATIONS (TWO LtNES AND THREE PERIODS)* 
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*Reprinted from Mathematical Programming Study, Vol. 15, 1981, R.L. Cram and D.J. Nye, "A 
Network Model for Insurance Company Cash Flow Management," pp. 137-52, 1981 with kind 
permission of Elsevier Science-NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The 
Netherlands. 
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~ (1 - LPi#)CPi j  ~ -I- LR i jCRi j  : CLij , 
k= I 

for /  = 1 . . . . .  m and j = 1 . . . . .  n. 

where i is the index of business lines; j the index of time periods; k the 
index of (time) steps; INSIj the insurance actually sold; UEii the underwrit- 
ing expense ratio; CPijk the dollar amount paid for claims; CBjj÷t the cash 
balance carried over between periods; MV~j the maximum volume of insur- 
ance; CRij (=MV~j-INSij) the additional insurance that could have been 
sold; ICBj the initial cash balance; LPq the penalty cost incurred from pay- 
ment delay; LRq the loss ratio; PCij the amount of claims; PPCij the 
payments in a period to satisfy claims PCi ;  and CL o the maximum levels 
of claims, C L i j = L R i j * M V i j .  

In these four equations, summations preceded by a negative sign represent 
cash outflows from the node, and positive coefficient terms represent cash 
inflows to the node. Crum and Nye [85] gave an illustrative example of an 
insurance portfolio network that contains two lines of business over three 
time periods. The objective function is expressed to maximize the value of 
the firm after all incremental capital acquired by the model has been repaid. 
This can be shown to be equivalent to maximizing the value of the existing 
equitymthe appropriate objective for a public corporation. 

The investment portfolio problem can be similarly formulated as a mini- 
mum cost flow problem. Combined with the investment portfolio network, 
the whole network model represents flow of funds over time for the multiple- 
line insurance company. Given the maximum period premium volume, the 
initial asset amount, the investment choices, and some other parameters, the 
network flow model is able to find the optimal portfolios for the company. 
However, the decision of a major insurance company depends upon how the 
company acquires external capital such the capital structure (for example, 
debt-equity composition) and how well the company manages its assets and 
liabilities. Hence, Crum and Nye used network models to formulate the 
capital acquisition problem and investment portfolio problem in addition to 
the above-cited model for the insurance portfolio problem. These three mod- 
els combined with the objective function form the complete model for a 
major insurance company. Such an insurer can either be a multiline property 
and casualty company or a life company including life insurance products 
and annuities. 

To further illustrate the usefulness of network flow models in finance and 
insurance, we briefly discuss how network optimization might be used to 
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find arbitrage opportunities in currency exchanges for a multinational insur- 
ance company. Suppose an American company is the target company and 
dollar is the target currency; that is, the company has an amount of excess 
cash that can be used for currency exchange. There exists a set of foreign 
currencies available for trading. A network model for this problem, as usual, 
consists of a set of nodes and a set of arcs. The nodes represent currencies, 
one node for each currency. The arcs represent the possible exchange be- 
tween the two currencies with an exchange rate attached to the arc. The 
problem is simply to increment the amount of dollars by finding optimal 
exchanging paths and amounts. To implement the model, a source node and 
a sink node are artificially added. The source node has an initial excess of 
capital (the amount to be invested). An arc connects the source node to the 
dollar node. Another arc connects the dollar currency node to the sink node. 
The problem is then transformed into a maximum flow problem (that is, the 
company is trying to maximize its current dollar holdings by circulating 
currencies within the market). Clearly, if the exchange rates are spot rates 
and are fed into the model in real time, the model can be integrated into the 
company's whole financial management system. Under different specifica- 
tions, the model can be extended to currency swap or interest swap problems. 
We refer interested readers to Kornbluth and Salkin [169] for more details. 

2.5 Goal Programming 

Chames and Cooper [60] first provided the foundations of  goal program- 
ruing and developed a strategy that is capable of handling multiple, incom- 
patible and/or  incommensurable goals. In a typical goal programming 
model, each goal is formulated as a constraint. There are two variables 
associated with each goal (each constraint): overachievement deviation and 
underachievement deviation. The value of  these two deviational variables 
measure how well the corresponding goal is accomplished. For example, if 
both deviational variables in the final solution to the goal programming 
model are close or equal to zero, the corresponding goal is well achieved. 
However, the two deviational variables of each goal cannot be zero at the 
same time in a feasible solution since it is unusual to have a goal overa- 
chieved and underachieved simultaneously. After two deviational variables 
have been assigned for each goal, the next essential step in setting up a goal 
programming model is to build an objective function. An objective function 
in a goal programming formulation is usually a linear function in deviational 
variables. Specifically, the objective function takes the weighted summation 
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of the deviational variables. The weights assigned to a deviational variable 
indicate the importance of the corresponding goal-in the decision-making 
process. The objective is thus to minimize the weighted sum of deviations 
from goal achievement, that is, to accomplish the best overall achievement. 

The goal programming method has been extensively applied to problems 
in management and finance. In the insurance industry, Klock and Lee [164] 
suggested a goal programming model for an insurance company with profit, 
current asset returns, and legal bounded goals, while Drandell [103] dem- 
onstrated that the goal programming model developed is equivalent to the 
original linear programming model of optimum allocation of assets. O'Leary 
and O'Leary [214] also used goal programming to address a problem faced 
by the financial and personnel departments in many firms: choosing an in- 
vestment manager. 

To further demonstrate the utility of goal programming in the insurance 
industry, we introduce two applications: capital budgeting in an insurance 
company (Lawrence and Reeves [179]) and insurance agency management 
(Gleason and Lilly [123]). 

Given a set of projects, such as investment projects for an insurance com- 
pany and given a set of multiple objectives for these projects (multiple strat- 
egies), the capital budgeting problem is to determine which particular pro- 
jects should be selected in each given time. Specifically, Lawrence and 
Reeves [179] formulated the above problem utilizing seven objectives or 
goals that are desired to be met to the extent possible: 
(1) Achieve at least a certain minimum level of project rate of return 
(2) Do not exceed a certain maximum level of anticipated penalty cost 

associated with project lateness 
(3) Achieve at least a certain minimum level of additional premiums 
(4) Achieve at least a certain minimum level of additional agents' earnings 
(5) Do not exceed budget 
(6) Achieve at least a certain minimum level of social responsibility and 
(7) Do not use more than maximum level of resources. 

The decision variables, x0., associated with each potential project are an 
indicator variable of whether each individual project i is selected in time 
period j. Accordingly, these decision variables are zero-one (integer) varia- 
bles. For a three-time-period horizon capital budgeting problem, 21 pairs of 
deviational variables (d-, d ÷) arise in this seven-goal, three-period setting. 
The seven types of constraints corresponding to the seven goals are dupli- 
cated in order below, followed by certain non-goal (system-characterizing) 
constraints: 
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7 3 

Project rate of return: ~ ~', Rijxi~ + d-( - d~ = TR; 
i=l  j= l  

7 3 

Project lateness penalty: ~ ~ PL,jx,j + d~ - d~ = TPL; 
i=1 j = l  

7 

Additional premiums: ~ APijxij + d~_ i - d~+j = TAPj; 
i=1 

forj  = 1,2,3; 
7 

Additional agents' earnings: ~ AE~jxii + d~_j - d~+j = TAEj; 
i= l  

Budget: 

Social responsibility: 

Resources: 

for j = 1,2,3; 
7 

AEijxi j  + ds_  j - d~+j = TBj;  
i= i 

for j = 1,2,3; 
7 3 

~ BijSRijxij  -t- d12 - d~{2 = TSR; 
i=1 j= l  

7 

hijkxo + d9_3j_ k - dg+3j+k = Hjk; 
i=1 

for j = 1,2,3, for all k, 

Non-goal constraints: 
3 

(Xlj "at- X3j ) >~ 1; a n d  
i=1 

Xij+l -- Xkj ~ O. 

where R is the forecast rate of return of project in a certain period; PL the 
expected penalty cost of project lateness; AP the forecast level of additional 
premiums that will be written in a period; AE the expected amount of ad- 
ditional agents' earnings associated with the selection of the project in a 
certain period; B the projected cost of the project in a period; and SR the 
percentage of the project directly associated with matters of social respon- 
sibility and public service (for example, special inserts on household safety, 
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auto care, and so on). Resources include manpower, computer system run- 
ning time, and so on, and h is the number of work days of a type of resource 
required to complete the project in a period. Accordingly, the right-hand side 
of each equation is the target, that is, the goal. For example, TR for the first 
equation is the target (total) rate of return; TAP~ is the total (target) additional 
premium in year j; and so on. The subscripts, 9+3 j+k ,  for some of the 
deviational variables can be read as follows: when j = l  and k= l ,  9+3 
j - k = 1 3 ,  which is the subscript for the human resource goal in the first 
period; when j = 3  and k=3, 9+3 j+k=21 ,  which is the subscript for the 
very last (human resource) goal. It is not surprising to see conceptually that 
because of the indivisibility of projects, the model is an integer programming 
formulation. 

The first illustrative non-goal constraint represents the dependency be- 
tween two projects, for example, at least one of project 1 and 3 should be 
selected over the total time period. The second non-goal constraint specifies 
that project i cannot begin before project j is complete and is thus able to 
be used to model multiyear projects. Many other constraints can be added 
depending upon desired system requirements. The objective function is given 
below: 

Maximize 
5 8 

z = PId; + P2d  + P3 d; + P, d/  
/=3 j=6 

II 21 

+ P, d; + Prd; + 2 d;,  
j=9 j=13 

where Pk>-0, k = 1 . . . . .  7, are the preemptive priorities associated with the 
objectives; that is, those priorities are determined a priori, with higher value 
meaning greater importance or contribution of a specific goal to the overall 
decision problem, Obtaining appropriate assignment of weights to the goals 
is based on the preference of the decision-maker as well as on common 
sense. For example, since higher rather than lower rate of return is usually 
favored by financial decision-makers, the reasonable objective is to minimize 
underachievement in rate of return. That is why the first term appears in the 
objective (minimization) and the overachievement deviational variable dis- 
appears. We leave readers to determine the meaning of other terms in the 
objective function. 

With such a model, the optimal solution is obtainable for each given set 
of parameters, such as the projected rates for return and expected penalty 
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costs. Also, by adjusting the priorities associated with goals, a sensitivity 
analysis on the trade-offs between different goals is obtainable. 

The above-mentioned goals are neither all-encompassing nor constant 
among insurance agencies. One goal of an agency might be to increase the 
amount of premiums written. Income maximization is a concern to an 
agency in the long run, while growth may be more important in the short 
run. An agency may have the incentive to represent as many insurers as 
possible. On the other hand, overdependency on a single insurer might trans- 
late into a higher business risk, whereas receiving more services from the 
insurer reduces business costs. An agency also has the option to specialize 
in different insurance business lines. For example, independent agencies tend 
to concentrate in commercial lines of insurance and deemphasize personal 
lines. In summary, an agency may have multiple business goals, and these 
goals can be conflicting and compatible. For this reason, Gleason and Lilly 
[123] modeled the agency operation by using a goal programming problem. 

Gleason and Lilly considered six goals grouped into four levels of pri- 
orities. The priority 1 goals are: "expand premiums written" and "expand 
the number of insurers the agency represents." The priority 2 goal is "do 
not become too dependent upon any single insurer." Two goals are catego- 
rized as priority 3 goals: "obtain cost reduction services from the insurers" 
and "maximize gross income." The lowest priority goal is "to shift from 
personal to commercial lines." 

Each of the six goals is formulated as a goal constraint. Some additional 
constraints arise from practical agency operation limitations: for example, 
the annual growth rate is limited to no more than 20%; the business in certain 
lines might be restricted; and so on. With minimizing the total overachieve- 
ments and underachievements of the goals as the objective, the goal pro- 
gramming problem is well formulated. The decision variables in this prob- 
lem are the amount of premiums for each insurance class to be written by 
the agency using each insurer. In this application then, the decision variable 
is not required to be integral. Thus, this goal programming can be solved as 
a linear programming problem. 

Goal programming can also be used to model working capital manage- 
ment problems (Satoris and Spreill [247]). Many other risk management 
problems, such as those involving environmental pollution management 
(Charnes et al. [63], [65], and [77]) and those involving senior-level deci- 
sion-making, such as company mergers and acquisitions, can also be mod- 
eled and solved as goal programming problems. 
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In summary, a goal program can be favorably used when there are multiple 
competing goals involved in the decision-making. Although it is not difficult 
to set a target for a specific goal and then transform the goal formulation to 
a constraint, the spirit of goal programming lies in utilizing the deviations 
from the goals in the objective function formulation, assigning subjective 
weights to each such deviation, and then minimizing the total weighted 
deviation. These deviations are essentially treated as decision variables when 
the resultant linear or nonlinear programming problem is solved computa- 
tionally. Controversies can arise from the goal weighting strategy, that is, 
the way that weights are determined and the rationality of the concept that 
different goals are equalized by assigning quantitatively different weights. 

2.6 Dynamic Programming 

Dynamic programming is another general approach to problem-solving. 
In general, the problems that dynamic programming are capable of handling 
have several basic features. The problem contains a series of stages either 
physically or conceptually, for example, over time periods or over conceptual 
stages. In each stage, a prespecified set of states represents the potential 
outcomes at this stage. A policy decision can cause changes in states from 
stage to stage. The likelihood of being in any specific state in the next stage 
is completely determined by the current stage and the policy decisions made 
within it, but is independent of the states that might have occurred in pre- 
vious stages. This is the Markov property, which is often assumed to simplify 
the modeling process. The effects of transitions from state to state over 
stages are quantified in utility or cost form, and the objective of the problem 
is to determine a series of (possibly state- or stage-dependent) policy deci- 
sions that maximize the total or final utility or that minimize the total or 
final cost. 

Usually, a recursive relationship is developed to solve the dynamic pro- 
gramming problem. The recursive relationship is a formula describing how 
a state in the subsequent stage is determined from the states in the current 
stage. If the state in the next stage is determined with certainty by the state 
in the current stage (together with the adopted policy decision), then the 
dynamic programming is called deterministic. If the states in the subsequent 
stage are determined according to some probabilistic distribution (which will 
generally depend upon the value in the current stage and the adopted policy), 
then the dynamic programming is called probabilistic. The solution proce- 
dure in either case involves first determining the optimal decision strategy 



30 TRANSACTIONS, VOLUME XLVII 

in the final stage without recourse to previous stages. From this optimal 
decision strategy in the final period, the derived recursive relationship is 
used to derive an optimal solution in the next-to-the-last stage. This back- 
ward calculation of optimal decision strategy is continued until the optimal 
strategy for the current stage is derived. 

In this paper, we illustrate this technique with a dynamic model of insur- 
ance company management [115]. The model deals only with determining 
the optimal policy of dividends for a stock insurance company over time. It 
is assumed that the objective of the company is to maximize the expected 
utility of the dividend payments, which is calculated according to the dis- 
tribution of claims. The utility function of dividend payments and the dis- 
tribution of claim arrivals is not explicitly specified in Frisque, so this dy- 
namic model is a general theoretical construction. 

Le t  U(d~, d 2 . . . . .  dj  . . . .  ) represent the shareholder's current utility or 
order of preferences corresponding to the systems of dividend payments 
(d~, d 2 . . . . .  dj . . . .  ), where dj denotes the payment of dividend made by the 
company during year j. Also, to account for the time value of consumption 
in different periods, it is assumed that U is of the following form: 

U ( d , ,  . . . . .  d:  . . . .  ) = u ( d )  - vU(d , d ,  . . . . .  d j  . . . .  ), 

where U(dl) denotes the shareholders' one-period utility function and v is a 
factor expressing the shareholders' preferences for an early dividend, 
0 < v <  1. Thus, 

U ( d , ,  d 2 . . . . .  d j  . . . .  ) = ~ j  v j - I  E[u(d ) ] ,  

assuming that utility function is time additive. Let Sj denote the expected 
reserve level of the company at the beginning of year j, and assume the 
reserve dynamics follows the equations of balance, 

sj 
0 

where F ( x )  is the distribution of claims; kj is the part of the insurance 
portfolio retained by the company in a quota reinsurance system; and P is 
the amount of premiums received during year j. By introducing a func- 
tion Ui(S ) as the discounted average utility of the dividends d i, dj+~ . . . . .  
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evaluated at decision points j, j +  1 . . . .  when initial reserve is Sj, an optimal 
policy is followed with respect to payment of dividends in all subsequent 
periods. Specifically, 

o<-aj<-sj,o<-kj<_ i o 

subject to f (Si - d i + k i (P - x ) )dF(x )  >- 0 
o 

Thus we obtain a dynamic programming model in which the decision 
variables are the series of dividend payments, d j, and also the series of 
reinsurance fractions, k~. A more practical dynamic model, however, might 
further examine the effect of introducing additional decision variables (such 
as insolvency constraints), the soundness of the utility functions used in the 
calculation, and the sensitivity of the optimal strategy to such parameters of 
the model as the distribution functions and the discount factor v. 

In the previous model, dynamic programming was illustrated with the 
stages in the decision process being time periods. Bouzaher et al. [33] pro- 
vided an example of a dynamic programming formulation in which the 
"stages" are defined differently. 

In fact, a deterministic multiple-stage dynamic programming can be equiv- 
alently formulated as a one-stage mathematical programming problem (cf., 
Bellman and Dreyfus [22] and Denardo [97]). We leave readers to  verify 
this claim. This equivalent transformation, however, may not be favored for 
two main reasons. First, the recursive (multiple-stage) formulation appears 
more intuitive and straightforward and reveals how the process proceeds 
from one stage to the next stage. If the underlying process is decision- 
making, then a decision-maker has certain rules that should be followed to 
proceed smoothly from stage to stage. Another critical reason may be that 
the algorithm can be more easily implemented computationally when a re- 
cursive equations system is provided. Also, with less variables involved in 
the recursive formulation, less computer resources (such as memory) are 
required to solve the problem. We refer readers to Bellman and Dreyfus [22] 
and Denardo [97] for general discussions about dynamic programming. 
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2. 7 Chance-Constrained Programming  

Chance-constrained programming (CCP) (Charnes et al. [68]) is a math- 
ematical programming method dealing with optimization when some of the 
variables are stochastic. In some circumstances the variables involved in the 
calculations are only known with uncertainty (for example, are random var- 
iables), and it may be impossible to write a constraint that holds determin- 
istically. The main idea of CCP is to allow certain factors, such as risk, to 
be realization of random variables. The decision variables are then selected 
such that these random variables are constrained to lie within an acceptable 
range of values with a pre-specified high probability; that is, the constraint 
is of the form Pr(x>--L)>--a, rather than the deterministic equality or ine- 
quality of mathematical programming. The objective function may be either 
maximization or minimization. Among the applications of CCP in insurance 
are Agnew et al. [4], Pyle and Turnovsky [226], Thompson et al. [270], 
Kahane [157], McCabe and Witt [203], and Brockett et al. [42]. We use 
McCabe and Witt [203] for illustration of chance-constrained programming. 

According to McCabe and Witt [203], for an insurance firm, the overriding 
objective is to maximize the profit from underwriting earnings and invest- 
ment income; however, this objective is constrained by insolvency regulation 
requirements. A simplified financial model is analyzed for the insurer's be- 
havior under uncertainty for both underwriting and investment income. Since 
the underwriting earnings and investment income are stochastic, the profits 
(as a function of underwriting earnings and investment income) are also 
stochastic. The objective is expressed as the maximization of the expected 
cash flow, that is, E(rr)= E(PQ)+E(1)-E(L)-E~, where P is the price per 
standard exposure unit (SEU), Q is the number of SEU's written, I is the 
investment income, L is the total losses and loss adjustment expenses, and 
E l is the non-loss or underwriting expenses [see McCabe and Witt [203] for 
the composition of each category and the definition of SEU]. Along with 
the profit-maximization objective, the firm should be primarily concerned 
with the risk of technical insolvency. This insolvency risk is quantified by 
the probability of insolvency, ~b. While it is impossible to guarantee with 
100% certainty that the firm will not become insolvent in all possible states 
of the world and economy, the probability of insolvency should be con- 
strained to be below some number, ~b~. The model can then be written as: 

Maximize E(-rr) subject to ~b -< ~b I . 
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Given an explicit expression for gb and given an admissible risk level, d~t, a 
Lagrangian multiplier method can be used to solve the (nonlinear) problem 
after the probabilistic constraint has been transformed into a deterministic 
equivalent constraint. 

As an example, define technical insolvency to be a loss of more than 30% 
of capital, C. The constraint can be specified in statistical terms as follows: 
P('rr---ars)---0.01, where arB=0.3C; that is, the probability of insolvency 
should be below 1%. Assuming that ar follows a normal distribution and 
using the fact that the 99th percentile of the normal distribution is 2.33, the 
constraint can be transformed into a deterministic constraint as follows, 
P(z<--(-0.3 C-Ear)/o.,)<-O.O1 so Ear-->-0.3C+2.33tr.~. The CCP formula- 
tion has thus been converted to the deterministic problem as follows: 

Maximize Ear 

subject to Ear >- -0 .3C + 2.33cr,A 

0_<S_< 1.0: P _  0 and k >_ 0, 

where C is the shareholder-supplied capital, P the price per standard expo- 
sure unit, k the average number of months elapsing between loss occurrences 
and loss payments, S the proportion of earning assets that can be invested 
in stocks, and tr~ the standard deviation of the profit. The variables P, S, 
and k are the decision variables. Clearly, different optimal solutions are ob- 
tained given different insolvency restrictions. Thus, the sensitivity analysis 
is possible. 

Markle and Hofflander, in their quadratic programming portfolio ap- 
proach, and Crum and Nye [85], in their network flow portfolio approach, 
both modeled the insurer's behavior at an operational level (as opposed to 
the more aggregated level used by McCabe and Witt [203]). The work of 
Brockett, Charnes, and Li [40] extended the McCabe and Witt CCP model 
to the micro level of analysis utilized by Markle and Hofflander [197] and 
by Crum and Nye [85]. 
I n  insurance, there are many cases in which the chance event can be 

expressed as a constraint. Events such as "becoming insolvent," "taking 
certain level of risk in business," "making a certain level (amount) of profit," 
and so on all involve a degree of uncertainty (randomness). These chance 
events can be formulated as constraints expressed in probabilistic terms (for 
example, the probability of being technically insolvent is no greater than 
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0.05). Techniques such as that illustrated previously can be used to transform 
the probabilistic constraint into its deterministic equivalent for solving via 
usual mathematical programming techniques. As mentioned above, sensitiv- 
ity analysis can readily be conducted by varying the permissible chance 
levels. We also refer readers to Brockett et al. [42], for the transformation 
technique illustration. 

2.8  F u z z y  Se t  Theory  a n d  F u z z y  P r o g r a m m i n g  

Fuzzy set theory deals with ambiguity and imprecision in linguistic, rea- 
soning, and decision-making. The applications of fuzzy set theory can be 
found extensively in linguistics, artificial intelligence, robotics, process con- 
trol, decision analysis, and many other areas. Fuzzy set theory is, however, 
a rather new methodology to the actuarial and insurance communities. Le- 
maire [184] provided an introduction of fuzzy set theory and described how 
it might be used in insurance. Lemaire discussed three problems: the defi- 
nition of a preferred policyholder in life insurance, the selection of an op- 
timal excess of loss retention, and the computation of the fuzzy premium 
for a pure endowment policy. Some other applications can be found in Cum- 
mins and Derrig [87] and Derrig and Ostaszewski [100]. In addition, the 
Society of Actuaries has published a book by Ostaszewski [216], entitled 
An Investigation into Possible Applications of Fuzzy Set Methods in Actu- 
arial Science, which further delineates the usefulness of fuzzy set theory to 
problems in actuarial science and insurance. Here we show how fuzzy set 
theory can be combined with cluster analysis and applied to risk and claim 
classification (Derrig and Ostaszewski [100]). We also illustrate a framework 
of fuzzy programming in insurance decision-making. 

In a very fundamental way, there is an intimate relation between the theory 
of fuzzy sets and the theory of pattern recognition and classification. Ac- 
knowledging the fact that the boundaries between most insurance classes are 
fuzzy in nature (Kandel [160]). Derrig and Ostaszewski [100] applied fuzzy 
set theory to the clustering of rating territories and also to the classification 
of insurance claims according to their suspected level of fraud. 

The fuzzy cluster method is developed from the so-called c-means cluster 
analysis method described below. Given n patterns, represented by 
p-dimensional vectors: x~, x 2 . . . . .  xn, the goal of c-means cluster analy- 
sis is to divide these n patterns into c, 2<-c<-n - 1 categorically homoge- 
neous subsets (which are called clusters) such that the variances within clus- 
ters are minimized, while the variances between clusters are maximized. 
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Geometrically, each cluster is characteristically represented by its center 
point (which is also a p-vector) in the p-dimensional Euclidean space. Hence, 
the clustering problem is to find the c center points satisfying the above 
goals. 

Clearly, the degree to which a particular pattern vector is believed to 
belong to a particular cluster is related to the distance between the pattern 
vector and the cluster mean. If the distance is zero, then clearly that pattern 
vector belongs to the corresponding cluster, while the degree of belief that 
the pattern vector belongs to the cluster decreases as the distance from the 
cluster increases. This degree of belief that the pattern belongs to the cluster, 
viewed as a function of the pattern vector x, is called the membership func- 
tion for the cluster. After normalization, each value of the membership func- 
tion falls continuously between zero and one. When the fuzzy cluster al- 
gorithm is applied to classification of rating territories, the clusters are the 
risk classes, and the degree of belief that each territory belongs to a given 
cluster (risk class) is quantified as a real-valued number between zero and 
one. For a given territory, multiple clusters (risk classes) are possible. Such 
a classification methodology based on a membership function provides 
decision-makers with more information than does the crisp or nonfuzzy clus- 
tering, where the membership function can only take either zero (represent- 
ing completely not-belonging-to) or one (showing perfectly-belonging-to). 
As a matter of fact, fuzzy cluster analysis can be transformed into crisp 
cluster analysis if we assign a pattern to a particular cluster and if the mem- 
bership function value for that cluster is the largest among those for all the 
possible clusters. We refer readers to Derrig and Ostaszewski [100] for the 
details Of the fuzzy cluster algorithm. 

Fuzziness is to some extent similar to uncertainty, although they are dif- 
ferent conceptually. Briefly speaking, fuzziness can arise because of our 
inability to describe the membership property of an object (ambiguity), 
whereas uncertainty occurs in situations in which the true membership exists 
but yet has not been fully revealed. Readers are referred to Zimmermann 
[289], and [290] for more information about fuzziness and to Dubois and 
Prade [104] for the foundation of fuzzy set theory and computation. 

In the following, we show how a fuzzy linear programming is defined and 
given as an ordinary linear programming formulation by describing the tech- 
nique for transforming the fuzzy programming to its crisp or nonfuzzy de- 
terministic equivalent programming. Readers will find a similarity between 
the development of the deterministic equivalent programming problem in 
fuzzy programming and in CCP whereby probabilistic constraints are trans- 
formed into deterministic equivalent statements. 
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To make a decision is to achieve a set of goals while simultaneously being 
constrained by pertinent external and internal restrictions. Often goals and 
constraints are substitutable. In other words, there are trade-offs among goals 
and between goals and constraints. The trade-off between costs and benefits 
is a typical example. For example, an insurance company might be willing 
to pay higher commissions and increase other expenses to obtain greater 
premium growth. The decision-maker often prefers knowing how much of 
a gain on each goal can be obtained without sacrificing too much on other 
goal(s). Of course, the quantification "how much of a gain" or "sacrificing 
too much" is not a firm or crisp (nonfuzzy) process. Accordingly, rather than 
formulating the goal in a strict crisp form, a preferable formulation might 
be to use fuzzy formulation. The meaning of fuzziness in formulation is 
made clear in the illustration below. 

To develop the notion of fuzzy linear programming, consider first the 
ordinary linear programming problem: 

Minimize C = ~] cijxi~ 
,7 

subject to ~ a i j x i j  ~" bi; and other constraints 
J 

where x;j is the decision variable; (suppose that) C denotes the total cost 
that is to be minimized; cij is the cost associated with xij; b~ the minimum 
level of some goal; and a~j is the coefficient of xij. 

Now, suppose the decision-maker is willing to be less precise and says 
that it is acceptable for the bound b,. to be decreased as low as b~-h;  to 
achieve a better goal, that is, a lower cost in this case. For this illustration, 
let all h; be equal and denote this common value by h for convenience. 
Define a membership function for the i-th constraint as follows: 

[.l,i(Zi) = l ,  for  Zl >- bi;  

~i(zi) = 1 bi - zi, for b i - 
h 

h - < z ~ < b i ; a n d  

[.Li(Zi) = 0, for zi < bi - h, (where zi = Y~j aijxi j ) .  

Such a membership function of a constraint can be interpreted as follows: 
b i is the perfectly satisfactory value of the constraint, while anything lower 
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than b i - h  is a completely unsatisfactory value of the constraint. Between 
b ~ - h  and bi,  the satisfaction level with the constraint increases linearly as 
the actual value of the constraint increases from b ~ - h  to b;. Thus, the mem- 
bership function value increases continuously from 0 to 1. 

When the decision-maker specifies the minimum acceptable satisfaction 
level 0 for each of the constraints, a crisp equivalent programming can be 
derived as follows. Suppose that 0, 0--<0- < 1, is the minimum acceptable level 
of satisfaction for each of the constraints. Then we have 

ixi(zi) = 1 - (b i - z i ) l h  >- O, 

which is equivalent to z;-k0>-b~-h, for constraint i. Accordingly, the fuzzy 
constraint I~(z)-----0, has been replaced by the deterministic equivalent con- 
straint z ~-  h O>--b i -  h. 

Similarly, if we can determine a target Co for the objective function, C 
(where Co>-C for the relaxation of the objective), then this leads to an 
inequality, 

• CijXij ~-~ CO, 
ij 

and we can treat the objective as a constraint. The discussion above also 
applies to the objective function using the membership function la~ as before 
(now linear between C and Co-k). After inverting this constraint as de- 
scribed above, we obtain the complete crisp programming: 

Maximize 0 

subject to ~ a i j x i j  - -  kO >-- b i - h; 
J 

CijXij + hO ~- C + h'~ and 
ij 

0 ~ 0 ~ 1 .  

The equivalent crisp or deterministic mathematical programming problem 
is specified once we are given the value of k (which is the maximum per- 
missible sacrifice level of the constraints and the objective). From the model, 
we can see that the larger the value of 0, the less the value (cost in this 
case) of the objective function and the larger the sacrifice value of the 
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constraints. In other words, the crisp equivalent programming problem pro- 
vides the trade-off between the objective function and the constraints. As 
previously described, for a multiple-objective optimization problem, some 
of the objectives can be formulated as constraints and one of them singled 
out as the objective function in a mathematical programming formulation. 
It is easy to see that the fuzzy programming method is well suited to the 
multiple-objective problem, where trade-offs among different objectives are 
established and the priorities of the various multiple goals are not self- 
evident. 

Using intervals of possibilities to model vague and imprecise situations in 
insurance and other areas is another closely related approach. Instead of 
applying probability theory or fuzzy set theory, an interval rather than a 
single value is used to describe a vague or fuzzy or imprecise concept. 
Interval analysis as a branch of mathematics has found its applications to 
insurance issues, specifically to measuring and evaluating financial risk and 
uncertainty (Babad and Berliner [10], [11], and Berliner and Buehlman [25]). 

3. OTHER OPERATIONS RESEARCH METHODS 

The field of OR is constantly growing, and the applications of OR tech- 
niques in the area of insurance are expanding rapidly. The growing field of 
OR maintains substantial interactions with computer science, applied math- 
ematics, engineering, finance, economics, and behavioral science. For ex- 
ample, game theory, which was originally developed for use in economics, 
is now also used in insurance. Portfolio analysis, which is widely used as 
an investment and risk management technique in finance, has been used in 
insurance, not only from the traditional investment perspective but also as 
an insurance composition design technique, by Markle and Hofflander [ 197], 
Claim and Nye [85], and others. Utility theory, decision analysis, and many 
other OR and management science methods have found use in the insurance 
industry. It is clearly difficult and space-consuming to discuss the numerous 
branches of OR and to delineate its applications in insurance. In the follow- 
ing sections, we concentrate mainly on game theory and three relatively new 
OR techniques: data envelopment analysis (DEA), expert systems (ES), and 
neural networks (NN). As these OR techniques illustrate, the continued ex- 
pansion of OR methodologies owes greatly to the contributions of and in- 
terfaces with economics, applied mathematics, cognitive science, and com- 
puter science. Applications of these approaches in insurance is again 
demonstrated by examples. 
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3.1. Game Theory 

Game theory is a formalized study of a kind of decision-making in which 
two or more competitors (called players) are involved and the decisions 
made by one player may affect the outcome of the other players. To achieve 
a goal, each player chooses a strategy. The final outcome or return from a 
player's strategic choice depends also on the strategic choice of all the other 
players. In other words, in such a decision-making context, a player must 
take this interdependence into account when choosing a strategy (making a 
decision). We refer readers to Handbook of Game Theory with Economic 
Applications Volume 1 [9] for more detailed formal information. 

Game theory was suggested as a useful mathematical modeling technique 
for investigators involving insurance decision-making as early as the 1960s 
(Borch [28], Bragg [35], [36], and [264]). Since then game theory has been 
found useful in many insurance settings, such as cost allocation for an in- 
surance company (Lemaire [183]), negotiation of insurance contracts (Kihls- 
trom and Roth [162]), optimal insurance purchasing in the presence of com- 
pulsory insurance and uninsurable risks (Schulenburg [254]), life insurance 
underwriting (Lemaire [182]), control of mutual insurance process (Tapiero 
[268]), out-of-court settlement of liability insurance claims (Fenn and Vla- 
chonikolis [111]), unemployment policy (Zuckerman [292]), and so forth. 
This brief and incomplete list of applications demonstrates that game theory 
is applicable to purchasing, underwriting, management, liability claim set- 
tlement, and other areas in insurance or reinsurance. Game theory can also 
be used to explain the underwriting fluctuations as the result of rational 
behavior among interdependent firms in the industry (as opposed to viewing 
such underwriting fluctuations as merely irrational aberrations). In this paper, 
we review two applications: cost allocation and bargaining of liability 
claims. 

Lemaire [183] proposed that a game theory methodology can be applied 
to the allocation of operating costs among the lines of business for an in- 
surance company. Cost allocation in a large insurance company is extremely 
complex. For instance, a large Belgian company that operates in three lines 
of business--life, fire and accident--uses no less than 11 different criteria 
for cost allocation, including direct imputation; some operating costs are 
directly assigned to a class, while some costs, such as heating, water, and 
electricity, are assigned based on the basis of space occupied. Classical cost 
allocation methods, however, fail to satisfy certain important theoretical 
properties, as discussed by Lemaire [183]. Two of these properties are 
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individual rationality and collective rationality in case of economies of scale. 
Lemaire shows that the cost allocation problem is identical to the problem 
of computing the value of a n-person cooperative game with transferable 
utilities. In other words, the cost allocation problem can be represented as 
a pair IN, c(S)], where N = { 1, 2 . . . . .  n} is the set of players and c(S) the 
characteristic (cost) function of the game. This characteristic or cost function 
is a super-additive set function that associates a real-valued number c(S) to 
each coalition (subset) S of players with c(S)+c(T)>--c(SUT) for all S, T E N  
and S O T  = 0 .  In most of the applications, economies of scale are suffi- 
ciently large that the game is convex; that is, c (S )+c(T)>- -c (SUT)+c(SNT)  
for all S, TCN.  The  solution space of a convex game is non-void. Further, 
Lemaire [183] showed that while the classical notions of "solutions of a 
game," such as the Shapley value, the nucleolus, and the disruptive nucle- 
olus, are not appropriate for the cost allocation problem, the proportional 
nucleolus is a solution method that satisfies desirable properties for cost 
allocation and is therefore the best cost allocation method among the four 
solution methods discussed. The three theoretical properties considered to 
be desirable by Lemaire are collective rationality, monotonicity in costs, and 
additivity (see Lemaire [184] for a detailed discussion and justification of 
these three properties in an insurance cost allocation context). 

Formally, let xi denote a cost allocated to player i. The proportional nu- 
cleolus is obtained when the excess is defined by the formula 

c ( S )  - x i  

e( x ,S)  = ies 
c(S)  

That is, the excess is the proportional gain obtained by players i E S  acting 
as a coalition S rather than as individuals. Instead of granting the same 
amount to each proper coalition of N, a subsidy proportional to c(S) is 
awarded. One has to solve the linear program 

Maximize e 

subject to ~ x  i ~ c ( S ) ( 1  - e ) , f o r V S C N ,  S C N ,  S ¢ O ;  
i~S  

x i = c(S), and 
iES  

x~ --> 0 for ~'i. 
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It can be shown that the philosophy of the decision expressed in the linear 
programming is to maximize the minimum excess according to the definition 
of the excess given above. In fact, many decision-makers take this conser- 
vative strategy when they face uncertainty. 

Notice that the total number of possible coalitions of N players is 2 N- 1, 
which increases exponentially with the size of N. Thus, the number of con- 
straints in the linear programming process should also increase exponen- 
tially. The other three solution concepts for theory models (Sharpley value, 
nucleolus, and disruptive nucleolus) also suffer the same computation- 
complexity problems. It is, in fact, a disadvantage of the proposed game 
model for cost allocation. However, for N small, the above computation (and 
cost allocation) is quite possible. 

In yet another insurance application, Fenn and Vlachonikolis [ 111] model 
a liability insurance bargaining problem as a game problem. When a liability 
insurance claim is filed, the lawyers for the defendant are charged with the 
task of responding to the claim: by persuading the claimant to withdraw, by 
taking the case to court for adjudication, or by agreeing to an acceptable 
out-of-court settlement of the claim. This process raises a number of issues. 
From the insurer's point of view, the predictability of the length of time to 
settle, as well as the size of the eventual settlement amount, are factors of 
actuarial importance. However, there is an uncertain relationship between 
the settlement amount and the actual loss incurred, and this uncertainty may 
raise questions about the adequacy and equity of the resulting compensation 
to the plaintiff. If the settlement process is indeterminable and capricious, it 
may even raise the moral hazard problem. 

It is assumed that the lawyer for the insurer is a repeat-playing specialist 
acting for an insurance company with a large diversified portfolio of risks. 
The plaintiff, on the other hand, is usually more of a one-time player with 
a considerable sum at stake relative to his or her wealth and might even 
possibly be acting with nonspecialized legal advice. The lawyer for the in- 
surer offers an amount for claim compensation based upon an estimate of 
the minimum "ask value" of the plaintiff. If the offer is greater than the 
plaintiff's minimum "ask value," the plaintiff will accept the offer. The offer 
will be rejected in the contrary case. If the offer is rejected, the lawyer for 
the insurer may either make another greater offer or take the case to court. 
This process is repeated until either the offer exceeds the minimum "ask 
value" and the case is settled outside the court, or the minimum "ask value" 
by the plaintiff is greater than the maximum "willing to be offered" by 
the insurer and the case has no bargaining outlet. In addition, the insurer's 
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lawyer may not be willing to make too many offers (and risk the loss of 
reputation as a hard bargainer or incur the multiple fixed costs associated 
with the offers). 

The above bargaining process can be modeled as in a game theoretic 
manner. Let A denote the minimum ask value of the plaintiff, B the maxi- 
mum offer value of the insurer, C the amount of costs involved in litigation, 
and D the amount of damages that would be awarded were the case to be 
taken to trial. Then: A=Ep(D)-Ep(C), and B=Ed(D)+Ed(C), where Ep and 
E a represent the expectation of the plaintiff and defendant (insurer), respec- 
tively. Suppose that both parties are risk averse, and let Rp and R d denote 
the discount adjustment factors for risk or uncertainty used by the plain- 
tiff and defendant, respectively. Then: A=Ep(D)-Ep(C)-Rp, and 
B=Ed(D)+Ed(C)+Rd. To model the bargaining process, the insurer's esti- 
mate of the plaintiff's minimum ask value, denoted by A*, i s : A * = E  
*(D)-E*(C)-R*. Let O denote the offer, then the process is formalized as 
follows: 

Initially, the minimum ask value of the plaintiff is estimated by the de- 
fendant (insurer) as the mean of the subjective probability distribution of the 
minimum ask value. An offer is made at this value if the estimated value 
obtained by this process is lower than the maximum willing offer level; that 
is, O~ =A* if A*<B, and O1=0 otherwise. 

The offer is accepted if it exceeds the minimum ask A. If the offer is 
rejected, the minimum ask should be greater than the estimated value, and 
the distribution is truncated. The new estimate is based on the truncated 
distribution: 02=O,+E[ele>o] if A>O~, and 02=0 otherwise, where e is 
a stochastic error, with e--N(0,tr2). The process is repeated until either the 
plaintiff accepts the offer at some point or the lawyer cannot or is not willing 
to offer more. The result of the former is the settlement of the case, whereas 
that of the latter is the trial at court. More detailed mathematical treatment 
can be found in Fenn and Vlachonikolis [111]. 

In this model, the subjective probability distribution should be consistent 
with the empirical liability settlement data. Whether the truncated distribu- 
tion retains the identical properties of the original distribution function is 
another issue. As indicated by Danzon [90], the assumption of not learning 
by the plaintiff is questionable in that 89% of plaintiffs are represented by 
a trade union or other solicitor, in which case both parties can act to some 
extent strategically. In other words, not only does the defendant estimate 
the minimum ask of its distribution subjectively and also from the pre- 
vious rejection by the plaintiff, but also the plaintiff adjusts the ask for 
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compensation based on the estimate of the maximum offer of the defendant. 
In this case the game becomes more complicated and a modified game model 
is required. 

The offer is accepted if it exceeds the minimum ask A. If the offer is 
rejected, the minimum ask value must be greater than this estimated value, 
and hence the subjective probability distribution for the minimum ask value 
can be recalibrated with a lower truncated value equal to the new rejected 
offer value. The new estimate of the minimum ask value is then based on 
this newly truncated distribution: 02=O,+E[ele>o] if A>O~, and Oz=O 
otherwise, where e is a stochastic error term, which for computational pur- 
poses is assigned to be normally distributed with mean zero. The above 
process is repeated until either the plaintiff accepts the offer at some point 
or the lawyer for the insurer cannot or is not willing to offer more. The 
result of the former is the settlement of the case, whereas that of the latter 
is a court trial. More detailed mathematical treatment can be found in Fenn 
and Vlachonikolis [111]. 

In this model, the subjective probability distribution should be consistent 
with the empirical liability settlement data. Whether the truncated distribu- 
tion retains the identical properties of the original distribution function is 
another issue. As indicated by Danzon [90], the assumption that the plaintiff 
does not learn (and hence change the minimum ask value) is questionable, 
because 89% of plaintiffs are represented by a trade union or other solicitor, 
in which case both parties can act to some extent strategically or in a game 
theoretic method. In other words, not only does the defendant estimate the 
minimum ask of its distribution subjectively and also from the previous 
rejection by the plaintiff, but also the plaintiff adjusts the ask price for com- 
pensation based on the estimate of the maximum offer of the defendant. In 
this case the game becomes even more complicated and a modified game 
theoretic model is required. 

3.2 Data Envelopment Analysis (DEA) 

Data envelopment analysis (DEA), invented by Charnes et al. [72], is an 
approach for comparing the relative efficiency of decision-making units 
(DMU), such as hospitals, schools, insurance agencies, and similar instances, 
in which there is a relatively homogeneous set of decision-making units with 
multiple inputs and multiple outputs. In other words, rather than using some 
absolute norms or standards, DEA evaluates the relative efficiency of each 
DMU within this homogeneous set or comparable DMUs. Accordingly, DEA 
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does not assume any prespecified production function (such as Cobb- 
Douglas function) as the norm or standard in an absolute productivity effi- 
ciency evaluation. Rather, DEA is a nonparametric methodology. 

Similar to the engineering notion of efficiency being the ratio of output 
to input, the measure of relative efficiency used in DEA models can be 
simply characterized as: 

efficiency = 
weighted sum of outputs 

weighted sum of inputs 

where the technique allows for multiple inputs and multiple outputs. The 
ability of DEA models to handle multiple outputs is an important and dis- 
tinctive feature. Indeed, this is an important feature in insurance company 
efficiency comparisons because different companies may stress different out- 
puts or inputs in their management strategy or business plan. Charnes et al. 
[72] proposed that the efficiency of a target decision-making unit J0 can be 
obtained by solving the following model: 

Maximize h o = 
~urYO o 
r= 1 

~ UiXijo 
i=1 

subject to 

• 
UrYri 

r= | 

• OiXij 
i=1 

- - - - <  1, for 1 <-j<-n, 

u~, v; --- e, for all r and i 

where yrj=amount of output r obtained by DMU j; x iFamoun t  of input i 
used by DMU j; ur=the weight (or virtual multiplier) given to output r; 
vi=the weight (or virtual multiplier) given to input i; n, t, m are the number 
of DMUs, outputs and inputs; and e is a small positive number. 

Essentially the virtual multipliers ur and vi are selected by the DMU 
in such a manner as to frame their own production performance in the 
best possible (most efficient) light (hence the maximization). The only con- 
straint is that they cannot pick a weighting scheme for inputs and outputs 
that makes another DMU appear to be "super-efficient" (hence the --<1 
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constraint). If a DMU is inefficient (has an objective value less than 1) even 
when it has chosen the virtual multipliers u r and o i to put its own efficiency 
in the best possible light, then it is indeed inefficient since another DMU 
(or combination of DMU's) using this same "strategic weighting" of  inputs 
and outputs can take the same virtual input x i j  and produce higher virtual 
output y;j than the designated inefficient DMU. Thus, the inefficient DMU 
is dominated in a Pareto-Koopmans economic efficiency manner. 

The above fractional programming problem can be converted into an 
equivalent linear programming model (termed the CCR model), as follows: 

Maximize h o = ~ uryr j  ° 
r m I 

subject to ~ v i x i j  ° = 1, 
i = l  

~ UrOri -- ~ OiXij <-- 1, for 1 <--j ~ n, 
r = l  i = l  

u r, v i > e ,  for all r and i, 

Its dual linear program is: 

Minimize Z o - e ~ s 7  - e ~ s , : -  
r = l  i = l  

subject to x~joZ o -  s~- - ~ x ~ j k  i = 0, 1 - -< i -<m;  
j = l  

+ ~ yr jk j  1 < < -- S r = Yrjo, -- r - -  t; 
+ 

j=l 

+ > 0, for all j ,  r, and i. Z o unrestricted; and )~i, s,7, s r _ 

From this dual LP (DLP), we can see that DMU Jo is efficient if and only 
if all slack variables are equal to zero and Z 0 is equal to one. Conversely, 
if DMU Jo is inefficient, then Z 0 is less than one and/or  some slacks are 
positive. The optimal values of  )~j can be used to construct a composite 
DMU (or a linear combination of DMU's) with exactly the same inputs as 
the evaluated DMU but with an output that is larger than that obtained by 
DMU Jo. This then can provide a set of targets for benchmarking purpose 
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by the inefficient DMU Jo (that is, which utilize the same inputs to produce 
strictly more outputs). Zo represents the maximum proportion of the input 
levels that DMU Jo should be expending to secure at least its current output 
level. See Brockett et al. [44] for a detailed example of this methodology 
used for benchmarking purpose. 

The CCR model assumes constant returns to scale. However, when DMUs 
vary in returns to scale, the efficiency measure given by the CCR model 
may be complicated by the varying returns to scale factor. Banker et al. [17] 
proposed an extension that can decompose the overall or aggregate efficiency 
given by the CCR model into its technical and scale efficiency components. 
The modified model, termed the BCC model, is as follows (cf., the dual 
formulation of the CCR model): 

Minimize 

subject to 

h - e  s t - e  sT, 
r=l i=1 

Xij  O h - s 7 - ~ x i j h  j = O, 1 <- i <- m;  
j=l  

- s t  + ~ y ~ j h j  =y~j. ,  1 ~ r ~  t; 
j= l  

= + > 0, for all j, r, and i. hj 1; and h i ,  s i ,  s r - -  
j= 1 

The BCC model differs from the CCR model only by the addition of a 
single constraint on the multipliers, that is, that the summation of all mul- 
tipliers is equal to unity. This ensures that the BCC model yields a measure 
of the pure technical efficiency of D M U j 0  (cf., Banker et al. [17]). 

Applications of the DEA approach to insurance problems can be found 
in Bjurek and Hjalmarsson [27b], Rousseau [238], and Mahajan [194]. In 
this paper, we introduce two of them: a DEA model for assessing the relative 
efficiency of the insurance-selling function (Mahajan [194]) and a DEA 
model for detecting troubled or potentially insolvent insurance companies 
(Rousseau [238]). 

Mahajan [194] used the BCC model for assessing the relative efficiency 
of sales units. The model simultaneously incorporates multiple sales out- 
comes, controllable and uncontrollable resources, and environmental factors. 
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The model enables comparisons among a reference set of sales units engaged 
in selling the same product-service by deriving a single summary measure 
of relative sales efficiency. Conditions under which the sales unit has addi- 
tional control over resources are explored, and the effects on relative effi- 
ciency are examined. The proposed model is illustrated by applying it to 
data collected from the branch operations of 33 insurance companies. 

Rousseau [238] illustrated the role of DEA in detecting financially trou- 
bled insurance companies. The data for this efficiency study came from the 
National Association of Insurance Commissioners (NAIC) data set on a sam- 
ple of 111 Texas domestic stock companies for 1987, 1988, and 1989. The 
DEA analysis was conducted by The Magellan Group, a division of MRCA 
Information Services. Although DEA can accommodate both financial and 
nonfinancial variables, only financial variables were selected in the prototype 
study. 

The DEA study can provide the overall performance efficiency rating 
across all companies, the potential improvement in each input or output 
factor for an individual company, and the time trend of the overall perform- 
ance rating of an individual company. If the efficiency rating of a company 
significantly deteriorates over time, the company is indicated to be in trouble 
and an early warning for that company is released. In addition, the factor 
performance analysis (which is unique to the DEA method, as compared to 
the more widely used regression analysis) provides information on the input 
or output factors that need to be improved the most to promote the overall 
efficient performance of the company. These effects are shown in Rousseau 
[238]. 

3.3 ~ - p e r t  Systems 
An expert system (ES) usually has two components, a knowledge base 

(facts and rules) and an inference engine (interpreter and scheduler). Domain 
knowledge comprises the facts and a set of rules that use those facts as the 
basis for decision-making. The inference engine contains an interpreter that 
decides how to apply the logical rules to infer new knowledge and a sched- 
uler that decides the order in which the rules should be applied. In an expert 
system, the knowledge is explicitly represented and accessible. This means 
that expert system approach is appropriate for those areas in which the 
knowledge that is to be used in the decision-making can be explicitly ex- 
pressed. Once built, an expert system provides the high-level expertise to 
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aid in problem-solving and has predictive modeling power; that is, it pro- 
vides the output when given a situation as the input. 

The use of expert systems in the insurance industry is not a new phenom- 
enon. Financial underwriting applications, as well as life insurance appli- 
cations, have been developed. Both life-health and property-casualty insurers 
are developing expert systems to aid in the underwriting process. Systems 
are also being developed to assist in claims management and investment 
planning. Personal financial planning, loss prevention, risk assessment, and 
product design are all areas in which expert system development is currently 
under consideration. 

A product of expert systems, called Smart Systems, is becoming a com- 
ponent in insurers' strategic and competitive underwriting and claim systems. 
For instance, Connecticut Mutual Life Insurance Company expects to realize 
a 35% productivity gain in underwriting by using image and expert systems. 
Travelers Insurance Company uses expert systems to detect unusual or il- 
logical patterns in health providers' behavior and claims to thwart fraud, and 
Erie Insurance Group uses expert systems to combat property and casualty 
fraud. In this paper, we briefly introduce two applications of expert systems: 
monitoring health-related expenditures by detecting unusual claims (Martin 
and Harrison [199]) and auditing workers' compensation insurance premi- 
ums (Koster and Raafat [170]). 

Firms have often turned to self-insurance to control health care costs. In 
1987 nearly 60% of all employees who had health care coverage were en- 
rolled in a plan with some aspect of self-insurance. One reason for the lack 
of success in controlling health care costs, however, is that most firms do 
not have the expertise to properly monitor health-related expenditures. This 
is in fact reason to turn to third-party administers (TPAs) for claims- 
handling. The claims audit is one method used to monitor the administrator's 
performance and to help in controlling costs. 

Martin and Harrison [199] described an expert system for claim monitor- 
ing and fraud detection for such a self-insured company. The expert system 
monitor's primary task is to review claim payments and identify opportu- 
nities for reducing health care expenditures. Cost reduction typically results 
from recovering improper payments and preventing similar mistakes from 
occurring in the future. The expert system functions as an initial filter since 
it reviews claims and identifies potential errors (that is, unjustified payments) 
by grouping payments according to likely errors and then estimating the 
likely value of the total error for each group. The production system consists 
of a set of if-then rules to determine what (if any) error is made on each 
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payment. The knowledge base comprises approximately 50 rules that are 
mostly independent of each other, and these rules are used to identify 32 
different types of errors. For each type of error, there exists a rule that 
specifies the probability of error, the value of the error, and the time required 
to further investigate the error (since the database is too large to investigate 
every claim). The validation experiments demonstrate that the system can 
screen claims in a manner comparable to human experts in the field (Martin 
and Harrison [199]). 

Koster and Raafat [170] presented another expert system for auditing pre- 
mium computations for workers compensation insurance. The purpose of 
premium auditing is to ascertain that the activities of the business are as 
recorded and to determine whether the employees are complying with the 
regulations of the insurance governing body in each state. This task is com- 
plicated, time-consuming, and error prone. The expert systems described in 
their paper assist insurance carders and businesses not only by increasing 
compliance with statutory requirements but also by improving premium es- 
timation accuracy, reducing auditing errors, and saving auditing time. This 
system is considered a prototype because it does not encompass all the rules 
in the workers compensation insurance manual. With this package, however, 
a user can: (1) solicit advice and justification for a claim, (2) request defi- 
nitional clarifications, (3) ask for help, (4) request a session trace, and (5) 
solicit "what if" analysis and improvement suggestions. Koster and Raafat 
[170] suggested that insurance companies and state insurance agencies 
would be prime beneficiaries of such a system. The system also could be 
integrated and could share the same database with other business software. 

Qualitative reasoning is often used as the inference mechanism by an 
expert system. Qualitative reasoning is realized by using logic induction, 
deduction, comparison, and certain other techniques. Examples of such rea- 
soning includes the mathematical statements, "if A is true then B is true, 
"A is equivalent to B," and "A implies B," and so on, where A and B are 
propositions. Hence, the inference rules in expert systems are various rules 
expressed as "if-then" models. One may well wonder how those reasoning 
activities are accomplished by a computer since, as we know, computers 
complete every job by executing a series of binary operations. Below, we 
introduce a technique that may help elucidate this question. The technique 
described in the sequel formulates the qualitative reasoning process explic- 
itly and equivalently by discrete mathematical programming. 

By using atomic propositions or statements, compound propositions are 
created by using so-called propositional calculus. The propositional or 
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logical operators (called connectives) include negation, conjunction, dis- 
junction, implication, and equivalence. It is possible to define all proposi- 
tional connectives in terms of a smaller subset of them so that any given 
expression can be converted into a "normal form" such as conjunctive nor- 
mal form (CNF) (the subset of connective includes only negation and con- 
junction in this case) or disjunctive normal form (DNF) (the subset includes 
only negation and disjunction in this case). Also, these two normal forms 
can be converted mutually by using De Morgan's laws. De Morgan's laws, 
combined with other equivalence transformations, can convert any logical 
expression to a conjunction or disjunction of clauses by using equivalent 
statements. This was all shown in Hadjiconstantinou and Mitra [128]. 

The next step of systematically relating qualitative reasoning to discrete 
mathematical programming is to express these conjunctive or disjunctive 
statements as linear constraints involving only binary variables. We illustrate 
below the variable transformation process in two cases: "A implies B" and 
"either A or B." Other relationships can be found by referring to Hadjicon- 
stantinou and Mitra [128]. Define x and y as follows: x = l  if A is true, 0 
otherwise, while y=  1 if B is true, 0 otherwise. Then, "either A or B" can 
be equivalently expressed as "x+y-- l . "  Also, "A implies B" is actually 
equivalent to "either not A or B," the equivalent inequality is "x-y--<0. '' 

In a manner similar to that illustrated above, each of the rules in an expert 
system can be numerically formulated as a set of (in)equalities, so that the 
problem-solving procedure of the expert system is, accordingly, transformed 
into an integer programming solution process. Since, as discussed previously, 
integer programming is a rapidly developing area of operations research, 
such an equivalent transformation provides a promising way for optimally 
solving qualitative reasoning problems in insurance. In addition, this con- 
nection between integer programming and qualitative reasoning provides a 
bridge connecting qualitative reasoning to quantitative calculation. In addi- 
tion, this transformation also clearly illustrates what we previously expressed 
about the expert systems: that expert systems are an alternative modeling 
technique that utilizes qualitative knowledge rather than explicit numerical 
computation. 

3.4 Neura l  Networks  

In contrast to the expert system, the neural network model is a relatively 
new methodology for the insurance community. Inspired by the neurophys- 
iological structure of the brain, the neural network model can be structurally 
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represented as a massively parallel interconnection of many simple process- 
ing units, similar to the interconnection of individual neurons in the brain. 
Mathematically, the neural network emulates the relationship between inputs 
and outputs in which outputs are produced as some transformed and 
weighted composition of the inputs. The formation of proper weights needs 
a learning process, according to which the neural network is classified as an 
artificial intelligence approach. The two typical learning strategies (algo- 
rithms) are supervised learning and unsupervised learning. The difference 
between the two types results from the characteristics of the patterns in the 
example or training data set. If each pattern in the example or training set 
also contains the observed output values, then a supervised learning algo- 
rithm suffices. In the contrary situation, an unsupervised learning strategy is 
necessary. The back-propagation algorithm (Rumelhart et al. [239]) is the 
most widely used supervised training algorithm based on (multiple) layer 
feed-forward networks. Kohonen's self-organizing feature map (Kohonen 
[167], [168]) is a very popular unsupervised learning method. The two ap- 
plications of the neural networks introduced below belong to these two dis- 
tinct categories. Specifically, one is applied to constructing an index or rank- 
ing of insurance company insolvency (and thus the creation of an early 
warning system (Brockett et al. [44]), and the second application is directed 
towards detecting bodily injury claims fraud (Brockett et al. [48]). . 

Brockett et al. [47] used a three-layer feed-forward neural network to 
develop an early warning system for insurers to years prior to insolvency 
(see Figure 2 for an illustration). The basic building block of the neural 
network is the mathematical construct known as the single neural-processing 
unit. This unit takes the multitude of individual inputs, determines (through 
the learning algorithm) the connection weights that are appropriate (or most 
effective) for these inputs, and applies a combining or aggregation function 
to the derived connection weighted inputs to concatenate the multitude 
of individual inputs into a single value. An activation function, which is 
then applied, takes the aggregated weighted values for the individual neu- 
ral unit and produces an individual output for the neural unit. This pro- 
cess is repeated at the individual neural unit, resulting in the use of as 
many single neural-processing units as desired, connected in whatever 
fashion (such as the feed-forward layered structure shown in Figure 2) is 
needed to produce a well functioning global neural network. The com- 
bined (weighted aggregate) result, z = Ewixi, is then "interpreted" 
by the network through the use of an activation function. The logistic 
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FIGURE 2 

A THREE-LAYERED FEED-FORWARD NE'IXVORK 

function, F(z)=l/[l+exp(-Tl-z)], is the usual choice for the activation 
function because of its desirable properties and its simplicity in analytic 
representation. 

In this particular three-layer network for an early warning model, the eight 
input units correspond to eight financial input variables that differ signifi- 
cantly between the insolvent and solvent firm. The output of the analysis is 
the probability of insolvency. Each connection between a unit in a layer 
output and a unit in the next layer of the neural network is associated with 
a weight. The learning strategy is the back-propagation algorithm, which is 
used to find the optimal weights based on minimizing the disparity between 
the predicted outcome and the observed outcome for the available examples. 
The data set used in the analysis was 60 U.S. property-casualty insurance 
companies that became insolvent and 183 companies that remained solvent 
over the period 1991-93. The data set is divided into three subsets: trairfing 
sample, stopping rule sample, and testing sample, consisting of 60%, 20%, 
and 20% of the data, respectively. Their result showed that, for predicting 
insolvency, the neural network approach outperformed statistical methods 
such as discriminant analysis and did far better than the A. M. Best ratings 
and the National Association of Insurance Commissioners IRIS system. 
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Brockett et al. [48] also applied Kohonen's feature map (Kohonen [167], 
[168]) to address the problem of uncovering bodily injury claims fraud. 
Kohonen's feature map is a two-layered and fully connected network, with 
output units arranged in some topographical form such as squares (as used 
in the study), rectangles or hexagons. This means that every output unit is 
associated with a weight vector whose dimensionality is equal to the number 
of input units or input variables (because of the full connection). As previ- 
ously mentioned, this technique utilizes an unsupervised learning strategy; 
in other words, the pattern of each example (bodily injury claim record 
variables) contains only claims' recorded input variables without presuppos- 
ing knowledge about the ultimate conclusion on the fraudulence of the claim. 
The task is to determine whether a claim is fraudulent and to determine the 
level of suspicion of fraud associated with the claim record file. Rather than 
using a dichotomous scale, that is, either fraudulent or perfectly valid, an 
increasing scaled measure of suspicion of fraudulence is used. Hence, the 
described detection system is designed to provide a fraudulence suspicion 
level for each claim, and each claim is uniquely classified according to 
its suspicion level. The Massachusetts Bureau of Automobiles provided a 
database comprising 127 claims, each of which has 65 objective indicators 
or input variables about the claim, the accident, and the claimant, such as 
"were there any witnesses?" 

A learning algorithm is used to adjust weights to obtain improved results 
for classification. The learning process of the feature map can b e  briefly 
described as follows. 

Each set of prototypical weight vectors is initialized with random numbers 
before learning begins. Within an epoch or training period, each pattern in 
the training sample is selected (either randomly or in a fixed order) and fed 
into the network once as the input vector. The program then computes the 
distance between this input pattern and each of the prototypical weight vec- 
tors and finds an output unit (the best-matching unit), whose prototypical 
weight vector is the smallest distance to this given input vector (or pattern). 
The value of the prototypical weight vector is then adjusted to better imitate 
the current input pattern. This is the "learning" feature. The uniqueness of 
Kohonen's self-organizing feature map is that updating occurs not only on 
the weight vector of the best-matching unit but also on the weight vectors 
of the units "neighboring" the best-matching unit. At the very beginning of 
the learning process (epoch 1), the neighborhood in which this adjustment 
takes place is relatively large. The radius of the neighborhood then sequen- 
tially decreases to zero, until finally, after a sufficiently large number of 
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epochs or training periods, the neighborhood includes only the best-matching 
unit. The best-matching unit generally differs across the different input pat- 
terns within the training sample and for any particular given pattern may 
even vary from epoch to epoch. Figure 3 depicts the output units, which are 
arranged as a square. The figure also captures four snapshots, at t~, t 2, t 3, 
and t 4, of the learning process along the time horizon. As shown in the 
figure, the size of neighborhoods decreases as the learning time proceeds. 
Kohonen [167], [168] presented a detailed description of the algorithm and 
the neurophysiological foundation. 

FIGURE 3 

UPDATING WEIGHTS IN NEIGHBORHOOD SET 
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The entire data set of bodily injury fraud claims used in the study was 
divided into a training sample comprising 77 claims and a testing sample 
comprising the remaining 50 claims. Each claim, or pattern, was a 65- 
dimensional binary vector reflecting various claims characteristics. 
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It is assumed that if two claims have common or similar characteristics 
(pattern), they should result in approximately equivalent suspicion levels (a 
continuity assumption). Euclidean geometric distance is used to measure the 
similarity of two vectors. Consequently, the two input vectors that are close 
together (have similar claim indicator input variables) should be assigned 
similar output values (fraud suspicion levels). It is further assumed that each 
claim indicator is of equal importance in determining the explaining suspi- 
cion level for a claim. 

As described previously, each claim vector has a corresponding best- 
matching output unit. Accordingly, when the learning process is terminated, 
we have obtained a mapping from the input claim vectors to the output 
space (which in this case is a square). Moreover, because of the topograph- 
ical arrangement of the output units, the mapping effect can be displayed 
by a planar map. This planar map shows the correspondence between the 
claims vectors and the weights vectors (or the output units). By construction 
and due to the learning process, any two claims that have similar input 
vectors should be mapped onto geographically close units in the output 
space. By partitioning the square output space into regions, a topographical 
division of the map is obtained in which fraudulent claims tend to be mapped 
onto one area of the square and valid claims tend to be mapped onto a very 
different area of the square. 

In applying this methodology, Brockett et al. [48] found that the feature 
map learning algorithm outperforms human experts, that is, claims adjusters 
and investigators, in assessing the suspicion level of bodily injury (BI) claims 
based on a BI claims sample from Massachusetts. A similar methodology 
can be used for detecting fraud in Medicare claims as well. 

As a final comment, neural network modeling is a nonparametric 
approach. Without prespecifying any underlying functional form of the re- 
lationship between the inputs and the output, a structure is determined and 
a learning process is applied in order to predict. The described neural net- 
work approach can also be related to various statistical methods. In fact, the 
multilayered feed-forward neural network methodology can be viewed in the 
context of a constrained nonlinear regression analysis, in which various neu- 
ral networks differ by the structure and the algorithms. Because of the char- 
acteristic of learning intrinsic in algorithms, the neural network approach is 
better categorized as an artificial intelligence approach. 
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4. CONCLUSION AND DISCUSSION 

Both OR methodologies and insurance industry research are experiencing 
rapid theoretical and technical developments. In OR, various new algorithms, 
new modeling techniques, and even new approaches are being developed 
very rapidly. New methods have been proposed to solve larger and even 
more complex real-world problems. Moreover, because of rapid advances in 
computer methodology, operations research techniques are becoming much 
more easily implemented and on a much larger scale. 

For any particular problem, network optimization and their applications 
are often the cooperative work of scientists and practitioners from various 
areas such as mathematics, computer science, engineering, and OR. In ad- 
dition, expert systems and neural network models, which were originally 
developed by computer scientists, are now found to be useful OR approaches 
and are being applied in the solution of insurance problems. Because the 
development of OR depends greatly on algorithmic design and computa- 
tional implementation, its rapid growth is, to a very large extent, a result of 
the fast-paced development of the computer industry. Many large-scale prob- 
lems, which previously could be solved only on supercomputers (or simply 
not be solved within an-acceptable time), can now be solved on desktop 
PCs. 

As mentioned previously, the boundaries between the different OR meth- 
ods are becoming increasingly blurred. For example, qualitative reasoning 
processes can be formulated as integer programming models, and this tech- 
nique also provides a bridge between expert systems and mathematical pro- 
gramming models. Fuzzy programming is, to some extent, similar to robust 
optimization methods and to CCP in decision-making philosophy. Fuzzy 
programming is also related to goal programming if certain goals can be 
treated as constraints in the formulation. 

In fact, in the real world, an absolute distinction between various goals 
often cannot be delineated to determine which goals are to be formulated as 
belonging to the objective function and which goals are to be formulated as 
more properly belonging to the constraint set. In practice, of course, these 
distinctions depend primarily upon the circumstances and the preferences of 
decision-makers. The fact that a portfolio problem in finance can be for- 
mulated as a linear programming problem, a nonlinear programming prob- 
lem, a network optimization problem, a goal-programming problem, a 
chance-constrained programming problem, or a dynamic programming 
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problem demonstrates the intrinsic applicability of numerous OR techniques 
to practical insurance problems. 

A further example of asset portfolio-modeling techniques was discussed 
in Hiller and Schaack [142]. In that paper, four different structured bond 
portfolio models were presented, although they arise from different situations 
and need different quantitative considerations in modeling, implementation, 
and computational solution. 

As stated earlier, nonlinear relationships often prevail between variables. 
Accordingly, one might reasonably look to advances in nonlinear function 
theory and computation for future OR methods that will be applicable to 
insurance research. Scientists have developed very efficient algorithms, such 
as the simplex algorithm, for solving linear programming problems. How- 
ever, for nonlinear programming problems (except for certain special struc- 
tured nonlinear programming problems like quadratic programming), 
conventional algorithms often stop with local optima rather than finding a 
global optimum. Recently, researchers have been inspired by the knowledge 
and experience obtained from nonlinear dynamic, neural networks and other 
classical or new methodologies to further investigate this problem. One 
highly touted method is called simulated annealing (SA) (Kirkpatrick, Gelatt, 
and Vecchi [163]). SA algorithms have been theoretically proved to be con- 
vergent to the global optimum. Romeo and Sangiovanni-Vincentelli [233] 
provided a theoretical review on SA algorithms. The solution-searching pro- 
cess, however, is in practice highly dependent on the parameter design 
(schedule). Many empirical studies, Goffe, Ferrier, and Rogers [125], for 
instance, confirm that the SA algorithm finds the global optimum with a 
much higher probability, but it also runs more slowly when compared with 
various widely used optimization algorithms such as conjugated gradient 
methods. 

Another technique, terminal repeller unconstrained subenergy tunneling 
(TRUST), which was developed at the Jet Propulsion Laboratory at the Cal- 
ifornia Institute of Technology (Cetin, Barhen, and Burdick [55]), is applied 
to neural network (back-propagation) training to avoid stopping at local min- 
ima. 7 This method seems to perform satisfactorily (Cetin, Burdick, and 

7Finding the optimal weights for a multilayer feed-forward back-propagation network is difficult 
because of many potential local minima. In other words, it is hard to find the best weights for the 
neural network to extract as much information as possible from the training sample. Hence, an ad- 
hoc training schedule very likely ends up with finding suboptimal weights for the network model 
instead of the optimal weights. 
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Barhen [55]). One might expect that TRUST can also be used for other 
situations with a local minima problem. 

The genetic algorithms (or evolutionary algorithms) have also been sug- 
gested as providing a potential methodology for avoiding local optima. In- 
terestingly, genetic algorithms are currently being used to find models for 
predicting performance of financial instruments (such as the pricing of stocks 
and derivatives). We believe, sooner or later, a practical global optimization 
technique will be developed. 

For the insurance industry, as indicated in Haehling von Lanzenauer and 
Wright [131], a few trends appear to manifest themselves. One trend is the 
ability to simultaneously consider a variety of problem dimensions and to 
explicitly model their interactions, often in a dynamic environment. These 
trends in insurance studies and decision-making practice strive to obtain 
much more realistic methods for dealing with real-world problems while 
retaining the ability to actually compute solutions in well specified cases. 
Decisions by senior management are becoming increasingly dependent on 
the analytical support from OR or management science. On the other hand, 
new issues in insurance never stop occurring. These include environmental 
pollution, the liability insurance crisis, underwriting cycles, regulation and 
pricing, availability and admissibility, equity and discrimination, and many 
other legal, financial, economic, and technological issues. These topics 
should challenge the OR community for some time to come. Globalization 
of the insurance market also presents new problems. Recent developments 
also show that financial risks may turn out to be the most dominant cause 
for risk management techniques (as has already been observed in finance). 

Finally, we would like to share our view on optimization software and 
information technology. For those who have experienced inconvenience in 
interacting with various software packages such as Lindo, GAMS, GRG2 
(Lasdon [173]), Lasdon et al. [174], [175], and other general-purpose optim- 
ization software, the good news is that a very user-friendly optimization 
problem-solver based on the GRG2 algorithm has been available since MS- 
Excel version 4.0. The solver incorporated in Excel is much easier to use. 
In addition, as new generations of PCs continue to run faster and faster, the 
problems of solving large-scale optimization problems will decrease. An- 
other recent advance in developing optimization software is the use of C + + 
language and object-oriented methodology to build reusable libraries and 
friendly interfaces, which will likely lower the costs of software develop- 
ment and optimization. The information age is rapidly becoming a reality as 
more and more people are turning to Internet and other global real-time 
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information superhighways. The impact of information technology on OR 
and insurance may well be beyond our imagination. 

Operations research never stops providing insightful solutions and con- 
tributing to the healthy development of the insurance industry. The devel- 
opment of OR methodologies is both challenged and motivated by the com- 
plexity of most real-world problems, including those in the insurance 
industry. Practitioners and students in the insurance industry will quite pos- 
sibly find that OR techniques can provide a powerful, flexible, accessible, 
and promising tool for insurance research. 
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6. BIBLIOGRAPHY 

A bibliography is important for a review paper, so we have built three 
cross-reference lists, each for a particular purpose. These are organized 
(1) by author, (2) by insurance area involved, and (3) by the OR techniques 
used. In the first list, all the references are presented in alphabetical order 
by the last name of the first author. Readers can answer such questions as 
which author has done what work. Clearly, readers are able to dig deeper 
in literature through this detailed reference list. The number is then used in 
the two subsequent reference lists. 

In the second list, the references are organized according to the insurance 
areas that each paper addresses. This insurance area classification scheme 
was designed so that the references could be distributed into the different 
areas in a relatively balanced way. Certain areas, such as graduation and 
environmental risk management, are listed separately rather than embedded 
in their higher level areas (actuarial science and risk management, respec- 
tively). In addition, while we realize that duration-matching and immuni- 
zation is a very active research in actuarial science and that to insurance 
companies, it is a vital part of their investment strategy, we still list invest- 
ment and duration/immunization as separate topics to emphasize that du- 
ration matching and immunization in the scheme are more insurance-related, 
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while the references listed under investment are more diversified. Also, 
duration-matching and immunization can also be considered as a technique 
used in asset/liability management (ALM). Hence, we have not tried to 
present a perfect insurance/actuarial science classification. Instead, the 
scheme is designed to help researchers and practitioners who face a research 
or practical problem and need to find relevant references and methodologies 
for solutions. 

In the third cross-classification, the references are distributed according to 
OR method, assuming there are circumstances in which researchers, prac- 
titioners, actuarial students, or teachers are studying OR and trying to find 
relevant applications in insurance and actuarial science. 
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DISCUSSION OF PRECEDING PAPER 

TZONG-I-IWA WU*: 

Dr. Brockett and Dr. Xia are to be congratulated for this excellent review 
paper listing nearly 300 references. As illustrated in the paper, operations 
research (OR) models have been formulated to solve a wide variety of prob- 
lems in the insurance industry. Actuaries and management scientists have 
constructed stochastic financial models to assist insurers in determining the 
future financial impact of insured events. As pointed out in the paper, the 
areas in which these models are applied include determination of insurance 
premiums, calculation of benefit reserves, estimation of insurance fund sol- 
vency, measurement of uncertainty and risk in investments, and asset/lia- 
bility management (ALM). The purpose of this discussion is to supplement 
this fine paper by reviewing two ALM models that are perhaps overlooked 
in the actuarial literature. The first one is due to Bradley and Crane [2], [3], 
and the second one is developed by Mulvey and his colleagues [5]-[8]. 

ALM has evolved over the last 20 years in response to the growth of 
financial markets, the problem of interest rate risk, and the availability of 
new analytic tools and information systems. The unpredictable path of fi- 
nancial innovation has shaped the development of ALM and poses new 
challenges for the evolution of current systems. These challenges are not 
only technical but also organizational. Successful financial institutions need 
to retain operational flexibility in spite of an ever increasing number of 
regulatory constraints. This target is especially problematic to achieve for 
institutions rooted in traditions different from the ones from which current 
ALM techniques originated. 

The Bradley and  Crane Model  

The stochastic decision tree model depends upon the development of ec- 
onomic scenarios that are intended to include all possible outcomes. The 
scenarios can be viewed as a tree diagram for which each element (economic 
conditions) in each path has a set of cash flows and interest rates. The 
problem is formulated as a linear program whose objective is the maximi- 
zation of expected terminal wealth of the firm. There are four types of 
constraints: 

*Mr. Wu, not a member of the Society, is a Ph.D. student in industrial engineering at the Uni- 
versity of Iowa, Iowa City. 
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(a) Cash flows constraint. The firm cannot purchase more assets than it 
has funds available. 

(b) Inventory balance constraint. This ensures that the firm cannot sell 
and/or  hold more of an asset at the end of a period than it held at the 
beginning. 

(c) Initial holdings constraint. We set the values of  the variables h~,o(eo), 
which refer to the holdings of  securities in the initial portfolio, to these 
amounts. 

(d) Non-negativity constraint. The non-negativity of the variables implies 
that short sales are not permitted. 

The basic formulation is 

maximize ~ p(eu) ~ I N~ 1 [ykm(em) + * k V mjv(eN)]hX.mv(eN) + [y~eN) 
eNU.E N k=l [ rn=O 

subject to 

(a) 

(b) 

(c) 

(d) 

+ v~.(eu)]b~eu)} 

Cash   ows  (en' - 
k=l k=l Lm=O 

K n-l  

+ I)b~n-l(en-l) E E [l + k k yk_,(e._ - gm.n(en)]Sm.n(en) = f.(e.) 
k= 1 ra=O 

h k Skm.(e.) + = Inventory Balance - ,..._~(e. - 1) + , hkm..(e.) O, 

m = 0  . . . .  , n - 2  

k e ~ h* - - b . - l ( . _ , )  + + = s._l,.(e . ) ._ j,.(e.) O, 

Initial Holdings hko,o(eo) = h~ 

Non-negativity bkm~(e.) -- O, Skm,.(e.) >-- O, h~,.(e.) >- O, 

m =  1 . . . .  , n  - 1 
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where 

en 
en 

eo 
r, 

N 
Y~(em) 

v AeN) 

~(en) 

hk~(e.) 

S~(en) 

L(en) 

~ E n ,  n =  1 . . . . .  N ; k =  1 . . . . . .  K 
is an economic scenario from period 1 to n having probability 

P(en) 
is the set of possible economic scenario from 1 to n 
is the number of assets of type i, and K is the total number of 
assets 
is the number of time periods 
is the income yield per dollar of purchase price in period m of 
asset of asset k, conditional on em 
is the expected terminal value per dollar of purchase price in pe- 
riod m of asset k held at the horizon (period N), conditional on 

is the dollar amount of  asset k purchased in period n, conditional 
on e n 
is the dollar amount of asset k purchased in period m and held in 
period n, conditional on e~ 
is the dollar amount of asset k purchased in period m and sold in 
period n, conditional on e~ 
is the incremental increase (decrease) of funds available for pe- 
riod n. 

T h e  M u l v e y  A ~ l n r o a c h  

Stochastic programming provides an ideal framework for modeling finan- 
cial decisions and investment strategies over time. In financial planning via 
multistage stochastic programs, Mulvey [6] uses the following equations to 
determine interest rate scenarios: 

Short rate: dr, = a(r o - r,)dt + bV~r~dZm 

Long rate: dl, = c(l o - lt)dt + e~/-~tdZ2 

where r, and l, represent the short and long interest rates at time t, 
respectively; a and c are drift coefficients; b and e are instantaneous volatility 
coefficients; o o and l 0 are mean reverting levels. The random coefficients, 
dZ~ and dZ 2, depict correlated Wiener terms. These two diffusion equations 
provide the building blocks for the remaining spot interest rates and then 
full yield curves. 
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A fundamental issue in carrying out a financial modeling effort is to settle 
on the choice of an objective function and the underlying preference struc- 
ture. There are numerous possibilities. In the basic model, the proposed 
objective maximizes the investor's wealth at the beginning of period 'r, sub- 
ject to the payout of intermediate cash outflows (liabilities) under each of 
t h e  s E S  scenarios. The investor's true wealth at the horizon -r equals the 
following 

wealth~ = ~ xi~.T - P V ( l i a b ~ . r )  - prin~, 
i 

where the primary decision variable, xi~.~, denotes the amount of investment 
in asset category i at the beginning of time period "r under scenario s; 
liab~, r is the liability stream from period "r to period T; and prin~ depicts the 
amount of loans outstanding at time period "r. 

There are various alternative objective functions. One possibility is to 
employ the classical mean-variance function: 

max exp (wealthy) - p variance (wealthy), 

where p indicates the relative importance of variance as compared with the 
expected value. This objective leads to an efficient frontier of wealth at 
period r by varying p. 

An obvious alternative to mean-variance is the Von Neumann-Morgenstern 
(VM) expected utility (EU) of wealth at period r. Here, the objective 
becomes 

max ~ prob s utility(wealthy), 
s 

where prob, is the probability of scenario s, and utility(wealth) is the VM 
utility function as derived via certainty equivalence and risk premium ques- 
tions. A general objective function for this problem is as follows, 

max ~ prob, utility(wealthy, wealth~ . . . . .  wealthy). 
$ 

In the approach of Mulvey [6], the primary decision variable, x~.,, denotes 
the amount of investment in asset category i at the beginning of time period 
t under scenario s. The x vector depicts the state of the system after the 
rebalancing decisions have been made in the previous period. At that time 
the investor's total assets are equal to: 

x~. t = assets~, s E S, t E T. 
i 
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The uncertain return, riSt, for the asset categories--for asset i, time t, and 
scenario s--are  projected by the stochastic modeling subsystem. Each sce- 
nario is internally consistent. Thus, vi~,, the wealth accumulated at the end 
of the t-th period before rebalancing in asset i, is 

xi: , \ ~ ]  = vi;,, V i E I, t e r , s  e S. 

Rebalancing decisions are rendered at the end of each period. Purchases and 
sales of assets are accommodated by the variables ybuys,', and ysells,'., with 
transaction costs defined via the coefficients t, assuring symmetry in the 
transaction costs. 

Using the terminology of robust optimization (Mulvey, Vanderbei, and 
Zenios [9]), the relationships of the various investment categories are con- 
structed at each period as structural constraints. The flow balance constraint 
for each asset category and time period is 

' = " +ybuys~, i(1 -- t i ) - -  " V i E  I, t E  7",s E S .  Xi, t+l Ui, t . -- ysellsi.t- 1, 

This equation restricts the cash flows at each period to be consistent. It is 
assumed that dividends and interest are forthcoming simultaneously with the 
rebalancing decisions. Thus, the ysell variables consist of two parts corre- 
sponding to the involuntary cash outflow--dividend or interest--and a vol- 
untary component for the cash flow--the amount actively sold (sales). The  
requisite equation is 

Ysells~. , = di~., + sales~.,, V i E / ,  t E T, s E S, 

where divi~, = xi~,(divp)[ and divp is the dividend payout percentage ratio 
for asset i under scenario s. The cash node at each period t also requires a 
flow balancing equation 

cash~ = cashin~-l + El [(sales~.,-i(1 - ti) -t: div~.t_l] 

- E,. (ybuys~., + bo~.,_l) + cash~_ I - liab~_~ 

+ boff,-., - ri ~ P n t _ , V t E T ,  s E S ,  

with two new decision variables: boff,, t corresponding to the amount of  bor- 
rowing in each period t; and liab~ corresponding to committed liabilities 
other than borrowing. The variable prin[ represents the reduction in borrowed 
funds that occurs during period t under scenario s. The liability decisions 
may be dependent upon the state of the world, as depicted by scenario s. 
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One assumes that all borrowing is done on a single-period basis. (This as- 
sumption can be avoided by adding new decision variables for each category 
of  multiperiod borrowing.) Initial wealth at the end of period 0 equals or, 0, 
for all scenarios s. 

In practice, investors restrict their investments in asset categories for a 
diversity of purposes such as company policy, legal, and historical rules and 
considerations. These policy constraints may take any form, but we keep the 
structure to a set of linear restrictions as specified by 

ASx~=ba, V s E S ,  

where A is an (m X n) matrix with coefficients that depend upon sce- 
nario s. 
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(AUTHORS' REVIEW OF DISCUSSION) 

PATRICK L. BROCKETT AND XIAOHUA XlA: 

We thank Mr. Wu for his comments on our article. In the interest of being 
concise, several applications of OR techniques to actuarial science and in- 
surance were not dealt with fully (or at all in some cases) in our article. 
Already the paper was quite long. We tried to emphasize techniques learned 
by SOA students or new techniques that they should learn. In some cases, 
other articles have provided adequate references and details. We appreciate 
Mr. Wu providing more applications to asset-liability matching since it 
touched on a methodology (stochastic optimization) that we did not detail. 

Finally, we would like to note also that the Muivey et al. approach [9] is 
similar in many ways to that obtained using chance constrained program- 
ming as outlined in Brockett, Charnes, and Sun (ref. [41] in the paper). 
However, the stochastic calculus approach to interest rate term structure was 
not used and the constraints were not assumed to hold under every conceiv- 
able scenario (that is, with probability one) but rather with very high prob- 
ability. In this sense the chance constrained method gives a "policy" rather 
than a "hard and fast rule" methodology to asset-liability matching. 




