

SOA PREDICTIVE ANALYTICS SEMINAR
SEOUL, SOUTH KOREA
SEP. 8, 2017

Session 1

Application of Predictive Analytics in Life Insurance

Winnie Liu, FSA, FCIA, FSAS

SOA Predictive Analytics Seminar

8, Sept. 2017

 SOCIETY OF
ACTUARIES.

Applications of Predictive Analytics in Life Insurance

WINNIE LIU, FSA, FCIA, FSAS

Head of Actuarial Modelling & Experience Study, Munich Re – Asia Pacific, Middle East & Africa (Life)

September 8th, 2017

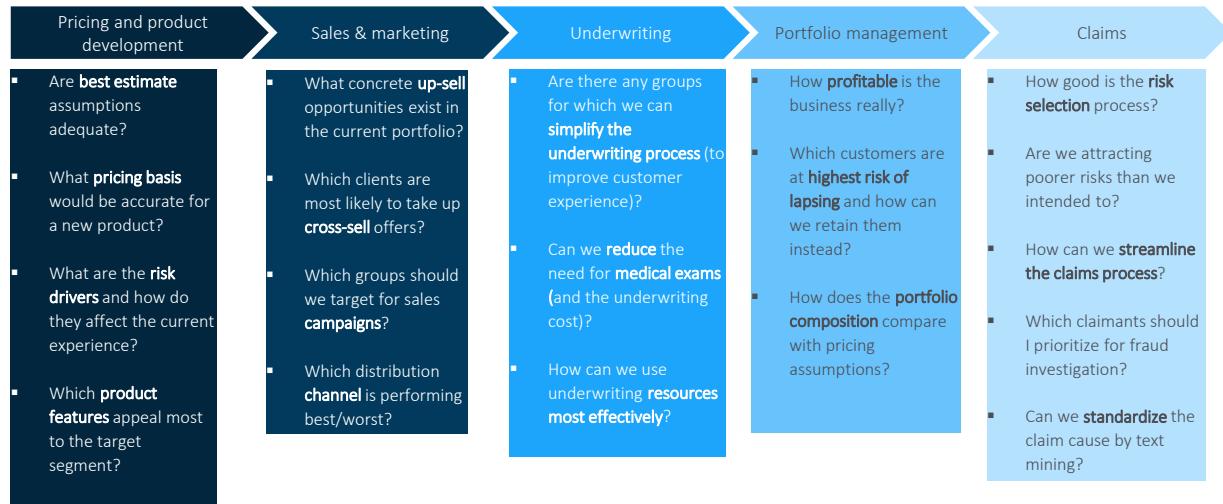
**SOCIETY OF
ACTUARIES.**

Let's think...

Big data, artificial intelligence and advanced analytics is transforming business models across the globe.

What does this mean for the future of insurance business?

A changing reality for insurers


Today's reality

- Ever-changing data formats require constant development and adoption
- New sources of data provide greater insights, might trigger new questions
- Smart data is connected to everything, changes customers' behaviour
- Data access and improved insights change the way we do business
- Technology, analytics methods and human skills are improving daily

What it means for insurers

- New data formats and sources create opportunities for differentiation
- Mobile phone data could show driver and driving behaviour, lead to different underwriting outcome
- Continuous increase in number of data sources imply need for constant algorithm development
- Increased need for closer collaboration across all business disciplines
- Insurance-specific know-how in a business development context needs to be developed

Predictive analytics used across the insurance value chain

Munich Re examples of Value-added through Predictive Analytics*

*For confidentiality reason, some variables/numbers in the examples may have been modified for demonstration purpose only

Big Data and Analytics Platform

Designed to serve our clients

25	physical server machines, including 18 data nodes
1,75TB	SAS in-memory capacity (LASR server)
288	Core Hadoop cluster
5	Core Hadoop / Spark memory
170	HDFS storage net (510TB)

7

CASE STUDY 1

Up-selling with no or limited underwriting

Problem statement:

“I want to offer existing customers an increase in cover with a very simple sales process.”

“Who should be eligible and which underwriting questions should I ask in an up-selling campaign?”

Our approach:

- Developed a predictive model to estimate the underwriting decision (using Tree-boosting algorithm)
- Applied the model to the data to identify customers eligible for up-selling
- Design and execute campaigns based on risk appetite

XXX 000 lives analysed
XX Variables collected on application form, plus underwriting decision
YY Variables predict the underwriting result with similar accuracy to 55

The outcome:

Compared to previous campaigns, take-up rate

Doubled

CASE STUDY 1
CONTINUED

Up-selling campaign design

1

Up-selling campaign with no additional underwriting

Direct offer

No underwriting

- For customers with no medical loadings, capped age and in-force policy duration
- **X 000** customers offered option to increase sum insured (up to defined limit)
- No underwriting required. Results of predictive model used to estimate likely underwriting outcome.

2

Up-selling campaign with limited underwriting

Call centre

Limited underwriting

- Eligibility extended to customers with limited medical loadings, no limitation to in-force policy duration
- **XX 000** customers offered option to increase sum insured (up to defined limit)
- Customers only need to answer a few questions about their medical condition to take up offer.

TAKE-UP RATE DOUBLED COMPARED TO PREVIOUS CAMPAIGNS

9

CASE STUDY 2

Streamlined underwriting with loyalty programme data

Problem statement:

“I want to significantly reduce the underwriting requirements with a minimal price impact while retaining sound risk management.”

“Which variables from my loyalty programme data can streamline an up- and cross-selling campaign?”

Our approach:

- Developed predictive models of the underwriting decision with machine learning methods a limited number of variables
- Applied the models to the data to identify eligible customers for streamlined underwriting

XXX 000 lives analysed

XXX Application form and loyalty programme variables analysed

YY Variables predict decision with similar accuracy to 150

The outcome:

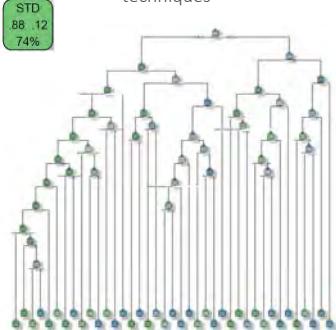
85%

Reduction in underwriting requirements to identify standard risks

(with **<5%** false positive rate)

>XX%

of customers qualify for streamlined up-selling

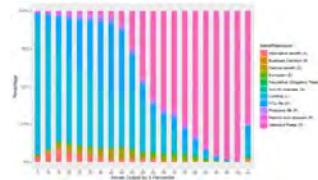

10

CASE STUDY 2
CONTINUED

Streamlined underwriting - *modelling consideration*

Which customers should I offer streamlined underwriting to?

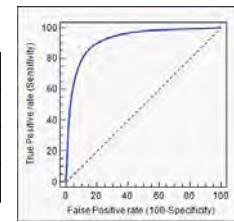
Criteria that define eligible customers are identified with machine learning techniques



5 - 15 variables identify 45 - 60% of customers within which >90% are standard risks

Which predictive models should I use?

Advanced analytics methods are benchmarked to identify the best performing models, e.g. random forest.


How much (mortality) allowance should I make for false positives?

CASE STUDY 2
CONTINUED

Streamlined underwriting – *the price of simplification*

- Trend towards: 1 click, elimination of fluids, walk-in bank customers
- Risk of anti-selection, non-disclosure, deteriorating experience
- Can also consider answering existing questions better vs. removing existing questions – Multiply data!
- Question of reliability of proxy data
- Quantifying the price impact of Type I
- Objective is not just minimising the false positive rate
- But also...maximising the true positive rate

	Predicted decision	
Actual decision	Standard	Non-standard
Standard		
Non-standard		

CASE STUDY 3

No fluid underwriting with 3rd party data

Problem statement:

"For customers under 50 with sums insured under \$1 million, I want to remove all fluids in the underwriting process with a negligible price impact."

Our approach:

- Developed a predictive model to estimate underwriting outcome using 3rd party data instead of fluids
- Determined the impact on price if predictive model is used instead of traditional underwriting (with fluids)
- Deployed and monitored the model at the point of underwriting via an automated underwriting platform

X00 Variables (from application form and 3rd party data) analysed

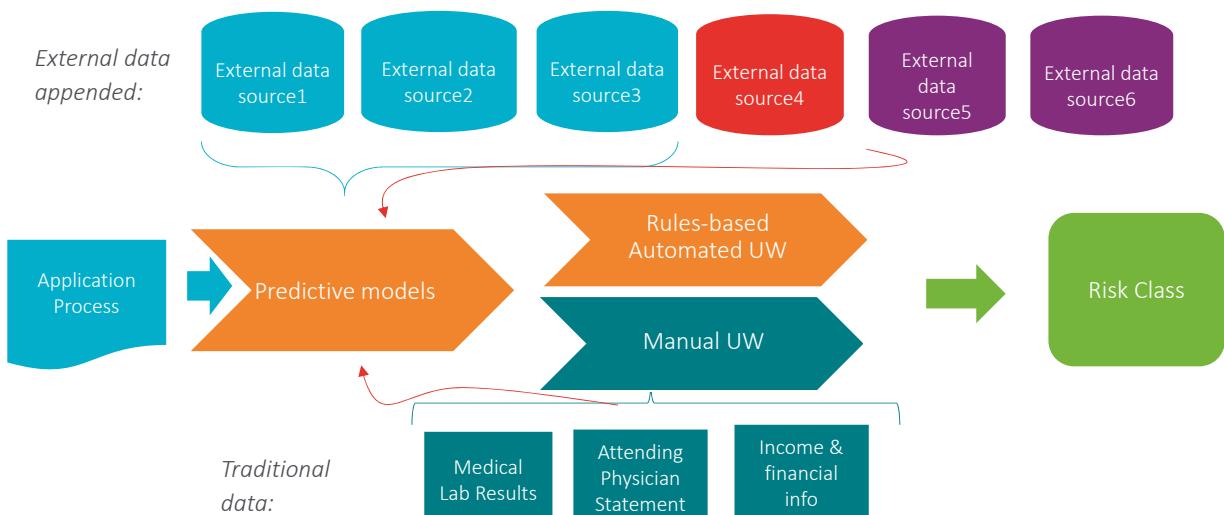
YY Variables (excluding fluids) predict the underwriting result with similar accuracy to 300

The outcome:

Conclusion: It is possible to predict the underwriting decision using external data rather than fluids, with a minimal price impact.

67% Less underwriting requirements

0 Invasive tests in underwriting process


<X% Net impact on mortality

13

CASE STUDY 3
CONTINUED

No fluid underwriting – work flow

14

CASE STUDY 3
CONTINUED

No fluid underwriting – *predictors identified*

Demographic factors:

- Age
- Gender
- ...

Build:

- Height
- Weight
- ...

Motor Vehicle Records:

- Total risk factors
- Number of violations in last 3 years
- ...

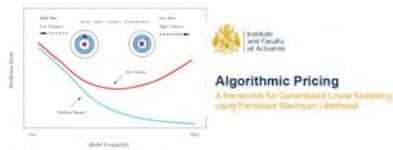
Treatment (Rx):

- High count
- Medium count
- ...

Questions and disclosures:

- Anxiety, depression and bipolar disorder
- Disorders or diseases of the blood, skin, thyroid, lymph or other gland
- ...

Unlike rules, predictive models use a multi-variate approach and is a weighted combination of all input parameters

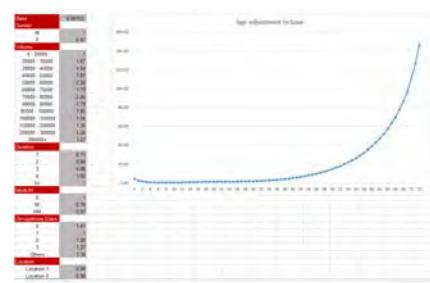


CASE STUDY 4

Algorithmic pricing taking wisdom out of the experience data

Advanced analytics models tailored for mortality/incidence rates

Advanced analytics methods combined with our actuarial expertise in identifying biometric risk


1	Red	Yellow
2	Yellow	Red
3	Yellow	Red
4	Yellow	Red
5	Yellow	Red

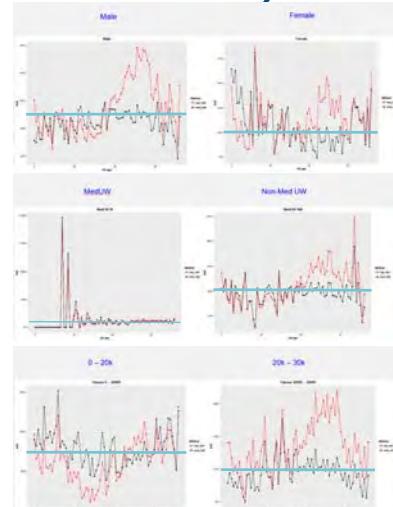
Which are the best performing predictive models?

- Which combination of rating factors and interactions should I include in my pricing basis?
- Which produce higher predictive power than my existing rates?

Easy to use pricing model that can be scaled much faster

Calculator of mortality incidence with standardised, interpretable adjustments per rating factor

CASE STUDY 4


Algorithmic pricing advantages over traditional experience study

Disadvantages of traditional experience study

- All experience data within the study period is used in the study – may lead to over-fitting
- Importance of each risk factor is not easy to identify
- Correlation of the risk factors is hidden – adjustments to risk factors may overlap
- Lack of ability to predict the “unseen” future experience

Advantages of algorithmic pricing (non-traditional experience study)

- Experience data is divided into training/validation (used to train the model) and testing (unseen future) data
- Risk factors are ranked based on their importance to help select the features to be used in the model
- Interaction of the risk factors can be easily validated by looking at the testing deviance
- Model performance is always tested on the testing (unseen future) data

CASE STUDY 5

Insuring previously uninsurable risks

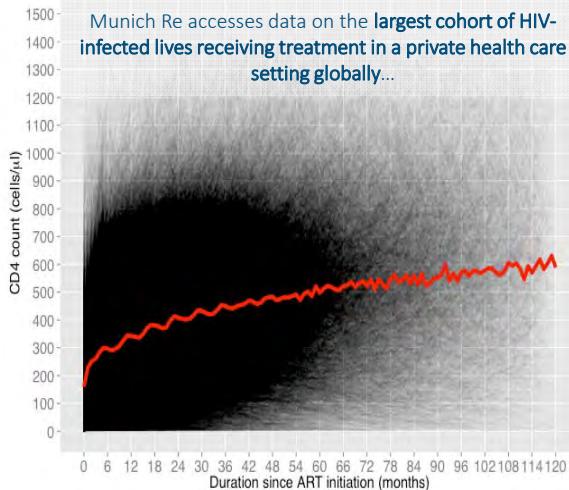
Problem statement:

“How can I start offering HIV-positive applicants the same fully underwritten cover as all other applicants?”

Our approach:

- Derived an underwriting guideline using the largest private healthcare cohort of HIV-positive lives globally.
- Predictive model applied to derive extra mortality (EM) loadings per sub-group of applicants.
- Guideline adopted in MIRA, available to clients

XXX 000 Patients' data analysed
10 Years of observation with longitudinal medical markers of disease progression


The outcome:

40%	reduction in best estimate claims cost
X	Continents launched new product / solution
>50%	of HIV positive applications accepted, (from 0% for some)
100%	Reduction in cost of continuous underwriting
400%	Increase in annual new business volumes since 20XX

CASE STUDY 5
CONTINUED

Insuring previously uninsurable risks HIV positive applicants

“...using predictive analytics methods, Munich Re produced an underwriting guideline that enables clients to underwrite HIV like other impairments. HIV was often declined before or offered unaffordable terms.”

How to be successful in predictive analytics

Key groups:

- Sponsor
- Advisor
- Business/Product owner
- **Working team**
- Support
- End user

Working team:

- Business/Team lead
- Project manager
- Business analyst
- Machine learning expert
- Actuarial predictive modeler
- Data engineer
- Data scientist
- Data journalist

Data and analytics initiatives fail for three primary reasons.

Source: 2016 McKinsey survey of data and analytics leaders at global life insurance and P&C insurance carriers

