SOA PREDICTIVE ANALYTICS SEMINAR SEOUL, SOUTH KOREA SEP. 8, 2017

Session 3

Big Data Applications: For pricing and beyond

Sara Goldberg, FSA

SOA Predictive Analytics Seminar

8, Sept. 2017

Predictive Analytics: Applications in pricing and beyond

SARA GOLDBERG

Regional Chief Actuary, Gen Re Life/Health International 8 September, 2017

Numbers people are better with numbers than words....

Decision Analytics	Predictive Ar	nalytics	Data Ana	alytics	
Predictive Mod	Machine Learning Big D				
Artificial Intelligence	Algorithms	Deep Learning			
Statistics Data Mining					
Text Mining	Generalised Linear Models				
Support Vector	Machines	Decision Trees			
Random Forest	Neural Networ	ks	Clust	ering	
Data Science	Association Rules				

Step outside of insurance (for just a minute, don't worry)

- Walmart, Amazon, Expedia product recommendations
- Airlines price discrimination
- fivethirtyeight.com good with both numbers and words (though not perfect)
- Data can improve lives
 - Exposing disparities (socioeconomic differences, pay gaps)
 - Health reform in US
- So, is big data dirty business?
 - doesn't have to be (% consumers open to data sharing)
- But, rather than start with a slick solution, start with a business problem. What decisions are being made without data?

AGENDA

- ⁰¹ Growing data in insurance
- ⁰² Main uses of predictive analytics today
- ⁰³ Mini case studies involving actuaries
- ⁰⁴ Will we lose our jobs?

Beginnings of predictive modelling in insurance

- Motor insurance underwriting and ratemaking
- Risk scores in health software vendors

Pay as you live

- Telematics & usage-based car insurance
- Pay as you live in life & health also becoming mainstream
 - Workplace wellness, Vitality
 - Wearables: the biggest data around (towards petabytes)

Will wearables revolutionize traditional insurance?

Physical activity - A walk a day keeps the doctor away

"Walking for at least an hour or two could cut a man's stroke risk by as much as onethird [...] Taking a three-hour long walk each day slashed the risk by two-thirds." Source: American Heart Association Nov. 2013

"Chronic sitting has a mortality rate similar to smoking." Source: Diabetologia. 2013 Apr; 56(4): 942-3

"Walking for two miles a day or more can cut your chances of hospitalization from a severe episode of chronic obstructive pulmonary disease (COPD) by about half."

Source: Respirology V.19(3) 330-338

"Walking is a superfood."

around for two minutes out of every hour can increase your lifespan by 33 percent." Source: Clin J Am Soc Nephrol. 2015 Jul 7;10(7):1145-53

"Research even shows getting up and walking

Possible customers' concerns

- Not everyone wants to be monitored
- Data security is a concern
- Device accuracy (discrepancies depending on wearables and calculators)
- Target levels of physical activity may seem unachievable
- Submitting false data
- Lost interest / wearoff

... Most people don't care about life insurance, but they do care about having a long and healthy life.

Wearables and continuous underwriting

50	Current practice	Current potential	Future potential			
	Snapshot	Continuously				
	 Age Gender Chronic illnesses Smoking status Lab values and further medical information 	 Steps Activity minutes Calories burned Heart rate Sleep 	 Personal health advisor Lung function Hormone levels Medicine intake Calorie balance Body temperature Chronic disease management adherence 			

German statutory health insurance

- Government dictates to offer prevention courses or bonus programs to health insureds
- Running courses are subsidised by almost all health insurers
- Courses are usually reimbursed by up to 95% to a certain maximum per year
- Bonus programs: The more health activities have been performed the more is paid back
- Some health insurers offer own running events

", For every Euro invested into bonus programs, health insurers saved 2.32€ in claims." Source: Runner's world about a study ordered by Barmer GEK

And it pays back!

AGENDA

- ⁰¹ Growing data in insurance
- ⁰² Main uses of predictive analytics today
- ⁰³ Mini case studies involving actuaries
- ⁰⁴ Will we lose our jobs?

Use of Predictive Analytics by Life and Health Insurance Companies

Global Survey, 2016 Results

Scope of the Survey

Predictive Analytics

"Statistically rigorous techniques (beyond conventional actuarial experience analysis) that are applied to data to model or predict future outcomes"

Status of Predictive Analytics Usage

Status of Predictive Analytics Usage by Function

	Sales / Marketing	Pricing	Simplifying UW Requirements	Refining UW Decisions	Claims Management
Currently Using	20%	12%	9%	6%	6%
Not currently using, but likely in 2 years	24%	28%	32%	29%	17%
Not currently using, and unlikely in 2 years	56%	60%	60%	65%	77%
R=	131	129	129	128	128

Specialised Predictive Analytics Teams, by Region

	All Participants	South Africa	Taiwan	Australia / New Zealand	Europe	Middle East / Cyprus	U.S.	Latin America	UK / Ireland
Specialised Team	35%	40%	50%	38%	33%	14%	32 %	17%	75%
R=	72	5	8	8	3	7	31	6	4

Challenges in Predictive Analytics Development

Most Significant Barriers to Predictive Modelling Attempts

- Lack of Access to Suitable Data
- Lack of Expertise
- Lack of Priority/Budget

Barriers to Access Data

44%

19

Tools Used

• What analytical software is used by your organization for the purpose of predictive analytics? (Check all that apply)

Where do/will the model(s) come from?

	Sales/ Marketing	Pricing	Simplifying UW Requirements	Refine UW Decisions	Claim Management
Internally only Intenal and	46%	37%	29%	24%	43%
external	36%	42%	33%	42%	30%
External only	5%	10%	25%	13%	3%

Opportunities in Predictive Analytics Development

• Areas of operation could benefit most from Predictive Analytics

Opportunities in Detail

Pricing	Retention	Claims Management
 New risk/rating factors Initiate product differentiation Other pricing refinements 	 Identify prospects more likely to lapse Optimizing customer engagement Upselling opportunties 	 Identify fraud / misrepresentation Triaging investigations Automating processing Early intervention
 Underwriting Develop targeted uw Reduce / simplify uw Refine uw decisions pre-select candidates, streamline uw 	 Marketing Identify prospects more likely to buy Target marketing efforts Distribution management 	

AGENDA

- ⁰¹ Growing data in insurance
- ⁰² Main uses of predictive analytics today
- ⁰³ Mini case studies involving actuaries
- ⁰⁴ Will we lose our jobs?

India: standard analysis shows mortality improvements

 GLM analysis shows anti-selection as key driver, though not evenly across sum assured bands

India: (Anti-)selection by sum assured band

• GLM for CY 2011

Germany: mortality improvements

- Model for males, large life insurance product

- GLM result stabler than univariate
- Changing portfolio composition and participating insurers, smoking cessation

Germany: mortality levels by occupational class

- Model for males, large life insurance product
- Mortality in relation to Occ Class A
- Uniform increase by Occ Class
- Weaker influence of occupation in GLM analysis
- Occupational class strongly correlated with sum assured and smoker prevalence

New Zealand

Comprehensive market analysis of claims

- Mortality, disability, and critical illness
- Riders and base policies analysed, 15k claims over 2009-2014

Policy distribution by postal code

- Descriptive Analysis with easily accessible tools (Excel, Power BI Add-Ins)
- Data field only populated in ~50% of policies

... another "geographic" observation

Australia & United Kingdom

Application data analysis of variables influencing

- Issue and take-up rates
- Disclosure modelling
- Improving underwriting efficiency

Scope of analysis

	Two products	Distribution channels
•	Mortality Disability	 Direct – Online Inbound- call center Outbound- call center
	Underwriting	Policy issue
•	30+ questions Dynamic (cascading) (Family-) history Different by product	 Accept at standard Loading Exclusions Offer reduced coverage

Clean applications for term life

Which variables influence rate of issuance?

Of over 30 questions – which factors matter?

Models for both product types

- Age band
- gender
- BMI
- Distribution channel
- Underwriting decision
- Health disclosures
- Occupation

Top 2 influences – term life

Health question	Pr(> z)	%	Coefficient	95%-CI	
Psychological, psychiatric, or mental health disorders	0,0000	12%	129%	119%	140%
Non-prescribed drug use in last 5 years	0,0000	2%	149%	127%	176%

Disproportionally high take-ups due to

- Disclosure-friendly clientele OR
- Underwriting philosophy of the insurer vis-a-vis the competition

Significant influence – disability by occupation

Occupation	Pr(> z)	% Coefficient		95%-CI	
Construction	0,002	30%	212%	180%	250%
Police	0,003	1%	189%	127%	281%
Transportation	0,003	7%	141%	112%	177%
Media	0,003	2%	156%	115%	212%

Higher take-up rate due to

- Shier reference group (finance sector) OR
- Rating for occupations of the insurer vis-a-vis the competition

AGENDA

- ⁰¹ Growing data in insurance
- ⁰² Main uses of predictive analytics today
- ⁰³ Mini case studies involving actuaries
- ⁰⁴ Will we lose our jobs?

- McKinsey report predicts 25% decline in insurance FTEs over next decade
 - "Sales agents are among the most vulnerable... as many of 60% of the tasks sales agents perform could be done by automation. For underwriters, that percentage is 35%. Even CEOs aren't immune as robots or computers could do 25% of what they do. Actuaries are among the safest."
 - "But some positions will be engines of job creation—these include marketing and sales support for digital channels and newly created analytics teams tasked with detecting fraud, creating "next best" offers, and smart claims avoidance. To meet these challenges, insurers will need to source, develop, and retain workers with skills in areas such as advanced analytics ... and the ability to translate such capabilities into customerminded and business-relevant conclusions and results."

http://fortune.com/2016/07/11/skills-gap-automation/

http://www.mckinsey.com/industries/financial-services/our-insights/automating-the-insurance-industry http://www.insurancejournal.com/news/national/2016/02/01/397026.htm

	LLO1 - 99 К 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	และสาราสาราสาราสาราสาราสาราสาราสาราสาราสาร
200213		n an dae an dia ang kana dae ang Kana ang kana dae an Kana ang kana dae ang
1º	rrg 101 F gantonhautanh	rut alaataalaalaalaalaalaalaalaalaalaa

SOA roster	Total Members (Fellows & Associates)	Annualized Growth Rate
1889 Charter Members	38	
1909	283	10.6%
1929	618	4.0
1949	1,069	2.8
1969	3,544	6.2
1989	11,784	6.1
1995	16,942	6.2
2016	27,000	2.2

									120
AMORT	OT.	NEV	RND	IRR			ii		
n		PV	PMT	FV	CHS	71	8	9	+
12x	12+	CFO	CFJ	NJ	DATE	BEG	END	MEM	and the second second
PRICE	YTTM	SL	SOYD	DB					
yx	1/x	%T	Δ%	%	EEX	4	5	6	×
NX.	e×	LN	FRAC	INTG	ADYS	D.MY	M.DY	¥ w	
P/R	T	PRGM	FIN	REG	PREFIX				
R/S	SST	Rŧ	xxy	CLX	-	1	2	3	-
PSE	BST	GTO	хеу	3+0	Ň	8.0	9.7	11	.
_	-	_	-	-	Ŧ				
MENU	f	g	STO	RCL	R	0	•	Σ+	+
			(LINE)		LSTX	×.	5	E	

https://www.soa.org/about/historical-background/

We need all three

Thank You

Sara Goldberg sara.goldberg@genre.com