
 
 
 
 

Session 5B, Application of GPU in Actuarial Modeling 
 
 

Presenters: 
Joseph Kim, FSA, CERA, CFA, FCIA, FIAK 

 
 

 
 
 

SOA Antitrust Disclaimer 
SOA Presentation Disclaimer 

 
 

https://www.soa.org/legal/antitrust-disclaimer/
https://www.soa.org/legal/presentation-disclaimer/


The 8th SOA Asia Pacific Annual 
Symposium
25 May 2018



Application of GPU in 
Actuarial Modeling
JOSEPH KIM | FSA, FCIA, FIAK, CFA, CERA
Consulting Actuary, Milliman
25th May 2018



Milliman

Evolution of Hardware Technologies
Constant evolution in Information Technology is introducing new hardware to many people 
and industries.

3

1995 

Internet

2005

Mobile Internet

2015

Artificial Intelligence
Block-Chain

IFRS 17

Personal 
Computers Smartphone GPU



Milliman

Challenges of IFRS 17 for Korean insurers
Adaptation of IFRS 17 implies a ground-breaking change for Korean companies’ traditional 
financial reporting practice, significantly increasing levels for computing requirements.

4

Item Changes

Model Point Clustered/Grouped (1%)  Seriatim (100%) x100

Scenarios Deterministic (1 Scenario BE or Worst Case) 
 Stochastic (average of 1000 scenarios) X1000 

MVMT Need to isolate the impact from various changes
1 Run  10 Runs x10

Total Significant increase in the computing power requirement X 50,000,000

Increased Calc.

Reserve 
Principle

Net Level Premium (one period) 
 Gross Premium (all future periods) x50

Unique Prod. 
Characteristics

Complex Products with many interdependent benefits, 
policy-holder options and choices of riders

Requires Seriatim 
Projection



Milliman

Model Efficiency Taxonomy
There are multiple ways to cope with the issue of increased computing requirements. 
Korean companies focus more on technological solutions such as GPU-computing.

5

Actuarial and Modeling 
Techniques

Scenario Design & 
Selection

Mathematical and/or 
Model Design

Model Data Building 
Techniques

Technology Solutions

Hardware Design

Software Design

Proxy Conceptual Model Design:
some impact on model results

Model Implementation:
no impact on model results

Source: 2016 SOA Life and Annuity Symposium
Session 57 PD: Model Efficiency - Part 1



Milliman

Basics: CPU vs GPU
Original intension of GPU was to have a structural advantage over CPU in massive parallel 
processing to control many pixels of display devices. 

6

CPU (Present) GPUCPU (Past) CPU (Future)

~~

 The capacity of a single-core has reached its limit for improvement (the end of Moore’s Law: 
the number of transistors in a dense integrated circuit doubles about every two years)

 CPU makers then have been increasing the number of cores in a processor instead of 
increasing transistors in a core, introducing the multi-core technology.

 GPU has already had this multi-core structure from the birth, because it was originally 
developed to control many pixels of display devices.



Milliman

More Detailed Comparison
Both chips have very distinct pros and cons – the key is to apply where appropriate

7

Structure

Strength

CPU GPU

Weakness

• Serial calculations (small number of 
complex order-dependent calc.)

• Relatively easy to program
• Relatively large size of memory per 

cores (efficient to handle large inputs)

• Parallel calculations (many numbers of short 
independent calculations)

• Less Expensive (Best per-Dollar Performance)

• A few number (4-28) of high-
performing cores

• Many numbers (5000+) of 
low-performing cores

• Relatively expensive to acquire 
thousands of cores

• Relatively difficult to use (because not 
developed for general purpose)

• Relatively small size of memory per cores (not 
efficient to handle large input data)

Control
ALU

ALU

ALU

ALU

Cache

DRAM DRAM



Milliman

Limitations of GPU
Issue 1: Programming Difficulty 

8

 Not practical for actuaries to learn and use CUDA C code for their daily modeling tasks. Both 
C and CUDA are difficult languages for even for most of seasoned programmers.

 Solution: GPU-based system should provide users with a easier DSL (domain-specific 
language) which gets translated into CUDA C codes.

Non-Parallel Computation Code Parallel Computation Code



Milliman

Limitations of GPU
Issue 2: Limited size of memory 

9

 Since GPU’s memory has to be shared by 5000+ 
cores during parallel processing, the size of memory 
potentially allocated to each core is very limited.

 If the calculation of each core requires more than 
they are allocated, GPU cores would have to make 
data I/O to CPU’s memory through PCI-Express 
channel which is going to be a lot slower than GPU’s 
internal memory I/O.

 In this respect, GPU is most efficient to process one 
model point’s multi-(inner)scenarios in parallel. 
However, the level of parallelization is then going to 
be limited and hence the performance enhancement 
through the parallelization is also going to be limited.

 To increase the level parallelization, more model-
points or all model-points (for ALM)’s information 
would be required to be hold inside GPU cores. This 
would not be efficient/practical for GPU.

Logic Flow for Typical Actuarial Projection

Public Sub Main()

Call Import_Global_Inputs

For Outer_Scenario(ALM) = 1 to 1000

For Policy = 1 To N

Call Import_ModelPoint_And_Inputs

For Inner_Scenario (Val’n) = 1 To 1000

Call Projection (Calculation)

Next Inner_Scenario

Next Policy

Next Outer_Scenario

Call Export_Results

End Sub

(Inner) Scen
Loop

Lim
ited Parallelization

Higher-Level of 
Parallelization



Milliman

Limitations of GPU
Issue 2: Limited size of memory – dynamic ALM projection

10

 Some insurance contracts require dynamic crediting rate mechanism to appropriately project 
their cash flows. In this case, all liability model-points and asset model-points to has to be held 
in memory and processed together until the end of projection, unlike a typical liability-only 
projection where each model-point can be processed on one after another.

 This type of projection produces a huge memory bottle-neck issue even with CPU.

Liabilities

Assets

1yr 2yr 3yr 4yr ….

….

Projection

A & L results

NIER

A & L results

NIER

A & L results

NIER

Crediting rate

A & L results

Liabilities CF

NIER(Net 
Investment 

Earning Rate)

Liabilities CF Liabilities CF Liabilities CF
Crediting rate Crediting rate Crediting rate



Milliman

Limitations of GPU
Issue 2: Limited size of memory – dynamic ALM projection

11

 Solution 1 (Traditional Approach): Use clustered model points (millions of MPs into hundreds)

 Solution 2 (Memory-Free Approach): T0 to Tx recalculation (not efficient speed performance)

Liabilities

Assets

1yr 2yr 3yr N ….

….

Projection

Crediting rate

A & L results

NIER
ALM

A & L results

NIER

A & L results

NIER

Crediting rate Crediting rate

….



Milliman

Limitations of GPU
Issue 2: Limited size of memory – dynamic ALM projection

12

 Complementary Solution (Shared-Memory Approach): Parallel computations may involve 
multiple execution files. Hence, they require shared-memory technology to make independent 
execution files to communicate with each others – just like one execution file.

Asset EXE

Shared Memory

Liability EXE

Product 1 EXE

�
𝒊𝒊=𝟏𝟏

𝑵𝑵

𝑳𝑳𝒊𝒊𝑳𝑳𝑳𝑳𝑳𝑳𝑭𝑭𝒊𝒊

Product 2 EXE

Product N EXE

Crediting rate

ALM EXE

Product 3 EXE

Asset Class 1 EXE

Asset Class 2 EXE

Asset Class 3 EXE

Asset Class M EXE

�
𝒊𝒊=𝟏𝟏

𝑵𝑵

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑳𝑳𝑭𝑭𝒊𝒊
….….

Net Investment Earning Rate



Milliman

Limitations of GPU
Issue 3: GPU’s massive core structure is not the best suited for complex sequential logics

13

 Complex actuarial logic may slow down the performance of GPU significantly.

 Due to the native structure with massive cores, all of GPU cores have to process the same 
command at the same time and cannot process different logics like CPU cores.

 This does not fit well with typical actuarial calculation logics with a lot of “IF” and “ELSE IF” 
statements

1. Simple Case (CPU vs GPU)
CPU 1 … CPU 4 GPU1 … GPU1000

Do 1 Process Process Process Process
Number of total processes 1 1 1 1 1 1

2. Typical Actuarial Calculation (Complex Condition Checks)
CPU 1 … CPU 4 GPU1 … GPU1000

A=TRUE A=FALSE A=TRUE A=FALSE
B=TRUE C=FALSE B=TRUE C=FALSE

IF Condition A = True Process Process Process Process
THEN IF Condition B = TRUE Process Process Wait

THEN Do 1 Process Process Wait
ELSE THEN Do 2 Wait Wait

ELSE THEN IF Condition C = TRUE Process Wait Process
THEN Do 3 Wait Wait
ELSE THEN Do 4 Process Wait Process

Number of total processes 3 3 3 7 7 7



Milliman

Limitations of GPU
Issue 3: GPU’s massive core structure is not the best suited for complex sequential logics

14

 Solution: GPU-based solution should provide advanced modular code management features 
which can populate many sets of simple/efficient codes (with less conditions) instead of a 
single set of complex codes (with a lot of conditions)

Lx

Code Manager

Type 1

Execution Codes

Type 2 Type N

Code 
Organizer

Independent Set of 
Complete Codes by 

Logic Types

M01_MainRun

M02_LoadInput

M03_LoadMP

M04_Pricing

M05_CashFlow

M06_Output

Cx

Mx

Premium

Reserves

PremIncome

CredRate

Claims

1 2 9…

1 2 9…

1 2 9…

1 2 9…

1 2 9…

1 2 9…

1 2 9…

1 2 9…

…

Lx

M01_Main Run

M02_Load Input

M03_Load MP

M04_Pricing

M05_CashFlow

M06_Output

Cx

Mx

Premium

Reserve

AV

CSV

Benefits

1

2

1

9

1

9

1

9

Lx

M01_Main Run

M02_Load Input

M03_Load MP

M04_Pricing

M05_CashFlow

M06_Output

Cx

Mx

Premium

Reserve

AV

CSV

Benefits

9

9

2

2

9

2

2

1

1

2

1

9

1

9

1

9

Lx

M01_Main Run

M02_Load Input

M03_Load MP

M04_Pricing

M05_CashFlow

M06_Output

Cx

Mx

Premium

Reserve

AV

CSV

Benefits

9

1

1

9

9

2

1

9

Modularized 
Code Blocks

Code by 
Cases



Milliman

Actual Implementation Result
Efficient codes run fast regardless of the computing environment whether it is CPU or GPU.

15

 We implemented one client’s GMxB reserve model based on Milliman’s GPU-acceleratable
solution, Booster-FMS.

 After the migration, we were able to reduce the run-time significantly from 260 hours to 3.5 
hours based on the same server with an additional GPU card. However, the model has almost 
the same performance improvement even without utilizing GPU. 

 Considering the scalability of the hardware, GPU may still the best per-dollar performance. 
However, CPU may still be fast enough if the code/data is well-optimized. 

Existing System Phase-1 Implementation
(Booster-FMS)

260 Hrs
(24 Cores)

3.5 Hrs

4.5 HrsCPU
(24 Cores)

+GPU
(2496 Cores)

Further
Optimizations

x 58

x 74

2 Hrs
x 130



Milliman

Key Takeaways
GPU has advantages in massive parallel computation and may achieve the best per-dollar 
performance but also has many limitations and requires more expertise than using CPU.

16

 GPU’s unique structure with so many small cores make it superior for massive parallel 
computations. However, it also has many limitations: low usability, limited memory size and etc.

 CPU can perform as great as GPU if codes are well optimized. Otherwise, it will be 100 times 
slower and then the only viable solution with the speed would be proxy techniques.

 Technology will continue to evolve

GPU will try to be more like CPU: larger memory and faster data I/O

CPU will try to be more like GPU: more cores 

 Who is going to be the winner? 

Not sure yet. However, it’s sure that both will improve at a rapid pace and they are going to 
affect the modeling approaches from proxy technique to more principle approaches. The 
seriatim / stochastic / nested-stochastic / dynamic ALM interaction will be the norm, soon.



Milliman

Contacts

Joseph Kim, FSA, FCIA, FIAK, CFA, CERA

Consulting Actuary – Seoul office
Joseph.Kim@Milliman.com
+82-10+3172+3639

mailto:Joseph.Kim@Milliman.com

	Slide Number 1
	Application of GPU in Actuarial Modeling
	Evolution of Hardware Technologies
	Challenges of IFRS 17 for Korean insurers
	Model Efficiency Taxonomy
	Basics: CPU vs GPU
	More Detailed Comparison
	Limitations of GPU
	Limitations of GPU
	Limitations of GPU
	Limitations of GPU
	Limitations of GPU
	Limitations of GPU
	Limitations of GPU
	Actual Implementation Result
	Key Takeaways
	Slide Number 17

