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Abstract

This paper examines some new Bayesian models for loss reserving inspired by a consideration

of some of the methods and techniques appearing in the traditional chain ladder literature.

This includes a possibly order restricted hierarchical Bayesian model for the year over year

development factors. The issues of reserve variability and ranges of reasonable reserve es-

timates are considered. A new Bornhuetter-Ferguson styled Bayesian method of estimate

revision is also discussed. These Bayesian models can be implemented using Markov chain

Monte Carlo (MCMC) methods in a variety of programming languages, and can serve as

starting points for more advanced models. This paper describes their implementation in

WinBUGS (a specialized software program for MCMC simulations). Illustrative WinBUGS

code is included.
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1 Introduction

Chain ladder reserving methods have been discussed in the actuarial literature for many

years. Taylor (1986) dates the original methodology back to Harnek (1966). Taylor (2000,

page 26) describes chain ladder models for reserving as those that chain a sequence of ratios

together (i.e., age to age factors) ‘into a ladder of factors ... which enable one to climb (i.e.

project) from experience recorded to date to its predicted ultimate value.’ Taylor (2000,

Chapter 3) provides a detailed overview of traditional chain ladder reserving methods, as

does Booth, Chadburn, Cooper, Haberman, and James (1999, Chapter 16). An example

using a traditional chain ladder method is given below (see Section 2).

In recent years, a number of authors have considered Bayesian methods for claims reserv-

ing. While not an exhaustive list, notable contributions on the topic are made by Verrall

(1989, 1990), Ntzoufras and Dellaportas (2002), de Alba (2002), England and Verrall (2002),

and Lamps (2002a, 2002b, 2002c). Verrall (1989, 1990) describes some ways in which the

traditional chain ladder method can be analyzed using the theory of Bayesian linear models.

These are inspired by work of Kremer (1982), who shows how to transform the multiplicative

chain ladder model into the form of the linear model associated with the two-way analysis of

variance by taking logarithms. Assuming positive and lognormally distributed incremental

claim amounts, Verrall (1990) demonstrates how this model can be analyzed using either an

empirical Bayesian or a parametric fully Bayesian approach in the context of hierarchical

linear modeling. Verrall (1989) emphasizes a Kalman filter (state space) approach in the

Bayesian analysis.

Ntzoufras and Dellaportas (2002) consider the Bayesian analysis of four models for claim

amounts using Markov chain Monte Carlo (MCMC) methods. Their models begin with an

assumption of lognormally distributed incremental claim amounts in an analysis of variance

setting. They go on to explore the use of state space modeling and the inclusion of additional

information in the form of inflation factors, measures of exposure (such as portfolio size),

and associated claim counts. In his discussion of Ntzoufras and Dellaportas (2002), Scollnik

(2002a) shows how the models of Ntzoufras and Dellaportas can be implemented using
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WinBUGS (specialized software for MCMC discussed later in this paper).

The paper by de Alba (2002) considers several model specifications that are essentially

the same as two of those appearing in Ntzoufras and Dellaportas (2002). Note that de Alba

(2002, page 8) states that Ntzoufras and Dellaportas (2002) require the number of claims per

year of origin be known and fixed in order for their MCMC procedure to be implemented.

In fact, Ntzoufras and Dellaportas (2002, page 128) permit this value to be a stochastic

variable and describe how to modify the MCMC procedure in this case. It turns out that

the principle difference between de Alba (2002) and Ntzoufras and Dellaportas (2002) is in

the method of implementation. Whereas Ntzoufras and Dellaportas (2002) emphasize the

use of a MCMC simulation method, de Alba (2002) describes how direct Monte Carlo can

be used instead. The former approach may be more accessible to the average practitioner,

especially if he or she wishes to introduce changes to the basic models. The paper by de

Alba (2002) is valuable for its summary of Bayesian reserving methods that have appeared

to date.

England and Verrall (2002a, 2002b) gift us with a detailed treatise on the state of current

claim reserving methodologies. The methodologies they describe are primarily non-Bayesian,

but they also discuss the Bayesian analysis of an over-dispersed Poisson chain ladder model

(England and Verrall, 2002a, pages 19-20 and 49-52). These authors also describe a variety

of generalized linear models appropriate for loss reserving; in principle, any of these models

could be implemented using a Bayesian method. Readers interested in pursuing this approach

may find the text “Generalized Linear Models: A Bayesian Perspective” of interest (Dey,

Ghosh, and Mallick, 2000).

Numerous authors, including Cairns (2000), Rosenberg and Young (1999), Scollnik (2001,

2002b), Ntzoufras and Dellaportas (2002), and de Alba (2002), along with many others ref-

erenced in these cited works, have described the advantages of Bayesian over traditional

non-Bayesian methods of analysis and given reasons for the popularity of Bayesian models

in recent years. Included among the commonly stated advantages of the Bayesian method of

analysis are these: it requires that the statistical model be completely specified; it allows one
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to incorporate relevant and significant prior information in the analysis when it is available;

it allows parameter and model uncertainty to be explicitly modeled and accounted for in

the analysis and in the resulting predictive forecasts; it yields complete posterior distribu-

tions for quantities of interest, and posterior predictive distributions for unobserved future

observations, not just point estimates or confidence intervals. In addition, Rosenberg and

Young (1999, page 132) note that the output of their particular ‘Bayesian method is easier

for actuaries to understand than output from non-Bayesian methods because actuaries are

used to thinking in terms of probability.’ This is probably true for most Bayesian methods

applied in actuarial contexts, including loss reserving. Readers unfamiliar with Bayesian

methods, or wishing an accessible review of modern Bayesian statistical modeling, will find

the books by Gelman, Carlin, Stern, and Rubin (2004) and Congdon (2001, 2003) of interest.

No doubt the development of MCMC simulation algorithms well-suited for Bayesian anal-

yses, together with the ubiquity of fast personal computers, have played a significant role in

popularizing Bayesian methods. Specialized software programs facilitating the application

of these MCMC algorithms to statistical models, notably WinBUGS, have for the first time

brought modern Bayesian data analysis into the hands of the average practitioner. The Win-

BUGS program, documentation, and related resources are freely available from The BUGS

Project website found at www.mrc-bsu.cam.ac.uk/bugs . Congdon (2001, 2003) emphasizes

the use of WinBUGS in his Bayesian texts. Scollnik (2001, 2002a, 2002b, 2002c) discusses

the operation of WinBUGS and illustrates its use in a variety of actuarial contexts.

The purpose of this paper is to examine some new Bayesian models for loss reserving,

inspired by a consideration of some of the traditional methods and techniques appearing in

the chain ladder literature. This paper will also direct the reader as to how these Bayesian

models can be implemented using WinBUGS. However, note that these Bayesian models

can be implemented using MCMC methods in a variety of programming languages, and can

serve as starting points for more advanced models. The reader should understand that a

feature of modern Bayesian statistical modeling with MCMC is its flexibility. Consequently,

it would be incorrect and misleading for this paper to suggest that a particular model must
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be used exactly as it is presented herein. The room exists for many subtle variations, as

the case warrants or as the practitioner desires. For this reason, although the paper will

mention a number of possible model variations that a practitioner may wish to explore, it

will not always go into explicit detail when it does so. We will assume that readers have

at least a basic understanding of the ideas presented in Scollnik (2001), to save us from

repeating summary reviews of Bayesian statistical modeling, MCMC, and WinBUGS that

have already appeared many times before in the actuarial (and statistical) literature.

In the next section, we will introduce a data set and develop its analysis using traditional

chain ladder methods. For instructional reasons, we will discuss how this basic analysis can

be implemented in WinBUGS. Subsequently, a variety of Bayesian models will be introduced

and applied to the same data set. The implementation of these Bayesian models in WinBUGS

will be an integral part of the discussion. Section 6 concludes and describes how code for

these illustrative models may be obtained.

2 A Data Set and Traditional Chain Ladder Analysis

Let Y [ i, j ] denote the claim amounts paid by the insurance company with a delay of j − 1

years for accidents reported in the year i , with i, j = 1, . . . , r . The value of j is commonly

known as the development period. Let Z[ i, j ] denote the cumulative claim amount for

accidents reported in the year i with a delay of j − 1 years or less. For convenience, we will

assume that the observed data is in the traditional upper triangular form such that Y [ i, j ]

and Z[ i, j ] are observed for i = 1, . . . , r and j = 1, . . . , r− i + 1 , and unobserved elsewhere.

We assume that the observed data has been adjusted for inflation. The incremental and

cumulative claims for just such a data set are given in Tables 1 and 2, respectively. This

data set appears in Chapter 16 (see Table 16.26) of Booth et al. (1999).

Define the single cell development factor devfac[ i, j ] as

devfac[ i, j ] =
Z[ i, j + 1 ]

Z[ i, j ]
, (1)

for i = 1, . . . , r and j = 1, . . . , r − 1. At the end of reporting year r, these factors are
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only observed for i = 1, . . . , r − 1, with j = 1, . . . , r − i. For our example, these factors

are reported in Table 3 (with r = 6). A traditional chain ladder reserving method uses the

observed data in order to estimate the missing single cell development factors in the lower

triangle. Then these estimated development factors are used, in conjunction with (1), to

develop estimates of the cumulative claim amounts in the lower triangle and, hence, of the

missing incremental claim amounts and the loss reserve.

There are many possible ways in which to construct estimates of the missing single cell

development factors in each column. Just to name a few possibilities, a practitioner might

use the arithmetic (or a weighted) mean of the observed factors in each column, the most

recent factor appearing in a column, or the average of some number (e.g., two or three) of

the most recent factors appearing in a column in order to complete each column’s missing

entries (see Brown and Gottlieb, 2001, pages 123-124). The popular set of estimates known

as the volume weighted development factors are given by

volwtdevfac[ j ] =

∑r− j
i =1 Z[ i, j + 1 ]∑r− j

i =1 Z[ i, j ]
, (2)

for j = 1, . . . , r − 1. Observe that the volume weighted development factors are weighted

averages of the single cell development factors, with the cumulative claim amounts appearing

in the denominator of the latter used as the weights involved in the calculation of the former.

Appearing in Table 3 are the volume weighted development factors for the data appearing

in Table 2. These factors were used to develop the estimates of the future cumulative and

incremental claim amounts reported in Tables 4 and 5, respectively. The example in Booth

et al. (1999) assumes future inflation of 12% per annum, and a 6% effective rate of interest

for discounting the inflated claim amounts back to the present. Applying this inflation rate

to the current money incremental claims in Table 5 produces the nominal incremental claim

amounts in Table 6. Discounting these back to the present using the assumed 6% effective

rate of interest produces the net present value incremental claims in Table 7. The current

money, nominal, and net present value reserves in Table 8 are obtained by summing the rows

in Tables 5, 6, and 7, respectively.

Nothing presented in the discussion above is new. However, it has provided us with a
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review of the basic chain ladder method along with notation and an example that we will

refer to throughout the remainder of the paper.

3 Implementing the Chain Ladder Method in WinBUGS

WinBUGS can be used to develop point estimates of the outstanding claims via the tradi-

tional chain ladder route making use of the volume weighted development factors (or some

other function of the observed single cell development factors) in the manner described above.

This is not a particularly exciting or useful application of WinBUGS as it merely reproduces

results that are as easy to develop using any spreadsheet package. However, the WinBUGS

code used in the process is instructive and will be used again in subsequent sections.

Assume that the observed incremental claim amounts Y [ i, j ] are read in as data. Then

the following WinBUGS code calculates the cumulative claim amounts defined up to and

including the present date, along with the volume weighted development factors. Minuscule

normal errors are added to the constant volume weighted development factors in order so that

they can be monitored as stochastic nodes in WinBUGS. Note that the second parameter in

the dnorm definition of a normal density is the precision, or inverse variance, parameter.

# Define the first column of the cumulative claims triangle.

for( i in 1 : r ) {

z[ i, 1 ] <- y[ i, 1 ]

}

# Compute the cumulative claim amounts in successive development periods

# up to and including the present date.

for( i in 1 : ( r - 1 ) ) {

for( j in 1 : ( r - i ) ) {

z[ i, j + 1 ] <- z[ i, j ] + y[ i, j + 1 ]

}

}
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# Calculate the traditional volume weighted development factors.

for( j in 1 : ( r - 1 ) ) {

volwtdevfac[ j ] <- sum( z[ 1 : ( r - j ), j + 1 ] ) /

sum( z[ 1: ( r - j ), j ] ) + normerror[ j ]

normerror[ j ] ~ dnorm( 0, 1000000000 )

}

Now, let Y.ns[ i, j ] and Z.ns[ i, j ] denote the non-stochastic chain ladder estimates for

the future incremental and cumulative claim amounts, developed on the basis of the observed

volume weighted development factors. The WinBUGS code below uses the volume weighted

development factors to project the claim amounts forward into the future development pe-

riods, thus yielding Y.ns[ i, j ] and Z.ns[ i, j ].

# Traditional model for incremental and cumulative claims.

for( i in 2 : r ) {

z.ns[ i, r - i + 1 ] <- z[ i, r - i + 1 ]

for( j in ( r - i + 1 ) : ( r - 1 ) ) {

z.ns[ i, j + 1 ] <- z.ns[ i, j ] * volwtdevfac[ j ]

y.ns[ i, j + 1 ] <- z.ns[ i, j + 1 ] - z.ns[ i, j ]

}

}

As mentioned earlier, the future incremental claim amounts can be adjusted for inflation

and present value discounting. Let the vectors lambda.inflate and lambda.discount contain

the anticipated inflation and appropriate discounting rates for future years. (Recall that

in the continuing example, the inflation and discounting rates are constant at 12% and 6%

effective per annum, respectively.) The following WinBUGS code uses these rate vectors to

develop the inflation and net present value adjusted incremental claims. It assumes that

claim payments are at the end of each year but the code is easily modified to fit other timing

assumptions.
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# Adjust claim amounts for inflation and present value discounting.

for( i in 2 : r ) {

for( j in ( r - i + 2 ) : r ) {

y.ns.inflate[ i, j ] <- y.ns[ i, j ] *

prod( lambda.inflate[ 1 : ( i + j - r - 1 ) ] )

y.ns.discount[ i, j ] <- y.ns.inflate[ i, j ] /

prod( lambda.discount[ 1 : ( i + j - r - 1 ) ] )

}

}

At this stage, the current money, nominal, and net present value reserves for each year

of origination can be obtained by simply summing the constituent future incremental claim

amounts over the appropriate cells. These calculations are coded below. The outstand.ns.row

variable label reminds us that the outstanding claim amounts, or reserves, are being calcu-

lated by row. (The reserves can also be obtained by calendar year, in which case the sums

would be defined over cells with fixed values of i+ j. See Scollnik (2002a, pages 134-135) for

details.)

for( i in 2 : r ) {

outstand.ns.row[ i ] <- sum( y.ns[ i, ( r + 2 - i ) : r ] )

outstand.ns.row.nom[ i ] <- sum( y.ns.inflate[ i, ( r + 2 - i ) : r ] )

outstand.ns.row.npv[ i ] <- sum( y.ns.discount[ i, ( r + 2 - i ) : r ] )

}

outstand.ns.row[ r + 1 ] <- sum( outstand.ns.row[ 2 : r ] )

outstand.ns.row.nom[ r + 1 ] <- sum( outstand.ns.row.nom[ 2 : r ] )

outstand.ns.row.npv[ r + 1 ] <- sum( outstand.ns.row.npv[ 2 : r ] )
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4 A Bayesian Chain Ladder Model

Our first Bayesian model builds on the presentation above and is based on the observation

that the single cell development factors tend to be similarly valued, given the development

year j . This is clearly illustrated by the continuing example in Table 3. Thus, our first

Bayesian analysis begins by specifying stochastic models with equal means for single cell

development factors sharing a common development year. We will assume normal models,

although others could be entertained (e.g., gamma or lognormal). Thus,

devfac[ i, j ] ∼ normal ( θ j , τ i, j ) , (3)

for i = 1, . . . , r and j = 1, . . . , r−1. Observe that negative incremental claims are permitted

by this model, since devfac[ i, j ] may be less than 1. The second parameter appearing in

this normal distribution is a precision, or inverse variance, parameter (in accordance with

the definition of the normal distribution in WinBUGS). The precision parameters τ i, j may

be modeled in a variety of ways. For example, they may be set equal to a common value,

say τ , for all values of i and j, or they may be set equal to a common value, say τj, for

all values of i given a particular j. Possibly, the parameters τ i, j may be scaled by relevant

weights. In this case, we could define τ i, j = τ ∗ weight[ i, j ] . The weights could be related

to the written premium associated with the different years of origination, or perhaps to the

number of claims associated with the different years of origination that settled in the latest

development period (for example). Ideally, the actuarial practitioner should make use of his

or her experience in order to construct a reasonable set of assumptions for model parameters

like τ i, j, given the line of business under consideration. If a practitioner must make a choice

between several possible model specifications, then the method of posterior predictive checks

(discussed later in this section) can be used to select the one that is most appropriate in

light of the data.

If desired, bounds on the unobserved development factors could be imposed by applying

interval restrictions to the relevant normal distributions. For example, imagine imposing

restrictions, based on extensive past experience, such that future cumulative claims cannot
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decline by more than 5% year over year. This may be accomplished in WinBUGS by in-

cluding a I( 0.95, ) term with each normal distribution definition. This is illustrated in the

WinBUGS code provided below. Note that interval restrictions coded with the I( , ) con-

struct in WinBUGS only apply to model parameters with unobserved values; that is, they

are automatically ignored for any model parameter that is observed. See the WinBUGS User

Manual and related documentation for more details on the use of I( , ). Observed model

parameters (including observed development factors) can still be modeled with interval re-

stricted distributions using the ‘zeros trick’ or ‘ones trick’ described in the WinBUGS User

Manual. See Scollnik (2001, 2002b, 2000c) for examples of this.

Next, we suppose that the underlying θ j parameters are drawn from a common normal

distribution,

θ j ∼ normal ( µ θ , τ θ ) , (4)

for j = 1, . . . , r − 1. Bounds or order restrictions may be placed on the θ j parameters

(e.g., so that they form a decreasing sequence) by using the I( , ) construct in WinBUGS as

discussed above. Order restrictions are probably superfluous when the development factors

are as clearly differentiated between different development years as they are in Table 3.

The model specification described above can be coded in WinBUGS as below (i.e., by

extending the code previously given so as to include the new definitions).

# Define the development factors for the observed data.

for( i in 1 : ( r - 1 ) ) {

for( j in 1 : ( r - i ) ) {

devfac[ i, j ] <- z[ i, j + 1 ] / z[ i, j ]

}

}

# Define the stochastic model for future cumulative claims.

for( i in 2 : r ) {

for( j in ( r - i + 1 ) : ( r - 1 ) ) {

z[ i, j + 1 ] <- z[ i, j ] * devfac[ i, j ]
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y[ i, j + 1 ] <- z[ i, j + 1 ] - z[ i, j ]

}

}

# Define a distribution on the development factors devfac.

for( i in 1 : r ) {

for( j in 1 : ( r - 1 ) ) {

# Uncomment / modify the I( 0.95, ) terms as desired.

devfac[ i, j ] ~ dnorm( mu.df[ i, j ], tau.df[ i, j ] ) # I( 0.95, )

mu.df[ i, j ] <- theta[ j ]

tau.df[ i, j ] <- tau * weight[ i, j ]

weight[ i, j ] <- 1 # Or whatever is appropriate.

}

}

# Code for unrestricted theta[ j ] nodes.

for( j in 1 : ( r - 1 ) ) {

theta[ j ] ~ dnorm( mu.theta, tau.theta )

}

# Illustrative code for order restricted (decreasing) theta[ j ] nodes.

# theta[ 1 ] ~ dnorm( mu.theta, tau.theta ) I( theta[ 2 ], )

# for( j in 2 : ( r - 2 ) ) {

# theta[ j ] ~

# dnorm( mu.theta, tau.theta ) I( theta[ j + 1 ], theta[ j - 1 ] )

# }

# theta[ r - 1 ] ~ dnorm( mu.theta, tau.theta ) I( 0, theta[ r - 2 ] )

The remaining parameters τ , µ θ, and τ θ must be assigned prior density specifications

in order to complete the definition of a full (i.e., fully specified) probability model. These

distributions may be diffuse proper priors or very informative ones, as the problem at hand

may warrant. In the first analysis of the continuing example to follow, we will assume that

τ ∼ gamma ( 0.001 , 0.001 ) ,
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µ θ ∼ normal ( 1 , 0.001 ) ,

τ θ ∼ gamma ( 0.001 , 0.001 ) .

These distributions all have means of 1 and variances of 1,000. They are meant to be

illustrative, and are by no means necessarily appropriate for default application. Other

prior density specifications will be presented in short order. Illustrative WinBUGS code is

presented below.

tau ~ dgamma( 0.001, 0.001 )

mu.theta ~ dnorm( 1, 0.001 )

tau.theta ~ dgamma( 0.001, 0.001 )

As in the previous section, we can adjust the incremental claim amounts for inflation

and present value discounting. The current money, nominal, and net present value reserves

for each year of origination can be obtained by simply summing the constituent future

incremental claim amounts over the appropriate cells. These calculations are coded below.

# Adjust claim amounts for inflation and present value discounting.

for( i in 2 : r ) {

for( j in ( r - i + 2 ) : r ) {

y.inflate[ i, j ] <- y[ i, j ] *

prod( lambda.inflate[ 1 : ( i + j - r - 1 ) ] )

y.discount[ i, j ] <- y.inflate[ i, j ] /

prod( lambda.discount[ 1 : ( i + j - r - 1 ) ] )

}

}

for( i in 2 : r ) {

outstand.row[ i ] <- sum( y[ i, ( r + 2 - i ) : r ] )

outstand.row.nom[ i ] <- sum( y.inflate[ i, ( r + 2 - i ) : r ] )
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outstand.row.npv[ i ] <- sum( y.discount[ i, ( r + 2 - i ) : r ] )

}

outstand.row[ r + 1 ] <- sum( outstand.row[ 2 : r ] )

outstand.row.nom[ r + 1 ] <- sum( outstand.row.nom[ 2 : r ] )

outstand.row.npv[ r + 1 ] <- sum( outstand.row.npv[ 2 : r ] )

The Bayesian analysis of this model yields the posterior distribution (i.e., not just point

estimates) for all unknown model parameters. This includes the posterior predictive distri-

bution of the unobserved claim and cumulative claim amounts (i.e., the reserves). Using

WinBUGS, it is a simple matter to estimate these posterior distributions, and their corre-

sponding means, standard deviations, desired percentiles, or any other summary statistics

of interest. Graphical summaries, such as histograms and estimated posterior density plots,

may also be easily generated in WinBUGS. See the WinBUGS User Manual or Scollnik

(2001) for details.

As previously noted, Scollnik (2001) provides a complete discussion addressing the specifics

of model checking and data loading, compiling and initializing, running, monitoring for con-

vergence and summarizing the results from a simulation coded in WinBUGS. These steps

were implemented for the present model. Four independent simulations were performed and

each was allowed to burn-in for 50,000 iterations. Each simulation was then run for an addi-

tional 50,000 iterations, over which the values of the unknown variables of interest (i.e., the

missing data and some unknown model parameters) were monitored and then summarized.

Thus, our posterior summaries are based on 4 ∗ 50,000 = 200,000 simulated values for each

unknown variable of interest.

Summary statistics for the predictive distribution of unobserved claim and cumulative

claim amounts are given in Tables 9, 10, and 11. Table 9 lists the predictive means, stan-

dard deviations, and 95% probability intervals for the future incremental claim amounts

in successive periods. These summary statistics are in current money; summary statistics

accounting for inflation and present value discounting are also available from the simulation
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run in WinBUGS, but are not reported due to space considerations. Table 10 lists the pre-

dictive means, standard deviations, and 95% probability intervals for the reserves associated

with the different years of origin. This table does include results for when the future claim

amounts are adjusted for inflation and present value discounting. As before, the inflation

and discounting rates are held constant at 12% and 6% effective per annum, respectively.

The predictive means reported in Tables 9 and 10 are generally close to the corresponding

traditional chain ladder estimates given in Tables 5 and 8. Generally, the predictive means

slightly exceed the traditional chain ladder estimates. However, each chain ladder estimate

is contained within the corresponding 95% posterior probability interval produced by the

Bayesian analysis.

From Tables 9 and 10, it is evident that the predictive distributions for the claim amounts

in future years and for the reserves are rather dispersed, with large standard deviations and

wide 95% posterior probability intervals. It is fair to ask how the variability in these results

compares with the variability inherent in standard non-Bayesian reserving methods. Booth

et al. (1999, Chapter 16) determined estimates of the total (current money) reserve and

variability thereof for the data set under consideration using the bootstrap method (Efron

and Tibshirani, 1993) and also a distribution free approach set forth in Mack (1993). See

Booth et al. (1999) for details of these calculations. The bootstrap method gave an estimate

of the expected total reserve equal to 153,077 with a sample standard deviation of 9,922.

Mack’s distribution free approach gave an estimate of the expected total reserve equal to

151,600 with the standard error of this prediction equal to 7004.5. The important point to

note is that these estimates of variability are with regard to the estimate of the mean (i.e.,

expected) total reserve, and not to the ‘actual’ value of the total reserve as given in Tables 9

and 10. Thus, it is incorrect to compare the measures of variability in Tables 9 and 10 for the

actual total reserve to the standard errors for the bootstrap and distribution free estimates

of the mean reserve. It is more sensible to compare the standard errors associated with the

traditional estimates to the Monte Carlo standard error estimates of the predictive mean

values. These Monte Carlo standard errors are also produced in WinBUGS and are reported
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in Table 11 for the reserves (under the ‘Base Model’ column heading). On this basis, the

Bayesian predictive estimates of the mean reserves in this example are actually somewhat

less variable than the estimates of the mean reserves developed using the two non-Bayesian

methods. Nonetheless, the results in Tables 9 and 10 serve to remind us just how variable

the predictive results for the actual (rather than the mean) values of the reserves really are.

A reviewer of this paper suggested that the two measures of variability presented in

the tables above, i.e., the standard deviation for the predicted actual reserves in Tables 9

and 10 and the Monte Carlo standard error for the predictive mean values in Table 11,

might be interpreted in a context of “acceptable ranges” or “reasonableness” for casualty

loss reserves. That is, if another actuary using a different reserving procedure arrives at a

reserve estimate that is within a narrow interval centered about one of the predictive mean

values given in Table 11, say within two Monte Carlo standard errors of the given predictive

mean value, then that reserve estimate should also be considered a reasonable value. If

the actual results subsequently fall in a wider range but still within, say, two standard

deviations of the predicted actual reserve or alternatively within the central 95% predictive

probability interval for the actual reserve as given in Table 10, then the model and the

original point estimate cannot be faulted. Of course, other interval widths could be used to

define acceptable ranges. This is easy to implement, as the output of the Bayesian method

we’ve described can easily be used to estimate percentiles of the predictive distribution for

the actual reserve. So, for example, we could use the 30 th and 70 th percentiles of the

predictive distribution to define an acceptable range. The issues of reserve variability and

ranges of reasonable reserve estimates were recently discussed in papers by Hayne (2003),

McClenahan (2003), and Shapland (2003).

Table 11 also contains results for two variations on the base model described above.

Both correspond to simple variations on the prior density specifications and are provided for

illustration. The first model variation assumes that

τ ∼ gamma ( 1.5625 , 0.0025 ) ,

µ θ ∼ normal ( 1 , 1 ) ,
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τ θ ∼ gamma ( 1.5625 , 0.0025 ) .

This implies that 1/
√

τ and 1/
√

τ θ both have a prior mean and standard deviation of

(approximately) 0.054 and 0.038, respectively. Recall that τ and τ θ are the precision pa-

rameters (inverse variances) associated with the conditional prior distributions (3) and (4)

for devfac[ i, j ] and θ j, for i = 1, . . . , r and j = 1, . . . , r − 1. Hence, 1/
√

τ and 1/
√

τ θ

are the corresponding conditional prior standard deviations for the parameters devfac[ i, j ]

and θ j, respectively. Also, recall that the parameter µ θ is the prior conditional mean for θ j,

for j = 1, . . . , r − 1. The prior density specification given above assigns µ θ a conditional

prior mean and standard deviation that are both equal to 1. The prior density specification

inherent in this model variation is quite different from the one we started with, in which

the parameters τ , µ θ, and τ θ all shared common means and variances equal to 1 and 1,000,

respectively. The second model variation is the same as the first variation described above,

except that the unobserved devfac[ i, j ] parameters are now restricted to be no less than

0.95. Both model variations were easily implemented in WinBUGS, and summary output

from the corresponding simulations is presented in Table 11.

Which of the models presented above is correct? None of them, of course. It is rare

that any statistical model fit to real world data is correct (i.e., completely and accurately

describes the underlying process) since the true state of affairs is unknowable and, no doubt,

often far more complicated than we can imagine. The best a practitioner can hope for is

to select a sensible and interpretable model that is consistent with both the past experience

and the observed data, and that also yields good predictions. See Klugman, Panjer, and

Willmot (1998) for a general discussion of the modeling process and the stages it encompasses,

including model checking and selection. In the Bayesian setting, one approach towards model

checking and selection depends on the use of posterior predictive checks. This approach is

described in detail in Chapter 6 of Gelman, Carlin, Stern, and Rubin (2004, pages 159-

176). Scollnik (2002c) illustrates it in the context of size-of-loss models for exact data. The

discussion in the next few paragraphs draws from these sources.
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The main idea behind posterior predictive checking as described in Gelman et al. (2004)

is to simulate a new sample of replicated data for each set of simulated model parameters,

and then compare the characteristics of the replicated data samples with those of the original

data set. If the model is a good fit to the orginal data set, then the characteristics of the

original and replicated data should be similar. To explain this further in a general context, let

x denote a vector of observed data, let θ denote the vector of unknown model parameters for

the model associated with the observed data, and let xrep denote a vector of replicated data

that could be observed if a new sample of observations is sampled from the same model and

with the same model parameter values used to generate x. Of course, the observed data x is

fixed whereas the values of x rep and θ, written together as ( x rep, θ ), are unknown and have

a joint posterior distribution. We suppose that values of ( x rep, θ ) are jointly simulated in

the course of a simulation based Bayesian analysis (e.g., using WinBUGS; see the WinBUGS

User Manual and Scollnik (2002c) for some examples and tips on coding replicated data).

Let T ( x, θ ) denote a test quantity or discrepancy measure, defined as a scalar summary

of the data and possibly also of the model parameters, that will be used as a standard to

compare the observed data to the replicated data. The particular choice(s) of T ( x, θ ) will

depend on the problem context and the particular characteristic(s) of the model and data that

the practitioner is interested in examining. Suppose interest lies in the spread or dispersion

of the data. In this case, some obvious test quantity candidates are T 1( x, θ ) = max(xi) −

min(xi) and T 2( x, θ ) =
∑n

i=1( x i − x̄ ) 2. Since the test quantity is allowed to depend on the

model parameters as well as the data, the sum of the squared deviations of the observed data

values around their theoretical means given θ, that is, T 3( x, θ ) =
∑n

i=1( x i − E( X i | θ ) ) 2,

could also be employed. Note that T 1( x, θ ) and T 2( x, θ ) are both fixed, given the observed

data, for all values of θ, whereas T 3( x, θ ) will vary with θ. This is inconsequential so far

as the method of posterior predictive checking is concerned, except that it affords greater

flexibility in the construction of test quantities. On the other hand, recall that traditional

non-Bayesian statistics used in classical testing are functions of the data only, and never of

the model parameters.
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Now, observe that any given discrepancy measure can also be calculated using the pos-

terior simulations of ( x rep, θ ) in order to obtain values we denote T (x rep, θ ). These values

of T ( x rep, θ ) may be monitored and compared to those of T ( x, θ ). In this manner, we

can judge whether the model under consideration is generating replicated data with charac-

teristics similar to those exhibited by the original data set. If not, another model may be

entertained. In order to measure the lack of fit of the observed data to the model and its

associated posterior predictive distribution, Gelman et al. (2004) suggest using the tail-area

posterior probability, or ‘Bayes p-value’, of the test quantity. This p-value is defined as the

posterior probability that the replicated data is more extreme than the observed data, as

measured by the test quantity and given the assumed model. Mathematically, this can be

written as

Bayes p-value = Pr( T ( x rep, θ ) ≥ T ( x, θ ) |x ) , (5)

with the probability understood to be taken over the joint posterior distribution of ( x rep, θ ).

In WinBUGS, this probability can be estimated by monitoring the value of an indicator

function defined to be 1 whenever the inequality in the expression above holds, and 0 oth-

erwise (see the WinBUGS User Manual and Scollnik (2002c) for examples). If the tail-area

probability (5) is close to 0 or 1 for some meaningful test quantity, then the assumed model

is suspect and serious consideration should be given towards entertaining another.

For each of the Bayesian reserving models discussed in this section, we monitored the

p-values associated with two test quantities. These test quantities were taken equal to the

sample mean and the sample standard deviation. The p-values for these two test quantities

are reported in Table 12 in the rows labeled (1) and (2), respectively, for each model. On

the basis of these p-values, none of the models is judged to be particularly suspect. We

also monitored the posterior distribution for another quantity, this being the sum of squared

deviations between the replicated data and the observed data values. As this quantity is a

function of both the observed and replicated data it cannot serve as a formal discrepancy

measure in the sense of Gelman et al. (2004) as discussed above, but it still provides a

useful overall posterior summary of a model’s fit to the observed data. Its posterior mean
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values are reported in the row labeled (3) in Table 12, for each model. It appears that the

base model performs slightly better, overall, than the two variants. However, this should be

monitored over future years and changes introduced to the model if and when necessary.

Other Bayesian approaches to model checking and selection do exist. Ntzoufras and

Dellaportas (2002) considered several models for outstanding liabilities, and used a predictive

measure for model selection based on a criterion given in Laud and Ibrahim (1995). Scollnik

(2000, 2002b) uses the negative log likelihood to assist in Bayesian model selection in a

variety of actuarial contexts. Spiegelhalter, Best, Carlin, and van der Linde (2002) present

various other Bayesian measures of model complexity and fit. Interested readers are directed

to these references for more information.
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5 A Bayesian Bornhuetter-Ferguson Model

In the previous section, a full probability model was presented for the single cell development

factors. This Bayesian model was analyzed using WinBUGS. The output of this analysis

included knowledge concerning the posterior distribution associated with the single cell de-

velopment factors. The idea pursued in this section is to combine knowledge concerning the

claim development pattern given by the posterior distribution of the development factors

with additional knowledge concerning the level of ultimate claims associated with each year

of origination (i.e., we are adding another level to the model discussed previously). This ap-

proach is inspired by the traditional Bornhuetter-Ferguson reserving method (Bornhuetter

and Ferguson, 1972), although our implementation and interpretation are plainly different

(i.e., being stochastic and Bayesian in nature). As the reader will observe, this approach

could be combined with many other Bayesian reserving models (e.g., such as those described

in Ntzoufras and Dellaportas, 2002, or de Alba, 2002), not just the one described in the

previous section.

Let R [ i, j ] denote the proportion of ultimate claims associated with year of origination

i, observed by the end of development period j. In terms of the single cell development

factors defined previously we have

R [ i, j ] =
1∏r− 1

k = j devfac[ i, k ]
, (6)

for i = 1, . . . , r and j = 1, . . . , r − 1. In WinBUGS, this may be coded as below.

for( i in 1 : r ) {

for( j in 1 : ( r - 1 ) ) {

R[ i, j ] <- 1 / prod( devfac[ i, j : ( r -1 ) ] )

}

}

The value 1−R [ i, j ] is equal to the proportion of the ultimate claims associated with year of

origination i observed (or to be observed) after development period j, while the value R [ i, j−
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1 ] − R [ i, j ] is equal to the proportion observed (or to be observed) in development period

j (i.e., between the ends of period j − 1 and period j). In the Bayesian context, the R [ i, j ]

values are stochastic variables or nodes, as they are functions of the stochastic development

factors. The traditional Bornhuetter-Ferguson method uses fixed point estimates for the

R [ i, j ] values, possibly constructed using observed volume-weighted development factors in

place of the development factors appearing in the denominator on the right hand side of (6).

The traditional Bornhuetter-Ferguson reserving method next takes an independent es-

timate of the ultimate claims associated with each year of origination, and parcels it into

the different development periods in a manner consistent with the proportions suggested

by the observed development process. (By an independent estimate, we mean one coming

from a new source of information.) The total amount of the ultimate claims parceled into

development periods that are as yet unobserved for a given year of origination constitute

the reserves for that year. Let ultimate[ i ] denote the independent estimate of the ultimate

claims associated with year of origination i, for i = 1, . . . , r. Then, for year of origination i,

the amount of the ultimate claims arising in development period 1 is given by

ultimate[ i ] ∗R [ i, 1 ] ; (7)

the amount arising in development period j is given by

ultimate[ i ] ∗ ( R [ i, j ] − R [ i, j − 1 ] ) (8)

for j = 2, . . . , r − 1; and the amount arising in development period r is given by

ultimate[ i ] ∗ ( 1 − R [ i, r − 1 ] ) . (9)

It is important to note that these amounts are consistent with (i.e., defined on the basis of)

the development patterns defined by the development factors in the paragraphs above, and

with the estimates of the ultimate claims.

The values (7), (8), and (9) are easily defined in WinBUGS, and then monitored as the

simulation proceeds. Illustrative WinBUGS code corresponding to (7), (8), and (9) is given

below.
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for( i in 1 : r ) {

bfcell.curr[ i, 1 ] <- ultimate[ i ] * R[ i, 1 ]

for( j in 2 : ( r - 1 ) ) {

bfcell.curr[ i, j ] <- ultimate[ i ] * ( R[ i, j ] - R[ i, j - 1 ] )

}

bfcell.curr[ i, r ] <- ultimate[ i ] * ( 1 - R[ i, r - 1 ] )

}

The revised reserve associated with a given year of origination is equal to the sum of the

bfcell.curr[ i, j ] values over the unobserved development periods for that year. Note that the

bfcell.curr[ i, j ] current money amounts are easily converted to nominal or net present value

amounts, if so desired (as were other current money amounts in the previous sections).

The simulated values generated for (7), (8), and (9) are random draws from the posterior

distribution for these random quantities (i.e., assuming, of course, that the simulation has

been allowed to converge). The simulated values associated with unobserved development

periods in a given year of origination are random draws from the posterior distribution for

a set of reserves for these periods that have been modified in accordance with a procedure

in the spirit of the traditional Bornhuetter-Ferguson method. They allow us to estimate

the posterior distribution (i.e., its mean, variance, shape, percentiles, etc.) for the revised

reserve, in light of our knowledge concerning the ultimate claim level, whereas the traditional

Bornhuetter-Ferguson method yields only a point estimate.

Often, the independent estimate of the ultimate claim amount associated with a given

year of origination is constructed from the written premium and the initial expected loss

ratio (i.e., defined as their product) for that year. This is our assumption, but others are

easily accommodated. Let premium[ i ] and lossratio[ i ] denote the written premium and a

loss ratio (e.g., some measure of total losses divided by premium) associated with year of

origination i, for i = 1, . . . , r. Then,

ultimate[ i ] = premium[ i ] ∗ lossratio[ i ] ,
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for i = 1, . . . , r. These values are all defined in terms of current money, in order to be

consistent with the previous definition of the development factors. The written premium

values are assumed to be known. The values of the loss ratios may be fixed (i.e., non-

stochastic) or random (i.e., stochastic). In either case, they may also vary, or not, with the

year of origination.

The model described in this section will be applied to the same data as before. The

necessary written premium values for each year are given in Table 13. (These values appear

in Table 16.43 of Booth et al. (1999). We assume that they have already been adjusted

into current money.) We consider four different analyses, corresponding to four extensions of

the base model discussed in the previous section (as summarized in Tables 11 and 12) along

the lines described above. These analyses differ only in the assumed manner in which the

loss ratio values lossratio[ i ] are modeled, for i = 1, . . . , r. As usual, these approaches are

illustrative and a practitioner may find that another set of assumptions is more appropriate

for the particular context under consideration.

For the first loss ratio specification, the loss ratio associated with each year of origin is

simply set equal to a fixed value of 0.8. The ultimate claim for a particular year of origin

is defined as the product of the written premium and the loss ratio for the year in question.

The WinBUGS code for this simple case is given below.

for( i in 1 : r ) {

lossratio[ i ] <- 0.8

ultimate[ i ] <- premium[ i ] * lossratio[ i ]

}

Table 14 lists the posterior means, standard deviations, and 95% probability intervals for the

reserves associated with the different years of origin under the base model, revised in light of

the additional knowledge concerning the level of ultimate claims provided by the loss ratios

as above. These summaries are reported in current money, and also for when adjustments

are made for inflation and present value discounting. As before, the inflation and discounting
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rates are held constant at 12% and 6% effective per annum, respectively. The first column

in Table 15 reports the posterior means along with their associated Monte Carlo standard

errors. All summaries are based on four chains run for 50,000 iterations, following 50,000

burn-in iterations as before.

For the second specification, an underlying loss ratio parameter mu.lossratio is taken to

be normally distributed with a mean of 0.8 and a standard deviation of 0.1 (i.e., a precision

of 100). Conditional on this parameter, the loss ratios associated with the different years of

origination are independently and identically normally distributed with their common means

equal to mu.lossratio and their common standard deviations equal to 0.025 (i.e., precisions

equal to 1,600). The WinBUGS code for this case is as follows.

mu.lossratio ~ dnorm( 0.8, 100 )

for( i in 1 : r ) {

lossratio[ i ] ~ dnorm( mu.lossratio, 1600 )

ultimate[ i ] <- premium[ i ] * lossratio[ i ]

}

Abbreviated summary results (i.e., posterior means and Monte Carlo standard errors) for

the revised reserves under this analysis are given in the second column of Table 15. The

posterior means are similar to those in the first column, but the Monte Carlo standard

errors are now slightly larger. This is as expected since the loss ratios are now allowed to

vary symmetrically about their previous fixed level of 0.8, thus increasing the variability in

the predictions.

The third and fourth loss ratio specifications are somewhat more interesting than the first

two, and illustrate a novel modeling twist. The WinBUGS code for the third specification

is given below, followed by an explanation.

mu.lossratio <- 0.8
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for( i in 1 : r ) {

lossratio[ i, 1 ] ~ dnorm( mu.lossratio, 1600 )

lossratio[ i, 2 ] <- sum( y[ i, 1 : r ] ) / premium[ i ]

lossratio[ i, 3 ] <- cut( lossratio[ i, 2 ] )

# lossratio[ i, 3 ] ~ dnorm( lossratio[ i, 1 ], 1600 )

# Use the zeros trick code below in place of line above in

# order to avoid defining the lossratio[ i, 3 ] node twice.

#

zero[ i ] <- 0

zero[ i ] ~ dpois( lambda[ i ] )

lambda[ i ] <- 1600 * ( lossratio[ i, 3 ] - lossratio[ i, 1 ] ) *

( lossratio[ i, 3 ] - lossratio[ i, 1 ] ) / 2

ultimate[ i ] <- premium[ i ] * lossratio[ i, 1 ]

}

In this specification, the nodes lossratio[ i, j ], for j = 1, 2, 3, correspond to loss ratio param-

eters associated with year of origination i, for i = 1, . . . , r. For ease of discussion, consider

just the year of origin k (i.e., i = k). The other years will be treated in an analogous fashion.

The first of the nodes, lossratio[ k, 1 ], represents the ‘true’ loss ratio for this year and is

sampled from an underlying normal population with mean mu.lossratio. This is a statement

of prior knowledge and can be modified as necessary. The second node, lossratio[ k, 2 ], is set

equal to the actual loss ratio given the (observed and current simulated) values of Y [ k, j ]

and the known value of premium[ k ]. Although our assumption is that the unobserved values

of Y [ k, j ] are being simulated in WinBUGS on the basis of the model defined in the previous

section, we observe again that they could be simulated by another Bayesian model (e.g., as

in Ntzoufras and Dellaportas, 2002, or de Alba, 2002). We would like to ‘borrow’ the value

of the actual loss ratio, lossratio[ k, 2 ], from the first part of the model, and treat it as a

random draw from a normal population with mean lossratio[ k, 1 ]. This knowledge would

enable us to adjust our prior opinion for the ‘true’ loss ratio, lossratio[ k, 1 ], by computing

(via WinBUGS) a posterior distribution for this parameter, on the basis of the sample ob-
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servation lossratio[ k, 2 ]. The value of the ultimate claim ultimate[ k ] used in the calculation

of the revised (i.e., Bornhuetter-Ferguson styled) reserves would be determined on the basis

of the posterior distribution for lossratio[ k, 1 ], as coded above.

Conceptually, the procedure described above is reasonable but it is complicated by the

fact that sample information generally cannot be included more than once in the overall

likelihood function. This means that lossratio[ k, 2 ] cannot be assigned a normal distribution

since it is already defined as a deterministic function of the stochastic nodes Y [ k, j ], for

j = 1, . . . , r. In other words, the node lossratio[ k, 2 ] already has a stochastic distribution

implicitly defined for it, through the Y [ k, j ], for j = 1, . . . , r. However, it is not our

intention to define a distribution on the node lossratio[ k, 2 ] in order to adjust the posterior

distribution of the unobserved Y [ k, j ] nodes used in the calculation of the original reserves

for year k. Doing so would effectively ‘double-count’ the effect of the Y [ k, j ] nodes. Rather,

we wish to borrow its value from one part of the analysis in order to adjust a prior distribution

used in another part, in the calculation of an entirely new set of reserves.

Borrowing information from one part of a model for use in another in a situation like that

described above can be accomplished in WinBUGS via the “cut” function. The WinBUGS

User Manual describes the cut function as a kind of valve that allows information to flow

in one direction but not the other. This allows evidence from one part of a model to play

a role in a second part, without feedback from the second part of the model contaminating

the first. Hence, the introduction of the node lossratio[ k, 3 ] set equal to the cut value of

lossratio[ k, 2 ]. The node lossratio[ k, 3 ] (with numerical value equal to lossratio[ k, 2 ]) can

be assigned the desired normal distribution with mean lossratio[ k, 1 ], thus adjusting the

prior distribution of lossratio[ k, 1 ], without this assignment filtering back and impacting the

posterior distribution of the unobserved Y [ k, j ] nodes.

Unfortunately, WinBUGS will not allow lossratio[ k, 3 ] to be directly assigned as a stochas-

tic node in the usual fashion. The obvious standard declaration in WinBUGS,

lossratio[i, 3] ∼ dnorm(lossratio[i, 1], 1600) , (10)

results in a compilation error. This is due to the fact that lossratio[ k, 3 ] is already defined
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and set equal to (the cut value of) lossratio[ k, 2 ]. For this reason, the standard declaration

mentioned above is commented out in the WinBUGS code given earlier. In its place are

several lines of code implementing the “zeros trick” that is described in the WinBUGS User

Manual. This trick constructs terms in the overall model’s likelihood function that are

proportional to those that would be generated by (10). The zeros trick has been used, along

with a related “ones” trick, in actuarial modeling contexts by Scollnik (2002b, 2002c). Both

tricks are very well described in the WinBUGS User Manual.

The normal populations employed in the third loss ratio specification are all assigned

precisions equal to 1,600 (i.e., standard deviations equal to 0.025). These values may be

adjusted as the practitioner sees. They could also be defined so as to vary with the year of

origination. Equal precisions are used in the third specification to illustrate the situation

in which equal weight is being given to the prior information and the sample information

concerning the true loss ratio lossratio[ k, 1 ]. The fourth loss ratio specification is identical

to the third, except that the precision involved in (10) is changed to 400 (i.e., a standard

deviation of 0.05). This illustrates the case in which more faith is being placed in the prior

information than in the sample based information, as discussed below.

Readers familiar with the Kimeldorf-Jones method of graduation may recall how normal

distributions blend together in accordance with the following basic normal distribution theory

(see Section 5.4 of London, 1985). Suppose the random variable T has a marginal distribution

that is normal,

T ∼ normal ( M , A ) ,

and suppose that the conditional distribution of U , given T , is normal as well, such that

T |U ∼ normal ( T , B ) .

The first parameters in these normal distributions are means while the second are precisions

(inverse variances). Then, the conditional distribution of T , given U , is also normal and is

such that

U |T ∼ normal ( V , C ) .

28



In this expression, the conditional mean and precision are equal to

V =
A M + B U

A + B
=

(
A

A + B

)
M +

(
B

A + B

)
U

and

C = A + B ,

respectively. These relations can be used as guides when setting the precisions in the model

defining the revised reserves. For example, the values A = 1,600 and B = 400 will assign

weights of 0.8 and 0.2 to the prior mean and the single sample observation, respectively, in

the calculation of the conditional mean for T , given U .

The situation with the revised reserves is a little more complicated since the node cor-

responding to U (i.e., lossratio[ k, 3 ]) is dynamic and changes values as the simulation pro-

gresses. Still, an examination of the abbreviated summary results in Table 15 for the revised

reserves under the third loss ratio specification reveals that they are approximately mid-

way between the reserves given for the base model in Table 11 and the revised reserves

under the first loss ratio specification in Table 15; under the fourth specification, they are

approximately equal to a 20% / 80% weighted average of the two.

England and Verrall (2002a, Section 6.3) discuss an over-dispersed Poisson chain ladder

model in which (using their notation) the incremental claims C i, j are independently dis-

tributed with means x i y j and variances φx i y j. Here, x i is the expected ultimate claim in

year of origination i, y j is the proportion of ultimate claims to emerge in development year j,

and the parameter φ is positive (and greater than unity if the model is over-dispersed). See

Renshaw and Verrall (1998) for more details of this model. England and Verrall (2002a, page

19) state that ‘the Bornhuetter-Ferguson technique assumes that there is prior knowledge

about’ the row parameters {x i}, ‘making the Bornhuetter-Ferguson technique analogous to

a Bayesian approach.’ These authors then assign independent gamma prior distributions to

the x i parameters, with expected values set equal to the anticipated value of the ultimate

claims. Clearly, their approach differs from the one introduced in this section.

Whether the approach described by England and Verrall (2002a, 2002b) or the one de-

scribed in this section is closer in spirit to the traditional Bornhuetter-Ferguson technique
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is debatable and irrelevant. However, we will point out one last time that the Bornhuetter-

Ferguson style of approach developed in this section can be combined with many other

Bayesian reserving models when the additional written premium information and prior

knowledge regarding the loss ratios are available. The impact of the Bornhuetter-Ferguson

styled revision can be adjusted by the practitioner through the precisions of the normal

distributions involved, as discussed and illustrated above.

6 Final Remarks

This paper explored some Bayesian models for loss reserving along with their implementation

using WinBUGS. WinBUGS enabled a variety of prior density specifications to be considered,

allowed modifications in the models to be introduced, and yielded reliable information about

the predictive accuracy associated with the reserve estimates. Model selection via posterior

predictive checking was also considered. A secondary modeling approach, inspired by the

traditional Bornhuetter-Ferguson method of reserving, allowed reserve revision to take place

in order to incorporate external knowledge relating to written premiums and loss ratios.

WinBUGS code implementing the models presented in this paper (under WinBUGS 1.4) is

available upon request from the author. Hopefully, the ideas presented in this paper will

inspire and encourage others to consider how other traditional reserving methods may be

embedded in a Bayesian framework.
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Table 1

Incremental Claim Amounts, Adjusted for Inflation.

Year of Development Period (j)

Origin 1 2 3 4 5 6

1991 115,239 56,055 14,691 10,255 5,530 3,102

1992 121,528 57,911 15,221 9,339 5,336

1993 115,427 53,957 12,498 8,543

1994 113,008 46,666 11,050

1995 109,881 53,408

1996 128,982

Table 2

Cumulative Claim Amounts, Adjusted for Inflation.

Year of Development Period (j)

Origin 1 2 3 4 5 6

1991 115,239 171,294 185,985 196,240 201,770 204,872

1992 121,528 179,439 194,660 203,999 209,335

1993 115,427 169,384 181,882 190,425

1994 113,008 159,674 170,724

1995 109,881 163,289

1996 128,982



Table 3

Ratios of Cumulative Claim Amounts in Successive Periods.

Year of Development Period (j)

Origin 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6

1991 1.486424 1.085765 1.055139 1.028180 1.015374

1992 1.476524 1.084825 1.047976 1.026157

1993 1.467456 1.073785 1.046970

1994 1.412944 1.069204

1995 1.486053

1996

Volume Weighted

Development Factor 1.466014 1.078642 1.050019 1.027149 1.015374

Table 4

Future Cumulative Claim Amounts in Successive Periods.

Year of Development Period (j)

Origin 1 2 3 4 5 6

1991

1992 212,553

1993 195,595 198,602

1994 179,263 184,130 186,961

1995 176,130 184,940 189,961 192,882

1996 189,090 203,960 214,162 219,976 223,358



Table 5

Future Incremental Claim Amounts in Successive Periods.

Year of Development Period (j)

Origin 1 2 3 4 5 6

1991

1992 3,218

1993 5,170 3,007

1994 8,539 4,867 2,831

1995 12,841 8,810 5,021 2,920

1996 60,107 14,870 10,202 5,814 3,382

Table 6

Future Incremental Claim Amounts in Successive Periods,

with Inflation of 12% Per Annum.

Year of Development Period (j)

Origin 1 2 3 4 5 6

1991

1992 3,605

1993 5,790 3,772

1994 9,564 6,105 3,977

1995 14,382 11,051 7,054 4,595

1996 67,320 18,653 14,333 9,149 5,960



Table 7

Future Incremental Claim Amounts in Successive Periods,

with Inflation of 12% Per Annum, Discounted at 6% Per Annum.

Year of Development Period (j)

Origin 1 2 3 4 5 6

1991

1992 3,400

1993 5,462 3,357

1994 9,023 5,433 3,339

1995 13,568 9,835 5,923 3,640

1996 63,510 16,601 12,034 7,247 4,454

Table 8

Reserves, with and without Future Inflation and Present Value Discounting.

Year of Reserve

Origin Current Money Nominal Net Present Value

1992 3,218 3,605 3,400

1993 8,177 9,562 8,820

1994 16,237 19,646 17,795

1995 29,592 37,082 32,966

1996 94,375 115,415 103,845

Total 151,599 185,310 166,826



Table 9

Predictive Means, SDs, and 95% Probability Intervals

for Future Incremental Claim Amounts.

Year of Development Period (j)

Origin 2 3 4 5 6

1992 3,682 (8,050)

( -12,260, 19,880)

1993 5,375 (6,362) 3,405 (7,566)

(-7,273, 18,110) (-11,490, 18,640)

1994 8,658 (5,379) 5,057 (6,010) 3,238 (7,095)

(-2,052, 19,400) (-6,832, 17,090) (-10,760, 17,480)

1995 12,830 (4,990) 8,934 (5,556) 5,201 (6,203) 3,341 (7,325)

(2,916, 22,770) (-2,090, 20,010) (-7,078, 17,630) (-11,070, 18,150)

1996 59,910 (3,861) 14,840 (5,773) 10,310 (6,415) 6,048 (7,173) 3,861 (8,490)

(52,160, 67,550) (3,362, 26,380) (-2,407, 23,160) (-8,116, 20,500) (-12,860, 20,960)



Table 10

Bayesian Estimation of Reserves, with and without Future Inflation and Present

Value Discounting: Predictive Means, SDs, and 95% Probability Intervals.

Year of Reserve

Origin Current Money Nominal Net Present Value

1992 3,682 (8,050) 4,123 (9,016) 3,890 (8,506)

(-12,260, 19,880) (-13,730, 22,270) (-12,950, 21,010)

1993 8,780 (9,964) 10,290 (11,960) 9,481 (10,880)

(-10,610, 29,100) (-12,990, 34,760) (-11,700, 31,720)

1994 16,950 (10,930) 20,590 (14,100) 18,610 (12,340)

(-4,100, 39,440) (-6,527, 49,670) (-5,133, 44,070)

1995 30,300 (12,560) 38,140 (17,480) 33,830 (14,700)

(6,239, 56,470) (4,690, 74,610) (5,719, 64,470)

1996 94,970 (15,240) 116,500 (23,290) 104,700 (18,640)

(66,050, 126,700) (72,400, 165,100) (69,320, 143,400)

Total 154,700 (38,830) 189,700 (53,720) 170,050 (45,280)

(79,510, 234,300) (85,770, 299,800) (82,920, 263,300)



Table 11

Predictive Mean Reserves and Monte Carlo Standard Errors.

Year of Reserve in Current Money

Origin Base Model Variant 1 Variant 2

1992 3,682 (18.38) 4,101 (19.81) 5,413 (38.12)

1993 8,780 (22.49) 9,351 (23.27) 10,970 (44.43)

1994 16,950 (25.49) 17,560 (25.38) 19,120 (47.34)

1995 30,300 (29.23) 31,000 (29.67) 32,600 (52.31)

1996 94,970 (34.61) 95,520 (36.19) 97,370 (58.8)

Total 154,700 (89.19) 157,500 (93.45) 165,500 (215.0)

Table 12

Illustrative Posterior Predictive Measures of Model Fit.

Measure Model

of Fit Base Model Variant 1 Variant 2

(1) 0.4897 0.4949 0.5189

(2) 0.5899 0.5725 0.5625

(3) 5387 5606 5447



Table 13

Written Premium for Each Year of Origin.

Year Premium

1991 292,674

1992 303,647

1993 283,718

1994 267,086

1995 275,545

1996 319,082



Table 14

Bayesian Revised Reserves, with and without Future Inflation and Present

Value Discounting: Predictive Means, SDs, and 95% Probability Intervals.

Year of Reserve

Origin Current Money Nominal Net Present Value

1992 3,856 (9,075) 4,318 (10,160) 4,074 (9,588)

(-15,030, 21,010) (-16,830, 23,530) (-15,880, 22,200)

1993 9,460 (10,910) 11,080 (13,110) 10,210 (11,920)

(-13,390, 30,000) (-16,320, 35,770) (-14,740, 32,650)

1994 18,580 (11,390) 22,520 (14,790) 20,380 (12,900)

(-5,428, 39,990) (-8,553, 50,420) (-6,785, 44,650)

1995 33,710 (12,080) 42,320 (17,140) 37,590 (14,260)

(8,250, 56,470) (6,397, 74,680) (7,611, 64,530)

1996 107,600 (10,080) 131,600 (17,740) 118,400 (13,250)

(86,300, 126,500) (94,470, 165,100) (90,580, 143,300)

Total 173,200 (36,450) 211,900 (51,500) 190,600 (42,930)

(97,700, 243,100) (105,400, 310,600) (101,800, 273,000)



Table 15

Posterior Mean Revised Reserves and Monte Carlo Standard Errors.

Year of Revised Reserve in Current Money

Origin Specification 1 Specification 2 Specification 3 Specification 4

1992 3,856 (20.13) 3,816 (21.17) 3,596 (19.59) 3,739 (20.31)

1993 9,460 (24.97) 9,471 (25.26) 8,897 (24.2) 9,245 (24.8)

1994 18,580 (26.77) 18,630 (27.26) 17,490 (25.6) 18,170 (25.96)

1995 33,710 (27.86) 33,690 (29.47) 31,660 (28.66) 32,890 (28.41)

1996 107,600 (22.6) 107,500 (37.51) 101,000 (35.57) 105,000 (30.25)

Total 173,200 (84.6) 173,100 (97.52) 162,600 (88.68) 169,000 (86.68)


