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Abstract

The classical result of Cramer-Lundberg states that if the rate of
premium, c, exceeds the average of the claims paid per unit time, λµ,
then the probability of ruin of an insurance company decays exponen-
tially fast as the initial capital u → ∞. In this note, the asymptotic
behavior of the probability of ruin is derived by means of infinitesimal
generators and Laplace transforms. Using these same tools, it is shown
that the probability of ruin has an algebraic decay rate if the insurance
company invests its capital in a risky asset with a price which follows
a geometric Brownian motion. The latter result is shown to be valid
not only for exponentially distributed claim amounts, as in Frolova
et al. (2002), but, more generally, for any claim amount distribution
that has a moment generating function defined in a neighborhood of
the origin.

1 Introduction

The collective risk model, introduced by Cramer and Lundberg in 1930,
remains the subject of analysis by actuaries and mathematicians. In partic-
ular, different methods of analysis continue to be used in obtaining bounds
or asymptotics of the ruin probability, under specific conditions on the claim
size distribution (Cramer, 1930; Gerber, 1973; Ross, 1996). For example, in
the classical risk model under the Cramer-Lundberg condition, the ruin prob-
ability presents an exponential decay as the initial capital u →∞ (Cramer,
1930). If the Cramer-Lundberg condition is weakened, the asymptotic be-
havior of the ruin probability changes dramatically. For instance, in the
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case of sub-exponentially distributed claim sizes, the ruin is asymptotically
determined by a large claim (Embrechts et al., 1997).

Some recent studies impose a perturbation on the classical model. These
perturbations model uncertainties in the rate at which premiums are being
collected, or the rate of returns on the investment strategies by the insurance
company. The perturbations may influence the asymptotic behavior of the
ruin probability. For example, if the perturbation is a Brownian motion, the
ruin probability still presents an exponential decay (Schmidli, 1995). On the
other hand, if the risk model is altered by a geometric Brownian motion, then
the asymptotic decay rate of the ruin probability is at best algebraic. This
latter perturbation models the risk when the company invests its capital into
a risky asset with returns following an exponential of a Brownian motion
(Frolova et al., 2002).

In this paper, the asymptotics of the ruin probability are derived by
analyzing the properties of the Laplace transform of the ruin probability.
Using this technique, the exponential decay of the classical Cramer Lundberg
model has a simple derivation. The same method is used in extending the
cited results of Frolova et al. (2002) to more general claim size distributions
than those considered in the original work. Specifically, while the result in
Frolova et al. (2002) holds for claim sizes with an exponential distribution,
the result presented in this paper applies to claim sizes that have a moment
generating function defined in a neighborhood of the origin. Furthermore,
since this approach relies on the Karamata Tauberian theorems, it appears
to be easier to use under different assumptions on claim inter-arrival times
and investment strategies.

We proceed in the following manner. In the next section, we consider the
classical ruin problem and obtain the asymptotic behavior of the ruin prob-
ability. The integro-differential equation satisfied by the ruin probability is
solved using elementary properties of the Laplace transform. In Section 3 we
investigate the asymptotic behavior of the ruin probability under uncertain
investments. The analysis starts once again using the infinitesimal generator
of the risk process and the Laplace transform. However, given the more in-
tricate form of the equation, we rely on the Karamata Tauberian theorem to
obtain the asymptotic behavior. Some conclusions and research objectives
are presented in Section 4. Finally, we include an Appendix with a summary
of some technical tools used in this paper.
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2 The classical Cramer Lundberg model

The classical risk model

Xt = u + ct−
N(t)∑

k=1

ξk,

is a compound Poisson process. Xt describes the evolution of the capital of an
insurance company, that charges premiums at a constant rate c. The number
of claims up to time t ≥ 0 is a Poisson process N(t), with a Poisson rate λ.
The size or amount of the k-th claim is a random variable ξk. The claim sizes
ξ1, ξ2, .. are independent, identically distributed random variables, having the
distribution function F , with positive mean µ and finite variance. The claims
up to time t occur at random times t1, t2, ..tN(t). Y1 = t1, Yk = tk − tk−1, for
k = 2, 3.., are independent exponentially distributed random variables with
finite mean λ. (ξk)k and (Yk)k are independent.

The ruin probability in finite time is defined as Ψ(u, T ) = P(Xt < 0, for
some t ≤ T ), where 0 < T < ∞ and u ≥ 0. The ruin probability

Ψ(u) = Ψ(u,∞),

refers to the ruin probability with infinite horizon. The purpose of this paper
is to study the asymptotic decay of the ruin probability as the initial capital
u tends to infinity.

The notation for the Laplace transform of the ruin probability is Ψ̂(s) =
LΨ(u)(s) and for the Laplace transform of the density of the claim sizes is
F(s) = L(f(ξ))(s). Mξ(−s) denotes the moment generating function of the
distribution of the claim amounts ξ, and obviously, F(s) = Mξ(−s).

Theorem 1. Consider the Cramer-Lundberg model

Xt = u + ct−
N(t)∑

k=1

ξk,

under the net profit condition λµ < c. Assume that R > 0 is the smallest
positive number such that −R is a solution of the Lundberg equation

cs− λ(1−F(s)) = 0.

Denote Ψ̂(s)(s + R) − Ψ(0) := Ĥ(s). If Ĥ is the Laplace transform of a
function H, then the limit limu→∞ Ψ(u)eRu exists and moreover,

lim
u→∞

Ψ(u)eRu =
λµ

c + λF ′(−R)
=

λµ− c

c− λM ′
ξ(R)

.
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Proof. Using classical renewal theory or computing the infinitesimal gener-
ator of the risk model AΨ(u) = 0, as in Paulsen and Gjessing (1997) (see
Appendix), one can show that the ruin probability satisfies

cΨ′(u) + λ

∫ u

0

Ψ(u− y)dF (y)− λΨ(u)(1− F (u)) = 0, (1)

with Ψ(0) = λµ
c

. The Laplace transform of this equation,

sΨ̂(s)−Ψ(0) +
λ

c
Ψ̂(s)F(s)− λ

c
Ψ̂(s) +

λ

c
(
1

s
− F(s)

s
) = 0

has the solution

Ψ̂(s) =
cΨ(0)− λ

s
(1−F(s))

cs− λ(1−F(s))
.

Recall that the denominator in this expression, L(s) = cs−λ(1−F(s)) gives
the Lundberg equation L(s) = 0. Since the numerator doesn’t vanish at −R,
−R is a pole of Ψ̂(s). By hypothesis,

Ψ̂(s) =
1

s + R
Ĥ(s) +

1

s + R
Ψ(0).

As the Laplace transform of a product of two functions is the Laplace trans-
form of the convolution of the given functions, by the uniqueness of the
Laplace transform it follows that

Ψ(u) =

∫ u

0

e−(u−t)RH(t)dt + e−RuΨ(0). (2)

Since Ĥ(−R) is defined, passing to limit one has

lim
u→∞

eRuΨ(u) =

∫ ∞

0

e−(−R)tH(t)dt + Ψ(0) = Ĥ(−R) + Ψ(0).

Since L(−R) = 0,

Ĥ(s) + Ψ(0) = Ψ̂(s)(s + R) =
cΨ(0)− λ

s
(1−F(s))

L(S)−L(−R)
s+R

and (1−F(−R)) = c
λ
(−R). Therefore, as s → −R,

Ĥ(−R) + Ψ(0) =
cΨ(0)− λ

−R
c
λ
(−R)

L′(−R)
=

cΨ(0)− λ
−R

c
λ
(−R)

c + λF ′(−R)
.
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The initial condition, Ψ(0) = λµ
c

, together with F ′(−R) = −M ′
ξ(R), imply

lim
u→∞

e−RuΨ(u) = Ĥ(−R) + Ψ(0) =
λµ− c

c + λF ′(−R)
=

λµ− c

c− λM ′
ξ(R)

, (3)

in agreement with Rolski et al. (1999).

Remark 1. If the claim sizes are exponentially distributed, the conditions
on the Laplace transform of the ruin probability are trivially satisfied, since
Ĥ(s) = 0. In general, the existence of the function H depends upon the tail
of the distribution of the claim sizes.

3 The Cramer Lundberg model with invest-

ments

This section identifies the effects of a risky investment on the asymptotic
behavior of the probability of ruin. If the insurance company invests the
capital in an asset with a price that follows a geometric Brownian motion,
with drift a and volatility σ, then the ruin probability has an algebraic decay
rate or equals one, depending only on the parameters a and σ of the asset
(Frolova et al., 2002). In the cited paper the result is established only for
exponentially distributed claim sizes, because the method of proof relies on
special properties of the exponential functions. A generalization of the re-
sult for distributions of the claim sizes having moment generating functions
defined on a neighborhood of the origin is possible.

When the company capital is invested in a risky asset, the risk process is
given by

Xt = u + a

∫ t

0

Xs ds + σ

∫ t

0

Xs dWs + ct−
N(t)∑

k=0

ξk, (4)

where ξk represents the size of the k-th claim, with the probability distribu-
tion function F on (0,∞), c is the fixed rate of premium and u is the initial
capital. The capital Xt is continuously invested in a risky asset, with relative
price increments dXt = adt+σdWt, where a and σ are the drift and volatility
of the returns of the asset.

Theorem 2. Consider the model given by (4) and assume that σ > 0. As-
sume also that the distribution of the claims sizes F has a moment generating
function defined on a neighborhood of the origin. Then:

• If the ruin probability decays at infinity, then

2a/σ2 > 1.
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• If 1 < 2a/σ2 < 2, then for some K > 0,

lim
u→∞

Ψ(u)u2a/σ2−1 = K.

Proof. Let ρ = 2a/σ2. Consider the function

U(u) =

{
0 if u < 0∫ u

0
Ψ(x)dx if u ≥ 0.

Let Ũ(s) be the Laplace Stieltjes transform of U(u). Note that the Laplace
transform of the ruin probability Ψ(u), Ψ̂(s), equals the Laplace Stieltjes
transform of the function U(u), Ũ(s),

Ψ̂(s) = L(Ψ(u))(s) =

∫ ∞

0

e−suΨ(u)du =

∫ ∞

0

e−sudU(u) = Ũ(s).

The key point of the proof is to show that Ũ(s) behaves asymptotically at zero
as ksρ−2. Then, using the Karamata Tauberian Theorem and the Monotone
Density Theorem (Bingham et al., 1987), the result follows.

The analysis of the asymptotic behavior of Ψ̂(s) follows the same path as
in the classical case study. Recall that Theorem 2.1. (Paulsen and Gjessing,
1997) states that the ruin probability is the solution of the equation AΨ(u) =
0 together with the boundary conditions (see Appendix). The infinitesimal
generator of the ruin probability Ψ(u) is given by

AΨ(u) =
σ2

2
u2Ψ′′(u) + (au + c)Ψ′(u) + λ

∫ ∞

0

(Ψ(u− y)−Ψ(u)) dF (y).

Since Ψ(u − y) = 1 for any u < y, and
∫∞
0

dF (y) = 1, the equation is
equivalent to

σ2

2
u2Ψ′′(u) + (au + c)Ψ′(u) + λ

∫ u

0

Ψ(u− y) dF (y)− λΨ(u) = 0.

The Laplace transform of this equation is

σ2

2

d2(s2Ψ̂(s))

ds2
−a

d(sΨ̂(s))

ds
+csΨ̂(s)−λΨ̂(s)+λΨ̂(s)F(s)+

λ

s
(1−F(s)) = cΨ(0),

and after differentiation becomes

σ2s2

2
Ψ̂′′(s)+(2sσ2−as)Ψ̂′(s)+(cs−λ+λF(s)+σ2−a)Ψ̂(s) = cΨ(0)−λ

s
(1−F(s)).
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Thus, the equation to be analyzed has the form

s2y′′ + p(s)sy′ + q(s)y = g(s), (5)

with p, q and g holomorphic functions of the form

p(s) = p0 =
2(2σ2 − a)

σ2

q(s) = q0 + q1(s) =
2(σ2 − a)

σ2
+ q1(s)

g(s) = g0 + g1(s) =
2(cΨ(0)− λµ)

σ2
+ g1(s).

Due to the fact that s = 0 is a regular singular point of the homogeneous
equation

s2y′′ + p(s)sy′ + q(s)y = 0,

the solution has the form

ŷ(s) = sρ

∞∑

k=0

cks
k =

∞∑

k=0

cks
ρ+k, (6)

where the coefficients satisfy the recurrence system of equations c0 = 1 and

ckf(ρ + k) + ck−1f1(ρ + k − 1) + · · ·+ c0fk(ρ) = 0,

with
f(ρ) = ρ(ρ− 1) + p0ρ + q0,

as in Fedoryuk (1991). The first of these equations c0f(ρ) = 0 is equivalent
to

ρ2 +
3σ2 − 2a

σ2
ρ +

2σ2 − 2a

σ2
= 0.

If 2σ2 6= a, the solutions of the homogeneous equation are of the form

ŷ1(s) = s−1γ1(s) ŷ2(s) = s−2+ργ2(s),

where γ1(0) = γ2(0) = 1. Using variation of parameters, one can show that
the solutions of the non-homogeneous equation (5) have the form

ŷ = c1s
−1γ1(s) + c2s

−2+ργ2(s) + c3γ3(s),

under the condition ρ < 2, with c1, c2, c3 real constants, γ1, γ2 and γ3 holo-
morphic functions and γ1(0) = γ2(0) = γ3(0) = 1. The asymptotic behavior
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at zero of the solution of equation (5) describes the asymptotic behavior at
zero of Ψ̂(s), consequently of Ũ(s). The leading term of this linear combi-
nation dictates the asymptotic behavior of the solution as s → 0. Two cases
can be distinguished.

If the leading term of the linear combination is s−1 then by Karamata
Tauberian and Monotone Density theorem

Ψ(u) ∼ αγ(1/u)

Γ(2)
as u →∞.

Hence
lim

u→∞
Ψ(u) =

α

Γ(2)
,

where α is a real constant. In other words, the ruin probability has a con-
stant asymptotic behavior, as u → ∞. Obviously, in this case, the function
does not satisfy the boundary conditions from Paulsen and Gjessing (1997)
theorem, so it is not a solution that can be related to the ruin probability.

In the second case, if s−2+ρ is the leading term, then

Ũ(s) ∼ αs−2+ργ(s) as s → 0.

The Karamata-Tauberian Theorem implies

U(u) ∼ αu2−ργ(1/u)

Γ(3− ρ)
, as u →∞.

Ψ(u) is monotone, α ∈ R and ρ ∈ R, hence the Monotone Density Theorem
implies

Ψ(u) ∼ α(2− ρ)u2−ρ−1γ(1/u)

Γ(3− ρ)
, as u →∞.

Since Ψ(u) must decay, ρ needs to satisfy the condition 2 − ρ − 1 < 0. The
conclusion is that

Ψ(u) = Ku1−ργ(1/u), as u →∞, for 1 < ρ < 2

or
lim

u→∞
Ψ(u)uρ−1 = K, as u →∞, for 1 < ρ < 2

where K = α(2−ρ)
Γ(3−ρ)

.

Remark 2. It is conjectured that if ρ ≤ 1, then Ψ(u) = 1 for all u.
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4 Conclusion

This paper illustrates how Laplace transforms and Karamata Tauberian ar-
guments can be used effectively in the analysis of the asymptotic behavior
of the ruin probabilities. For example, the classical Cramer Lundberg result
can be obtained using elementary properties of the Laplace transform. When
uncertain returns on investments are modeled by a geometric Brownian Mo-
tion, the asymptotic behavior of the ruin probability can be derived using
this methodology. Given the analytic nature of these tools, the results ob-
tained in this paper can be generalized to include different claim inter-arrival
times or investment strategies. The results presented in this paper are part
of the PhD thesis of Corina Constantinescu at Oregon State University.

5 Appendix

This is a short summary of some of the technical results used in the paper.

Theorem 3 (Paulsen and Gjessing (1997)). If Ψ(u) is a bounded and
twice continuous differentiable function defined for u ≥ 0 that solves AΨ(u) =
0 on u > 0 together with the boundary conditions:

Ψ(u) = 1, for u < 0

lim
u→∞

Ψ(u) = 0

then the solution is
Ψ(u) = P(Tu < ∞).

Definition 1. Let l be a positive measurable function, defined in some neigh-
borhood [M,∞) of infinity, and satisfying

l(λx)/l(x) → 1, as x →∞, ∀λ > 0,

then l is said to be slowly varying in Karamata’s sense (Bingham et al.,
1987).

Theorem 4 (Karamata Tauberian Theorem). Let U be a non-decreasing
right-continuous function on R with U(x) = 0 for all x < 0. If l varies slowly
and c ≥ 0, ρ ≥ 0 the following are equivalent:

U(x) ∼ cxρl(x)/Γ(1 + ρ), (x →∞),

Ũ(s) ∼ cs−ρl(1/s), (s → 0+),

where Ũ denotes the Laplace-Stieltjes transform (Bingham et al., 1987).
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Definition 2. A function f is ultimately monotone if there exists y such that
for any x > y, f(x) is monotone.

Theorem 5 (Monotone Density Theorem). Let U(x) =
∫ x

0
u(y)dy. If

U(x) ∼ cxρl(x), x →∞,

where c ∈ R, l ∈ R0, and if u is ultimately monotone, then

u(x) ∼ cρxρ−1l(x), x →∞,

(Bingham et al., 1987).
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