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Abstract

Significant changes in the insurance and financial markets are giv-
ing increasing attention to the need for developing a standard frame-
work for risk management. Today’s competitive and investment ori-
ented marketplace requires from insurance directors to use all the ad-
vantages of investing risk capitals of their enterprises. Recently, there
has been growing interest among insurance and investment experts to
focus on the use of a tail conditional expectation as a measure of risk,
since it shares properties that are considered desirable and applicable
in a variety of situations. In particular, such a method allows for
a natural allocation of the total risk capital among its various con-
stituents. This paper examines above risk measure in the case of a
multivariate gamma portfolio. We demonstrate the explicit formulas
for tail conditional expectation and based on it capital allocation when
the proposed multivariate model consists of dependent and indepen-
dent gamma marginals. Financial enterprises are always concerned of
fairly allocating the total risk capital to these constituents. Conse-
quently, this work is particularly meaningful in practice in the case
of computing capital requirements for an institution who may have
several lines of correlated business and whose data is distributed mul-
tivariate gamma model considered here.

1 Introduction

Consider a loss random variable X whose distribution density function we
denote by fX (x), distribution function by FX (x) and then the tail function
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of X is FX (x) = 1− FX (x). This may refer to a total claim for an insurance
company or to the total loss in a portfolio of investments for an individual
or institution. The tail conditional expectation (TCE) is defined to be

TCEX (xq) = E (X|X > xq) (1)

and it may be interpreted as the mean of worse losses. It gives an average
amount of the tail of the distribution. This tail is usually based on the q-th
quantile xq of the loss distribution with the property

FX (xq) = 1− q,
when 0 < q < 1. It is called value-at-risk, denoted by V aRX (q) and it is
defined as

xq = inf {x|FX (x) ≥ q} . (2)

In the case of a continuous random variable the definition above is unique and
equaled to F−1X (q). The formula used to evaluate tail conditional expectation
is

TCEX (xq) =
1

FX (xq)

Z ∞

xq

xdFX (x) , (3)

where FX (xq) > 0.
Tail conditional expectations for the univariate and multivariate Normal

family have been well-developed in Panjer (2001). Landsman and Valdez
(2003a) extended these results for the essentially larger class of elliptical dis-
tributions. Unfortunately, all members of the elliptical family are symmetric.
The first step in investigating the tail conditional expectation risk measure
in the context of non-symmetric loss distributions was made by Landsman
and Valdez (2003b). These authors developed the TCE formulas for the uni-
variate exponential dispersion family (EDF) that includes many well-known
distributions like Normal, Gamma and Inverse Gausian, which, except for
Normal, are not symmetric, have non-negative support and provide excellent
model for fitting insurance losses. It is therefore not surprising to find they
are becoming popular among actuaries.
Although the univariate EDF is considerably rich and widely applied, the

case is different in the modeling of an n - variate portfolios of financial risks
and insurance claims distributed multivariate EDF. For example, it does not
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include important multivariate distributions whose univariate marginals are
inverse Gaussian, gamma or stable (see Bildicar and Potil (1968)). Conse-
quently, the multivariate EDF can not be used to model n - variate portfolios
with such claims.
Tail conditional expectation posses a lot of attractive properties. It is

proved to be a coherent risk measure (see Artzner, et al. 1999) and it allows
for a natural allocation of the total loss among its various constituents. As-
sume that an insurance company manages n lines of business and the risk
managers are interested to know how much risk concealed in line j. The an-
swer to this question is simple. The contribution of the j-th line of business
of the insurance company to its total risk capital is

TCEXj |S (sq) = E (Xj|S > sq) , (4)

where S = X1 + X2 + · · ·Xn. Certainly, due to the additive property of
conditional expectation, the sum of all marginal risks is equal to the total
risk measure for the whole company, i.e.

TCES (sq) =
nX
j=1

E (Xj|S > sq) . (5)

In this paper we advance (4) and (5) in the general framework of a mul-
tivariate model with univariate gamma marginals and the dependency struc-
ture based on the approach in Mathai and Moschopoulos (1991). Multivariate
distributions with non-negative support are extremely important in actuarial
science and the suggested family may provide a good basis for the modeling
of such portfolios.
The rest of the paper, is then organized as follows. Section 2 recalls

the definition and the most important properties of multivariate gamma dis-
tribution in sense of Mathai and Moschopoulos (1991). In this section we
also point at the problem of calculating the distribution of the sum of n
gamma random variables with any shape and rate parameters and we give
a Lemma in order to solve this difficulty. In Section 3 two forms for tail
conditional expectation in the case of the univariate gamma distribution are
presented. Section 4 provides a general expression for the contribution of a
marginal loss Xj to the total risk measure for any non-negative independent
random variables with densities fXj (x) and finite expectations. In Section
5 we derive the most general representation of TCE in the context of the
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proposed multivariate gamma distribution. Section 6 presents the formula
for risk capital decomposition based on the tail conditional expectation risk
measure, and section 7 concludes this paper. At last, we give another, more
attractive form of the expression for tail conditional expectation for the sum
of n gamma risks in Appendix 1.

2 Multivariate Gamma Distribution

We consider here a multivariate gamma model introduced by Cheriyan (1941)
and Ramabhadran (1951), and generalized by Mathai and Moschopoulos
(1991). The dependency structure of this distribution is obtained by adding
a common random variable to every univariate marginal.
Let Y0, Y1, ..., Yn be mutually independent gamma random variables with

shape parameters γi and rate parameters αi, i.e. Yi v Ga (γi,αi). The
probability density function of Yi is then

fYi (y) =
1

Γ (γi)
e−αiyyγi−1αγi

i , y > 0,αi > 0, γi > 0, (i = 0, 1, ..., n). (6)

Denote

Xj =
α0
αj
Y0 + Yj, j = 1, 2, ..., n. (7)

Definition 1 The joint distribution of the random vectorX = (X1,X2, ...,Xn)
T

is the multivariate gamma distribution in sense of Mathai and Moschopoulos
(1991).

Some important properties of this distribution follow directly from the
moment generating function of X, which is easily obtained:

MX (t) = E

"
exp

Ã
y0

nX
j=1

α0
αj
tj

!#
nY
j=1

E
£
etjYj

¤
=

Ã
1−

nX
j=1

tj
αj

!−γ0 nY
j=1

µ
1− tj

αj

¶−γj
. (8)

Consequently:
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1. Xj v Ga
¡
γ0 + γj,αj

¢
.

2. E (Xj) =
¡
γ0 + γj

¢
/αj.

3. V ar (Xj) =
¡
γ0 + γj

¢
/α2j .

4. Cov (Xi,Xj) = γ0/ (αiαj) , i 6= j.

5. ρ (Xi, Xj) =
γ0q

(γ0 + γi)
¡
γ0 + γj

¢ .
The special case when αj = 1 was considered by Cheriyan (1941) and

Ramabhadran (1951).
Suppose γ0 −→ 0 then Y0

a.s.−→ 0. We call Y0 v Ga (0,α0) a non-proper
gamma distributed random variable. Clearly when this is the case, the ran-
dom vector X consists of n independent gamma random variables. Hence,
we get a multivariate independent gamma distribution.
Notice, that the distribution of S = X1 + · · · + Xn is not gamma even

if all Xj are mutually independent gamma random variables with different
rate parameters (see Mathai and Moschopoulos (1991), Theorem 2.1). The
following lemma gives a new interpretation of the Moschopoulos (1985) result
concerning the distribution of S.
Denote γ =

Pn
j=1 γj and αmax = max (α1, ...,αn).

Lemma 1 The distribution of the sum S is mixed gamma with mixing shape
parameter, i.e.

S v Ga (γ +K,αmax) ,

where K is a non negative integer random variable with probabilities

pk = Cδk, k ≥ 0, (9)

where

C =
n

Π
j=1

µ
αj

αmax

¶γj

,

∆j =

µ
1− αj

αmax

¶i
,
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δk = k
−1

kX
i=1

nX
j=1

γj∆jδk−i, k > 0, (10)

and δ0 = 1.

Proof. Observe that from Moschopoulos (1985), Theorem 1
P

k≥0 pk =P
k≥0Cδk = 1.

Remark 1 The case when α1 = α2 = ... = αn implies ∆j = 0 and conse-
quently P (K = 0) = 1, i.e. S v Ga (γ,α) .

Finally, we present two graphs, comparing bivariate independent gamma
distribution and bivariate dependent one.

Figure 1: Bivariate Gamma density with independent univariate marginals.
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Figure 2: Bivariate Gamma density with dependent univariate marginals.

3 TCE Formula for Univariate Gamma Dis-

tribution

Consider gamma distributed loss random variable X with shape parameter
γ and rate parameter α. Let q be such that 0 < q < 1 and let xq denote the
q-th quantile of the distribution of X.We denote by g (x|γ,α) and G (x|γ,α)
the density and the cumulative distribution functions respectively and let
the tail probability function of X be G (x|γ,α) = 1−G (x|γ,α). We call X
a standardized gamma random variable if α = 1 and then we write simply
g (x|γ) , G (x|γ) and G (x|γ).
Theorem 1 Let X v Ga (γ,α) then the tail conditional expectation of X is
given by

TCEX (xq) = E (X)
G (αxq|γ + 1)
G (αxq|γ)

(11)

= E (X) + xqλ, (12)

where λ =
g (αxq|γ)
G (αxq|γ)

is a hazard function.
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We would like to notice here, that representation (11) coincides with that
given in Landsman and Valdez (2003b) . In the same time the form of (12)
was first obtained in the context of multivariate Normal family (see Panjer
(2001)) However, for the case of non-negative losses, representation (11) is
more convenient.

4 Portfolio Risk Decomposition with TCE for

Nonnegative Independent Losses

When uncertainty is due to different sources, it is often natural to ask how
to decompose the total level of uncertainty to these sources. Frees (1998)
suggested methods for quantifying the degree of importance of various sources
of uncertainty for insurance systems.
For our purposes, suppose that the total loss or claim is equaled to

S =
Pn

j=1Xj, where one can think of each Xj as the claim arising from
a particular line of business or product line in the case of insurance, or the
loss resulting from a financial instrument or a portfolio of instruments in any
other case. As it was noticed by Panjer (2001), from the additivity of expec-
tation, the tail conditional expectation allows for a natural decomposition of
the total loss:

TCES (sq) =
nX
j=1

E (Xj|S > sq) . (13)

Note that this is not in general equivalent to the sum of the tail conditional
expectations of the individual components. This is because

TCEXj (sq) 6= E (Xj|S > sq) .

Instead we denote this as

TCEXj |S (sq) = E (Xj|S > sq) (14)

the contribution to the total risk attributable to risk j. It can be interpreted
as follows: that in the case of a disaster as measured by an amount at least as
large as the quantile of the total loss distribution, this refers to the average
amount that would be due to the presence of risk j.
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TCE based allocation formulas for symmetric distributions, having ellip-
tical dependence structure, were studied in Landsman and Valdez (2003a).
Notice, that TCE decomposition technics for portfolios with non-negative
risks essentially differ from the methods applied to the situations when the
risks are symmetric. For example, the distribution function of the convo-
lution of two independent non-negative random variables X and Y may be
rewritten as

FX+Y (x) =

Z x

0

FX (x− t) dFY (t) . (15)

The following Lemma brings out the contribution of the marginal loss Xj
given that the aggregate risk S is bigger than any shortfall xq.We consider
this Lemma an important tool for the allocation technics concerning non-
negative risks in the most general form.

Lemma 2 Let X =(X1, X2, ...,Xn)
T be a multivariate portfolio, constructed

by independent non-negative risks X1,X2, ...,Xn with densities fXj (x) , j =
1, 2, ..., n and finite expectations. Then

E (Xj|S > sq) =
E (Xj)

³
1− 1

E(Xj)

R sq
0
xfXj (x)FS−Xj (sq − x) dx

´
FS (sq)

. (16)

We have already pointed out that there is some complexity with the con-
volution of gamma losses. In fact, even the distribution of the sum of n inde-
pendent gamma random variables with different rates is rather complicated.
We treated this problem by introducing some integer random variables. One
of them K, defined earlier in Lemma 1, has the probability distribution func-
tion

pk = Cδk, K ≥ 0.

Another integer random variable V appears after summarizing two gamma
risks eY v Ga (eγ + k + 1, eαmax) and Y 00 v Ga (γ0,α0/η), where eαmax =
max (α1,α2, ...,αn) and eγ =Pn

j=1 γj. In fact, V is also determined by Lemma

1 in the sense that the distribution of eS = eY + Y 00 may be considered a mix-
ture gamma Ga (γ + k + V + 1, eαmax) , where the random shape γ+k+V +1
is the mixing parameter.
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Let us define αmax = max (α0, eαmax) and γ = eγ+γ0. We denote Zt to be a
gamma random variable with shape parameter equaled 1 and rate parameter
αt, t = 0, 1, ..., n and for the case when αt = αmax, we write Zmax. Let EK (·)
and EV (·) be the expectations with respect to K and V respectively.
We now state a theorem for calculating the TCE of the sum S.

Theorem 2 The tail conditional expectation can be expressed

TCES (sq) (17)

= η
γ0
α0

FS+ηZ0 (sq)

FS (sq)
+

eγeαmax F S+Zmax (sq)F S (sq)
+
EK

¡
KEVG (sq|γ +K + V + 1, eαmax)¢eαmaxFS (sq) .

Corollary 1 Suppose γ0 −→ 0 then Y0
a.s.−→ 0, V

a.s.−→ 0. In the limit case, the
random vector X =(X1, X2, ..., Xn)

T becomes a vector of n independent uni-
variate gamma random variables with any rate and shape parameters. Con-
sequently V

a.s.
= 0, and the formula for tail conditional expectation simplifies

to

TCES (sq) =
eγeαmax F S+Zmax (sq)F S (sq)

+
EK

¡
KG (sq|eγ +K + 1, eαmax)¢eαmaxFS (sq) . (18)

Furthermore, if in addition to independency the equality of all rate parameters
a1,α2, ..., an to some a is implied, then the formula for TCE becomes even
simpler, because in this case P (K = 0) = 1

TCES (sq) = E (S)
G (sq|eγ + 1)
G (sq|eγ) . (19)

5 TCE based capital allocation

In Section 4 we have already emphasized that TCE based allocation technics
for portfolios with non-negative risks essentially differ from the methods ap-
plied to elliptical portfolios. Additional distinction appears because of the
fact that elliptical marginals are closed under convolutions. In the same time,
the distribution of the sum of gamma random variables with different rate
parameters is not gamma and therefore is much more complicated then the
distributions of the constituents of such a sum.
In the following Theorem we show that the contribution of each marginal

risk to the shortfall is stipulated by its expectation, risk’s rate parameter and
additional gamma random variable added to the aggregate sum.
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Theorem 3 Let X = (X1, X2, ..., Xn)
T be an n variate dependent gamma

distributed random vector, where Xj v Ga
¡
γ0 + γj,αj

¢
, then

TCEXj |S (sq) = E (Y0)
α0FS+ηZ0 (sq)

αjFS (sq)
+

γj
αj

F S+Zj (sq)

F S (sq)
. (20)

Corollary 2 In the case when the random vector X =(X1, X2, ...,Xn)
T con-

sists of n independent univariate gammas with arbitrary rate and shape pa-
rameters, i.e. Y0

a.s.
= 0 (see Corollary 1) the formula for the allocation reduces

to

TCEXj |S (sq) =
γj
αj

FS+Zj (sq)

FS (sq)
.

In the situation when X =(X1,X2, ...,Xn)
T consists of n independent gamma

random variables with the same rate a and any shapes the formula takes the
following form

TCEXj |S (sq) = E (Yj)
G (sq|eγ + 1)
G (sq|eγ) .

Let us notice, that due the full allocation principle, one can get the ex-
pression for tail conditional expectation risk measure (17) from the formula
for TCE based allocation (20), i.e.

TCES (sq) = E (ηY0)
FS+ηZ0 (sq)

FS (sq)
+

nX
j=1

γj
αj

F S+Zj (sq)

F S (sq)
(21)

We prove the correctness of this result in Appendix 1.

6 Conclusions

In this paper we examined tail conditional expectation and based on it cap-
ital allocation for loss random variables that belong to multivariate Gamma
distribution. The discussed distribution posses some features that are consid-
ered desirable for actuarial professionals. For instance it is non-symmetric, it
has positive support and it is relatively tolerant to big losses. We studied the
multivariate Gamma model presented by Mathai and Moschopoulos (1991).
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The dependence structure of this distribution is obtained by adding a com-
mon random variable to every univariate marginal. We found an appealing
way to express the tail conditional expectation formula for Gamma random
variables. Furthermore, we evaluated the formula for the contribution of j-th
loss to the whole insurance company risk capital and we showed that the full
allocation principle holds in our context. Anybody believing his data is dis-
tributed multivariate Gamma model considered in here may find this work
self-contained.
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7 Appendix

Define K(j) be an integer non-negative random variable generated by the
convolution

Pn
i=1 Yi+Zj, thus K

(j) has the probability distribution function

p
(j)
k = C(j)δ

(j)
k , k ≥ 0, (22)

where C(j) and δ
(j)
k follow directly from Lemma 1.

Theorem 4 1. The expression for tail conditional expectation may be
written as follows

TCES (sq) = E (ηY0)
FS+ηZ0 (sq)

FS (sq)
+

nX
j=1

γj
αj

FS+Zj (sq)

F S (sq)
. (23)

2. Two useful relations between pk and p
(j)
k are

p
(j)
k = pk

αj
αmax

Ã
1 +

k

γj

Ã
γj∆jδ

(j)
k−1

kδk

!!
, (24)
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δk =
1

k

nX
j=1

γj∆jδ
(j)
k−1, k > 0 (25)

and p
(j)
0 = p0

αj
αmax

, δ
(j)
0 = δ0 = 1.
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